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Splitting the spectral flow and the SU.3/ Casson invariant
for spliced sums

HANS U BODEN

BENJAMIN HIMPEL

We show that the SU.3/ Casson invariant for spliced sums along certain torus knots
equals 16 times the product of their SU.2/ Casson knot invariants. The key step is a
splitting formula for su.n/ spectral flow for closed 3–manifolds split along a torus.

58J30; 57M27, 57R57

1 Introduction

Given knots K1 and K2 in homology 3–spheres M1 and M2; respectively, the spliced
sum of M1 and M2 along K1 and K2 is the homology 3–sphere obtained by gluing
the two knot complements along their boundaries matching the meridian of one knot to
the longitude of the other. This operation is a generalization of connected sum; indeed
when K1 and K2 are trivial knots, the spliced sum of M1 and M2 along K1 and K2

is none other than the connected sum M1#M2: Casson’s invariant �SU.2/ , which is
additive under connected sum, is also additive under the more general operation of
spliced sum by Boyer and Nicas [6] and independently Fukuhara and Maruyama [10].
What is remarkable about this is that the Casson invariant of a spliced sum does not
depend on the knots K1 and K2 along which the splicing is performed.

While the integer-valued SU.3/ Casson invariant �SU.3/ of Boden, Herald and Kirk [3]
is not additive under connected sum, by [3, Theorem 4], the difference �SU.3/�2�2

SU.2/
is, and a natural question to ask is whether it is also additive under spliced sum. In
general, the answer is no and we briefly explain why not. Recall from Saveliev [15]
that a Seifert-fibered homology sphere †.p; q; r; s/ can be described as a spliced sum
of Brieskorn spheres along the cores of their singular fibers in three different ways:
(i) the spliced sum of †.p; q; rs/ and †.r; s;pq/; (ii) the spliced sum of †.p; s; qr/

and †.q; r;ps/; and (iii) the spliced sum of †.p; r; qs/ and †.q; s;pr/. Additivity
under splicing would imply that the evaluation of �SU.3/�2�2

SU.2/ on all three of these
pairs of Brieskorn spheres agree, but the results of Boden, Herald and Kirk [4] provide
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examples where they do not. This shows that �SU.3/ � 2�2
SU.2/ is not additive under

spliced sum.

Thus, it is an interesting problem to understand the behaviour of the SU.3/ Casson
invariant under spliced sum, and in this paper we focus on the simplest possible case,
namely when K1 and K2 are torus knots. We verify a conjecture in [2] by identifying
the SU.3/ Casson invariant of the spliced sum with a multiple of the product of the
Casson SU.2/ knot invariants in the case K1 and K2 are .2; q1/ and .2; q2/ torus
knots. Our results combine a detailed analysis of the SU.3/ representation varieties of
the knot complements with computations of the su.3/ spectral flow of the odd signature
operator coupled to a path of SU.3/ connections. An essential tool developed here is
the general splitting formula of Theorem 2.10, which is applied to compute the spectral
flow for closed 3–manifolds split along a torus.

We now outline the argument and highlight the special role played by the splitting
formula. We assume K1 and K2 are knots in S3 and we denote by X1 and X2

their complements and by M DX1[T X2 their spliced sum. In Section 3, we give a
description of the components of the variety R.M;SU.3// of SU.3/ representations of
�1M under certain transversality assumptions on the images of R.Xi ;SU.3// in the
SU.3/ pillowcase R.T;SU.3//. In particular, it follows from our description that every
component C of R.M;SU.3// with dim C > 0 has �.C / D 0, and thus by Boden
and Herald [2, Theorem 7], it follows that only 0–dimensional components contribute
to the SU.3/ Casson invariant. For instance, this generalizes [2, Theorem 14] and
shows that the correction term �00SU.3/.M / for the Casson SU.3/ invariant must vanish.
Because �00SU.3/.M /D 0 and our earlier analysis of the components, we see that

�SU.3/.M /D �0SU.3/.M /D
X

ŒA�2M0
SU.3/

.�1/SF.‚;A/;

where M0
SU.3/ denotes the moduli space of isolated, irreducible, flat SU.3/ connec-

tions on M . The integer-valued invariant SU.3/ Casson invariant �SU.3/.M / can
be analyzed with similar considerations, and in fact it is not difficult to show that
�SU.3/.M / D �SU.3/.M /: In any case, this outlines a straightforward approach for
computing the SU.3/ Casson invariants for spliced sums.

We carry out these computations in the specific case where M is the spliced sum along
two torus knots of type .2; q1/ and .2; q2/. Any representation ˛W �1.M /! SU.3/
determines, by restriction, representations ˛1W �1.X1/! SU.3/ and ˛2W �1.X2/!

SU.3/. We show that the conjugacy class Œ˛� is isolated (and hence contributes non-
trivially to the SU.3/ Casson invariant of M ) only when ˛ is irreducible and both ˛1

and ˛2 are reducible. By conjugating, we can arrange that ˛1 is an S.U.2/�U.1//
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representation and that ˛2 is an S.U.1/ � U.2// representation. To complete the
computation, we just need to enumerate all such representations and determine the
su.3/ spectral flow from the trivial connection ‚ to the flat connection A on M

corresponding to ˛ .

Since the S.U.2/�U.1// representation variety of a torus knot is connected, there
is a path A1;t of flat S.U.2/�U.1// connections on X1 connecting ‚jX1

to AjX1
,

and likewise a path A2;t of flat S.U.1/�U.2// connections on X2 connecting ‚jX2

to AjX2
. Moreover, these paths can be chosen to satisfy the hypotheses in Theorem

2.10. The splitting theorem then describes the spectral flow on the spliced sum M

as a sum of the spectral flows of the paths A1;t and A2;t of flat connections on knot
complements X1 and X2 , the spectral flow of a closed path of SU.3/ connections on
the solid torus, and some finite dimensional Maslov triple indices. Each of these terms
can be computed by direct analysis, and from this we deduce our main application,
which identifies the SU.3/ Casson invariant of the spliced sum with a multiple of the
product of the SU.2/ Casson knot invariants for spliced sums along certain torus knots.
The following is a restatement of Theorem 7.6, our main result.

Theorem Suppose K1 and K2 are torus knots of type .2; q1/ and .2; q2/; respec-
tively, and M is their spliced sum. Then

�SU.3/.M /D 16�0SU.2/.K1/ �
0
SU.2/.K2/;

where �0SU.2/.K/ is the SU.2/ Casson knot invariant normalized to be 1 for the trefoil.

Remark As noted above, this result also computes the integer-valued SU.3/ Casson
invariant �SU.3/.M / of [3]. While the results of [4; 5] show that neither the SU.3/
Casson invariant has finite-type, the above theorem shows that the behavior of �SU.3/
and �SU.3/ under splicing is very similar to that of the finite-type invariant of degree
three. Note that additivity of the Casson SU.2/ invariant under spliced sum (see Boyer
and Nicas [6] and Fukuhara and Maruyama [10]), implies that �SU.2/.M /D 0 for any
3–manifold M obtained as the spliced sum along two knots in S3 .

Here is a brief synopsis of the rest of the paper. In Section 2 we present the splitting
theorem in the general setting. Section 3 contains some general results about SU.3/
representations of spliced sums, and Section 4 and Section 5 give descriptions of the
reducible and irreducible SU.3/ representations of torus knots. Section 6 contains
cohomology calculations, and Section 7 presents the main application to computing
the SU.3/ Casson invariant for spliced sums along torus knots.

Algebraic & Geometric Topology, Volume 9 (2009)



868 Hans U Boden and Benjamin Himpel

Acknowledgements The authors would like to thank Chris Herald, Paul Kirk and
Matthias Lesch for many helpful discussions, and also Christine Lescop and Dylan
Thurston for suggesting a comparison with finite-type invariants under splicing. HUB
was supported by a grant from the Natural Sciences and Engineering Research Council
of Canada, and BH would like to thank the Cluster of Excellence at Bonn University
for their financial support. Both authors gratefully acknowledge partial support from
the Max Planck Institute for Mathematics.

2 A splitting formula for su.n/ spectral flow

The SU.3/ Casson invariant for homology 3–spheres is defined in [3] by counting
gauge orbits of irreducible (perturbed) flat SU.3/ connections with sign given by the
su.3/ spectral flow. In the case of a 3–manifold split along a surface, a useful tool for
performing computations of the spectral flow is provided by splitting the spectral flow
along the manifold decomposition. Existing splitting formulas treat mainly the SU.2/
case and do not readily apply to our situation, so in this section our goal is to develop a
suitably general splitting formula for 3–manifolds split along a torus. Our results here
are the natural su.n/ generalizations of the results established by the second author
[11] for su.2/ spectral flow, and the arguments that are routine extensions of those
given in [11] will only be outlined.

When working on manifolds with boundary, it is essential to have a family or at least a
path of “nice” boundary conditions associated to the restriction of At to the boundary
(see Atiyah–Patodi–Singer [1]). For example, given a path of Atiyah–Patodi–Singer
boundary conditions, we could derive a splitting formula for arbitrary splitting surfaces,
however, in general we cannot find a path of Atiyah–Patodi–Singer boundary conditions
for a given path of connections which is continuous in the gap topology. We note that
before choosing boundary conditions we may assume any path between flat connections
to stop a finite number of times and to be flat on the boundary torus, because the spectral
flow is homotopy invariant. Therefore, in Section 2.2, we describe an explicit family of
boundary conditions together with a family of flat connections on the boundary torus
which is suitable for all the spectral flow computations we have in mind.

This section assumes some level of familiarity with the background material on spectral
flow, Maslov index, and their relationship. Readers interested in learning more about
these aspects are referred to Cappell–Lee–Miller [7] and Nicolaescu [14].
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2.1 Preliminaries

In order to describe the family of Atiyah–Patodi–Singer boundary conditions and
formulate the splitting formula, we recall the basic setup and review the concepts and
notation that will be used throughout this section.

X T � Œ�1; 1�

T

Y

Figure 1: The collar around T

For the splitting formula we will assume the following:

(1) The orientation of the torus T D S1 � S1 D f.eim; ei`/ j m; ` 2 Œ0; 2�/g is
determined by dm^ d` 2�2.T /. We regard T with its product metric from
the standard metric on S1 , and note that the fundamental group �1.T / is the
free abelian group generated by the meridian � D f.eim; 1/g and longitude
�D f.1; ei`/g.

(2) The 3–manifolds X and Y have boundary T and are oriented so that @X D
T D�@Y . We place metrics on X and Y such that collars of @X and @Y are
isometric to Œ�1; 0��T and Œ0; 1��T , respectively.

(3) Consider the 3–manifold M DX [T Y with the orientation and metric induced
by the orientation and metric on X and Y . See Figure 1.

(4) Fix a principal bundle with structure group SU.n/ over M and consider its
trivialization.

For an SU.n/ connection A 2�1.M I su.n//, the odd signature operator twisted by A

is defined to be

DAW �
0C1.M I su.n//!�0C1.M I su.n//

.˛; ˇ/ 7! .d�Aˇ; ?dAˇC dA˛/;

where �0C1.M I su.n// D �0.M /˝ su.n/ ˚ �1.M /˝ su.n/ and ? denotes the
Hodge star operator on the 3–manifold M . For an SU.n/ connection a2�1.T I su.n//,
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the de Rham operator twisted by a is defined to be

SaW �
0C1C2.T I su.n//!�0C1C2.T I su.n//

.˛; ˇ;  / 7! .�daˇ;�� da˛� da � ; da �ˇ/;

where � denotes the Hodge star operator on the 2–manifold T .

If a is flat, then the Laplacian twisted by a is given by �a D S2
a , which is an operator

�aW �
0C1C2.T I su.n//!�0C1C2.T I su.n//:

We equip L2.�0C1C2.T I su.n/// with an almost complex structure J by setting

(2-1) J.˛; ˇ;  / WD .�� ;�ˇ;�˛/:

Let A be a connection on M , which is in cylindrical form in a collar of T , that
is A D i�u a, where iuW T ,! Œ�1; 1� � T is the inclusion at u 2 Œ�1; 1� and a is a
connection on T . We define the following function

r W �0C1.Œ�1; 1��T I su.n//!�0C1C2.T I su.n//

.�; �/ 7!
�
i�0 .�/; i

�
0 .�/;�i

�
0

�
�y @
@u

��
;

where �y @
@u

denotes contraction of � with @
@u

. This also gives us a restriction map
of �0C1.X I su.n// and �0C1.Y I su.n// to �0C1C2.T I su.n//. The Cauchy data
spaces of DAjX and DAjY are

ƒX ;A WD r.Ker DAjX /
L2

and ƒY;A WD r.Ker DAjY /
L2

; respectively;

with the corresponding limiting values of extended L2 –solutions

LX ;A WD projKer Sa
.ƒX ;A\ .P

�
[Ker Sa//

LY;A WD projKer Sa
..PC[Ker Sa/\ƒY;A/:and

We may attach a collar to X and Y and define

ƒR
X ;A WD r.Ker DAjX[Œ0;R�/

L2

and ƒR
Y;A WD r.Ker DAjY[Œ�R;0�/

L2

;

ƒ1X ;A WD r.Ker DAjX[Œ0;1//
L2

and ƒ1Y;A WD r.Ker DAjY[.�1;0�/
L2

:

as well as

2.2 A family of Atiyah–Patodi–Singer boundary conditions

In this subsection, we construct a family of flat connections az% on the 2–torus T and
introduce boundary conditions Pz% parametrized by z% 2 zƒ with the property that, for
3–manifolds X with @X D T; given any connection A on X whose restriction AjT
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is flat, then A is gauge equivalent to some A0 with A0jT D az% for some z% 2 zƒ and Pz%
is an Atiyah–Patodi–Singer boundary condition for the twisted odd signature operator
DA0 , ie Pz% contains all eigenvectors of the tangential operator Saz% with sufficiently
large eigenvalues. Furthermore, we describe a natural topology on zƒ in which it
continuously parametrizes the family of boundary conditions and flat connections.

Let R.T;SU.n// be the representation variety of T , namely the space of conjugacy
classes of representations 'W �1.T / ! SU.n/: By Donaldson and Kronheimer [9,
Proposition 2.2.3], the holonomy map gives a homeomorphism from the moduli space
MT of flat SU.n/ connections over T to the representation variety R.T;SU.n//.

Let ƒ WD f˛ D .˛1; : : : ; ˛n/ 2Rn j ˛1C � � �C˛n D 0g, which is isomorphic to Rn�1

via the standard projection onto the first n� 1 coordinates. For ˛ 2ƒ; set

diag.˛/D

0B@˛1 0
: : :

0 ˛n

1CA :
Definition 2.1 For ˛; ˇ 2ƒ; let a˛;ˇ WD�i diag.˛/ dm�i diag.ˇ/ d`. We substitute
an index a˛;ˇ by .˛; ˇ/, for example S˛;ˇ D Sa˛;ˇ , �˛;ˇ D�a˛;ˇ .

Notice that a˛;ˇ is a flat connection on T with holonomy hol.a˛;ˇ/ equal to the
representation '˛;ˇW �1.T / ! SU.n/ given by '˛;ˇ.�/ D exp.2� i diag.˛// and
'˛;ˇ.�/D exp.2� i diag.ˇ//. The map .˛; ˇ/ 7! a˛;ˇ defines a smooth family of flat
connections parameterized by ƒ2 , and the map .˛; ˇ/ 7! Œ'˛;ˇ � gives a branched cover
ƒ2!R.T;SU.n//.

Under the action of the standard maximal torus T n�1 � SU.n/; the Lie algebra
decomposes as su.n/D Un˚Wn into diagonal and off-diagonal parts. The torus acts
trivially on the diagonal part Un ŠRn�1 and nontrivially on the off-diagonal part Wn ,
which further decomposes as Wn D

L
i<j C ij , where

C ij
WD fa 2 su.n/ j akl D 0 for fk; lg ¤ fi; j gg ŠC:

Moreover, S˛;ˇ and �˛;ˇ preserve the induced splitting of �0C1C2.T I su.n//. There-
fore, the detailed analysis of our boundary conditions can be done for Un ŠRn�1 and
Wn D

L
i<j C ij by effectively reducing them to the computations in [11]. Notice that

Wn ŠCd , where d D
�
n
2

�
.

For i < j , we define subspaces

(2-2) Q
ij

˛;ˇ
D spanC.�

ij /��0.T IWn/;
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where �ij D .�
ij

kl
/ 2�0.T IWn/ is given by

(2-3) �
ij

kl
.m; `/D

8̂<̂
:

ei..˛i� j̨ /mC.ˇi� ǰ /`/ if .k; l/D .i; j /;

�ei.. j̨�˛i /mC. ǰ�ˇi /`/ if .k; l/D .j ; i/;

0 otherwise.
We set

(2-4) Q˛;ˇ D

M
i<j

Q
ij

˛;ˇ
:

For a proof of the next result, see [11, Proposition 3.1.2].

Proposition 2.2 We have for the harmonic forms of �˛;ˇ on the torus:

H0C1C2
˛;ˇ

.T I su.n//DH0C1C2
˛;ˇ

.T IUn/˚H0C1C2
˛;ˇ

.T IWn/:

In the first case, we have trivially that

Hi
˛;ˇ.T IUn/D

8̂<̂
:

Un; if i D 0;

Un dm˚Un d`; if i D 1

Un dm^ d`; if i D 2:

In the second case, we have

H0C1C2
˛;ˇ

.T IWn/D
M
i<j

H0C1C2
˛;ˇ

.T IC ij /;

H0
˛;ˇ.T IC

ij /D

(
Q

ij

˛;ˇ
if .˛i � j̨ ; ˇi � ǰ / 2 Z2,

0 otherwise;
with

H1
˛;ˇ.T IC

ij /D

(
Q

ij

˛;ˇ
dm˚Q

ij

˛;ˇ
d` if .˛i � j̨ ; ˇi � ǰ / 2 Z2,

0 otherwise;

H2
˛;ˇ.T IC

ij /D

(
Q

ij

˛;ˇ
dm^ d` if .˛i � j̨ ; ˇi � ǰ / 2 Z2,

0 otherwise:

Let a be an SU.n/ connection on T and Ea;� denote the �–eigenspace of Sa . For
� > 0, we set

PCa;� WD spanL2 f j Sa D � for � > �g ;

P�a;� WD spanL2f j Sa D � for � < ��g;

ECa;� WD spanL2f j Sa D � for 0< �� �g;

E�a;� WD spanL2f j Sa D � for � � � � < 0g:and
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Notice that

P˙a;� WD
M
˙�>�

Ea;�

L2

and E˙a;� WD
M

0<˙���

Ea;�:

If � D 0, we write P˙a in place of P˙
a;0

, and if ˛; ˇ 2ƒ, we write P˙
˛;ˇ

in place of
P˙a˛;ˇ . Define

P
ij˙

˛;ˇ
WD P˙˛;ˇ \L2.�0C1C2.T IC ij //:

The space of twisted harmonic forms H0C1C2
a .T I su.n// in L2.�0C1C2.T; su.n///

is equal to Ker Sa . By the spectral theorem for self-adjoint elliptic operators we have

L2.�0C1C2.T; su.n///D PCa ˚Ker Sa˚P�a :

Just as in [11, Proposition 3.2.3], we get a decomposition of L2.�0C1C2.T; su.n///

into eigenspaces of �˛;ˇ respecting the decompositions su.n/ D Un ˚ Wn and
Wn D

L
i<j C ij . Further note that the decomposition of L2.�0C1C2.T;Un// is

independent of .˛; ˇ/ and the decomposition of L2.�0C1C2.T;C ij // depends only on
.˛i � j̨ ; ˇi � ǰ /2R2 . The dimension of Ker S˛;ˇ jumps whenever .˛i� j̨ ; ˇi� ǰ /

lies in the integer lattice Z2 �R2 for some i < j . We set

Zij WD f.˛; ˇ/ 2ƒ
2 j .˛i � j̨ ; ˇi � ǰ / 2 Z2

g;

Z WD
[
i<j

Zij :

Remark As spectral flow on a closed manifold is an invariant of homotopy rel end-
points, for the purpose of the spectral flow calculations in this paper, we can always
assume that if a path .˛.t/; ˇ.t// hits Zij when t D t0 , then it approaches Zij in such
a way that

ǰ .t/�ˇi.t/

j̨ .t/�˛i.t/
D tan �ij ; �ij 2 S1;

is constant on some interval t 2 .t0� �; t0/, and similarly for when it leaves Zij . For
such a path, the kernel of S˛.t/;ˇ.t/ converges as t ! t0 and the kernel at t0 equals
this limit plus an additional subspace determined by �ij .

We take an alternative approach and shall introduce a parameter space fƒ2 with topology
so that every continuous path in fƒ2 is “sufficiently nice” in an appropriate sense. This
viewpoint has a conceptual advantage and provides additional flexibility, because the
spectral flow along a path of connections on a manifold with torus boundary is homotopy
invariant rel endpoints, as long as its restriction respects a certain family of boundary
conditions together with flat connections parametrized by fƒ2.
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By explicitly computing some sufficiently nice path of eigenfunctions with nonzero
eigenvalue, which vanish in the limit, we can see that the additional eigenspace in the
kernel of the tangential operator only depends on the direction in which .˛i� j̨ ; ˇi� ǰ /

approaches Z2 . We will make this precise. For i < j , we denote this angle by �ij 2S1 ,
and we introduce the parameter space

fƒ2 WDƒ2 � .S1/.
n
2/=�;

where the equivalence relation collapses the .ij / circle away from Zij ; ie for � D
.�ij /i<j 2 .S

1/.
n
2/ , we have

.˛; ˇ; �/� .˛; ˇ; � 0/ provided �ij D �
0
ij for all i < j with .˛; ˇ/ 2 Zij .

We put a topology on fƒ2 as follows. Given .˛; ˇ/ 2ƒ2 and i < j , set ˛ij D ˛i � j̨

and ˇij D ˇi � ǰ . Then .˛ij ; ˇij /i<j 2 .R2/.
n
2/ . Set �2 D .R2/.

n
2/ for notational

convenience, and notice that the map ƒ2!�2 given by .˛; ˇ/ 7! .˛ij ; ˇij /i<j is an
embedding. As before, define

f�2D�2 � .S1/.
n
2/=�;

where the equivalence relation collapses the .ij / circle for .˛ij ; ˇij / 62 Z2: Just as
on page 2275 of [11], there is a bijective map from f�2 to . VR2/.

n
2/ , where VR2 is the

result of removing open disks of radius 1=4 around each integer lattice point in R2 ,
and we put a topology on f�2 that makes this map a homeomorphism. The embedding
ƒ2 � .S1/.

n
2/!�2 � .S1/.

n
2/ descends to an injective map fƒ2!f�2, and in this wayfƒ2 inherits the pullback topology from f�2.

The next result is analogous to [11, Theorem 3.2.2]. Before stating it, we define families

K˙.˛;ˇ;�/ D
M
i<j

K
ij˙

.˛;ˇ;�/

of subspaces of H0C1C2
.˛;ˇ/

.T I su.n// parameterized by fƒ2 by setting, for each i < j ;

K
ij˙

.˛;ˇ;�/
D

(
spanCf 

ij˙
1

;  
ij˙
2
g if .˛; ˇ/ 2 Zij ;

0 otherwise,

 
ij˙
1
D �ij

��ij .i Im �ij dm� i Re �ij d`/;where

 
ij˙
2
D �ij dm^ d`˙�ij .i Re �ij dmC i Im �ij d`/;

and �ij 2�0.T I su.n// is the function given by Equation (2-3).
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Theorem 2.3

(1) The maps P˙W ƒ2 n Z ! fclosed subspaces of L2.�0C1C2.T; su.n///g are
continuous.

(2) If .˛.t/; ˇ.t// 2 ƒ2 , t 2 Œ0; "/ is a smooth path with .˛.t/; ˇ.t// … Zij for
t 2 .0; "/ such that d

dt

ˇ̌
tD0

�
˛ij .t/C iˇij .t/

�
¤ 0; we set

�ij D
˛0ij .0/C iˇ0ij .0/

k˛0ij .0/C iˇ0ij .0/k
:

Then

lim
t!0C

P
ijC

.˛.t/;ˇ.t//
DK

ijC

.˛;ˇ;�/
˚P

ijC

.˛;ˇ/
and lim

t!0C
P

ij�

.˛.t/;ˇ.t//
DK

ij�

.˛;ˇ;�/
˚P

ij�

.˛;ˇ/
:

(3) Extend P˙ to fƒ2 by setting P˙
.˛;ˇ;�/

D P˙
.˛;ˇ/

. Then

P˙˚K˙Wfƒ2! fclosed subspaces of L2.�0C1C2.T; su.n///g

are continuous.

Then, we can define a continuous family of boundary conditions parametrized by fƒ2

(cf [11, Definition 3.2.4]).

Definition 2.4 Define a family P˙ of subspaces of L2.�0C1C2.T; su.n/// continu-
ously parametrized by z% 2fƒ2 as

P˙
z% WD P˙

z% ˚
yL˙˚K˙

z% ;

yL� WD U ˚U d` and yLC WD J yL�where

and J is given in (2-1). The space yL˙ can be chosen arbitrarily—the proof of the
splitting formula does not make use of it—but the above choice makes computations
for our application easier.

If L1;t , L2;t and L3;t , t 2 Œ0; 1� are paths of Lagrangian subspaces in a symplectic
Hilbert space with almost complex structure J , such that .JLi;t ;Lj ;t / is a Fredholm
pair for all i; j D 1; 2; 3, t 2 Œ0; 1�, then we can define a Maslov triple index �� by
translating [12, Definition 6.8] by Kirk and Lesch into the language of Lagrangian
subspaces. By the proof of [12, Lemma 6.10], we see that �� is determined by
��.L;L;L/D 0 and

��.L1;1;L2;1;L3;1/� ��.L1;0;L2;0;L3;0/

DMas.JL1;L2/CMas.JL2;L3/�Mas.JL1;L3/:
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Some easy and useful properties are summarized in the following.

Lemma 2.5 Let L1;L2; and L3 be pairwise Fredholm Lagrangians in a Hilbert
space H . Then
� ��.L1;L1;L2/D ��.L1;L2;L2/D 0,
� ��.L1;L2;L1/D dim.JL1\L2/, and
� ��.L1;L2;L3/D dim.JL2\L3/� ��.L1;L3;L2/:

2.3 Derivation of the su.n/ splitting formula

In this subsection we develop a splitting formula which expresses the su.n/ spectral
flow of the odd signature operator between flat connections on a closed 3–manifold
M DX [T Y split along a torus T in terms of spectral flows on X and Y with the
Atiyah–Patodi–Singer boundary conditions from Section 2.2.

Theorem 2.6 Let M D X [T Y be a closed 3–manifold split along the torus T . Let
At be a path of SU.n/ connections on M with the following properties:

(1) At is in cylindrical form and flat in a collar of T .

(2) At restricts to the path a%.t/ on T for some path z% in fƒ2 with � ı z%D %, where
� Wfƒ2!ƒ2 is the obvious projection.

(3) A0 and A1 are flat on M .

Then we have the splitting formula:

SF.At /DSF.At jX IPCz%.t//CSF.At jY IP�z%.t//C ��.JLX ;%.0/;K
C

z%.0/
˚ yLC;LY;%.0//

� ��.JLX ;%.1/;K
C

z%.1/
˚ yLC;LY;%.1//:

Proof The proof is very similar to [11, Section 4.4]. Recall from Nicolaescu [14,
Definition 4.8] that the nonnegative numbers minf� 2 R j ƒX ;A \ PCa;� D 0g and
minf� 2R jP�a;�\ƒY;AD 0g are called the nonresonance levels of DAjX and DAjY ,
respectively. Let � be the maximum of the nonresonance levels of DA0

jX , DA1
jX ,

DA0
jY and DA1

jY . For "D 0; 1, we use E˙";� for the spaces E˙a%."/;� and set

H";� WDEC";� ˚Ker S%."/˚E�";� :

Using the notation from above ƒX ;t WDƒX ;At
and ƒY;t WDƒY;At

:

(1) Fix some path LX ;";t , "D 0; 1, of Lagrangians in H";� from ƒ1
X ;"
\H";� to

P�
z%."/
\H";� .

(2) Fix some path LY;";t , " D 0; 1, of Lagrangians in H";� from ƒ1
Y;"
\H";� to

PC
z%."/
\H";� .
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Consider the Maslov index of the path .ƒX ;t ; ƒY;t /. Then by the results of Daniel
[8, Theorem 4.3] (see also Nicolaescu [14, Theorem 3.14]), we have that SF.At /D

Mas.ƒX ;t ; ƒY;t /; as well as the relative version SF.At jX IPCz%.t//DMas.ƒX ;t ;PCz%.t//
and SF.At jY IP�z%.t//DMas.P�

z%.t/
; ƒY;t / by Kirk and Lesch [12, Theorem 7.5]. We can

homotope the path .ƒX ;t ; ƒY;t / to the concatenation of paths .Mi ;Ni/, i D 1; : : : ; 11

given in Table 1 without changing the Maslov index.

i paths Mi.t/ Endpoints of Mi and Ni paths Ni.t/

ƒX ;0 ƒY;0

1 ƒ
Rt

X ;0
ƒ

Rt

Y;0

ƒ1X ;0 ƒ1Y;0
2 P�0;� ˚LX ;0;t ƒ

R1�t

Y;0

P�
z%.0/ ƒY;0

3 P�
z%.t/ ƒY;t

P�
z%.1/ ƒY;1

4 constant ƒ
Rt

Y;1

P�
z%.1/ ƒ1Y;1

5 constant PC
1;�
˚LY;1;t

P�
z%.1/ PC

z%.1/

6 P�
z%.1�t/ PC

z%.1�t/

P�
z%.0/ PC

z%.0/

7 P�0;� ˚LX ;0;1�t constant
P�
z%.0/ PC

z%.0/

8 ƒ
R1�t

X ;0
constant

ƒX ;0 PC
z%.0/

9 ƒX ;t PC
z%.t/

ƒX ;1 PC
z%.1/

10 ƒ
Rt

X ;1
PC

1;�
˚LY;1;1�t

ƒ1X ;1 ƒ1Y;1
11 ƒ

R1�t

X ;1
ƒ

R1�t

Y;1

ƒX ;1 ƒY;1

Table 1: The paths homotopic to ƒX ;t and ƒY;t broken up into pieces

Observe first, that the Maslov index of each of the pairs .Mi ;Ni/, i D 1; 4; 6; 8; 11 is
zero (see [12, Lemma 8.10]).
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Furthermore we can apply [12, Theorem 8.5], where WX � dE�
0;�
�EC

0;�
for DA0

jX

and WY �dEC
0;�
�E�

0;�
for DA0

jY are as in the theorem, and ? denotes the orthogonal
complement in dE�

0;�
and dEC

0;�
respectively, to get

Mas.M2;N2/CMas.M7;N7/

DMas.LX ;0;t ;LY;0;0/�Mas.LX ;0;t ;LY;0;1/

D ��.JLX ;0;1;LY;0;0;LY;0;1/� ��.JLX ;0;0;LY;0;0;LY;0;1/:

We have EC
0;�
D dE�

0;�
˚ d�E�

0;�
, and we can compute

��.JLX ;0;1;LY;0;0;LY;0;1/

D ��.E
C

0;�
˚KC

z%.0/
˚ yLC; .WY ˚JW ?Y /˚ dE�0;� ˚LY;0;E

C

0;�
˚KC

z%.0/
˚ yLC/

D ��.d
�E�0;� ˚KC

z%.0/
˚ yLC; .WY ˚JW ?Y /˚LY;0; d

�E�0;� ˚KC
z%.0/
˚ yLC/

D dim.JWY /C dim.JLY;0\ .K
C

z%.0/
˚ yLC//:

Similarly

��.JLX ;0;0;LY;0;0;LY;0;1/

D ��..JWX ˚W ?X /˚ d�E�0;� ˚JLX ;0; .WY ˚JW ?Y /˚ dE�0;� ˚LY;0;

EC
0;�
˚KC

z%.0/
˚ yLC/

D ��.d
�E�0;� ˚JLX ;0; .WY ˚JW ?Y /˚LY;0; d

�E�0;� ˚KC
z%.0/
˚ yLC/

D dim.JWY /C �.JLX ;0;LY;0;K
C

z%.0/
˚ yLC/:

Thus, together with [12, Proposition 6.11], this shows

Mas.M2;N2/CMas.M7;N7/D dim.JLY;0\ .K
C

z%.0/
˚ yLC//

� �.JLX ;0;LY;0;K
C

z%.0/
˚ yLC/

D �.JLX ;0;K
C

z%.0/
˚ yLC;LY;0/:

Similarly we get

Mas.M5;N5/CMas.M10;N10/D��.JLX ;1;K
C

z%.1/
˚ yLC;LY;1/:

This completes the proof.

The ideal situation for applying Theorem 2.6 is when the manifold M splits into a
solid torus D2 �S1 and its complement Y , and the path consists of connections that
are flat on Y . When this is not the case, Theorem 2.6 can still provide some useful
information. We start with a simple observation.

Algebraic & Geometric Topology, Volume 9 (2009)



Splitting the spectral flow and the SU.3/ Casson invariant for spliced sums 879

Lemma 2.7 Let At and A0t be loops of SU.n/ connections on 3–manifolds X and
X 0 , both with boundary the surface † , and let Pt a continuous family of boundary
conditions that make DAt

and DA0t
self-adjoint. Then

SF.At jX ;Pt /D SF.A0t jX 0 ;Pt /:

Proof Let ƒ be a Lagrangian subspace, such that .ƒ;Pt / is a Fredholm pair for all t .
Then, by the contractibility of the space of connections we have

SF.At jX ;Pt /DMas.ƒX ;At
;Pt /DMas.ƒ;Pt /

DMas.ƒX 0;A0t
;Pt /D SF.A0t jX 0 ;Pt /:

Therefore, the spectral flow of the odd signature operator coupled to a loop of SU.n/
connections on a manifold with boundary only depends on its restriction to the boundary.
Orient the solid torus S such that the orientations of S and X agree in a collar of
@S D @X .

Definition 2.8 Given a loop z% in fƒ2 with projection % in ƒ2 , let At be a path of
SU.n/ connections on the solid torus S restricting to a%.t/ on the boundary. We define
SF.z%/ WD SF.At jS IPCz%.t//.

Since the spectral flow is a homotopy invariant and additive under concatenation of paths
in fƒ2, the computation for an arbitrary loop in fƒ2 can be reduced to a loop z%D .˛; ˇ; �/,
where .˛.t/; ˇ.t// is constant and lies in exactly one Zij , and �.t/ D .�kl.t// for
�kl.t/ D 1 unless k D i and l D j ; in which case �ij .t/ D e2� it , t 2 Œ0; 1�. After
gauge transformation we may further assume that .i; j /D .1; 2/. Then, we can assume
after homotopy that

.˛; ˇ/� ..˛1; ˛2; 0; : : : ; 0/; .ˇ1; ˇ2; 0; : : : ; 0// 2 Z12:

Consequently, ˛1; ˛2; ˇ1; ˇ2 2
1
2
Z. Let us identify SU.2/ with SU.2/�fIdg � SU.n/

and su.2/ with su.2/�f0g � su.n/. Let % be the projection of z% in ƒ2 , and let At be
a path of SU.2/ connections on the solid torus S restricting to a%.t/ on the boundary.
Then we compute

SF.z%/D SF.At jS IPCz%.t//

D SF.At jS IP
12C
z%.t/
˚ .Un dm˚Un dm^ d`/˚K12C

z%.t/
/:

Since Un dm˚Un dm^d` is transverse to Un˚Un d`, we can apply [11, Theorem
5.3.3] to compute that SF.z%/D 4.
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We define the winding number for loops z% in fƒ2 as follows. First homotope z% to a
product z%1 � � � � � z%m of loops such that each z%k D z�k � .˛k ; ˇk ; �k/ � .z�k/�1 with
.˛k.t/; ˇk.t// constant. Then we define

wind.z%/ WD
mX

kD1

X
.i;j/

.˛k ;ˇk/2Zij

wind
�
�k

ij .t/
�
:

Let us summarize.

Proposition 2.9 Let z%.t/ be a loop in fƒ2. Then

SF.z%/D 4 wind.z%/:

Now we can state the main splitting formula.

Theorem 2.10 Consider two flat connections B0 and B1 on M DX [T Y . Let At

and A0t be paths of SU.n/ connections on X and Y , respectively, with B"jX D A"
and B"jY DA0" , "D 0; 1, satisfying the properties in Theorem 2.6 with z% and z%0 the
corresponding paths in fƒ2. Then

SF.B0;B1/DSF.At IPCz%.t//CSF.A0t IP�z%0.t//CSF.z%.1� t/� z%0.t//

C ��.JLX ;0;K
C

z%.0/
˚ yLC;LY;0/� ��.JLX ;1;K

C

z%.1/
˚ yLC;LY;1/:

Proof Extend A0t arbitrarily to a path Bt from B0 to B1 . Then

SF.Bt /DSF.Bt jX IPCz%0.t//CSF.Bt jY IP�z%0.t//CSF.At IPCz%.t//�SF.At IPCz%.t//;

C ��.JLX ;0;K
C

z%.0/
˚ yLC;LY;0/� ��.JLX ;1;K

C

z%.1/
˚ yLC;LY;1/

DSF.At IPCz%.t//CSF.A0t IP�z%0.t//CSF.A1�t �Bt jX IPCz%.1�t/�z%0.t/
/

C ��.JLX ;0;K
C

z%.0/
˚ yLC;LY;0/� ��.JLX ;1;K

C

z%.1/
˚ yLC;LY;1/:

With Lemma 2.7 the desired formula follows.

SF.z%/ can be defined for paths other than loops. Some examples have been computed
in the case nD 2 by Himpel [11, Theorem 5.3.3].
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3 The SU.3/ representation variety of a spliced sum

Suppose K1 and K2 are knots in S3 with complements X1 D S3 n �K1 and X2 D

S3 n �K2 , and let M D X1 [T X2 be the spliced sum. In this section, we establish
some basic results about the representation variety R.M;SU.3//.

Given a representation ˛W �1.M /! SU.3/, we set ˛1 D ˛j�1.X1/; ˛2 D ˛j�1.X2/ ,
and ˛0 D ˛j�1.T / , and we will sometimes write ˛ D ˛1[˛0

˛2:

Lemma 3.1 If ˛W �1.M /! SU.3/ is a representation with ˛1 or ˛2 abelian, then ˛
is trivial.

Remark This lemma is true in general for representations ˛W �1.M / ! SU.n/,
where M is the spliced sum along knots in S3; but not for spliced sums along knots
in homology spheres.

Proof Suppose ˛1 is abelian. Because �1 lies in the commutator subgroup, it follows
that ˛.�1/D I: Splicing identifies �2 with �1; and it follows that ˛.�2/D I: Because
�2 normally generates �1.X2/, we conclude that ˛2 is trivial. In particular ˛.�2/D I ,
and splicing again shows ˛.�1/D I and the same argument shows ˛1 is also trivial.

Lemma 3.2 If ˛W �1.M /! SU.3/ is a representation with ˛.�1/ or ˛.�2/ central,
then ˛ is trivial.

Proof Suppose ˛.�1/ is central. Since �1 normally generates �1.X1/, it follows
that ˛1 is abelian, and we apply Lemma 3.1 to make the conclusion.

Because �1.T /DZ2 is abelian, we can conjugate ˛ so that both ˛0 is diagonal. Thus,
the stabilizer subgroup Stab.˛0/ must contain the maximal torus TSU.3/ Š T 2: The
next two results show that, for the purposes of computing the SU.3/ Casson invariant,
we can restrict our attention to representations with Stab.˛0/D TSU.3/:

Proposition 3.3 If ˛W �1.M /!SU.3/ is a nontrivial representation with Stab.˛0/¤

TSU.3/ , then ˛1 and ˛2 are both irreducible.

Proof Since �1.T /D Z2 is abelian, we can conjugate ˛ so that ˛.�1/ and ˛.�1/

are both diagonal. Now if either of these elements has three distinct eigenvalues, then
Stab.˛0/ D TSU.3/ . Thus our hypotheses imply that ˛.�1/ and ˛.�2/ both have a
double eigenvalue. If their 2–dimensional eigenspaces do not coincide, then we can
find integers k; l such that the diagonal matrix ˛.�k

1
�l

1
/ has three distinct eigenvalues,
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and it would then follow that Stab.˛0/ D TSU.3/ . Thus, we can assume that, up to
conjugation,

˛.�1/D

0@a 0 0

0 a 0

0 0 xa2

1A and ˛.�1/D

0@b 0 0

0 b 0

0 0 xb2

1A
for some a; b 2 U.1/ not equal to a third root of unity.

Now suppose to the contrary that ˛1 is reducible. Then, up to conjugation, ˛1 has
image in S.U.2/�U.1//. Since �1 lies in the commutator subgroup of �1.X1/, its
image under ˛ must lie in the commutator group of
S.U.2/ � U.1//, which is SU.2/ � f1g. This shows that one of the eigenvalues of
˛.�1/ must equal 1. If b D 1; then ˛.�2/D ˛.�1/D I and Lemma 3.2 implies ˛ is
trivial, a contradiction. Otherwise, b2D 1 and bD�1 and we see then that ˛.�1/ lies
in the center of ˛1.�1.X1//: Because �1 normally generates this group, this shows
that ˛1 is abelian and Lemma 3.1 gives the desired contradiction.

For further results, we need to make the additional assumptions that the representation
varieties R.X1;SU.3// and R.X2;SU.3// are in general position in the “SU.3/ pil-
lowcase” R.T;SU.3//: Specifically, we assume that the images of R.X1;SU.3// and
R.X2;SU.3// intersect transversely in R.T;SU.3//, and that the restriction maps

R.X1;SU.3//!R.T;SU.3// and R.X2;SU.3//!R.T;SU.3//

are both local immersions in a neighborhood of each intersection point. These assump-
tions will not hold in general for spliced sums along knots in S3 , but one can check
that they do hold for spliced sums along .2; q/ torus knots.

In the following result, we use Œ˛� to denote the conjugacy class of a representation
˛W �1.M /! SU.3/.

Proposition 3.4 Suppose the above transversality assumption holds for all representa-
tions ˛W �1.M /! SU.3/ and suppose ˛ is nontrivial with Stab.˛0/¤ TSU.3/ . Set

C D fŒˇ� 2R.M;SU.3// j ˇi is conjugate to ˛i for i D 1; 2g:

Then C � R�.M;SU.3// and is diffeomorphic to S.U.2/ � U.1//=ZSU.3/ , where
ZSU.3/ Š Z3 is the center of SU.3/. In particular, we have �.C /D 0:

Proof Proposition 3.3 implies that C consists entirely of irreducible representations,
and under the transversality assumption, this component can be described as the double
coset �1n�0=�2 , where �iDStab.˛i/. Proposition 3.3 shows that �1D�2DZSU.3/ ,
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and its proof shows that �0D S.U.2/�U.1//: Since S.U.2/�U.1// is diffeomorphic
to U.2/, it has zero Euler characteristic.

If ˛W �1.M /! SU.3/ is a nontrivial representation with Stab.˛0/D TSU.3/ , then we
have exactly three possibilities:

(a) Both ˛1 and ˛2 are irreducible.

(b) One of ˛1; ˛2 is irreducible, the other is reducible and nonabelian.

(c) Both ˛1 and ˛2 are reducible and nonabelian.

The next result shows that, for the purposes of computing the SU.3/ Casson invariant
of spliced sums, the only contributions come from case (c).

Proposition 3.5 Let the above assumption hold for all representations ˛W �1.M /!

SU.3/, and suppose ˛ is a nontrivial representation with Stab.˛0/D TSU.3/ and one
of ˛1 or ˛2 irreducible. (So we are in case (a) or case (b).) Set

C D fŒˇ� 2R.M;SU.3// j ˇi is conjugate to ˛i for i D 1; 2g:

Then C �R�.M;SU.3// with C Š TSU.3/=ZSU.3/ in case (a) and C Š TSU.3/=U.1/
in case (b). In either case, we see that �.C /D 0:

Proof Using the double coset description of the component, we see that C D

�1n�0=�2 where �0 D TSU.3/ . In case (a), we get that �1 D �2 D ZSU.3/ and
the first result follows. In case (b), assuming (wlog) that ˛1 is irreducible and ˛2 is
reducible, we find that �1 DZSU.3/ and

�2 D

8<:
0@e� i 0 0

0 e� i 0

0 0 e�2� i

1Aˇ̌̌̌ˇ̌ � 2 Œ0; 2��
9=;Š U.1/;

and the second result follows.

The only remaining case is case (c), where both ˛1 and ˛2 are reducible and nonabelian.
There are two possibilities here:

(c–1) Both ˛1 and ˛2 can be simultaneously conjugated to lie in S.U.2/�U.1//.
In this case, ˛ D ˛1 [˛0

˛2 is reducible and lies on a component C Š S1

consisting entirely of reducible representations.

(c–2) After conjugating, ˛1 lies in S.U.2/�U.1// and ˛2 lies in S.U.1/�U.2//. In
this case ˛ D ˛1[˛0

˛2 is irreducible and its conjugacy class Œ˛� is an isolated
point in R�.M;SU.3//:
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The next result summarizes our discussion and gives a classification of the possible
components of R.M;SU.3// for spliced sums satisfying the transversality assumption.

Theorem 3.6 Suppose M is a spliced sum along knots in S3 and satisfies the transver-
sality assumption. Then the representation variety R.M;SU.3// D

S
j2J Cj is a

disjoint union of components Cj that are either entirely contained in R�.M;SU.3//
or disjoint from R�.M;SU.3//. If Cj �R�.M;SU.3//; then Cj is diffeomorphic to
one of

S.U.2/�U.1//=ZSU.3/; TSU.3/=ZSU.3/; TSU.3/=U.1/; f�g;

depending on the level of reducibility of ˛0; ˛1; ˛2 . Otherwise, if the intersection
Cj \R�.M;SU.3//D¿, then Cj is diffeomorphic to S1 or f�g, the latter occurring
only when Cj D fŒ‚�g, the trivial representation.

Remark Notice that the positive dimensional components Cj all satisfy �.Cj /D 0:

Using the homeomorphism between the moduli space M of flat SU.3/ connections
on M and the representation variety R.M;SU.3// provided by the holonomy map,
the transversality assumption ensures that each of the corresponding components in M
is a nondegenerate critical submanifold for the Chern–Simons function. In particular,
by [2, Theorem 7], we see that these components do not contribute to the SU.3/
Casson invariant. In order to compute the SU.3/ Casson invariant, in Section 5 we
will concentrate on the 0–dimensional or isolated components.

Notice further that for components of type (c–2), which are the isolated points of
R�.M;SU.3//, it is possible to have ˛1 conjugate to ˛0

1
as S.U.2/ �U.1// repre-

sentations of �1.X1/, and ˛2 conjugate to ˛0
2

as S.U.1/�U.2// representations of
�1.X2/, but ˛1[˛0

˛2 not conjugate to ˛0
1
[˛0

0
˛0

2
as SU.3/ representations of �1.M /

for the spliced sum M DX1[T X2: This is a consequence of the existence of discrete
gluing parameters in this context, and we will return to this issue in Theorem 5.1, where
we enumerate the isolated components of R�.M;SU.3// for certain spliced sums.

4 SU.3/ representation varieties of knot complements

In the previous section, we examined the SU.3/ representation varieties of spliced
sums and discovered that the only contributions to the SU.3/ Casson invariant come
from representations ˛ D ˛1[˛0

˛2 with ˛1 and ˛2 reducible, nonabelian representa-
tions of the knot complements. In this section, we study the representation varieties
R.X;SU.3// for knot complements. In general, R.X;SU.3// is a union of three
different strata:

(1) R�.X;SU.3// the stratum of irreducible representations,
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(2) Rred.X;SU.3// the stratum of reducible nonabelian representations, and

(3) Rab.X;SU.3// the stratum of abelian representations.

Because our computations of �SU.3/.M / for spliced sums involve only those repre-
sentations that restrict to reducible, nonabelian representations on X1 and X2 , we
concentrate on the stratum Rred.X;SU.3//. We shall use the results of Klassen [13]
to give a useful description in case X is the complement of a .2; q/ torus knot. The
curious reader is referred to [4, Section 3] for descriptions of the other strata. The
results presented here are complementary to those in [4].

Let K be the .2; q/ torus knot and X D S3 n �K its complement. The knot group
�1.X / has presentation

(4-1) �1.X /Š hx;y j x
2
D yq

i;

with meridian �D xy.1�q/=2 and longitude �D x2��2q:

If ˛W �1.X /! SU.3/ is a reducible representation, then it can be conjugated to lie in
S.U.2/� U.1//. Furthermore, every S.U.2/�U.1// representation of �1.X / is ob-
tained by twisting an SU.2/ representation. In [13], Klassen proves that R�.X;SU.2//
is a union of q� 1 open arcs, and using this, we shall show that Rred.X;SU.3// is a
union of q� 1 open Möbius bands.

In the next result, we identify SU.2/ with the unit quaternions by the map�
a b

�xb xa

�
7! aC bj for a; b 2C with jaj2Cjbj2 D 1:

To each t 2 Œ0; 1
2
� we associate the abelian representation ˇt W �1.X /! SU.2/ with

ˇt .�/ D e2�it . In this way, we parameterize Rab.X;SU.2// by the closed interval
Œ0; 1

2
�.

Proposition 4.1 (Klassen) The representation variety R�.X;SU.2// consists of
.q�1/=2 open arcs given as follows. For k 2 f1; 3; : : : ; q � 2g and s 2 Œ0; 1�, define

. . .

. . .

Figure 2: The SU.2/ representation variety of a .2; q/ torus knot
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ˇk;s by setting

ˇk;s.x/D i cos.�s/C j sin.�s/;

ˇk;s.y/D cos.�k=q/C i sin.�k=q/D ek�i=q:

Then the resulting paths of SU.2/ representations ˇk;s are irreducible and have
H 1.X I su.2/ˇk;s

/DR and H 1.ZIC2
ˇk;s

/D 0 for s 2 .0; 1/:

When s D 0; 1 the representations ˇk;0 and ˇk;1 , are abelian with

ˇk;0.�/D .�1/.k�1/=2ek� i=.2q/ and ˇk;1.�/D .�1/.kC1/=2ek� i=.2q/:

Using Œ0; 1
2
� to parameterize the abelian representations, we see that the arc ˇk;s is

attached at the bifurcation points
˚
k=.4q/; .2q� k/=.4q/

	
(see Figure 2).

Observe that the image of the meridian is given by

ˇk;s.�/D .i cos.�s/C j sin.�s//ek�i.1�q/=.2q/;

and a quick calculation shows that ˇk;s.�/ is conjugate to the diagonal matrix�
e2u�i 0

0 e�2u�i

�
;

where u 2 Œ0; 1
2
� satisfies

cos.2�u/D cos.�s/ sin
�

k.q�1/�
2q

�
:

Since s 2 Œ0; 1� and

sin
�k.q�1/�

2q

�
D sin

�
k
�
�
2
�
�
2q

��
D .�1/.k�1/=2 cos

�
k�
2q

�
;

we see that

(4-2) u 2
�

k
4q
; 2q�k

4q

�
:

Since �D x2��2q , then ˇk;s.�/ is conjugate to�
�e�2q.2u� i/ 0

0 �e2q.2u�i/

�
:

We are interested in the restriction of ˇk;s to the boundary torus. Recall R.T;SU.2//
is modelled by the pillowcase, which is the quotient of the 2–torus T 2 by the involution
sending .x;y/ to .1�x; 1�y/, where we think of T 2 as Œ0; 1�� Œ0; 1� with opposite
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sides identified. Under this identification, the point .u; v/ 2 Œ0; 1
2
� � Œ0; 1� in the

pillowcase corresponds to the diagonal representation ˇW �1.T /! SU.2/ with

ˇ.�/D

�
e2u� i 0

0 e�2u�i

�
and ˇ.�/D

�
e2v�i 0

0 e�2v� i

�
:

For s 2 Œ0; 1�, the restriction of ˇk;s to the boundary torus gives a line of slope �2q

in the pillowcase connecting .k=.4q/; 0/ to ..2q� k/=.4q/; 0/ and wrapping around
vertically q� k times.

Using the twisting operation [4, Section 3.2], we give an explicit description of
Rred.X;SU.3// as a union of .q � 1/=2 Möbius bands, which are 2–dimensional
families obtained by twisting the arcs ˇk;s by characters �W �1.X /! U.1/.

First, in terms of matrices, if

AD

�
a b

�xb xa

�
2 SU.2/ and ei�

2 U.1/;

we define the twist of A by ei� to be the S.U.2/�U.1// matrix0@ei� 0 0

0 ei� 0

0 0 e�2i�

1A0@ a b 0

�xb xa 0

0 0 1

1AD
0@ ei�a ei�b 0

�ei� xb ei�xa 0

0 0 e�2i�

1A :
Given an irreducible representation ˇW �1.X /! SU.2/ and an abelian representation
�W �1.X /! U.1/, we define the reducible SU.3/ representation obtained by twisting
ˇ by �, denoted �ˇ ˇ; to be the S.U.2/�U.1// representation taking an element
 2 �1.X / to the twist of ˇ. / by �. /:

Since abelian representations factor through the homology group H1.X;Z/, which
is generated by the meridian �; we see that a representation �W �1.X /! U.1/ is
determined by �.�/.

Definition 4.2 For ei� 2 U.1/, let �� be the U.1/ representation with �� .�/D ei� .
For k2f1; 3; : : : ; q�2g and s2 .0; 1/, let ˇk;s be the SU.2/ representation described in
Proposition 4.1 and define ˛k;s;� D ��ˇˇk;s to be the reducible SU.3/ representation
obtained by twisting ˇk;s by �� .

Notice that if � D �; the twist of an SU.2/ representation ˇ by �� takes values in
the SU.2/� f1g matrices, and a quick calculation shows that

(4-3) �� ˇˇk;s is conjugate to ˇk;1�s:
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Thus, for k 2 f1; 3; : : : ; q� 2g; the 2–dimensional family ˛k;s;� is parameterized by
.s; �/2 .0; 1/� Œ0; �� with identification .s; 0/� .1�s; �/. This gives an open Möbius
band. The next result summarizes our discussion.

Proposition 4.3 If X is the complement of the .2; q/ torus knot, then Rred.X;SU.3//
is a union of .q� 1/=2 open Möbius bands. The closure of each stratum intersects the
abelian stratum Rab.X;SU.3// in an immersed circle with isolated double points.

5 Isolated components of R�.M; SU.3//

In this section, we enumerate the isolated components in R�.M;SU.3// for M the
spliced sum along torus knots of type .2; q1/ and a .2; q2/. Let K1 and K2 be .2; q1/

and .2; q2/ torus knots with complements X1 and X2 , and write ˛ D ˛1 [˛0
˛2

according to the decomposition M D X1 [T X2: Assume that Œ˛� is isolated. By
Section 3, we can assume that ˛ is irreducible and both ˛1 and ˛2 are reducible.
These are the type (c–2) components from Section 3, and they are the only components
that contribute nontrivially to the SU.3/ Casson invariant. Note further that such a
representation can be conjugated so that ˛1 reduces to S.U.2/�U.1//; ˛2 reduces to
S.U.1/�U.2//, and ˛0 is diagonal.

We can describe ˛1 as the twist of an SU.2/ representation ˇ1 by a character ��1
;

and we get a similar statement for ˛2 using the following refinement of twisting. For
this purpose, we set ˇ1 Dˇ and define ˇ2 to be the twisting induced by the map
which, for

ei�
2 U.1/ and AD

�
a b

�xb xa

�
2 SU.2/;

gives the S.U.1/�U.2// matrix0@e2i� 0 0

0 e�i� 0

0 0 e�i�

1A0@1 0 0

0 a b

0 �xb xa

1AD
0@e2i� 0 0

0 e�i�a e�i�b

0 �e�i� xb e�i�xa

1A :
On the level of representations, if ˇ2W �1.X2/! SU.2/ and ��2

W �1.X2/! U.1/;
then set �2ˇ2 ˇ�2

to be the S.U.1/�U.2// representation obtained by twisting ˇ2

by ��2
in this way. Assume now ˛1 D ��1

ˇ1 ˇ1 and ˛2 D ��2
ˇ2 ˇ2 for SU.2/

representations ˇ1; ˇ2 and characters ��1
; ��2

Remark Note that, by Lemma 3.1, we can assume that ˇ1 and ˇ2 are both irreducible
since ˛ D ˛1[˛0

˛2 is irreducible.
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The pair ˛1W �1.X1/! S.U.2/�U.1// ˛2W �1.X2/! S.U.1/�U.2// will extend to
a representation ˛W �1.M /! SU.3/ if and only if their restrictions to �1.T / agree,
namely if and only if ˛1.�1/D ˛2.�2/ and ˛2.�2/D ˛1.�1/:

Theorem 5.1 Suppose M is the spliced sum along torus knots K1 and K2 of type
.2; q1/ and .2; q2/. Then the number of isolated conjugacy classes in R�.M;SU.3//
is given by

16�0SU.2/.K1/�
0
SU.2/.K2/D

.q2
1
� 1/.q2

2
� 1/

4
;

where �0SU.2/.K/D�
00
K
.1/ is the SU.2/ Casson knot invariant.

Proof Using Equation (4-1) and the splice relations, we find that �1.M / has presen-
tation

�1.M /D hx1;y1;x2;y2 j x
2
1 D y

q1

1
;x2

2 D y
q2

2
; �1 D �2; �1 D �2i;

where �1 D x1y
.q1�1/=2
1

; �1 D x2
1
�
�2q1

1
and �2 D x2y

.q2�1/=2
2

; �2 D x2
2
�
�2q2

2
:

Assume ˛D˛1[˛0
˛2 is an irreducible representation of �1.M / with ˛1 and ˛2 both

reducible, and conjugate so that ˛1 is in S.U.2/�U.1// and ˛2 is in S.U.1/�U.2//:

Because the longitude �1 lies in the commutator subgroup of �1.X1/, reducibility of
˛1 implies that ˛1.�1/ must have a 1 in the lower right-hand corner. Similarly, because
�2 lies in the commutator subgroup of �1.X2/, reducibility of ˛2 implies that ˛2.�2/

must have a 1 in the upper left-hand corner. Notice that twisting does not alter the
image of the longitude since ��i

.�i/D 1 for any �i 2 Œ0; ��: Thus, if ˛1 D ��1
ˇ1 ˇ1

and ˛2 D ��2
ˇ2 ˇ2 , then the only way to have a 1 in the upper right-hand corner of

˛1.�1/ and also in the lower right-hand corner of ˛2.�2/ is if

ˇ1.�1/D

�
e��1i 0

0 e�1i

�
and ˇ2.�2/D

�
e��2i 0

0 e�2i

�
:

In that case,

ˇ1.�1/D

�
�e2q1�1i 0

0 �e�2q1�1i

�
and ˇ2.�2/D

�
�e2q2�2i 0

0 �e�2q2�2i

�
:
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If ˛1 D ��1
ˇ1 ˇ1 and ˛2 D ��2

ˇ2 ˇ2 , an easy computation shows

˛1.�1/D

0@1 0 0

0 e2�1i 0

0 0 e�2�1i

1A ; ˛1.�1/D

0@�e2q1�1i 0 0

0 �e�2q1�1i 0

0 0 1

1A ;(5-1)

˛2.�2/D

0@e2�2i 0 0

0 e�2�2i 0

0 0 1

1A ; ˛2.�2/D

0@1 0 0

0 �e2q2�2i 0

0 0 �e�2q2�2i

1A :(5-2)

The results of the previous section imply that ˇ1 and ˇ2 are conjugate to repre-
sentations ˇk1;s1

and ˇk2;s2
of Proposition 4.1 for some k1 D 1; 3; : : : ; q1 � 2 and

k2 D 1; 3; : : : ; q2 � 2 and s1; s2 2 .0; 1/. As noted in Section 4, ˇk1;s1
.�1/ and

ˇk2;s2
.�2/ are conjugate to�

e�2u1�i 0

0 e2u1� i

�
and

�
e�2u2�i 0

0 e2u2� i

�
;

respectively, where u1;u2 satisfy

cos.2�u1/D cos.�s1/ sin
�

k1.q1�1/�
2q1

�
and cos.u2/D cos.�s2/ sin

�
k2.q2�1/�

2q2

�
u1 2

�
k1

4q1
; 2q1�k1

4q1

�
and u2 2

�
k2

4q2
; 2q2�k2

4q2

�
:and

Fix k1 and k2 as above and set �1 D 2�u1 and �2 D 2�u2 . Consider the two paths
˛1;s1

D ��1
ˇ1 ˇk1;s1

and ˛2;s2
D ��2

ˇ2 ˇk2;s2
of reducible SU.3/ representations

defined for s1; s2 2 .0; 1/: (We conjugate ˇk1;s1
and ˇk2;s2

so that ˇk1;s1
.�1/ and

ˇk2;s2
.�2/ are both diagonal in SU.2/:) Notice that the upper left-hand entry of

˛1;s1
.�1/ is always equal to 1, as is the lower right-hand entry of ˛2;s2

.�2/.

Consider the two arcs in T 2 defined in terms of ˛1;s1
and ˛2;s2

as follows. The first arc
has its first coordinate given by the .2; 2/ entry of ˛1;s1

.�1/ and its second coordinate
given by the .1; 1/ entry of ˛1;s1

.�1/. The second arc has its first coordinate given
by the .2; 2/ entry of ˛2;s2

.�2/ and its second coordinate given by the .1; 1/ entry of
˛2;s2

.�2/. By (5-1) and (5-2), we see that the first arc is given by .e2�1i ;�e2q1�1i/

for
�1 2

�
k1�
2q1

; .2q1�k1/�
2q1

�
;

whereas the second arc is given by .�e2q2�2i ; e2�2i/ for

�2 2

�
k2�
2q2

; .2q2�k2/�
2q2

�
:

Using 1 and 2 to denote the resulting curves in T 2 , notice that 1 has slope q1

and wraps around the 2–torus vertically q1 � k1 times, whereas 2 has slope 1=q2

Algebraic & Geometric Topology, Volume 9 (2009)



Splitting the spectral flow and the SU.3/ Casson invariant for spliced sums 891

and wraps around the 2–torus horizontally q2�k2 times. From this, one sees that 1

and 2 intersect in .q1� k1/.q2� k2/ points. (One can perform the computation in
homology by adding a horizontal segment to 1 that misses 2 and a vertical segment
to 2 that misses 1 , creating 1–cycles in the pillowcase minus the corners.)

Of course, the intersection points of 1 and 2 exactly coincide with choices of ˛1;s1

and ˛2;s2
that extend to an irreducible SU.3/ representation of �1.M /, and each of

these is an isolated point in R�.M;SU.3//.

Summing over k1 2 f1; 3; : : : ; q1 � 2g and k2 2 f1; 3; : : : ; q2 � 2g and setting j1 D

.k1� 1/=2 and j2 D .k2� 1/=2, we compute that

.q1�1/=2X
j1D1

.q2�1/=2X
j2D1

.q1� 2j1C 1/.q2� 2j2C 1/

D

 
.q1�1/=2X

j1D1

q1� 2j1C 1

! 
.q2�1/=2X

j2D1

q2� 2j2C 1

!

D
.q2

1
� 1/.q2

2
� 1/

16
:

We now take into account the fact that the conjugacy class of ˛1 [˛0
˛2 on M D

X1[T X2 is not determined by the conjugacy classes of ˛1 on X1 and ˛2 on X2 (see
the Remark following Theorem 3.6). Suppose as above ˛0W �1.T /! SU.3/ is abelian
with Stab.˛0/ D TSU.3/ , the maximal torus, and consider the effect of conjugating
by an element in SU.3/ that normalizes TSU.3/ . (Recall NTSU.3/=ZTSU.3/ Š S3 , the
symmetric group on three letters.) On X1 , we further require that the conjugating
element preserve S.U.2/�U.1//, and on X2 that it preserve S.U.1/�U.2//. Specific
elements are given by the matrices

A1 D

0@ 0 1 0

�1 0 0

0 0 1

1A and A2 D

0@1 0 0

0 0 1

0 �1 0

1A :
Conjugating ˛i by Ai gives rise to an action of Z2 which switches the order of
the two eigenvalues of ˛i.�i/ not equal to 1. The Z2 actions gives us discrete
gluing parameters, and their overall effect on our count is to multiply by a factor of
four. Thus, we see that the total number of isolated components in R�.M;SU.3//
is 1

4
.q2

1
�1/.q2

2
�1/; and because the Casson invariant of the .2; q/ torus knot equals

1
8
.q2�1/, we obtain the desired formula.
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6 Cohomology calculations for .p; q/–torus knots

In this section, we present various cohomology results that are needed as input for
the spectral flow computations in the next section, where we shall prove that the
spectral flow to each of these SU.3/ representations is even. We choose a nice path
of representations connecting the trivial representation to these SU.3/ representations
and compute at which points the dimension of kernel of the odd signature operator
with the boundary conditions from Definition 2.4 jumps.

Let K be the .p; q/–torus knot in S3 and X D S3 n �K its complement. We identify
T (as in Section 2) with @X , such that the inclusion j W T D @X ! X carries �
to a null-homologous loop in X . We orient X so that �@X D T , and we put a
metric on X such that a collar of X is isometric to Œ0; 1� � T . The form dm on
T extends to a closed 1–form on X generating the first cohomology H 1.X IR/,
which we will continue to denote dm. In this section we will compute Ker.j �/ and
Im.j �/, where j �W H i.X I u.3/˛/!H i.@X I u.3/j�˛/, ˛W �1.X /! S.U.2/�U.1//
is a representation, and S.U.2/�U.1// acts on su.3/ via the adjoint representation.

If we identify S.U.2/�U.1// with U.2/ via

(6-1)
�

tA 0

0 t�2

�
7! tA;

where jt j D 1 and A 2 SU.2/, then su.3/ decomposes invariantly with respect to the
adjoint action of S.U.2/�U.1// as

su.3/D u.2/˚C2;

where tA 2 U.2/ acts on u.2/ via the adjoint representation and on C2 via multipli-
cation by t3A. If F is the covering from the U.2/ representation space of �1.X / to
itself given by F.˛/.w/ WD t3A where ˛.w/D tA with jt j D 1 and A 2 SU.2/, the
twisted cohomology splits as

H i.X I su.3/˛/DH i.X I u.2/˛/˚H i.X IC2
F.˛//;

where ˛ acts by the adjoint representation on u.2/ and F.˛/ acts by the defining
representation on C2 . In this section, we concentrate on the case of u.2/ coefficients.
There are analogous computations for the cohomology groups with C2 coefficients,
see [4, Section 3.1; 5, Section 6.1] for instance, but these computations are not needed
here.
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Proposition 6.1 Let ˛ be an U.2/ representation of �1.X /, where U.2/ acts on u.2/

via the adjoint representation. Then

dim H 0.X I u.2/˛/D

8̂<̂
:

4 if ˛ is central;

2 if ˛ is abelian, but not central;

1 otherwise;

(6-2)

dim H 1.X I u.2/˛/D

(
4 if ˛ is abelian and ˛.xp/ is central;

2 otherwise:
(6-3)

Proof The knot group �1.X / of the .p; q/ torus knot K�S3 admits the presentation

�1.X /Š hx;y j x
p
D yq

i:

Since every U.2/ matrix is diagonalizable, any representation ˛W �1.X /! U.2/ can
be conjugated so that

˛.x/D s

�
a 0

0 xa

�
:

We will use the bar resolution to compute the cohomology. Let�
ui z

�xz vi

�
2 u.2/:

Then s

�
a 0

0 xa

��
ui z

�xz vi

��
s

�
a 0

0 xa

���1

D

�
ui 0

0 vi

�
C

�
a2 0

0 xa2

��
0 z

�xz 0

�
yields

(6-4) ı0

�
ui z

�xz vi

�
.x/D

�
Id�

�
a2 0

0 xa2

���
0 z

�xz 0

�
:

If ˛ is central, then Ker.ı0/D u.2/. If ˛ is abelian and noncentral, then ˛.y/ is also
diagonal, and

Ker.ı0/D Ker.ı0. � /.x//D Ker.ı0. � /.y//

is the 2–dimensional space of diagonal u.2/ matrices. If ˛ is not abelian, then ˛.y/
is not diagonal, and Ker.ı0. � /.x// and Ker.ı0. � /.y// are not equal. Then

Ker.ı0/D Ker.ı0. � /.x//\Ker.ı0. � /.y//

is 1–dimensional, because �
ui 0

0 ui

�
commutes with conjugation. This shows (6-2).
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Let � be a 1–cocycle. Then �.x/DX and �.y/D Y for X;Y 2 u.2/ satisfying the
equation

p�1X
iD0

xi
�X D

q�1X
iD0

yi
�Y:

If ˛ is central, the above equation simplifies to pX D qY and the space of 1–cocycles
is 4–dimensional. If ˛ is noncentral, we compute

p�1X
iD0

xi
�X D

p�1X
iD0

�
ai 0

0 xai

�
�X D p

�
ui 0

0 vi

�
C

p�1X
iD0

�
a2i 0

0 xa2i

��
0 z

�xz 0

�

D p

�
ui 0

0 vi

�
C

 
a2p�1
a2�1

0

0 xa2p�1
xa2�1

!�
0 z

�xz 0

�
:

(6-5)

If ˛ is abelian and noncentral, note that ˛.x/pD˛.y/q need not be central. A statement
for y analogous to (6-5) then shows that the space of 1–cocycles is 4–dimensional if
˛.x/p is noncentral, and is 6–dimensional if ˛.x/p is central. If ˛ is irreducible, then
˛.x/2p D ˛.y/2q D 1. Then, just like for the 0–cocycles, Ker.ı1/ does not contain
all diagonal matrices of u.2/, but only those with equal entries. Therefore, in view of
(6-5), the space of 1–cocycles is 5–dimensional for ˛ irreducible. Since by (6-4) the
space of 1–coboundaries is 0–dimensional for ˛ central, 2–dimensional for ˛ abelian
and noncentral, and 3–dimensional otherwise, (6-3) follows.

Proposition 6.2 Let ˛ be an U.2/ representation of �1.T /, where U.2/ acts on u.2/

via the adjoint representation. Then

dim H 0.T I u.2/˛/D

(
4 if ˛ is central;

2 otherwise,
(6-6)

dim H 1.T I u.2/˛/D

(
8 if ˛ is central;

4 otherwise.
(6-7)

Proof The computation of (6-6) works just like the computation for (6-2), keeping in
mind that all representations are abelian and we may assume that they are diagonal.
For (6-7) note that a 1–cocycle � satisfies �.�/�� � �.�/D �.�/� � � �.�/. For ˛
noncentral � is therefore uniquely determined up to coboundary (compare with (6-4))
by its values in the diagonal matrices.

Together with the computations from Proposition 6.1 and Proposition 6.2 we can prove
the following result. In the following, we decompose u.2/D U ˚W into diagonal
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and off-diagonal matrices, and further decompose U D U 0˚U 00 , where

U D

��
ia 0

0 ib

��
; U 0 D

��
ia 0

0 ia

��
and U 00 D

��
ia 0

0 �ia

��
:

Define Q˛;ˇ DQ12
˛;ˇ
��0.T IW / to be the u.2/–analogue of the subspace described

for su.n/ in (2-2) and (2-4), and recall the representation '˛;ˇ of �1.T / given just
after Definition 2.1.

Theorem 6.3 Suppose A is a U.2/ connection on X with hol.A/D� and �jT D'˛;ˇ .
Then

(6-8) LA D

8̂<̂
:

U ˚Q˛;ˇ˚U dm˚Q˛;ˇ dm if � is central;

U ˚U dm if � is abelian, but not central;

U 0˚U .dm�pq d`/˚U 00 dm^ d` otherwise;

and for WA WD Ker.H 1.X I u.2/�/!H 1.@X I u.2/�//

(6-9) dim.WA/D

(
2 if � is noncentral and �.xp/ is central;

0 otherwise:

Note that the noncentral abelian representations with �.xp/ central are twisted bifur-
cation points of the SU.2/ representation variety of the knot complement, that is, the

“T”–type intersections in the SU.2/ representation variety of the knot complement (see
Figure 2), twisted in the sense of Definition 4.2.

Proof First observe that � is central if and only if its pullback to �1.T / is central,
because the meridian normally generates the fundamental group of the knot complement.
Let us compute the limiting values of extended L2 –solutions. Notice that

Im.H 1.X I u.2/�/!H 1.@X I u.2/�//

is the differential of the restriction map R.X;U.2//!R.T;U.2// for � noncentral.
For � central or � abelian with �.xp/ noncentral the computations are simple, and
the result is obvious. If � is noncentral and abelian with �.xp/ central, we make
use of the fact that Im.H 1.X I u.2/�/!H 1.@X I u.2/�// is 2–dimensional and that
it contains U dm. Let � be irreducible. We know that �.�/D '˛;ˇ.�/ is diagonal.
Then �.�/DM is diagonal and �.xp/ is central. Therefore, �.�/D�pqM . Again,
we make use of the fact that Im.H 1.X I u.2/�/!H 1.@X I u.2/�// is 2–dimensional.
Then we employ the de Rham theorem to prove (6-8).

Equation (6-9) follows directly from Proposition 6.1 and Proposition 6.2.
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7 The SU.3/ Casson invariant of spliced sums

Suppose K1 and K2 are .2; q1/ and .2; q2/ torus knots with complements X1 and X2

in S3 , respectively, and let M DX1[T X2 denote their spliced sum. We shall relate
the SU.3/ Casson invariant of M to the SU.2/ Casson invariants of C1 surgeries on
K1 and K2 , which are equal to the Casson knot invariants �0SU.2/.K1/ and �0SU.2/.K2/,
using the approach of Taubes [16] to make the connection. This involves comparing
various spectral flows, and in applying the results from the previous sections to X2 , we
have to be careful with our parametrizations of the boundary: The parameters `1 and
m1 of @X1 are identified with m2 and `2 . Let X2 be with a metric and orientation
as in Section 6. We orient X1 such that @X1 D�T and place a metric on X1 , such
that a collar of X1 is isometric to Œ�1; 0��T . It will be convenient to use the notation
P1 D PC and P2 D P� .

Let B.t/ be a path of SU.3/ connections on M with B.0/D‚ and B.1/ irreducible,
such that B.1/ is reducible on either knot complement. By Lemma 3.1 and Theo-
rem 2.10, it suffices to consider the spectral flow along a path of S.U.2/ � U.1//
and S.U.1/ � U.2// connections on X1 and X2 . Whenever convenient, identify
S.U.2/� U.1// (and similarly S.U.1/�U.2//) with U.2/ as in (6-1) with the induced
action on su.3/Du.2/˚C2 as before. We can assume that each path is the composition
of a path of SU.2/ connections with a path of twists of a fixed SU.2/ connection. The
following definition makes this more precise.

Definition 7.1 Arrange paths zA1.t/ and zA2.t/ of SU.2/ connections, t 2 Œ0; 1
2
�, as

well as paths A1.t/ and A2.t/ of SU.3/ connections, t 2 Œ0; 1�, on the knot complement
X1 and X2 respectively, satisfying:

(1) A1.0/D‚, A2.0/D‚, A1.1/D B.1/jX1
, A2.1/D B.1/jX2

.

(2) zA1.t/ and zA2.t/ are paths of flat SU.2/ connections, and we denote by A1.t/

and A2.t/ the corresponding paths of SU.2/�f1g and f1g�SU.2/ connections.

(3) �1.t/ WD hol.A1.t// is a ˇ1 –twist of hol. zA1.
1
2
// for t 2 Œ1

2
; 1�, and �2.t/ WD

hol.A2.t// is a ˇ2 –twist of hol. zA2.
1
2
// for t 2 Œ1

2
; 1�.

(4) z%1 and z%2 are paths in fƒ2 with Ai.t/jT D a%i .t/ as in Definition 2.1, z%1.0/D

z%2.0/ and z%1.1/ D z%2.1/, where � ı z%i D %i and � Wfƒ2 ! ƒ2 Š R4 the
projection.

Figure 3 describes the situation in the case of a spliced sum of two trefoil complements.
It shows their SU.2/ representation varieties immersed in the SU.2/ pillow case and
the holonomy of zAi.t/, which is the untwisted part of the paths Ai.t/. The grey line
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is on the back of the pillowcase and the black line is on the front of the pillowcase. Let
ˇ1;j W �1.X1/!SU.2/ and ˇ2;j W �1.X2/!SU.2/ be representations for j D1; : : : ; 4

such that
.��1;j

ˇ1 ˇ1;j /[ .��2;j
ˇ2 ˇ2;j /

are SU.3/ representations of �1.M /. As in the proof of Theorem 5.1, we find four of
the isolated SU.3/ representations of �1.M /, and the others (there are 16 total) are
obtained by applying the discrete gluing parameters.

ˇ1;4

ˇ1;1

�1

�2

zA1

zA2

ˇ2;4

ˇ1;3

ˇ2;2

ˇ2;1

ˇ2;3
ˇ1;2

Figure 3: The SU.2/ representation varieties of two trefoils

By Theorem 2.10 we have

SF.B.t//D SF.A1.t/IPCz%1.t/
/CSF.A2.t/IP�z%2.t/

/CSF.z%1.1� t/� z%2.t//

C ��.JLX1;0;K
C

z%1.0/
˚ yLC;LX2;0/� ��.JLX1;1;K

C

z%1.0/
˚ yLC;LX2;1/:

In order to compute the above summands, we can break up the su.3/ spectral flow
into u.2/ and C2 spectral flow. Note that the boundary conditions also respect the
decomposition of su.3/. In particular, we will see in this section that the C2 spectral
flow is even, and that the u.2/ spectral flow vanishes for t 2 Œ1

2
; 1� and equals the su.2/

spectral flow along zA1.t/ or zA2.t/ for t 2 Œ0; 1
2
�. Let us start with the easier case.
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Proposition 7.2 Let A.t/ be a path of U.2/ connections on Xi with A.t/jT D a%.t/ ,
%D � ı z% and hol.A.t// acting on C2 via multiplication. Then SFC2.A.t/IP i

z%.t/
/ is

even.

Proof Since DA.t/ and Sa%.t/ are C–linear, P i
z%.t/
\L2.�0C1C2.T IC2// is a vec-

tor space over C and the eigenspaces of DA.t/ with boundary conditions P i
z%.t/
\

L2.�0C1C2.T IC2// are complex subspaces. Therefore, the eigenvectors come in
pairs and the (real) spectral flow is even as claimed.

We will need the following lemma for various computations.

Lemma 7.3 Let A.t/ be any path of irreducible U.2/ connections on Xi with
A.t/jT D a%.t/ and %D � ı z%. Then

SFu.2/.A.t/IP i
z%.t//D 0:

Proof Consider the case i D 1. The computation of the limiting values of extended
L2 –solutions in Theorem 6.3 and the definition of yL in Definition 2.4 show that for
hol.A/D a˛;ˇ , � arbitrary, and u.2/ coefficients,

ƒ1A \P
C

˛;ˇ;�
D LA\

yLC D U 00 dm^ d`;

and hence by [12, Lemma 8.10]

dim Ker.DAIPC˛;ˇ;� /D dim.ƒ1A \P
C

˛;ˇ;�
/D 1:

Therefore, there is no u.2/ spectral flow along a path of irreducibles. A similar
computation for i D 2 completes the proof.

The SU.3/ Casson invariant of M is a signed count of irreducible SU.3/ represen-
tations of �1.M /. By Theorem 2.10, this sign is determined by the su.3/ spectral
flow on Xi , i D 1; 2, to these representations. The following proposition motivates the
appearance of the SU.2/ Casson invariant: this su.3/ spectral flow is equal to the su.2/

spectral flow to certain irreducible SU.2/ connections on Xi . It turns out that there is
a fixed number of such irreducible SU.2/ connections associated to each irreducible
SU.2/ representation, the signed count of which is the SU.2/ Casson invariant.

Proposition 7.4 For the path Ai.t/ given in Definition 7.1, we have

SFu.2/.Ai.t/IP i
z%i .t/

/D SFsu.2/.Ai.t/IP i
z%i .t/

/; t 2 Œ0; 1
2
�;(7-1)

SFu.2/.Ai.t/IP i
z%i .t/

/D 0; t 2 Œ1
2
; 1�:(7-2)
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Proof By Theorem 6.3 we get for hol.A/D a˛;ˇ and � arbitrary

Keru.2/.DAIPC˛;ˇ;� /D U 0˚Kersu.2/.DAIPC˛;ˇ;� /

Keru.2/.DAIP�˛;ˇ;� /D Kersu.2/.DAIP�˛;ˇ;� /˚U 00 dm^ d`:and

Since su.2/ eigenfunctions are also u.2/ eigenfunctions, we get (7-1). Lemma 7.3 and
the Remark in Section 5 yield (7-2).

Let XC
1

and XC
2

be C1 surgery on the corresponding knots. Let Si DXCi nXi , which
is a solid torus, whose SU.2/ representation variety maps into the pillow case as the
diagonal. A simple computation analogous to Theorem 6.3 gives the limiting values
of extended L2 –solutions LSi

with su.n/ coefficients for Si keeping in mind the
parametrization induced by surgery.

Lemma 7.5 Let A be an SU.n/ connection on Si with hol.A/D � and �jT D '˛;ˇ .
Decompose su.n/D Un˚Wn into diagonal and off-diagonal matrices as before and
let Q˛;ˇ be as defined in Equation (2-4). Then

LSi ;˛;ˇ D

(
Un˚Q˛;ˇ˚Un.dmC d`/˚Q˛;ˇ.dmC d`/ if � is central;

Un˚Un .dmC d`/ otherwise:

By Lemma 7.3 we can elongate zAi.t/, t 2 Œ0; 1
2
�, by a path of irreducible SU.2/

connections to a path zAi.t/ of flat connections on Xi such that zAi.1/ can be extended
flatly to zA0i.t/ on XCi . We assume that a�i .t/ WDAi.t/jT , � ı z�i.t/D �i.t/ for some
path z�i which agrees with z%i for t 2 Œ0; 1

2
�. Working modulo 2, we apply Theorem

2.10, Lemma 7.3, Proposition 7.2, Proposition 7.4 and Proposition 2.9 to see that

SFsu.3/.B.t//� SFsu.2/. zA1.t/IPCz�1.t/
/CSFsu.2/. zA2.t/IP�z�2.t/

/

C��.JLX1;%1.0/;K
C

z%1.0/
˚ yLC;LX2;%1.0//���.JLX1;%1.1/;K

C

z%1.1/
˚ yLC;LX2;%1.1//

���.JLX1;�1.0/;K
C

z�1.0/
˚ yLC;LS2;�1.0//C��.JLX1;�1.1/;K

C

z�1.1/
˚ yLC;LS2;�1.1//

���.JLS1;�2.0/;K
C

z�2.0/
˚ yLC;LX2;�2.0//C��.JLS1;�2.1/;K

C

z�2.1/
˚ yLC;LX2;�2.1//:

Note that the Maslov triple indices in the last two lines are with respect to su.2/ coeffi-
cients, while the first two Maslov triple indices are with respect to su.3/ coefficients.
It remains to show that these Maslov triple indices add up to an even number.

Recall that in general Sa and DA preserve the decomposition su.n/D Un˚Wn into
diagonal and off-diagonal parts and are complex linear on the forms with values in the
off-diagonal matrices. Therefore, we only need to consider the triple Maslov indices on
the forms with values in the diagonal su.n/ matrices, because the contribution from the
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off-diagonal su.n/ matrices is always even. Furthermore, the remaining Lagrangians
are direct sums of Lagrangian subspaces of L2.�0C2.T IUn// and L2.�1.T IUn//.
As before, we identify su.3/ with u.2/˚C2 and also U3 with U in order to apply
Theorem 6.3 to see that, modulo 2, we have

��.JLX1;%1.0/;K
C

z%1.0/
˚ yLC;LX2;%1.0//

� ��.U dm^ d`;U dm^ d`;U /C ��.U dm;U dm;U dm/;
(7-3)

��.JLX1;%1.1/;K
C

z%1.1/
˚ yLC;LX2;%1.1//

� ��.U
0 dm^ d`;U 0 dm^ d`;U 0/

C ��.U
00;U 00 dm^ d`;U 00 dm^ d`/

C ��.U .dmCpq d`/;U dm;U .dm�pq d`//:

(7-4)

Clearly the Maslov triple indices on the right side of (7-3) and the first two on the right
side of (7-4) vanish by Lemma 2.5. For the third Maslov triple index on the right side
of (7-4), note that U is 2–dimensional. Therefore, (7-3) and (7-4) are congruent to 0

mod 2.
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U d`

J.U.dmC d`//

Figure 4: Path for (7-7)
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U.d`� dm/

U d`

U dm

J.U.dm�pq d`//

Figure 5: Path for (7-8)

For the Maslov triple indices concerning the su.2/ coefficients, we let U D U2 and
see that, modulo two, we have

��.JLX1;�1.0/;K
C

z�1.0/
˚ yLC; LS2;�1.0//� ��.U dm^ d`;U dm^ d`;U /

C ��.U dm;U dm;U .dmC d`//;
(7-5)

��.JLS1;�2.0/;K
C

z�2.0/
˚ yLC; LX2;�2.0//� ��.U dm^ d`;U dm^ d`;U /

C ��.U .d`� dm/;U dm;U dm/;
(7-6)
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��.JLX1;�1.1/;K
C

z�1.1/
˚ yLC; LS2;�1.1//� ��.U;U dm^ d`;U dm^ d`/

C ��.U .dmCpq d`/;U dm;U .dmC d`//;
(7-7)

��.JLS1;�2.1/;K
C

z�2.1/
˚ yLC; LX2;�2.1//�

��.U dm^ d`;U dm^ d`;U dm^ d`/

C ��.U .d`� dm/;U dm;U .dm�pq d`//:

(7-8)

Again, the Maslov triple indices on the right side of (7-5) and (7-6) vanish by Lemma
2.5. One can see that the Maslov triple indices on the right side of equations (7-7)
and (7-8) vanish as follows. Choose the shortest path from U dm to U .dmCpq d`/

by a rotation as indicated in Figure 4 and notice that this path intersects neither
U d`D J.U dm/ nor J.U .dmCd`//. Similarly Figure 4 describes the situation for
a path from U dm to U .d`� dm/ by a rotation, which intersects neither J.U dm/

nor J.U .dm� pq d`//. In summary, all Maslov triple indices in our formula are
even as claimed.

Recall that every contribution to the SU.2/ Casson invariant is positive. Then we get
the following result directly from Theorem 5.1.

Theorem 7.6 Suppose K1 and K2 are torus knots of type .2; q1/ and .2; q2/; respec-
tively, and M is their spliced sum. Then

�SU.3/.M /D 16�0SU.2/.K1/ �
0
SU.2/.K2/;

where �0SU.2/.K/ is the SU.2/ Casson knot invariant normalized to be 1 for the trefoil.
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