Small curvature laminations in hyperbolic 3-manifolds

William Brestin

Abstract

We show that if \mathcal{L} is a codimension-one lamination in a finite volume hyperbolic 3-manifold such that the principal curvatures of each leaf of \mathcal{L} are all in the interval $(-\delta, \delta)$ for a fixed $\delta \in[0,1)$ and no complementary region of \mathcal{L} is an interval bundle over a surface, then each boundary leaf of \mathcal{L} has a nontrivial fundamental group. We also prove existence of a fixed constant $\delta_{0}>0$ such that if \mathcal{L} is a codimension-one lamination in a finite volume hyperbolic 3 -manifold such that the principal curvatures of each leaf of \mathcal{L} are all in the interval $\left(-\delta_{0}, \delta_{0}\right)$ and no complementary region of \mathcal{L} is an interval bundle over a surface, then each boundary leaf of \mathcal{L} has a noncyclic fundamental group.

57M50

1 Introduction

In [9], Zeghib proved that any totally geodesic codimension-one lamination in a closed hyperbolic 3-manifold is a finite union of disjoint closed surfaces. In this paper we investigate whether a similar result holds for codimension-one laminations with small principal curvatures. We will prove the following theorems:

Theorem 1 Let $\delta \in[0,1)$. If \mathcal{L} is a codimension-one lamination in a finite volume hyperbolic 3 -manifold such that the principal curvatures of each leaf of \mathcal{L} are everywhere in $(-\delta, \delta)$ for a fixed constant $\delta \in[0,1)$ and no complementary region of \mathcal{L} is an interval bundle over a surface, then each boundary leaf of \mathcal{L} has a nontrivial fundamental group.

Theorem 2 There exists a fixed constant $\delta_{0}>0$ such that if \mathcal{L} is a codimension-one lamination in a finite volume hyperbolic 3-manifold such that the principal curvatures of each leaf of \mathcal{L} are everywhere in $\left(-\delta_{0}, \delta_{0}\right)$ and no complementary region is an interval bundle over a surface, then each boundary leaf of \mathcal{L} has a noncyclic fundamental group.

2 Examples

Let \mathcal{L} be a codimension-one lamination in a complete hyperbolic 3-manifold M. Let L be a leaf of \mathcal{L} and endow it with the path metric induced from M. Let \tilde{L} be the universal cover of L and lift the inclusion $i_{L}: L \rightarrow M$ to a map $\tilde{i_{L}}: \widetilde{L} \rightarrow \mathbb{H}^{3}$. A map $f: X \rightarrow Y$ from a metric space X to a metric space Y is a (k, c)-quasi-isometry if $\frac{1}{k} d_{X}(a, b)-c \leq d_{Y}(f(a), f(b)) \leq k d_{X}(a, b)+c$. The leaf L is quasi-isometric if the map \tilde{i}_{L} is a (k, c)-quasi-isometry for some k, c. The lamination \mathcal{L} is quasi-isometric if each leaf of \mathcal{L} is quasi-isometric for the same fixed constants k, c.
Let $\delta \in \underset{\sim}{(0}, 1)$. If the principal curvatures of $\tilde{i}_{L}(\widetilde{L})$ are everywhere in $(-\delta, \delta)$, then the map \tilde{i}_{L} is a (k, c)-quasi-isometry for constants k, c depending only on δ (see Thurston [8]. Also see Leininger [6] for an elementary proof).
The constant δ_{0} in Theorem 2 is less than 1 , so a lamination satisfying the hypotheses of Theorem 1 or Theorem 2 is necessarily quasi-isometric. Thus it makes sense to ask whether these results hold for general quasi-isometric laminations.

Quasi-isometric laminations with no compact leaves Cannon and Thurston [3] proved that the stable and unstable laminations of the suspension of a pseudo-Anosov homeomorphism of a closed surface are quasi-isometric, and each leaf is a plane or annulus in this case. In addition to these examples, Fenley [5] produced infinitely many examples of closed hyperbolic 3-manifolds with quasi-isometric laminations in which each leaf is an annulus, a mobius band, or a plane. Note that Theorem 2 implies that the examples of Cannon-Thurston and Fenley cannot have principal curvatures everywhere in the interval $\left(-\delta_{0}, \delta_{0}\right)$.

One can also ask if we need to require that no complementary region is an interval bundle over a surface.

Small curvature laminations with simply connected boundary leaves Let S be a closed totally geodesic embedded surface in a closed hyperbolic 3-manifold M. Let $N(S)=S \times[0,1]$ be a closed embedded neighborhood of S in M. If the neighborhood $N(S)$ is small then the surfaces $S \times t$ will have small principal curvatures. Since $\pi_{1}(S)$ is left-orderable, there exist faithful representations $\rho: \pi_{1}(S) \rightarrow$ Homeo($\left.[0,1]\right)$ such that some points have trivial stabilizers (see Calegari [2]) The foliated bundle whose holonomy is ρ has a leaf which is simply connected. Replace $N(S)$ with this foliated bundle. We can blow up the simply connected leaf and remove the interior to get a lamination which is C^{∞} close to the original (so that the leaves have small principal curvatures) and such that some boundary leaf is simply connected. See Calegari [1] to see why the foliated bundle can be embedded in M so that the leaves are smooth. Note that this lamination has a complementary region which is an interval bundle over a surface.

Small curvature laminations with no compact leaves One may also construct small curvature laminations in closed hyperbolic 3-manifolds with no compact leaves. The author would like to thank Chris Leininger for describing the following construction. The idea is to construct a small curvature branched surface in a closed hyperbolic 3-manifold which has an irrational point in the space of projective classes of measured laminations carried by the branched surface. A lamination corresponding to this irrational point will contain no compact leaves. There are totally geodesic immersed closed surfaces in the figure-eight knot complement M_{8} arbitrarily close to any plane in the tangent bundle (see Reid [7]). Using this and the fact that $\pi_{1}\left(M_{8}\right)$ is LERF, one can find two such surfaces which lift to embedded surfaces S_{1} and S_{2} in a finite cover M of M_{8} which intersect in a nonseparating (in both surfaces) simple closed geodesic l at an arbitrarily small angle. Flatten out the intersection to get a branched surface with small principal curvatures in which S_{1} connects one side of S_{2} to the other side. The branched surface has three branch sectors (an annulus, $S_{1} \backslash l$, and $S_{2} \backslash l$) and one branch equation $\left(x_{1}=x_{2}+x_{3}\right)$. A solution to the branch equation in which two coordinates are not rationally related (eg, $x_{1}=1 / 2, x_{2}=1 / \pi, x_{3}=1 / 2-1 / \pi$) will correspond to a lamination with no compact leaves which can be isotoped to have small principal curvatures. Since the leaves do not have any cusps, we can fill the cusps of M to get a small curvature lamination in a closed hyperbolic 3-manifold with no compact leaves.

3 Proof of Theorem 1

Let $\epsilon>0$ be so small that if P_{1}, P_{2}, P_{3} are three disjoint smoothly embedded planes in hyperbolic 3-space with principal curvatures in $(-1,1)$ which intersect the same ϵ-ball, then one of the P_{i} separates the other two.

Let \mathcal{L} be a codimension-one lamination in a finite volume hyperbolic 3-manifold M such that the principal curvatures of each leaf are everywhere in the interval $(-\delta, \delta)$ for some $\delta \in(0,1)$. Assume that no complementary region of \mathcal{L} is an interval bundle over a surface. Let $\widetilde{\mathcal{L}}$ be the lift of \mathcal{L} to \mathbb{H}^{3}. Since every leaf of \mathcal{L} has principal curvatures everywhere in $(-\delta, \delta)$, the lamination \mathcal{L} is a quasi-isometric lamination, and cannot be a foliation of M by Fenley [4].

Let L_{0} be a boundary leaf of \mathcal{L}. Suppose, for contradiction, that $\pi_{1}\left(L_{0}\right)$ is trivial, which implies that L_{0} has infinite area. Since M is closed, L_{0} must intersect some fixed compact ball in M infinitely many times. Thus given any integer k, we can find a point y_{k} in L_{0} such that the next leaf over on the boundary side of L_{0} is within $1 / k$ of y_{k}.

Let \tilde{L}_{0} be a lift of L_{0} to \mathbb{H}^{3}. Lift the points y_{k} to a fixed fundamental domain of \tilde{L}_{0} and call them y_{k}. Let \widetilde{L}_{k} be the next leaf over from \widetilde{L}_{0} which is within $1 / k$ of y_{k}. We now have a sequence of leaves \widetilde{L}_{k} in $\widetilde{\mathcal{L}}$ on the boundary side of \widetilde{L}_{0} such that for each k the distance from \widetilde{L}_{k} to y_{k} is less than $1 / k$, and there is no leaf of \mathcal{L} between \widetilde{L}_{0} and \widetilde{L}_{k}. We also have that $\partial \widetilde{L}_{0} \neq \partial \widetilde{L}_{k}$ for all k, because otherwise the region between L_{0} and L_{k} would be an interval bundle in the complement of \mathcal{L}.

Let k be so large that $1 / k<\epsilon / 8$. Since \widetilde{L}_{k} eventually diverges from \widetilde{L}_{0} we can find a point $x_{k} \in \widetilde{L}_{0}$ such that the distance from x_{k} to \widetilde{L}_{k} is exactly $\epsilon / 8$. Let b_{k} be the $(\epsilon / 32)$-ball tangent to \widetilde{L}_{0} at x_{k} on the boundary side of \widetilde{L}_{0}.

We will show that infinitely many of the balls b_{k} are disjointly embedded in M, contradicting the fact that M has finite volume. Suppose that $\gamma\left(b_{l}\right) \cap b_{k} \neq \varnothing$ for some integers l, k and some γ in $\pi_{1}(M)$. Note that $\gamma\left(\widetilde{L}_{0}\right) \neq \widetilde{L}_{0}$, since L_{0} has trivial fundamental group. Now $\widetilde{L}_{0}, \widetilde{L}_{k}$, and $\gamma\left(\tilde{L}_{0}\right)$ all intersect some ϵ-ball, so we must have that one of them separates the other two. Since there are no leaves of $\tilde{\mathcal{L}}$ between \tilde{L}_{0} and \widetilde{L}_{k}, and $\gamma\left(\widetilde{L}_{0}\right)$ is closer to x_{k} than \widetilde{L}_{k}, we must have that \tilde{L}_{0} separates \tilde{L}_{k} and $\gamma\left(\tilde{L}_{0}\right)$ (see Figure $1\left(\right.$ a)). Also note that $\tilde{L}_{0}, \widetilde{L}_{k}$, and $\gamma\left(\widetilde{L}_{l}\right)$ are all on the boundary side of $\gamma\left(\tilde{L}_{0}\right)$ (ie, the side which contains the ball $\left.\gamma\left(b_{l}\right)\right)$.

Now we will show no matter where γ sends \tilde{L}_{l}, we get a contradiction. We cannot have $\gamma\left(\tilde{L}_{l}\right)=\tilde{L}_{k}$, because this would imply that $\gamma^{-1}\left(\tilde{L}_{0}\right)$ separates \tilde{L}_{l} and \tilde{L}_{0}. Thus we have $\gamma\left(\tilde{L}_{l}\right) \neq \widetilde{L}_{k}$.

Since $\widetilde{L}_{0}, \widetilde{L}_{k}$, and $\gamma\left(\widetilde{L}_{l}\right)$ all intersect some fixed ϵ-ball, we must have that one of them separates the other two. We cannot have that $\gamma\left(\widetilde{L}_{l}\right)$ separates \widetilde{L}_{0} and \widetilde{L}_{k}, because there are no leaves of $\widetilde{\mathcal{L}}$ between \widetilde{L}_{0} and \widetilde{L}_{k} (See Figure $1(\mathrm{~b})$). If \widetilde{L}_{0} separates \widetilde{L}_{k} and $\gamma\left(\tilde{L}_{l}\right)$, then $\gamma\left(\widetilde{L}_{l}\right)$ is between \tilde{L}_{0} and $\gamma\left(\tilde{L}_{0}\right)$, so that $d\left(x_{l}, \widetilde{L}_{l}\right)=$ $d\left(\gamma\left(x_{l}\right), \tilde{L}^{\gamma}\left(\tilde{L}_{l}\right)\right) \leq \epsilon / 16$ which is a contradiction (see Figure 1(c)). Thus \tilde{L}_{0} cannot separate \widetilde{L}_{k} and $\gamma\left(\tilde{L}_{l}\right)$. If \tilde{L}_{k} separates \widetilde{L}_{0} and $\gamma\left(\tilde{L}_{l}\right)$, then $\gamma^{-1}\left(\tilde{L}_{k}\right)$ separates \widetilde{L}_{0} and \widetilde{L}_{l} which is a contradiction (see Figure $1(\mathrm{~d})$). Thus \widetilde{L}_{k} cannot separate \widetilde{L}_{0} and $\gamma\left(\tilde{L}_{l}\right)$. We have shown that \widetilde{L}_{l} has nowhere to go under the map γ, so that $\gamma\left(b_{l}\right) \cap \gamma\left(b_{k}\right)=\varnothing$ for any integers l, k and any $\gamma \in \pi_{1}(M)$. This implies that M contains infinitely many disjoint $(\epsilon / 32)$-balls, contradicting the fact that M has finite volume.

4 Proof of Theorem 2

Let $\epsilon>0$ be so small that if P_{1}, P_{2}, P_{3} are three disjoint smoothly embedded planes in hyperbolic 3-space with principal curvatures in $(-1,1)$ which intersect the same

Figure 1: (a) \tilde{L}_{0} separates \tilde{L}_{k} and $\gamma\left(\tilde{L}_{0}\right)$. (b) $\gamma\left(\tilde{L}_{l}\right)$ cannot separate \tilde{L}_{0} and \widetilde{L}_{k}. (c) \widetilde{L}_{0} cannot separate \widetilde{L}_{k} and $\gamma\left(\widetilde{L}_{l}\right)$. (d) \widetilde{L}_{k} cannot separate \widetilde{L}_{0} and $\gamma\left(\tilde{L}_{l}\right)$.
ϵ-ball, then one of the P_{i} separates the other two. Let $\delta_{0}>0$ be so small that if a smooth curve $\gamma:(-\infty, \infty) \rightarrow \mathbb{H}^{3}$ in \mathbb{H}^{3} with endpoints in $\partial \mathbb{H}^{3}$ has curvature at most δ_{0} at each point, then $\gamma(t)$ is in the $(\epsilon / 2)$-neighborhood of the geodesic of \mathbb{H}^{3} with the same endpoints.

Let \mathcal{L} be a codimension-one lamination in a finite volume hyperbolic 3-manifold M such that the principal curvatures of each leaf are everywhere in the interval $\left(-\delta_{0}, \delta_{0}\right)$. Assume that no complementary region of \mathcal{L} is an interval bundle over a surface. Let $\widetilde{\mathcal{L}}$ be the lift of \mathcal{L} to \mathbb{H}^{3}. As in the proof of Theorem $1, \mathcal{L}$ cannot be a foliation. Let L_{0} be a boundary leaf of \mathcal{L}. Suppose, for contradiction, that $\pi_{1}\left(L_{0}\right)$ is cyclic, which implies that L_{0} has infinite area. Since M is closed, L_{0} must intersect some fixed compact ball in M infinitely many times. Also, by Theorem 1 , we know that $\pi_{1}\left(L_{0}\right)$ is nontrivial, so that $\pi_{1}\left(L_{0}\right) \approx \mathbb{Z}$.

Let \widetilde{L}_{0} be a lift of L_{0} to \mathbb{H}^{3}. Since L_{0} intersects a fixed compact ball in M infinitely many times, we can find a sequence of points y_{k} in \widetilde{L}_{0} such that the closest leaf of $\tilde{\mathcal{L}}$ to y_{k} on the boundary side of \widetilde{L}_{0} is within $1 / k$ of y_{k}. Let \widetilde{L}_{k} be the leaf which is closest to y_{k} on the boundary side of \widetilde{L}_{0}. Note that there is no leaf of $\widetilde{\mathcal{L}}$ between \tilde{L}_{0} and \tilde{L}_{k}. We have $\partial \widetilde{L}_{0} \neq \partial \widetilde{L}_{k}$ for all k, because the complement of \mathcal{L} contains no interval bundle components. We may assume that all y_{k} are contained in a fixed fundamental domain \mathcal{D} of \widetilde{L}_{0}, and that y_{k} converge to a point $y_{\infty} \in \partial \widetilde{L}_{0}$.

For k large enough we have $\partial \tilde{L}_{0} \neq \partial \tilde{L}_{k}$ and $d\left(y_{k}, \tilde{L}_{k}\right) \leq \epsilon / 8$, so that we can find a point x_{k} such that $d\left(x_{k}, \tilde{L}_{k}\right)=\epsilon / 8$.

Case 1 We can choose the sequence of points $x_{k} \in \widetilde{L}_{0}$ to be contained in a fixed fundamental domain D of \tilde{L}_{0} such that x_{k} exit an end of D whose projection to M has infinite area.
Let b_{k} be the $(\epsilon / 32)$-ball tangent to \widetilde{L}_{0} at x_{k} on the boundary side of \tilde{L}_{0}. For k large enough, say all k, the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\tilde{L}_{0}\right)$ moves the center of b_{k} a distance of at least ϵ. Thus we can assume that $\gamma\left(b_{l}\right) \cap b_{k}=\varnothing$ for any integers l, k and any $\gamma \in \operatorname{stab}_{\pi_{1}(M)}\left(\widetilde{L}_{0}\right)$.

We may now proceed as in the proof of Theorem 1 to show that $\gamma\left(b_{l}\right) \cap b_{k}=\varnothing$ for any integers l, k and any $\gamma \in \pi_{1}(M)$. This again contradicts the fact that M has finite volume.

Case 2 We cannot choose the sequence of points x_{k} as in Case 1 .
If infinitely many of the leaves \widetilde{L}_{k} were distinct, then we would be able to find a sequence of points as described in Case 1 . Thus $\widetilde{L}_{k}=\widetilde{L}_{+}$for some fixed leaf $\widetilde{L}_{+} \in \widetilde{\mathcal{L}}$.

Let U be the component of the complement in $\partial \tilde{L}_{0}$ of the fixed point(s) of the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\widetilde{L}_{0}\right)$ which contains the point y_{∞}. We will now show that $\partial \widetilde{L}_{+} \cap \partial \widetilde{L}_{0}$ must contain U.

Suppose that $\partial \tilde{L}_{+} \cap \partial \tilde{L}_{0}$ does not contain U. Since $d\left(y_{k}, \tilde{L}_{+}\right)<1 / k$ and $\partial \tilde{L}_{+} \cap \partial \tilde{L}_{0}$ does not contain U, we can find a sequence of points x_{k} in \widetilde{L}_{0} which converge to a point $x_{\infty} \in U$ with $d\left(x_{k}, \widetilde{L}_{+}\right)=\epsilon / 8$. Since the point x_{∞} cannot be a fixed point of the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\widetilde{L}_{0}\right)$, a tail of the sequence x_{k} must be contained in a fixed fundamental domain of \tilde{L}_{0}. This contradicts the fact that we are in Case 2 . Thus $\partial \tilde{L}_{+} \cap \partial \tilde{L}_{0}$ must contain U, hence must contain the fixed point(s) of the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\widetilde{L}_{0}\right)$.
If the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\tilde{L}_{0}\right)$ is parabolic, then it has only one fixed point. This implies that $\partial \widetilde{L}_{+}=\partial \widetilde{L}_{0}$, giving us a contradiction.
If the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\tilde{L}_{0}\right)$ is loxodromic, then we can argue as above to find a leaf $\partial \widetilde{L}_{-}$of $\tilde{\mathcal{L}}$ which contains the other component of complement in $\partial \widetilde{L}_{0}$ of the fixed points of the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\widetilde{L}_{0}\right)$. So $\partial \widetilde{L}_{+}$and $\partial \widetilde{L}_{-}$both contain the endpoints of the axis of the generator of $\operatorname{stab}_{\pi_{1}(M)}\left(\tilde{L}_{0}\right)$. Since the principal curvatures of $\widetilde{L}_{0}, \widetilde{L}_{+}$, and \widetilde{L}_{-}are all in the interval $\left(-\delta_{0}, \delta_{0}\right)$, and $\partial \widetilde{L}_{0}, \partial \widetilde{L}_{+}, \partial \widetilde{L}_{-}$all contain the endpoints of the axis of the generator of $\operatorname{stab}_{\pi_{1}(M)}$, we must have that $\widetilde{L}_{0}, \widetilde{L}_{+}$, and \widetilde{L}_{-}all intersect some fixed ϵ-ball. Thus one of the three separates the other two. This gives us a contradiction since \widetilde{L}_{+}and \widetilde{L}_{-}are on the same side of \widetilde{L}_{0} (ie, the boundary side) and there are no leaves of \mathcal{L} between \tilde{L}_{0} and \tilde{L}_{+}or between \tilde{L}_{0} and \widetilde{L}_{-}.

Acknowledgements This work was partially supported by the NSF grants DMS0135345 and DMS-0602191.

References

[1] D Calegari, Leafwise smoothing laminations, Algebr. Geom. Topol. 1 (2001) 579-585 MR1875608
[2] D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest", (C Gordon, Y Rieck, editors), Geom. Topol. Monogr. 7 (2004) 431-491 MR2172491
[3] J W Cannon, W P Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007) 1315-1355 MR2326947
[4] S R Fenley, Quasi-isometric foliations, Topology 31 (1992) 667-676 MR1174265
[5] S R Fenley, Foliations with good geometry, J. Amer. Math. Soc. 12 (1999) 619-676 MR1674739
[6] C J Leininger, Small curvature surfaces in hyperbolic 3-manifolds, J. Knot Theory Ramifications 15 (2006) 379-411 MR2217503
[7] A W Reid, Totally geodesic surfaces in hyperbolic 3-manifolds, Proc. Edinburgh Math. Soc. (2) 34 (1991) 77-88 MR1093177
[8] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979) Available at http://msri.org/publications/books/ gt3m/
[9] A Zeghib, Laminations et hypersurfaces géodésiques des variétés hyperboliques, Ann. Sci. École Norm. Sup. (4) 24 (1991) 171-188 MR1097690

Department of Mathematics, University of Michigan
530 Church Street, Ann Arbor 48109-1043, United States
breslin@umich.edu
http://www.math.lsa.umich.edu/people/facultyDetail.php?uniqname=breslin

Received: 9 February 2009 Revised: 6 March 2009

