
Algebraic & Geometric Topology 9 (2009) 293–303 293

Secondary characteristic classes of surface bundles

SØREN GALATIUS

The Miller–Morita–Mumford classes associate to an oriented surface bundle E! B

a class �i.E/ 2H 2i.BIZ/ . It was proved in [1] that the mod p reduction �i.E/ 2

H 2i.BIZ=p/ vanishes when i C 1 is divisible by .p � 1/ . In this note we prove
that the p2 reduction �i.E/ 2H 2i.BIZ=p2/ vanishes when i C 1 is divisible by
p.p � 1/ . We also define for each integer i � 1 a characteristic class �i.E/ 2

H 2i.p�1/�2.BIZ=p/ which satisfies p�i.E/D �i.p�1/�1.E/ 2H�.BIZ=p2/ .

55R40

1 Introduction and statement of results

This paper studies characteristic classes of surface bundles. By surface bundle we shall
mean smooth fiber bundle � W E!B with closed oriented two-dimensional fibers. An
important sequence of characteristic classes is the Miller–Morita–Mumford classes, or
�–classes. They associate to a smooth fiber bundle � W E! B a characteristic class
�i 2 H 2i.BIZ/ for all i � 0. They are natural with respect to pull back of surface
bundles and also have other nice properties. The question under study in this paper
and in the paper by the author, Madsen and Tillmann [1] is the question of universal
divisibility of the classes �i . More precisely we have the following definition:

Definition 1.1 Let D � 1 be a natural number. Let us say that �i is divisible by D if
there is a characteristic class � with values in H 2i.�IZ/ such that �i.E/DD�.E/

for all surface bundles. Let us say that �i is divisible by D modulo torsion if there is a
characteristic class � with values in H 2i.�IZ/ such that �i.E/�D�.E/2H 2i.BIZ/
is a torsion element for all surface bundles � W E! B .

It is natural to ask for the maximal possible D for each i , both for integral divisibility
and divisibility modulo torsion. This can be studied one prime at a time. We summarize
the partial answer to this question given in [1].
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Theorem 1.2 [1] Let p be a prime number and v � 0 a natural number.

(i) If �i is divisible by pvC1 , then i C 1 is divisible by pv.p� 1/.

(ii) �i is divisible by pvC1 modulo torsion if and only if i C 1 is divisible by
pv.p� 1/.

(iii) �i is divisible by p if and only if i C 1 is divisible by .p� 1/.

This completely determines the divisibility of �i modulo torsion. Part (i) is a conse-
quence of part (ii) and gives an upper bound on the integral divisibility of �i , but the
exact divisibility by pv for v � 2 was left unanswered in [1]. The following theorem,
which is our main theorem in this paper, settles the case v D 2.

Theorem 1.3 �i is divisible by p2 if and only if i C 1 is divisible by p.p� 1/.

Let us rephrase the statement of the main theorem. The following theorem is obviously
a consequence, but in fact turns out to be equivalent to Theorem 1.3. This is the form
in which the main theorem will be proved.

Theorem 1.4 Let p be a prime and s � 1. Then the reduction of �ps.p�1/�1 modulo
p2 vanishes,

�ps.p�1/�1.E/D 0 2H�.BIZ=p2/;

for all surface bundles � W E! B .

We explain how to deduce Theorem 1.3 from Theorem 1.4. The “only if” part is
already contained in Theorem 1.2(i). For the “if” part we consider the long exact
sequence in homology associated to the short exact sequence of coefficients Z!
Z! Z=p2 . It follows that for each surface bundle E! B there is a class �.E/ in
integral cohomology such that p2�.E/D �ps.p�1/�1.E/. To see that we can choose
�.E/ natural, we apply this argument in a universal situation. The classifying space
BDiff.F / of the topological group of orientation preserving diffeomorphisms classifies
surface bundles with fiber F in the sense that there is a natural bijection between
the set of isomorphism classes of surface bundles E! B with fiber F and the set
ŒB;BDiff.F /� of homotopy classes of maps B ! BDiff.F /. There are universal
classes �i 2H 2i.BDiff.F /IZ/ which, assuming Theorem 1.4, vanish after reduction
modulo p2 (if the reduction were nonzero there would be some map B!BDiff.F /
from a smooth manifold B , such that the pullback to B was also nonzero). Hence we
can choose a universal � 2H�.BDiff.F /IZ/. Thus Theorem 1.3 and Theorem 1.4
are equivalent. In the proof, we prove the statement of Theorem 1.4.

Algebraic & Geometric Topology, Volume 9 (2009)



Secondary characteristic classes of surface bundles 295

Thus for v D 0; 1 we have proved that �i is divisible by pvC1 if and only if it is
divisible modulo torsion. It seems reasonable to conjecture that this is the case for all v .
Hence we formulate the following conjecture, also mentioned in [1], which would
completely settle the question of divisibility of �–classes.

Conjecture 1.5 Let s � 1 and v � 0. Then

�pvs.p�1/�1.E/D 0 2H�.BIZ=pvC1/:

In the course of the proof of Theorem 1.4 we introduce certain new characteristic
classes �i which might have some independent interest. Their main properties are
given by the following theorem.

Theorem 1.6 For each i � 1 there is a characteristic class �i which associates to a
surface bundle E! B a class �i.E/ 2H 2i.p�1/�2.BIZ=p/ with the property that

p�i.E/D �i.p�1/�1.E/ 2H�.BIZ=p2/:(1-1)

Furthermore, the class �i satisfies the following properties:

(i) If � W E! B and � 0W E0! B are two surface bundles, then

�i.EqE0/D �i.E/C�i.E
0/:

(ii) Let E1 , E2 and E0
2

be bundles of compact surfaces with boundary and assume
that the oriented boundaries satisfy @E1 D @E2 D @E

0
2

. Then we can form the
surface bundles

E DE1[@
xE2;

E0 DE1[@
xE02;

D DE02[@
xE2;and

where the bars denote orientation reversal. In this case we have

�i.E
0/D �i.E/C�i.D/:

The classes �i are defined using Toda brackets. In Section 2 we review general
properties of Toda brackets and in Section 3 we give the definition of �i.E/ for a
surface bundle E . It is a secondary class, and we prove that �i.E/ � H�.BIZ/ is
defined with indeterminacy Z�i.p�1/�1 . Then we prove that the reduction modulo
p has zero indeterminacy and satisfies the properties in Theorem 1.6. Finally, our
main theorem (Theorem 1.3) is proved by showing that the reduction of the class
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�ps.E/ modulo p vanishes for all surface bundles (after modifying the definition from
Section 3 a little).
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2 Secondary composition

We recall the definition of secondary compositions (Toda brackets). For further details
see Toda [3].

All spaces and all maps in this section are pointed. The reduced suspension SX is
regarded as the pushout of the diagram

X ^ Œ�1; 0� Xoo // X ^ Œ0; 1�;

where �1 2 Œ�1; 0� and 1 2 Œ0; 1� are the basepoints. Thus, two nullhomotopies
F W X ^ Œ�1; 0�! Y and GW X ^ Œ0; 1�! Y induce a map G �F W SX ! Y .

For a sequence of maps

X
f // Y

g // Z
h // W

with gıf ' 0 and hıg' 0, a choice of nullhomotopies F W gıf ' 0 and GW hıg' 0

determines a map
h ıF �G ı .f ^ Œ�1; 0�/W SX !W:

We define the secondary composition to be the subset fh;g; f g� ŒSX;W � of homotopy
classes of maps obtained in this fashion, as F;G range over all nullhomotopies.

Recall that ŒSX;W �D ŒX; �W � is a group.

Lemma 2.1 fh;g; f g depends only on the homotopy classes of h, g , and f . If
fh;g; f g is defined, then it gives a unique element in the double coset,

fh;g; f g 2 h ı ŒSX;Z� n ŒSX;W �=ŒSY;W � ıSf:

If ŒSX;W � is abelian, then

fh;g; f g 2 ŒSX;W �=
�
h ı ŒSX;Z�C ŒSY;W � ıSf

�
:

Proof See Toda [3, Lemma 1.1].
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Proposition 2.2 For a sequence of maps

X
f // Y

g // Z
h // W

k // V

we have

(i) fk; h;gg ıf � fk; h;g ıf g

(ii) fk; h;g ıf g � fk; h ıg; f g

(iii) fk ı h;g; f g � fk; h ıg; f g

(iv) k ı fh;g; f g � fk ı h;g; f g.

Proof See Toda [3, Proposition 1.2].

Proposition 2.3 Let

K.Z; n/
p // K.Z; n/

� // K.Z=p; n/
ˇ // K.Z; nC 1/

represent multiplication by p , reduction mod p , and the mod p Bockstein, respectively.
Then

id 2 fˇ; �;pg � ŒSK.Z; n/;K.Z; nC 1/�D ŒK.Z; n/;K.Z; n/�:

Proof Consider the diagram

K.Z; n/
p // K.Z; n/

g // C.p/
h //

��

SK.Z; n/

k
��

K.Z; n/
p // K.Z; n/

� // K.Z=p; n/
ˇ // K.Z; nC 1/

where the top row is the Puppe sequence. It is immediate from the definition that
id 2 fh;g;pg. Now apply Proposition 2.2 (iii)–(iv) to get fh;g;pg ık � fp; �; ˇg.

Corollary 2.4 Let cW X !K.Z; n/ represent a cohomology class. Let � and ˇ be as
in Proposition 2.3. Then

fˇ; �; cg D 1
p

cCZc �H n.X /D ŒSX;K.Z; nC 1/�;

where
1
p

c D fc0 j pc0 D cg:

Proof The two sides have the same indeterminacy ZcCˇH n�1.X IZ=p/, so all we
need to check is that if pc0 D c , then c0 2 fˇ; �; cg. But this follows from Proposition
2.2 and Proposition 2.3:

fˇ; �;p ı c0g � fˇ; �;pg ı c0 3 c0:
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3 Secondary characteristic classes

In this section we first review the definition of the �–classes in a convenient lan-
guage. Then we define the new characteristic classes �i and prove that they satisfy
Theorem 1.6.

To define �–classes we use the Pontrjagin–Thom construction, which we first review.
Any surface bundle � W E!B admits an embedding j W E!B �RNC2 over B , for
some N . For N large, j is unique up to isotopy. A choice of embedding j induces a
transfer (“collapse”) map

BC ^SNC2
�! // Th.�j /;

where �j is the normal bundle of j and Th.�j / is its Thom space. The embedding
j W E! B �RNC2 also induces classifying maps

T �E
cl.T �E/ //

��

SO.NC2/�SO.N /�SO.2/R2

��
E // SO.NC2/=.SO.N /�SO.2//

and

�j
cl.�j/ //

��

SO.NC2/�SO.N /�SO.2/RN

��
E // SO.NC2/=.SO.N /�SO.2//:

For brevity, write

U D UN D SO.NC2/�SO.N /�SO.2/R2;

U? D U?N D SO.NC2/�SO.N /�SO.2/RN :

We get the composition

˛ D ˛E D Th.cl.�j // ı�!W BC ^SNC2
! Th.U?N /:

By Thom isomorphism, there is a Thom class uU? 2 H N .Th.U?/; ?IZ/ and we
have H NC�.Th.U?/; ?IZ/DZŒe.U /�:uU? for �<N . Here e.U / is the Euler class
of U . The definition of the �–classes is

�i.E/D ˛
�.e.U /iC1:uU?/D �

�
! .e.T

�E/iC1:u�j / 2H 2i.BIZ/:
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The following lemma is the key to defining the classes �i . For an odd prime p , we
write P i for the Steenrod power operation. For p D 2 we write P i D Sq2i and
ˇP i D Sq2iC1 .

Lemma 3.1 Let p be a prime and let � W E ! B be a surface bundle. Let ˛ D
˛E W BC ^ SNC2 ! Th.U?

N
/ be as above and let uW Th.U?

N
/ ! K.Z;N / be the

Thom class. Then the Toda bracket

fˇP i ;u; ˛g �H 2i.p�1/�2CN .BC ^SNC2
IZ/DH 2i.p�1/�2.BIZ/

is defined with indeterminacy Z�i.p�1/�1.E/.

Definition 3.2 With notation as in Lemma 3.1 define

�i.E/D .�1/ifˇP i ;u; ˛g 2H 2i.p�1/�2.BIZ/=Z�i.p�1/�1.E/:

Since �i.p�1/�1.E/ is divisible by p , the indeterminacy vanishes if we reduce �i.E/

modulo p . We will use the same notation for the reduced class �i.E/ 2H�.BIZ=p/.
Before proving Lemma 3.1, we need the following lemma from [1]. As before eD e.U /

denotes the Euler class in H 2.SO.NC2/=.SO.N /�SO.2//.

Lemma 3.3 In H�.Th.U?/; ?IZ=p/ we have that

P iuU? D .�1/iei.p�1/uU? :

Proof Let P D
P

i P i . We first calculate the action of P in the Thom space of the
two-dimensional bundle U . We claim that

P.uU /D .1C e.U /p�1/uU :

To see this we identify R2 D C and SO.2/D U.1/. This gives a complex structure
on U and hence a classifying map to the universal complex line bundle L!CP1 .
This in turn gives a map Th.U /! Th.L/ so it suffices to calculate the Steenrod action
in Th.L/. There is a well known homeomorphism Th.L/ŠCP1 under which uU

corresponds to c1.L/ and ei�1uU corresponds to ci
1

. The formula for P.uU / above
now follows from the following obvious formula in H�.CP1IZ=p/:

P i.c1/D

8̂<̂
:

c1 if i D 0;

c
p
1

if i D 1;

0 otherwise.

Now, since uU˚U? D uU uU? we get

uU uU? D uU˚U? D P.uU˚U?/D P.uU /P.uU?/D .1C e.U /p�1/uUP.uU?/
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and hence

P.uU?/D .1C e.U /p�1/�1uU? D

�X
i

.�1/ie.U /i.p�1/

�
uU? :

Proof of Lemma 3.1 Clearly u ı˛ ' 0. It follows from Lemma 3.3 that P iu is the
reduction of an integral class, so ˇP i ıu' 0. Therefore fˇP i ;u; ˛g is defined.

The indeterminacy can be computed from Lemma 2.1. Indeed we have

ˇP i ŒBC ^SNC3;K.Z;N /�D 0

and

ŒSTh.U?/;K.Z;NC2i.p�1/C1/�ı˛ D ˛�H NC2i.p�1/.Th.U?/IZ/

D ˛�.Zei.p�1/uU?/DZ�i.p�1/�1.E/:

Proof of Theorem 1.6 The property (1-1) follows from Proposition 2.2 and Corollary
2.4 and the diagram

BC ^SNC2 ˛ //

�i.p�1/�1 ))RRRRRRRRRRRRRR
Th.U?

N
/

u //

ei.p�1/u
��

K.Z;N /

Pi

��
K.Z;N C 2i.p� 1//

� // K.Z=p;N C 2i.p� 1//

ˇ

��
K.Z;N C 2i.p� 1/C 1/:

Indeed, Proposition 2.2 gives the inclusions

fˇ; �; �i.p�1/�1.E/g D fˇ; �; .e
i.p�1/u/ ı˛g � fˇ; � ı .ei.p�1/u/; ˛g

D .�1/ifˇ;P iu; ˛g � .�1/ifˇP i ;u; ˛g D �i.E/:

Then Lemma 2.1 proves that the first inclusion is an equality since the two sides have the
same indeterminacy Im.ˇ/CZ�i.p�1/�1 . Therefore Corollary 2.4 gives the inclusion

�i.E/� fˇ; �; �i.p�1/�1.E/g D
1
p
�i.p�1/�1.E/CZ�i.p�1/�1.E/;

and hence p�i.E/� .1CpZ/�i.p�1/�1.E/. Here the two sides of the inclusion have
the same indeterminacy pZ�i.p�1/�1 so they are equal and we get

p�i.E/D .1CpZ/�i.p�1/�1.E/ 2H�.BIZ/=pZ�i.p�1/�1:(3-1)
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Firstly, (3-1) reproduces the fact that �i.p�1/�1 is divisible by p . Using this, we
see that the indeterminacy vanishes after reducing (3-1) modulo p2 . This proves
formula (1-1).

Now, (i) follows from the additivity of ˛ under disjoint union, ie the property that

˛.EqE0/D ˛.E/C˛.E0/ 2 ŒBC ^SNC2;Th.U?N /�:

Similarly (ii) follows from the “additivity” of ˛ under gluing. Explicitly, a choice of
embedding j@W @E1! B �RNC1 over B will induce a map

˛@W BC ^SNC1
! Th.U?/:

A choice of embedding jE1
W E1! B � Œ0;1/�RNC1 extending j@ will induce a

nullhomotopy ˛E1
of ˛@ . Then we have

˛E D ˛E1
�˛E2

;

˛E0 D ˛E1
�˛E0

2
;

˛D D ˛E0
2
�˛E2

:

Thus we get
˛E0 D ˛E C˛D 2 ŒBC ^SNC2;Th.U?/�:

Remark 3.4 The proof in [1] of the “upper bound”, Theorem 1.2(i), is based on maps
'W B.Z=pn/! BDiff.†/ for a suitable action of a cyclic group of order pn on a
Riemann surface †, first constructed in [2]. This gives a class

'�.�i/ 2H 2i.B.Z=pn/IZ/D Z=pn;

and it follows from the calculations in [2] and [1] that for n> v , '�.�i/ is divisible by
pvC1 if and only if i C 1 is divisible by pv.p� 1/. Let us set p D 3, v D 0, nD 2,
and i D 1. Then

'�.�1/ 2H 2.B.Z=9/IZ/D Z=9

is divisible by 3 but not 9, so it is 3 times a generator of Z=9. Property (1-1) says in
this case that 3�1 D �1 , so '�.�1/ must be a generator of Z=9 (with indeterminacy
3Z=9). Now let B be the lens space B D S3=.Z=3/ and let B!B.Z=9/ be the map
which multiplies by 3 in �1 and H 2 . We get a map

 W B! BDiff.†/

such that  �.�1/ D 0 2 H 2.BIZ/ D Z=3, but  �.�1/ is a generator of Z=3. The
surface bundle E! B classified by  is an example of a bundle whose nontriviality
is detected by �1 but not by any �i .
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4 A variant of �ps

The goal of this section is to prove Theorem 1.4. We have already seen that �i.p�1/�1

is divisible by p . When i D ps for some s > 0, a variant of �ps can be used to prove
that �ps.p�1/�1 is divisible by p2 . Again, let Ap be the Steenrod algebra. When
p D 2 we write P i D Sq2i and ˇP i D Sq2iC1 as before.

Definition 4.1 Let s � 0 and define �s 2Ap by

�s D

sX
jD0

.�1/j
�
.p� 1/.s� j /

j

�
Pps�jPj

D Pps
C terms of length 2:

Define vectors vs; ws 2AsC1
p by

wsD.P0; : : :Ps/; vsD.Pps; : : : ; .�1/j
�
.p� 1/.s� j /� 1

j

�
Pps�j ; : : : ;P.p�1/s/:

Lemma 4.2

(i) In H�.Th.U?/; ?IZ=p/ we have that �suU? D eps.p�1/uU? .

(ii) vT
s ˇws D ˇ�s .

Proof (i) This is similar to Lemma 3.3, using the fact that the admissible terms of
length 2 act trivially on uU? . Formula (ii) is the Adem relation for P.p�1/sˇPs .

Definition 4.3 Let ˛;u; �s be as above. Define the secondary characteristic class

z�ps.E/D .�1/sfˇ�s;u; ˛g 2H 2ps.p�1/�2.B;Z/=Z�ps.p�1/�1.E/:

Notice that z�ps satisfies the same formal properties as �ps . In particular pz�ps D

.1CpZ/�ps.p�1/�1 .

Proof of Theorem 1.4 We have

.�1/s� ı fˇ�s;u; ˛g � .�1/sf� ıˇ�s;u; ˛g D .�1/sfvT
s ˇws;u; ˛g

� .�1/svT
s fˇws;u; ˛g

and we see that all the inclusions are equalities since the indeterminacies vanish. Since

.�1/sfˇws;u; ˛g2

sY
iD0

H NC2i.p�1/.BC^SNC2
IZ=p/D

sY
iD0

H 2i.p�1/�2.BIZ=p/;
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vT will vanish because H�.BIZ=p/ is an unstable Ap –module.

Hence the mod p reduction of z�ps.E/ vanishes, so �ps.p�1/�1.E/D pz�ps.E/D 0 2

H�.BIZ=p2/.
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