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Singular link Floer homology

BENJAMIN AUDOUX

We define a grid presentation for singular links, ie links with a finite number of rigid
transverse double points. Then we use it to generalize link Floer homology to singular
links. Besides the consistency of its definition, we prove that this homology is acyclic
under some conditions which naturally make its Euler characteristic vanish.
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Introduction

Since the Jones polynomial was categorified in 1999 by Mikhail Khovanov [7], knot
and link invariants of homological type have constantly been growing to become one
of the most flourishing and promising fields in knot theory. Practically, categorifying a
polynomial invariant � means, for a presentation of a link L, defining a graded chain
complex LD .Lj

i /i;j2Z such that

(i) the graded Euler characteristic �gr.L/D
X
i;j

.�1/irk.Lj
i /q

j is equal to �.L/;

(ii) the homology H�.L/ depends only on the link L.

Categorification is worthwhile since it defines a new link invariant which sharpens the
information given by its single Euler characteristic. Typically, H�.L/ distinguishes
more links and provides equalities when � gives only bounds. Moreover, it is usually
endowed with good functorial properties with regard to the category of cobordisms.

In this context, the question of a Vassiliev-like theory for invariants of homological
type has been raised. Actually, any link polynomial invariant can be naturally extended
to singular links, ie links with a finite number of rigid transverse double points, using
the recursive formula

(1) �. / WD �. /��. /;

where the three pictures should be understood as pieces of link diagrams which are
identical outside the represented crossing.
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Finite type invariants of order k 2 N are then defined as the polynomial invariants
which vanish for every knot with at least k C 1 double points. Finiteness defines a
filtration on polynomial invariants. Most known invariants are combinations of finite
type invariants; see [2]. To date, the question is still open to know whether the union
of all finite type invariants is strong enough to distinguish all knots.

A similar theory for link invariants of homological type should imply an exact triangle

H�
�
L
� ��

// H�
�
L
� ��

��
H�

�
L
� ��

__

which categorifies the relation (1). Exact triangles arise naturally when dealing with
mapping cone of chain maps. Hence, as proposed by N Shirokova [13], a strategy can
be to consider a wall-crossing map f W L

� �
�! L

� �
. Unfortunately, there is no

canonical way to define such a map and, among the candidates, a selection has be done.
Polynomial invariants automatically vanish for links with a singular loop. It is then
justified to require that the homology also vanishes for such links.

�

�
L

�
D 0

requirement
�������! H�

�
L
�

L

��
� 0

The purpose of this paper is to prove the following theorem:

Theorem 1 There exists a generalization bHFV of the link Floer homology bHF with
Z coefficients to singular links with oriented double points, which categorifies the
relation (1) and vanishes for links with a singular loop.

An orientation for a double point is a choice of orientation for the plane spanned by the
two tangent vectors at this double point. Link Floer homology is a categorification of the
Alexander polynomial. It was defined in 2004 by Peter Ozsváth and Zoltan Szabó [11]
and, independently, by Jacob Rasmussen [12]. It appeared to be particularly rich since
it detects the unknot, the trefoils, the figure eight knot, fiberedness and Seifert genus. In
2006, link Floer homology was given an alternative description, which is combinatorial
in nature; see Manolescu, Ozsváth and Sarkar [8] and Manolescu, Ozsváth, Szabó and
Thurston [9]. In the next paragraph, we briefly review this construction which is based
on the grid presentation for links.

Another generalization HFS of link Floer homology to singular links was given by
Ozsváth and Szabó [10], but actually, the two approaches differ in motivation and in
construction. Moreover, they satisfy different exact triangles.
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oo // oo //

Cyclic permutation Commutation
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//

Stabilization/Destabilization

Figure 1: Elementary grid diagram moves

A grid diagram G of size n 2N� is a .n� n/–grid with some squares decorated by
an O or by an X in such a way that each column and each row contains exactly one
O and one X . We denote by O the set of O ’s and by X the set of X ’s. A decoration
is an element of O[X. From now on, we will write RoC as an abbreviation for “row
or column”.

An oriented link diagram is associated to any grid diagram. To this end, we join, in
each column, the two decorations by a straight line. We do the same in each row with
straight lines which underpass all the vertical ones. Each decoration is then replaced
by a right angled corner which can be smoothed. By convention, the link is oriented by
running the horizontal strands from the O–decoration to the X–one.

Reading Figure 2 from right to left shows that, up to isotopy, any grid diagram can be
described in this way. P Cromwell [3] and, later, I Dynnikov [4] proved that any two
grid diagrams which describe the same link can be connected by a finite sequence of
the following elementary grid moves:
� (Cyclic permutation) cyclic permutation of the RoCs;
� (Commutation) commutation of two adjacent columns (resp. rows) under the

condition that all the decorations of one of the two commuting columns (resp.
rows) are strictly above (resp. strictly on the right of) the decorations of the other
one;

� (Stabilization/Destabilization) Addition (resp. removal) of one column and one
row by replacing (resp. substituting) locally a decorated square by (resp. to) a
.2� 2/–grid containing three decorations in such a way that it globally remains
a grid diagram.

Algebraic & Geometric Topology, Volume 9 (2009)
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Figure 2: From grid diagrams to links

Let G be a grid diagram of size n for a link L with ` components. We define C�.G/

as the ZŒfUOgO2O �–module generated by all one-to-one correspondences between the
rows and the columns of G . Every generator can be depicted on the grid by drawing a
dot at the bottom left corner of each common square of associated row and column.
Then, generators are sets of n dots arranged on the intersections of the grid lines such
that every line contains exactly one point, except the rightmost and the uppermost ones
which do not contain any.

Before turning C�.G/ into a bigraded module, we need to introduce some definitions.
For A and B two finite subsets of R2 , we define J .A;B/ as half the number of pairs
..a1; a2/; .b1; b2// 2A�B satisfying .b1� a1/.b2� a2/ > 0 ie

J .A;B/ WD #
˚
.a; b/ 2A�B j

a lies in the open south-west or north-east quadrants of b
	
:

Then, we set MB.A/ WD J .A;A/ � 2:J .A;B/ C J .B;B/ C 1. Now, for every
generator x of C�.G/ and every ˛ 2 ZŒfUOgO2O � we can set

� M.˛:x/ WDMO.x/� 2:deg.˛/;

� A.˛:x/ WD 1
2
.MO.x/�MX.x//� .n� `/=2� deg.˛/;

where deg.˛/ is the total polynomial degree of ˛ and where decorations are assimilated
to their centers of gravity. The maps M. : / and A. : / are respectively called the
Maslov and the Alexander grading.

A differential @�
G

which decreases M by one and respects the filtration induced by
A can then be defined by counting rectangles. To formalize this, we consider TG the
torus obtained by gluing together the opposite sides of G . For two generators x and y

of C�.G/, a rectangle � connecting x to y is an embedded rectangle in TG which
satisfies:

� edges of � are embedded in the grid lines;

� opposite corners of � are respectively in x ny and y nx ;
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� except on @� , the sets x and y coincide;

� according to the orientation of � inherited from the one of TG , horizontal
components of @� are oriented from points of x to points of y .

A rectangle � is empty if Int.�/\x D∅. We denote by Rectı.G/ the set of all empty
rectangles on G and by Rectı.x;y/ the set of those which connect x to y .

A nonempty rectangle Empty rectangles

Figure 3: Examples of rectangles connecting x to y : Dark dots describe
the generator x while hollow ones describe y . Rectangles are depicted by
shading. Since a rectangle is embedded in the torus and not only in the
rectangular grid, it may be ripped in several pieces as in the case on the right.

Finally, we define the map @�
G
W C�.G/�! C�.G/ as the morphism of ZŒfUOgo2O �–

modules defined on the generators of C�.G/ by

@�G.x/D
X

y generatorR

X
�2Rectı.x;y/

".�/
� Y

O2O\�

UO

�
:y;

where "W Rectı.G/ �! f˙1g is a sign assignment which is defined by Manolescu,
Ozsváth, Szabó and Thurston [9] or, equivalently, by Gallais [5].

The homology H�.G/ is defined as H�
�
C�.G/; @�

G

�
. It is filtered by the Alexander

grading. If S�O is a choice of one O–decoration on each connected component of L,
then the link Floer homology bHF.G/ is defined as H�

�
.C�.G/; @�

G
/=fUOgO2S

�
. It

is proven in [9] that bHF.G/ depends only on L and that it categorifies the Alexander
polynomial.

The paper is organized as follows. In the first section, we generalize the grid presentation
to singular links. This is done by defining singular grids with singular RoCs, which
contain four decorations instead of two. Every singular RoC corresponds to a singular
double point of the underlying link. There are four ways to split a singular RoC into
regular ones. At the level of links, they correspond to the three orientation-preserving
desingularizations of the associated double point.
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Then we define a fourth elementary grid move, called rotation (see Figure 7), and prove
the following statement:

Proposition 2 Every singular link admits a singular grid presentation. Moreover, any
two grid diagrams for a singular link can be connected by a finite sequence of regular
elementary grid moves and rotations.

To prove this proposition, we use the diagrammatical approach of singular links given
by L Kauffman in [6]. Besides the three usual Reidemeister moves, this description
adds two new ones which are illustrated in Figure 4.

$ $

Type IV Type V

Figure 4: Singular Reidemeister moves

In Section 2, we define a chain complex
�
CV�.G/; @�

G

�
for a singular grid G which

generalizes the regular case. Essentially, CV�.G/ is, as a module, the grading-shifted
direct sum of the chain complexes associated to all desingularizations of G . Shifts
increasing the Maslov and Alexander gradings by l 2 Z are respectively denoted by
:Œl � and :flg. The differential is defined by counting more general polygons on G . For
technical reason, the construction requires a choice of orientation for every singular
RoC. This choice can be reduces to a choice, on the underlying singular link L, of an
orientation for all its double points ie a choice of orientation for every plane spanned
by the two transverse vectors which are tangent to L at a double point.

Then we prove:

Proposition 3 The homology H�
�
CV�.G/; @�

G

�
depends only on the underlying

singular link L with oriented double points.

In Section 3, we discuss graded objects associated to the different filtrations and give
the definition of singular link Floer homology bHFV . In this section we also prove
a few symmetry properties which reflect some properties of Alexander polynomial.
Finally, we prove that bHFV is null for every link with a singular loop.

The paper is ended by computations of singular link homologies with Z=2Z coefficients,
made with the help of a computer. They lead to conjectures about conditions under
which the singular link Floer homology should be null.

Algebraic & Geometric Topology, Volume 9 (2009)



Singular link Floer homology 501

The present paper synthesizes some results of the author’s PhD thesis [1]. However, the
reader should be warned that, for clarity reasons, notation and conventions may have
been slightly modified. Lastly, the author would like to sincerely thank the referee for
all his or her comments, and also Peter Ozsváth, Christian Blanchet, Thomas Fiedler
and Etienne Gallais for interesting conversations and remarks.

1 Grid description for singular links

1.1 Singular grid diagrams

A singular grid diagram is a rectangular grid with some squares decorated by a O or
by an X in such a way that each RoC contains exactly one or exactly two decoration(s)
of each kind. An RoC is called singular if it contains four decorations and regular
otherwise. Furthermore, in the former case, the two middle decorations are required
to be surrounded by decorations of different kinds. In other words, as we read the
decorations from bottom to top (resp. from left to right) in a singular column (resp.
singular row), we find one of the following: OOXX , OXXO , XXOO or XOOX .
We denote by, respectively, O and X the sets of O ’s and X ’s decorations of G . The
size of a grid is the cardinality of O . A singular grid diagram may have different
numbers of lines and rows.

  

Figure 5: From singular grid diagrams to singular links

As in the regular case, every singular grid diagram gives rise to an oriented singular link.
The process is almost identical. First we join the decorations in regular columns. For
singular ones, we connect the uppermost decoration to the third one and the second to
the lowermost by vertical lines slightly bent towards the right (or, equivalently, towards
the left) in such a way that the two curves intersect in one singular double point. Then
we join again the decorations but inside the rows, taking care in underpassing vertical
strands when necessary. Pairs of singular horizontal strands are simultaneously bended
upward or downward. As a matter of fact, every singular RoC gives rise to a singular
double point.

Proposition 1.1 Every singular link can be described by a singular grid diagram.

Algebraic & Geometric Topology, Volume 9 (2009)
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Proof Consider a planar diagram for a given singular link and choose a way to
desingularize all the double points. Now, consider a grid diagram which corresponds to
this regular diagram. Singular points appear as regular crossings, ie as four decorations
arranged within a cross pattern.

If the vertical strand belongs to a regular column, then, by performing two stabilizations
and a few commutations, one can obtain a configuration which enables the recovering
of the double point by merging two adjacent columns.

  

If the vertical strand is already part of a singular column, then we can move the crossing
in order to be back to the precedent case.

 

Obviously, circular permutations and commutations of RoCs in a singular grid leave the
associated singular link invariant. As shown in Figure 6, (de)stabilizations require a little
more attention. In order to avoid forbidden phenomena, we require that the intersection

oo //

Figure 6: Forbidden stabilization

of the .2 � 2/–square involved in a (de)stabilization with any given singular RoC
contains at most one decoration. In other words, the row and the column determined
by adjacent decorations in the involved .2� 2/–square are required to be regular.

Since a double point can be represented by mean of a singular column or by mean of
a singular row, we introduce new grid moves, called rotations, which connect these
two possibilities. Up to the addition and the removal of some empty pieces of rows or

Algebraic & Geometric Topology, Volume 9 (2009)
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oo // oo //

Left rotation Right rotation

Figure 7: Rotation moves

columns, rotations replace a specific .3� 4/–subgrid by a .4� 3/ one. A picture of
these specific subgrids is given in Figure 7.

Theorem 1.2 Any two singular grid diagrams which describe the same singular link
can be connected by a finite sequence of

� regular cyclic permutations of RoCs, ie cyclic permutations moving a regular
RoC from one side to its opposite;

� commutations of regular RoCs;

� (de)stabilizations which involve at most one decoration in each singular RoC;

� rotations.

These moves are called elementary moves. The first three ones are called regular
elementary moves.

Proof Let G1 and G2 be two singular grid diagrams which describe the same link.

Essentially thanks to rotation moves, we can turn all singular rows in G1 and in G2 into
singular columns. Furthermore, by performing a combination of regular elementary
moves first, we can assume that the decorations in any singular column are in adjacent
cases, the two O ’s being above the two X ’s, and that every decoration which shares a
row with one of the two middle decorations of a singular column is located on the left
of this column.

We denote by D1 and D2 the diagrams associated to G1 and G2 by bending all the
vertical singular strands towards the right. Double points are then in the following
position:

Algebraic & Geometric Topology, Volume 9 (2009)
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� W oo //

� W oo //

� W oo //

� W oo //

Figure 8: Realization of singular Reidemeister moves V: Arrows stand for
sequences of commutations.

First, we assume that D1 and D2 are isotopic as diagrams. Then we can choose an
isotopy connecting D1 to D2 which rigidly preserves a neighbourhood of the crossings
and of the double points, except for a finite number of times when a crossing is turned
over or a double point fully rolled up around itself. When compared with the proof of
Proposition 4 in [4], only the latter case need some attention. However, it can also be
easily realized as

� W oo //

Algebraic & Geometric Topology, Volume 9 (2009)
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using stabilizations and commutations. During the process, some cyclic permutations
or commutations involving a singular column may occur. But then, with the help of
rotations moves, they can be replaced by regular moves. The grids G1 and G2 can
thus be connected by a sequence of rotations and regular elementary moves.

Now, it is sufficient to realize all the Reidemeister moves to complete the proof. For
the regular ones, we refer to the proof of Proposition 4 in [4]. Because of the required
rigidity condition on double points, the last two Reidemeister moves split into eight
cases. Figure 8 and Figure 9 handle all of them.

Conversely, every elementary move clearly preserves the underlying singular link.

Remark 1.3 The description can be restricted to grids with no singular row. Then
rotation moves must be replaced by another moves involving only singular columns.
There are several equivalent ways to define them. Lemma 1:3 in [1] gives some of
them.

1.2 RoC desingularization

There are four ways to split a singular RoC into two regular ones. However, as illustrated
in Figure 10, only two of them preserve the connections between decorations induced
by the associated link. We are interested only in these resolutions. When dealing with a
singular column, they can be distinguished by considering the slope of the line passing
through its two topmost decorations:

� If the two decorations are of the same kind, then the 0–resolution corresponds
to the negative slope. We say the singular column is positively resolved or
0–resolved. The positive slope case is then called 1–resolution and the singular
column is said to be negatively or 1–resolved.

� If the two decorations are of different kinds, then the 0–resolution corresponds
to the positive slope and the 1–resolution to the negative one.

When dealing with a singular row, we give the same definitions but using the two
rightmost decorations.

Proposition 1.4 At the level of links, the 0 and 1–resolutions of a singular RoC
correspond respectively to the positive and the negative resolutions of the double point
associated to this RoC.

Algebraic & Geometric Topology, Volume 9 (2009)



506 Benjamin Audoux

� W

bb

""

<D

|�

||

<<

ii

))

�"

Zb

uu

55

� W

bb

""

<D

|�

||

<<

ii

))

�"

Zb

uu

55

Figure 9: Realization of singular Reidemeister moves IV: Simple arrows
stand for combinations of regular elementary moves. Double arrows stand
for rotation moves. Mirror Reidemeister moves are obtained by reflecting
vertically all the pictures and swapping the nature of the decorations.
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X

66hh

X ((vv

0–resolution

1–resolution

X

ii

Xuu

Figure 10: Desingularizations of singular RoCs

Proof First, we deal with the desingularization of a singular column c . Up to cyclic
permutation, the distinction between 0 and 1–resolutions is consistent. Actually, when
a cyclic permutation of RoCs affects the topmost decoration of c , it changes its possible
equalness of nature with the second topmost decoration of c , but it changes also the
slope sign of the line passing through them. We can hence assume that c is the rightmost
column and that its two O–decorations are above its two X–ones. Then we are in the
case illustrated in Figure 10 and the proposition can be checked directly.

Desingularization of singular rows can be treated in a similar way.

Resolving a singular RoC can be seen as drawing an arc inside this singular RoC, which
meanders between decorations and meets at most once other grid lines:

0–resolution
55

))

1–resolution

A set of winding arcs is a set of two such arcs which meet each other in exactly four
points disjoint from the grid lines. By convention, we denote by ˛ the arc corresponding
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to the 0–resolution and by ˇ the arc corresponding to the 1–resolution.

βα

If considering the torus obtained by gluing the opposite sides of the grid, the arcs ˛
and ˇ bound four bigons and each of them contains exactly one decoration. Every
element of ˛\ˇ is then at the intersection of two bigons which can be identified with
the decorations they contain. Furthermore, these two bigons can be ordered using the
notion of being above or being on the right inherited from the grid. It defines a type
for each element of ˛\ˇ . In what follow, we will exclusively be interested in arcs
intersections of types , , and .

2 Singular link Floer homology

2.1 Definition

The singular link Floer homology can be inductively defined as the mapping cone
of a map associated to a given double point. But in this paper, we will give a direct
definition of the whole differential. It is defined by counting grid polygons which
generalize the regular rectangles.

Let G be a singular grid of size n with k 2N singular RoCs enhanced with winding arcs
and T the torus obtained by identifying the opposite borders of G . For convenience,
we label the singular RoCs and all their associated objects with integers from 1 to k

and the element of O with integers from 1 to n.

For every I D .i1; : : : ; ik/ 2 f0; 1g
k , we denote by GI the regular grid obtained by

performing a ij –resolution on the j –th singular element for all j 2 J1; kK. At the
level of bigraded ZŒUO1

; : : : ;UOn
�–modules, we set

CV�.G/D
M

I2f0;1gk

C�.GI /Œ�#.I/�;

where #.I/ is the number of 1 in I . The value #.I/ defines a third grading which is
called desing grading.
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An empty rectangle An empty hexagon An empty heptagon

An empty pentagon An empty hexagon An empty octogon

Figure 11: Examples of grid polygons connecting x to y : Dark dots describe
the generator x while hollow ones describe y . Grid polygons are depicted
by shading. With respect to the number of peaks, there are five kind of grid
polygons with more than four corners.

Let P be a set of peaks ie a choice, for every i 2 J1; kK, of an element in ˛i \ˇi of
type , , or .

Let x and y be generators of CV�.G/. A grid polygon connecting x to y is a polygon
� embedded in T which satisfies:

� @� is embedded in the grid lines (including the winding arcs);

� C.�/, the set of corners of � , is a subset of x[y [P , with C.�/\x ¤∅;

� starting at a element of C.�/\x and running positively along @� , according to
the orientation of � inherited from the one of T , we first follow an horizontal
arc and the corners of � we meet are then successively and alternatively points
of y and x with, possibly, an element of P inserted between any two of them ;

� except on @� , the sets x and y coincide;

� for any element c 2 C.�/, Int.�/ does not intersect the grid lines (including
the winding arcs) in a neighbourhood of c .

Algebraic & Geometric Topology, Volume 9 (2009)
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The set C.�/ \ P is called the set of peaks of � . The grid polygon is empty if
Int.�/\ x D ∅. We denote by Polı.G;P / the set of all empty grid polygons on G

with at least four corners and by Polı.x;y;P / the set of those which connect x to y .

Figure 12(a) illustrates how the peaks of a grid polygon can be embanked by adding or
deleting some grid triangles and some bigons. Then by moving, when necessary, dots
from ˇ to ˛–curves as shown in Figure 12(b), we define a map

�W Polı.G;P / �! Rectı.G0���0/:

(a) (b)

Figure 12: From grid polygons to rectangles: Dark dots describe the initial
generator of the grid polygon while hollow ones describe the final one. The
initial grid polygon is depicted by clear shading whereas the grid triangles
and bigons are depicted by dark one.

Conversely, a grid polygon with at least four corners can be obtained by adding peaks
on a rectangle. Depending on the relative position, in this rectangle, of the edge where
a peak is added, we say the peak is of compass type North, East, South or West.

Now we state a lemma relating the Maslov and the Alexander degrees of generators
connected by a grid polygon.

Lemma 2.1 Let x and y be two generators of CV�.G/ and � a grid polygon in
Polı.x;y;P /. Then

M.x/�M.y/D 1� 2#.� \O/;

A.x/�A.y/D #.� \X/� #.� \O/:

Proof It is sufficient to prove the statement for M since replacing O by X and
subtracting the result to the O–case prove it for A. We will do it by recurrence on s ,
the number of edges of � .

Algebraic & Geometric Topology, Volume 9 (2009)
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The case sD 4 corresponds to Lemma 2:5 in [9]. Now we suppose that the proposition
is true for s � 4 and that � has sC 1 edges. Then � has at least one peak p and we
suppose that it is of compass type East and type . The other cases can be treated in a
similar way or by using formulas for the behaviour of M under rotation, reflection
and swap of O and X, formulas given in the proof of Proposition 3.3.

According to Lemma 2:4 in [9], the Maslov grading is invariant under cyclic permuta-
tion of the rows or of the columns. Hence, we can assume, without loss of generality,
that, when read from bottom to the top, the decorations of the singular column where
p is located are ordered as follows: XXOO . Now, as in Figure 12(a), we embank p

by adding or deleting a triangle �0 and, possibly, some bigons �1; : : : ; �r in order to
get a grid polygon � 0 with s edges connecting x to a new generator z . Depending on
the cardinality of O\ .

Sr
iD0 �i/ and whether the triangle and the bigons are ripped

or not, four cases have to be checked. In each case, it is straightforward to compute
M.z/�M.y/, paying attention not to omit the shift in degree occurring in the definition
of CV�.G/, and to conclude using the recurrence assumption on � 0 .

For instance, if the cardinality is one, then the triangle or one of the bigons is ripped
and we have M.z/ �M.y/ D 2. But, since � 0 has s edges, M.x/ �M.z/ D

1� 2#.� 0\O/D 1� 2#.� \O/� 2 and M.x/�M.y/D 1� 2#.� \O/.

 y W z W

Now, we choose a compass convention C W P �! fNorth;South;East;Westg with
C.p/ 2 fNorth;Southg if p is an intersection of winding arcs belonging to a singular
row and C.p/ 2 fEast;Westg otherwise. Then we define a sign map

"W
Polı.G;P / �! f˙1g

� 7�! .�1/�.�;C /"
�
�.�/

�
where �.�;C / counts the number of peaks p of � such that the compass type of p

is C.p/.
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Finally, we define the map @�
G;P;C

W CV�.G/ �! CV�.G/, or @�
G

for short, as the
morphism of ZŒUO1

; : : : ;UOn
�–modules defined on the generators by

@�G.x/D
X

y generatorR
of CV�.G/ I

X
�2Polı.x;y;P/

".�/U
O1.�/
O1

� � �U
On.�/
On

�y:

Proposition 2.2 The couple
�
CV�.G/; @�

G

�
is a filtered chain complex.

Proof The map @�
G
ı @�

G
counts juxtapositions of two grid polygons. We will prove

that they can be gathered in canceling pairs.

Let �1 2 Polı.x;y;P / and �2 2 Polı.y; z;P / for x , y and z three generators of
CV�.G/. If @�1 \ @�2 contains a peak of �1 or �2 , then, up to rotation, it locally
looks like one of the two pictures below, where grid polygons are partially represented
by shading with different intensities and where the square is part of the intermediary
generator y .

The other picture provides then an alternative decomposition into grid polygons � 0
1
2

Polı.x;y0;P / and � 0
2
2 Polı.y0; z;P /, where y0 is a fourth generator of CV�.G/,

which involves a peak with opposite compass type. Moreover, �.�1/ D �.�
0
1
/ and

�.�2/D �.�
0
2
/, so the contributions cancel each other out.

If @�1\ @�2 does not contain such a peak, then �1 , �2 and their peaks induce a right
inverse for � . The problem can be translated to the regular grid G0���0 and the proofs of
Propositions 2:8 and 4:20 in [9] provide an alternative and canceling decomposition.

The fact that @�
G

preserves the Alexander filtration and decreases the Maslov grading
by one is a consequence of Lemma 2.1.

Corollary (of the proof) 2.3 Let r be a singular RoC in G and p the element of P

which belongs to r . Let GC and G� be the two grids obtained by desingularizing r .
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Then the ZŒUO1
; : : : ;UOn

�–linear map fpW CV�.GC/ �! CV�.G�/ defined on the
generators by

fp.x/D
X

y generatorR
of CV�.G�/

I

X
�2Polı.x;y;P;p/

".�/U
O1.�/
O1

� � �U
On.�/
On

�y

where Polı.x;y;P;p/ is the set of grid polygons in Polı.x;y;P / which contain p

as a peak, is a chain map which anticommutes with the differentials defined for the set
of peaks P 0 D P n fpg and the compass convention C 0 D CjP 0 .

The chain complex
�
CV�.G/; @�

G

�
is the mapping cone of fp .

2.2 Statement

Now, we deal with L a singular link enhanced with an orientation for every double
point ie an orientation for each plane spanned by two transverse vectors which are
tangent to L at a double point. Let G be a singular grid for L with an arbitrary set of
winding arcs.

We define a set of peaks P as follows. Let D be the link diagram obtained from
G by bending upward the strands in singular rows and towards the right in singular
columns. Then P is defined by choosing, for a singular row (resp. singular column),
the arcs intersection of type (resp. ) if the orientation for the associated double
point coincides with the orientation inherited from the plane on which D is drawn.
Otherwise, we choose the arcs intersection of type (resp. ).

Finally, we choose an arbitrary compass convention C .

Theorem 2.4 The homology H�.CV�.G/; @�
G;P;C

/, denoted by HV� , depends only
on the oriented singular link L and on the orientation of its double points.

2.3 Consistency

Theorem 2.4 can be divided in six invariance propositions:

� under compass convention choice;

� under isotopy of winding arcs;

� under regular cyclic permutation of RoCs;

� under commutation of regular RoCs;

� under (de)stabilization;

� under rotation.
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2.3.1 Compass convention The first point follows from Corollary 2.3. Actually,
changing the value of the compass convention for a given peak p 2 P corresponds to
changing fp for �fp .

2.3.2 Isotopy of winding arcs An isotopy of winding arcs modifies the differential
each time an element of P crosses a grid line. So let .˛; ˇ/ and .˛0; ˇ0/ be two sets
of winding arcs which are identical except near an horizontal grid line, denoted by l .
We assume that the arcs ˛ and ˇ intersect in p 2 P on a side of l , whereas ˛0 and ˇ0

intersect in p0 on the other side.

l
p

˛ ˇ

l

p0

˛0 ˇ0

The case of an element of P crossing a vertical grid line can be treated in a similar way.
With its terminology and applied to p and p0 , Corollary 2.3 claims that the homologies
associated to each set of winding arcs can both be described as the mapping cones of
maps

fp; fp0 W CV�.GC/ �! CV�.G�/:

We will prove that fp and fp0 are homotopic.

For that purpose, we say that a generator x of CV�.GC/ is l –linked to a generator y

of CV�.G�/ if and only if x n .˛ \ l/ D y n .ˇ \ l/. Then, for all generators x of
CV�.G/, we set

h.x/D

�
y if x and y are l–linked;
0 otherwise;

and we extend h to CV�.GC/ by ZŒUO1
; : : : ;UOn

�–linearity.

Lemma 2.5 The map h is an homotopy map between fp and fp0 ie it satisfies

fp �fp0 D h ı @�GC � @
�
G�
ı h

where @�
GC

and @�
G�

are defined using compass conventions which coincide on common
peaks and send p and p0 to West.

Proof The surviving terms in fp�fp0 correspond to grid polygons with p or p0 and
˛ \ l or ˇ \ l as corners. They are terms of h ı @�

GC
when ˇ \ l is a corner of the

grid polygon and terms of @�
G�
ı h when ˛\ l is. There is no difficulty in checking

that the signs coincide.

The remaining terms in h ı @�
GC

cancel with terms in @�
G�
ı h.
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2.3.3 Cyclic permutation Since grid polygons are embedded in the torus, they are
clearly preserved by cyclic permutations. Hence, we only need to pay attention to
signs.

It is proven in [9] and [5] that the sign assignment for rectangles is essentially unique
in the sense that any two sign assignments define isomorphic chain complexes. Since a
cyclic permutation does not modify the compass type of grid polygon peaks and since
a sign assignment for grid polygons depends only on its definition for rectangles and
on the compass types, the invariance still holds in the singular case.

2.3.4 Regular commutation In this section, we consider a commutation of regular
columns. Commutation of regular rows can be treated similarly.

Since the decorations of one of the two commuting columns are strictly above the dec-
orations of the other one, the elementary move can be seen as replacing a distinguished
vertical grid line ˇ by a different one  , like in the picture below.

We denote by Gˇ and G the corresponding grids.

 ˇ

p

By P 0 we denote a common set of peaks considered for defining @�
Gˇ

and @�
G

. Then,
by considering the definition of grid polygons for a set of peaks P DP 0[ .ˇ\ / and
by including ˇ and  among the grid lines, we define commuting polygons connecting
a generator x of CV�.Gˇ/ to a generator y of CV�.G /. One can observe that only
one of the two elements of ˇ\  can actually be realized as a peak. This intersection
is denoted by p in the picture above.

For any pair of generators x and y of, respectively, CV�.Gˇ/ and CV�.G /, we
denote by PolıC .x;y/ the set of empty commuting polygons, with at least five corners,
connecting x to y . Then, we can set the map �ˇ W CV�.Gˇ/ �! CV�.G / as the
morphism of ZŒUO1

; : : : ;UOn
�–modules defined on generators by

�ˇ .x/D
X

y generatorR
of CV�.G /I

X
�2Polı

C
.x;y/

".�/U
O1.�/
O1

� � �U
On.�/
On

�y:
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Lemma 2.6 The map �ˇ is a chain quasi-isomorphism.

Proof The proof that �ˇ anticommutes with the differentials is totally similar to the
proof of Proposition 2.2.

Now we consider the filtration induced by the desing grading. The differentials and
the map �ˇ clearly preserve it. The associated graded chain complexes are the direct
sums of the chain complexes associated to every desingularized grid, and, restricted to
any of them, the graded map associated to �ˇ is the eponyme morphism defined in
Section 3:1 of [9]. In this paper, the authors prove that it is a quasi-isomorphism. It
follows from standard homological algebra that �ˇ is a quasi-isomorphism.

2.3.5 (De)Stabilization A stabilization replaces a .1� 1/–subgrid g1 by a .2� 2/–
subgrid g2 . Depending on the nature of the decoration in g1 and on the square which
is empty in g2 , there are eight different kinds of (de)stabilization. We prove invariance
for the following one:

�!

G Gs

(2)

but, mutatis mutandis, the proof can be adapted to the seven others cases.

We denote by O1 the new O–decoration and by O2 the one which is lying on the
same row than g1 . According to the definition of (de)stabilizations, O1 cannot belong
to a singular RoC.

The broad outlines of the proof are:

(i) (Description of CV�.G/ using Gs ) Every generator of CV�.G/ can be seen
as drawn on Gs by adding x0 , the dot located at the south-west corner of O1

(see the dot in (2)). The gradings are the same and the differential is given by
ignoring the conditions involving O1 or x0 ie grid polygons may contain x0 in
their interior and there is no multiplication by UO1

.

(ii) (Description of CV�.G/ involving UO1
) The chain map CV�.G/ is quasi-

isomorphic to the mapping cone C D C1˚C2Œ�1� of the map

C1 WD
�
CV�.G/˝ZŒUO1

�
�
f�1gŒ�1�

�.UO2
�UO1

/
// .CV�.G/˝ZŒUO1

�/Œ1�DW C2 :

Hence, it is sufficient to define a quasi-isomorphism from CV�.Gs/ to C .
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(iii) (Crushing filtration) There is a filtration on CV�.Gs/ such that the associated
graded differential is the sum over thin rectangles which are contained in the
row or in the column through O1 and which do not contain O1 or any X .

(iv) (Graded quasi-isomorphism) The associated graded chain complex splits into
the three following subcomplexes1:

8<:
9=; �

//
��

8<:
9=;

~~

8<: �

9=;0

��

and

8<:
9=; :0

��

Then we can define a graded chain map FgrW CV�.Gs/ �! C as

Fgr WD

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

� Id // 2 C1

� // 2 C2Œ�1�

� // zero:

It is obviously a quasi-isomorphism for the graded chain complexes.

(v) (Filtered extension of Fgr ) The map Fgr can be extended to a new map
F W CV�.Gs/ �! C of filtered chain complexes. Essentially, commutativity of
F with rectangles which are empty except x0 which is actually contained in
their interior, ie rectangles embedded in the grid Gs which are involved in the
differential associated to G as described in i) but not in the differential associated
to Gs , generates inductively additional terms in the definition of F . Since its
graded part is a quasi-isomorphism, F is a quasi-isomorphism.

1Though intuitive, details about the notation are given in the Appendix A of [1].

Algebraic & Geometric Topology, Volume 9 (2009)



518 Benjamin Audoux

Details for points (i), (ii), (iv) and (v) are strictly similar than those of Section 3:2 in
[9]. Concerning the filtration of the point (iii), we give an alternative construction.

First, we consider the filtration induced by the Alexander grading, the total polynomial
degree in variables UO1

; � � � ;UOn
and the desing grading. Then the associated graded

differential, denoted by z@, counts only empty rectangles containing no decoration. Now,
we define a fourth grading on

�
CV�.Gs/; z@

�
.

Let x be a generator of CV�.Gs/. By construction, the extra RoCs in Gs can be
crushed in order to get back to G . When crushing with x drawn on the grid, it provides
a set zx of dots which is not a generator of CV�.G/ since two singular grid lines, one
horizontal and one vertical, have two dots on it. It may happen that two dots merge,
the resulting dot is then counted with multiplicity.

We perform a few cyclic permutations in such a way that the singular grid lines are the
leftmost and the topmost ones. The upper right corner of the grid is then filled with an
X–decoration which we denote by X � .

Now, we can consider

MG.x/ WDMOG
.zx/

where OG is the set of O–decorations of G and M:. : / is the map defined in the
introduction, which compares the relative positions of two planar sets of points.

Lemma 2.7 MG defines a filtration on
�
CV�.Gs/; z@

�
. The associated graded differ-

ential corresponds to the sum over rectangles which are contained in the row or in the
column through O1 and which do not contain O1 or any X .

Proof Let x and y be two generators of CV�.Gs/.

In the crushing process, empty rectangles � on Gs containing no decoration give
rise to empty rectangles z� on G which are also empty of decoration except, possibly,
X � . Actually, it may happen that a dot is pushed into @� , but not into Int.�/. If � is
connecting x to y , then z� is connecting zx to zy .

If � is totally flattened during the crushing process then zx D zy and MG.x/DMG.y/.

Now we assume that z� is not flat. Since X � does not interfere with MG , the fact that
z� contains it or not, does not matter.
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crushing
 

process

cyclic
 

perm.
 

MG.x/D�3

MG.y/D�4

crushing
 

process

cyclic
 

perm.
 

MG.x
0/D�6

MG.y
0/D�7

Figure 13: Crushing row and column: Dark dots describe the initial genera-
tors x and x0 while hollow ones describe the final ones y and y0 . Polygons
are depicted by shading.

If z� is not ripped and does not have any extra dot on its border, then the computation is
identical than in the proof of Lemma 2:5 of [9]. Hence, we have MG.y/DMG.x/�1.

If z� is horizontally ripped in two then we can compute using its horizontal complement
which is not ripped and corresponds to a rectangle connecting y to x . Since z� is
empty and contains no decoration, its complement must contain k O–decorations and
k�1 dots, where k is the height of z� . Then, MG.y/DMG.x/C1C2.k�1/�2k D

MG.x/� 1.

k rows
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If z� has an extra dot on its right border, then there is an extra term in I.zx; zx/ which
does not appear in I.zy; zy/. As a result, MG.y/DMG.x/� 2.

If z� has an extra dot on its left border, we consider its horizontal complement z�0 . Now,
the extra term appears in I.zy; zy/ but, on the other hand, z� contains only k�2 dots in
its interior. Finally, MG.y/DMG.x/C 2C 2.k � 2/� 2k DMG.x/� 2.

k rows

Vertical ripping can be treated in the same way. Because of O1 , a rectangle cannot be
ripped in four pieces.

So the grading MG induces a filtration on
�
CV�.Gs/; z@

�
. Furthermore, it is clear that

MG is only preserved by rectangles which are flattened during the crushing process. It
corresponds exactly to rectangles contained in the row or in the column through O1 .

2.3.6 Rotation Let L be a singular link enhanced with an orientation for all its
double points. Let Gh and Gv be two grid diagrams for L which differ from the
following rotation move:

 !

Gh Gv

Furthermore, according to the construction of a set of peaks given in Section 2.2, we
assume that the orientation of the double point involved in this move corresponds to
the orientation inherited from the plane on which Gh and Gv are drawn.
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We consider the four desingularizations of the involved RoCs. All of them can be
obtained by removing all winding arcs but two in the following grid G (see (4)):

(3)

˛1 1 ˇ1

p1

˛2

2

ˇ2

p2

q2

We denote by GX1X2
where .X1;X2/ 2 f˛1; ˇ1; 1g � f˛2; ˇ2; 2g the grid obtained

by removing
S2

iD1 .f˛i ; ˇi ; ig nXi/ in G . According to Corollary 2.3, the chain
complexes CV�.Gh/ and CV�.Gv/ can be seen as the mapping cones of

fp1
W CV�.G˛1ˇ2

/ �! CV�.Gˇ1ˇ2
/

fp2
W CV�.Gˇ1˛2

/ �! CV�.Gˇ1ˇ2
/and

where p1 and p2 are, respectively, the element of ˛1[ˇ1 of type and the element
of ˛2[ˇ2 of type (see (3)).

The positive desingularizations of Gh and Gv can be linked by a sequence of two
regular commutations. In Section 2.3.4, we have already defined quasi-isomorphisms

�ˇ22
W CV�.G˛1ˇ2

/ �! CV�.G˛12
/;

�2ˇ2
W CV�.G˛12

/ �! CV�.G˛1ˇ2
/

�1ˇ1
W CV�.G1˛2

/ �! CV�.Gˇ1˛2
/:and
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The following diagram synthesizes all the grids and the chain maps:

(4)

.˛1; ˇ2/

�ˇ22

//

fp1

��
�

,,

L
M

N
O

P
R

S
T

U V W X X

.˛1; 2/

�2ˇ2oo  //___

.1; ˛2/

�1ˇ1 //

.ˇ1; ˛2/

fp2

��
.ˇ1; ˇ2/

�

Id
//

.ˇ1; ˇ2/

Now we define two maps

 W CV�.G˛12
/ �! CV�.G1˛2

/;

�W CV�.G˛1ˇ2
/ �! CV�.Gˇ1ˇ2

/:

The map  send a generator x 2CV�.G˛12
/ to the unique generator y 2CV�.G1˛2

/

connected to x by a pair of disjoint grid triangles which are empty and contain no
decoration. When ˛1\2 2 x , the triangles are degenerated and x D y as sets of dots
on G .

˛1 1

˛2

2

˛1 1

˛2

2

when ˛1\ 2 2 x when ˛1\ 2 … x

Figure 14: A picture for  : The generators x and y coincide except con-
cerning the dark dots which belong to x and the hollow ones which belong
to y . Grid triangles are depicted by shading.
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For the definition of � , we need to introduce a new kind of polygons. For any generators
x and y in CV�.G˛1ˇ2

/, a polygon …D � nB is a ˇˇ–polygon connecting x to
y if

� � is a grid polygon in Polı.G˛1ˇ2
/ connecting x to y ;

� B is one of the two bigons delimited by the arcs ˇ2 and 2 ;

� B � � .

The ˇˇ–polygon … is empty if Int.…/\xD∅. We denote by ˇˇ–Polı.x;y/ the
set of all empty ˇˇ–polygons, with at least six corners, connecting x to y .

˛1

2

ˇ2

˛1

2

ˇ2

Figure 15: Examples of ˇˇ–polygons connecting x to y : Dark dots de-
scribe the generator x while hollow ones describe y . Grid polygons are
depicted by shading.

We set the map '1W CV�.G˛1ˇ2
/!CV�.G˛1ˇ2

/ as the morphism of ZŒUO1
; : : : ;UOn

�–
modules defined on the generators by

'1.x/D
X

y generatorR
of CV�.G˛1ˇ2

/I

X
…2ˇˇ-Polı.x;y/

".�/U
O1.…/
O1

� � �U
On.…/
On

�y

where � is the element of Polı.G˛1ˇ2
/ such that …D � nB for a bigon B .

We also define '2W CV�.G˛12
/ �! CV�.Gˇ1ˇ2

/ by

'2.x/D
X

y generatorR
of CV�.Gˇ1ˇ2

/I

X
�2Polı.x;y/

".�/U
O1.�/
O1

� � �U
On.�/
On

�y

where x is a generator of CV�.G˛12
/ and Polı.x;y/ is the set of empty grid polygons

containing p1 and q2 , the leftmost element of ˇ2\2 (see (3)), as peaks and connecting
x to y .
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Then we set �Dfp1
ı'1C'2ı�ˇ22

. Since CV�.Gv/ and CV�.Gh/ can, respectively,
be seen as the mapping cones of fp1

and fp2
, we finally define ˆW CV�.Gv/ �!

CV�.Gh/ by

ˆ.x/D

�
�1ˇ1

ı ı�ˇ22
.x/C�.x/ if x is a generator of CV�.G˛1ˇ2

/;

x if x is a generator of CV�.Gˇ1ˇ2
/:

Lemma 2.8 The map ˆ is a quasi-isomorphism.

Proof To prove that ˆ commutes with the differentials, it is sufficient to prove that

fp1
Cˆ ı @�G˛1ˇ2

� fp2
ı�1ˇ1

ı ı�ˇ22
C @�Gˇ1ˇ2

ıˆ:(5)

Let x be a generator of CV�.G˛12
/. Figure 16 illustrates a correspondence between

the polygons involved in �1ˇ1
ı (resp. fp2

) and some polygons involving p1 (resp.
q2 ) as a peak. A chain map f 0p1

(resp. �0
2ˇ2

) can be defined by summing over the latter.
Moreover, in this correspondence, associated polygons contain the same decorations.
Then their combinatorics are identical and we can refer to the proof of Proposition 2.2
to claim that

fp2
ı�1ˇ1

ı .x/Cfp1
ı�2ˇ2

.x/C @�Gˇ1ˇ2
ı'2.x/C'2 ı @

�
G˛12

.x/D 0:(6)

Moreover, it follows from the proof of Propositions 3.2 and 4.24 in [9] that

IdC�2ˇ2
ı�ˇ22

C @�G˛1ˇ2
ı'1C'1 ı @

�
G˛1ˇ2

� 0:

Then

0� fp1
Cfp1

ı�2ˇ2
ı�ˇ22

Cfp1
ı @�G˛1ˇ2

ı'1Cfp1
ı'1 ı @

�
G˛1ˇ2

� fp1
Cfp1

ı�2ˇ2
ı�ˇ22

� @�Gˇ1ˇ2
ıfp1

ı'1Cfp1
ı'1 ı @

�
G˛1ˇ2

;

and using (6), we obtain

0� fp1
�fp2

ı�1ˇ1
ı ı�ˇ22

� @�Gˇ1ˇ2
ı'2 ı�ˇ22

�'2 ı @
�
G˛12

ı�ˇ22

�@�Gˇ1ˇ2
ıfp1

ı'1Cfp1
ı'1 ı @

�
G˛1ˇ2

� fp1
Cfp1

ı'1 ı @
�
G˛1ˇ2

C'2 ı�ˇ22
ı @�G˛1ˇ2

�fp2
ı�1ˇ1

ı ı�ˇ22

�@�Gˇ1ˇ2
ı'2 ı�ˇ22

� @�Gˇ1ˇ2
ıfp1

ı'1;

what concludes the proof of (5) since the remaining terms cancel each other out.
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˛1 1 ˇ1

˛2

2 o
�1ˇ1

ı 

f 0p1 /

˛1 1 ˇ1

˛2

2

˛1 1 ˇ1

˛2

2 o
�1ˇ1

ı 

f 0p1 /

˛1 1 ˇ1

˛2

2

˛1 1 ˇ1

˛2

2 o
�1ˇ1

ı 

f 0p1 /

˛1 1 ˇ1

˛2

2

Figure 16: Correspondence between grid polygons: Dark dots describe the
initial generator while hollow ones describe the final one. Squares describe
intermediate states. Figure and description continued on the next page.
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ˇ1

˛2

2

ˇ1

o
fp2

�0
2ˇ2 /

ˇ1

˛2

2

ˇ1

ˇ1

˛2

2

ˇ1

o
fp2

�0
2ˇ2 /

ˇ1

˛2

2

ˇ1

ˇ1

˛2

2

ˇ1

o
fp2

�0
2ˇ2 /

ˇ1

˛2

2

ˇ1

Figure 16: Continued from previous page. Polygons are depicted by shading.
The light gray one is considered first, then the dark one. For each polygon(s),
we indicate to which map it belongs. Note that associated polygons share
the same initial and final generators and the same sign rule. Moreover, they
contain the same decorations. Other cases are similar.
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Now we consider the filtration induced by the grading which sends a generator x

of CV�.Gv/ (resp. CV�.Gh/) to 0 or 1 depending on the resolution of the singular
column (resp. singular row) involved in the rotation move. The graded part associated
to ˆ is a composition of quasi-isomorphisms. The whole map ˆ is hence a quasi-
isomorphism.

o / o /

o / o /

Figure 17: Four rotation moves: For each move, we indicate the convention
for arcs intersection which is considered in the proof of invariance.

By symmetry, the proof can be adapted to fit the four rotation moves given in Figure
17. They correspond, up to equivalence, to the two rotation moves for the two choices
of arcs intersection. It is straightforwardly checked that they simultaneously change
or preserve, in one hand, the choice of arcs intersections considered in the proof and,
on the other hand, the orientation induced by the planar diagrams for the double point
involved in the rotation move .

3 Algebraic properties

In this section, we gather a few properties.

3.1 Graded homologies

For any grid G , the chain complex CV�.G/ is enhanced with several filtrations. Now
we consider the associated graded objects ie the differentials obtained by removing
terms which increase or decrease the gradings.
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The graded differential associated to the Alexander grading, denoted by removing the
minus exponent, corresponds to the sum over the grid polygons which do not contain
any X–decoration. The associated homology is also denoted by removing the minus
exponent.

For any O–decoration O , there is a filtration induced by the polynomial degree in UO .
The associated graded differential counts grid polygons which do not contain O . It
corresponds also to sending the variable UO to zero. The differential and the homology
obtained by sending all the variables to zero are denoted by adding a tilde.

In case of a link L, the set of O–decorations can be partitioned according to the
component of L, the decorations belong to. Since O–decorations induce a one-to-one
correspondence between the rows and the columns of any desingularization of G ,
O–decorations can be seen as a permutation. The partition defined above corresponds
to the decomposition of this permutation into disjoint cycles. The homology obtained
by sending one variable in each equivalence class to zero is denoted by adding a
hat. The following proposition proves that it does not depend on the choice of the
representatives.

Proposition 3.1 Let G be a grid diagram of size n for a singular link L with `

components. The graded homologies HV.G/ and bHV .G/ depend only on L and on
an orientation for its double points. Furthermore eHV .G/�bHV .G/˝V ˝.n�`/ , where
V is a free bigraded Z–module generated by two elements of bidegrees .0; 0/ and
.�1;�1/.

The first statement is obtained by restricting the proofs given in Section 2.3 to the
considered grid polygons.

The second is a straightforward adaptation of Proposition 2:13 in [9].

Definition 3.2 For any link L with oriented double points, the homology bHV .L/ is
called the singular link Floer homology of L. It is also denoted by bHFV .L/.

3.2 Symmetries

Some Alexander polynomial properties have their counterpart in link Floer homology.

Let L be an oriented link with ` components and k oriented double points. We denote
by

� L! its mirror image with reversed orientations for the double points;
� �L the link obtained by reversing the orientation of L;
� L# the link obtained by reversing the orientation of the double points of L.
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Proposition 3.3 We denote by bHFV
ı

j
i the Maslov i –th and Alexander j –th group of

cohomology associated to bHFV . Then

� bHFV .�L/' bHFV .L/;

� for all i; j 2N; bHFVj
i .L

#/' bHFV�j
i�2j

.L/;

� for all i; j 2N; bHFVj
i .L

!/' bHFVı
�j
�iC1�`Ck.L/.

Proof Let G be a grid diagram of size n for L.

Flipping G along the line y D x gives a grid �G for �L. This operation induces
a bijection  between the generators of CV�.G/ and those of CV�.�G/. Since it
sends the 0–resolution (resp. 1–resolution) of a singular RoC to the 0–resolution (resp.
1–resolution) of its image; and since it does not affect the relative positions of dots
and decorations, this bijection preserves the Maslov and Alexander gradings. Hence,
after having substituted �UOi

to UOi
in CV�.�G/ for all i 2 J1; nK and because of

the antisymmetry of the convention used for the choice of the orientation of the double
points,  commutes with the differentials.

This proves the first statement.

The second is obtained by switching the role of O and X in �G . The new grid, denoted
by G0 , describe L. We denote by M , A, M 0 and A0 the Maslov and Alexander
gradings associated to, respectively, �G and G0 . Because of their definitions and
since we have switched the O and the X–decorations, one can check that, for a given
generator x ,

M 0.x/� 2A0.x/DM.x/C n� `;

�A0.x/DA.x/C n� `:

Moreover, since they count only grid polygons which contain no decoration, the
differentials z@�G and z@G0 clearly coincide. But switching the decorations also switches
the conventions for the orientations of double points. Then, according to the Proposition
3.1, for all integers i and j , we have defined an isomorphism�bHFV.L#/˝V ˝.n�`/

�j
i
'
�bHFV.�L/˝V ˝.n�`/

��j�nC`

i�2j�nC`
(7)

Now, we denote by vC and v� the generators of, respectively, highest and lowest
Alexander degree in V ˝.n�`/ . Then, by identifying bHFV in bHFV ˝V ˝.n�`/ with
bHFV ˝ vC in the left-hand side of (7), and with bHFV ˝ v� in its right-hand side, we

obtain
bHFV

j

i .L
#/' bHFV

�j

i�2j .�L/:

Finally, we use the first statement to conclude.
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For the last statement, we rotate �G ninety degree and get a grid diagram G! for L! .
Resolutions of singular RoCs are then swapped. We denote by M ! and A! the Maslov
and Alexander degrees associated to G! . Since all dots and decorations are on distinct
vertical and horizontal lines, one can check that, for a given generator x ,

M.x/CM !.x/D 1� nC k;

A.x/CA!.x/D `� n:

The differential induced on zC .�G/ by the rotation of G! counts the preimages of a
generator under the differential given by �G . Then, after having substituted �UOi

to
UOi

for all i 2 J1; nK, it corresponds to the codifferential defined by G on the dual
basis of the usual generators. Moreover, the changes on double points orientations
and on the convention for the choice of intersections of the winding arcs correspond.
Finally, we obtain� bHFV .L!/˝V ˝.n�`/

�j
i
'
� bHFV

ı
.�L/˝V ˝.n�`/

��iC1�nCk

�j�nC`
:

As above, it induces then an isomorphism

bHFV
j

i .L
!/' bHFV

ı

�j
�iC1�`Ck.L/:

3.3 Acyclicity

Let G be a grid presentation for a singular link L. The addition of a singular loop to
L can be seen as replacing a regular column of G with adjacent decorations by the
following pattern:

 

We denote by S the singular column which is added with the loop, by .˛; ˇ/ a set of
winding arcs for S , by GS the grid hence obtained and by LS the link described by
GS . Up to global reversing of the double points orientations, we can assume that the
double point associated to S is given the orientation induced by the plane on which
GS is drawn.

Now, we consider the filtration on
�
CV�.GS /; y@

�
which counts the number of singular

RoCs different from S which are positively resolved and we will prove that the
associated graded complex

�
CV�.GS /; y@

�
�

is acyclic.

For that purpose, we define a filtration by crushing the column and the rows which
have appeared with the singular loop (compare Section 2.3.5). If x is a generator of
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CV�.Gs/ drawn on Gs , then, during the crushing process, we push the dot which
belongs to ˛ or ˇ to the first vertical grid line on its left. We obtain a set of dots zx
on G such that exactly one horizontal and two adjacent vertical grid lines have more
than one dots. We permute cyclically the rows and the columns in such a way that the
singular horizontal grid line is the bottommost and the two vertical ones the leftmost
and the second rightmost. Then, the upper right corner of the grid is filled with an
O–decoration, which we denote by O� , and the bottom right one by a X–decoration,
which we denote by X � .

For all generators x of CV�.Gs/, we define

MG.x/ WDMOG
.zx/

where OG is the set of O –decorations of G and M:. : / is the map defined in the
introduction, which compares the relative positions of two planar sets of points.

crushing
 

process

cyclic
 

perm.
 

MG.x/D�6

MG.y/D�8

Figure 18: Crushing rows and column: Dark dots describe the initial genera-
tor x while hollow ones describe the final one y . Grid polygons are depicted
by shading.

Lemma 3.4 The chain complex
�
CV�.GS /; z@

�
�

is filtered by MG . The associated
graded differential, denoted by z@gr , corresponds to the sum over grid polygons contained
in the crushed RoCs and which do not contain any decoration.

Proof Arguments are essentially the same as in the proof of Lemma 2.7. Nevertheless,
a few details are different.

An empty rectangle � on Gs containing no decoration gives rise to an empty rectangle
z� on G which may contain O� or X � . The latter is not involved in the computation
of MG but the former is. However, the proof of Lemma 2.7 reduces the reasoning to
the study of non ripped rectangles ie rectangles which do not intersect the leftmost
column nor the uppermost row. Consequently, O� is not involved in the computation.
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Moreover, such rectangles are not crossed by the singular grid lines and the number of
dots they contain can hence be deduced as needed.

Because of the four crushed decorations, no rectangle can be ripped in four pieces.

The only remaining grid polygons involved in z@� are pentagons with a peak in S .
But, because of the two extremal decorations in S , any such polygon � containing no
decoration must lie entirely in the two crushed rows. If � is connecting x to y , then
zx D zy and MG.x/DMG.y/.

The filtration induced by MG is then respected and the associated graded differential
is as stated.

In order to simplify the proof, we need to define a last filtration on
�
CV�.GS /; z@gr

�
.

We denote by ˛0 (resp. ˇ0 ) the interior of the intersection of ˛ (resp. ˇ ) with the
complement of the two crushed rows. Then we can define a grading � for all generators
x of CV�.GS / by

�.x/D #.x\ˇ0/� #.x\˛0/:

It is easy to check that the filtration associated to � is respected by z@gr . We denote by
zdgr the associated graded differential. It differs from z@gr by forbidding the following
two grid polygons:

Lemma 3.5 The chain complex
�
CV�.Gs/; zdgr

�
is acyclic.

Actually, the graded chain complex .CV�.Gs/; zdgr/ can be split into a direct sum of
35 acyclic subcomplexes. They are listed in Appendix A of [1].

4 Computations

The author has written a program in OCaml which computes graded singular link Floer
homologies bHFV with Z

ı
2Z –coefficients. The results of some computations have

been gathered in Table 1 (a)–(c)2. For each singular knot with oriented double points,

2Other computations can be found in [1]
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we give the Poincaré polynomial of the associated homology. The t and q variables
correspond, respectively, to the Maslov and the Alexander gradings.

Orientations for double points are denoted by comparing them to the orientation induced
by the plane where the diagrams are drawn. A plus sign means that the two orientations
coincide and a minus sign that they do not.

+ +

+

+

−
q�1.1C tq/2

+

+ + 0

+

− + q�1.1C t/.1C tq/2

(a) Singularizations of the trefoil knot

+

t�2q�2.1C t C tq/.1C tq/2

(b) A singularization of the knot 944

+
+

+ +

−

+

+ + −

−

+

+

+ +

+

+

+ +

+

−

+ +

+

−

−

+ +

(c) Singular knots with null singular link Floer homology

Table 1: Tables of singular link Floer homologies
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These tables confirm that the homology depends on the choice of an orientation for
the double points. Moreover, Table 1(b) provides a counterexample to the symmetrycHFj

i .L/'
cHF�j

i�2j
.L/ which holds in the regular case.

Together with other computations, these lead to the following conjectures:

Conjecture 1 The singular link Floer homology

bHFV
�

L L′

�
of a singular connected sum of two links is null.

Conjecture 2 The singular link Floer homology of a purely singular link, ie a link
which admits a planar diagram with only singular crossings, is null as soon as the
double points are oriented accordingly to the orientation of the plane where such a
purely singular diagram is drawn.

The first conjecture, which can be seen as a generalization of the acyclicity for links
with a singular loop, is essential for the purpose of a categorification of Vassiliev theory.
The second one would be a first step towards some kind of finite type properties.
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