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Homology of spaces of regular loops in the sphere

DAVID CHATAUR

JEAN-FRANÇOIS LE BORGNE

In this paper we compute the singular homology of the space of immersions of
the circle into the n–sphere. Equipped with the Chas–Sullivan loop product these
homology groups are graded commutative algebras, which we also compute. We
enrich Morse spectral sequences for fibrations of free loop spaces together with loop
products. This offers some new computational tools for string topology.

55N45, 58E05

Introduction

The aim of this paper is to compute the singular homology with integral coefficients of
the spaces Imm.S1;Sn/ of immersions of the circle S1 into the n–sphere Sn also
called regular loops. These spaces play a key role in knot theory because they detect
nontrivial homology classes for spaces of embeddings Emb.S1;Sn/. For example,
Cattaneo, Cotta-Ramusino and Longoni [6] use a desingularization map in order
to produce nontrivial cohomology classes for spaces of knots Emb.S1;Rn/ from
cohomology classes of spaces of singular knots, ie spaces of immersions with a fixed
number of transverse double points.

Let us explain the strategy of the computation of these homology groups. We consider
the space of immersions Imm.S1;Sn/ as an open subset of the free loop space LSnD

C1.S1;Sn/ and we endow the n–sphere with its standard Riemannian metric. We
consider the energy functional E defined by

LSn
!R

 7!

Z
S1

k P .�/k2 d�

and we also consider its restriction Eimm to the space of immersions. From this
functional we get a filtration of the space of immersions by the energy level. It follows
from Morse theory that this filtration is well understood in the case of the space LSn of
all smooth loops and gives a very efficient way to compute its singular homology. But
it is a priori more difficult to handle it for immersions. To this filtration one naturally
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936 David Chataur and Jean-François Le Borgne

associates a spectral sequence which converges to H�.Imm.S1;Sn/;Z/. In order
to compute the E1 –term of this spectral sequence it is essential to understand the
homology of the pairs .Imm<�pC�; Imm<�p��/ where �p is a critical value of Eimm

and

Imm<a
WD
˚
 2 Imm.S1;Sn/=Eimm. / < a

	
:

Let USn be the unit tangent bundle of Sn and D be the map

Imm.S1;Sn/! LUSn

 7!
P

k Pk
:

By a famous result of Hirsch and Smale [18] this map is a weak homotopy equivalence.
We have the factorization

Eimm DE ı� ıDW Imm.S1;Sn/
D
�! LUSn �

�! LSn E
�!R

where � D Lp is the loop map associated to the canonical projection pW USn! Sn .
Thus our problem reduces to a problem of “fiberwise” Morse theory. We will consider
the filtration by the energy level on the space LUSn induced by the map E ı� . From
this filtration one gets a Morse–Serre type spectral sequence. To be more precise one
has a fibration

LSn�1
! LUSn

! LSn

and the filtration on the total space is induced by the Morse filtration (the energy
filtration) of the base. We will show that this fiberwise filtration is homotopy equivalent
to the filtration induced by Eimm .

If we consider this spectral sequence just as a spectral sequence of abelian groups
it seems impossible to complete the computation – we need to enrich this spectral
sequence with an additional algebraic data. Here string topology enters the game. From
the foundational work of Chas and Sullivan [7] one knows that

H�.LUSn/ WDH�C2n�1.LUSn/

is a graded commutative algebra equipped with the so-called loop product. Hingston
and Goresky [10] have proved that this spectral sequence is multiplicative for the loop
product.

Moreover we prove that this spectral sequence collapses at the E2 –term (E2 DE1 ).
Thus we are left with some nontrivial extension issues that we solve by comparing
the preceding spectral sequences with the Serre spectral sequences associated to the
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fibrations

�USn
! LUSn

! USn

LSn�1
! LUSn

! LSn:

In fact the Serre spectral sequence associated to the first fibration collapses at the
E2 –term when n is even while the second collapses at the E2 –term when n is odd;
see Le Borgne [14]. But in each case we encounter extension issues that we are able to
solve by comparison with the Morse spectral sequence. Thus if we want to complete
the computation we need to use these three spectral sequences together. Then we get
our main result:

Theorem 0.1 Let n � 2 be an integer. Then H�.Imm.S1;S2n//'H�.LUS2n/ is
isomorphic to the algebra

ZŒy�2n; ˛2n�2; ˇ4n�2�˝ƒ.x�4nC1; k�1/=R

where R is the ideal generated by

.2y�2n; 2k�1; 2˛2n�2;x�4nC1y�2n;x�4nC1k�1;y
2
�2n;y�2nk�1�x�4nC1˛2n�2/

and H�.Imm.S1;S2nC1//'H�.LUS2nC1/ is isomorphic to the algebra

ZŒv2n;y�2n;u4n�2�˝ƒ.x�2n�1; ��1/=.y
2
�2n; ��1y�2n; 2u4n�2y�2n/:

Remarks Let us give some additional information about the preceding computations.

(1) First let us notice that the evaluation map

ev0W Imm.S1;Sn/! USn

has a section geod which associates to each unit tangent vector u 2 USn the unique
great circle (the prime geodesic) u such that Pu.0/ D u. In homology .ev0/� and
.geod/� are algebra morphisms between the intersection homology algebras H�.USn/

and H�.Imm.S1;Sn//. Explicitly one can identify the algebra H�.US2n/ with the
subalgebra of H�.Imm.S1;S2n// generated by the classes y�2n and x�4nC1 ; in the
odd case we can identify H�.US2nC1/ with the subalgebra of H�.Imm.S1;S2nC1//

generated by the classes y�2n and x�2n�1 .

(2) Let Immu.S
1;Sn/D ev�1

0
.u/ be a fiber of the evaluation map

ev0W Imm.S1;Sn/! USn:

We consider the inclusion

j W Immu.S
1;Sn/! Imm.S1;Sn/:

Algebraic & Geometric Topology, Volume 9 (2009)



938 David Chataur and Jean-François Le Borgne

In homology we have the intersection morphism

I D j!W H�.Imm.S1;Sn//!H�.Immu.S
1;Sn//

which corresponds to the classical intersection morphism

IntW H�.LUSn/!H�.�USn/

of string topology. In the even case, we have

H�.�US2n/Š ZŒ˛2n�2; ˇ4n�2�=.2˛2n�2/

and the morphism I is given by I.x�4nC1/D I.y�2n/D I.k�1/D 0 and I.˛2n�2/D

˛2n�2 , I.ˇ4n�2/D ˇ4n�2 . In the odd case we have

H�.�US2nC1/ŠH�.�S2nC1/˝H�.�S2n/Š ZŒv2n
�˝ZŒf2n�1�

and I.x�2n�1/D I.y�2n/D I.��1/D 0, I.v2n/D v2n , I.u4n�2/D .f2n�1/
2 .

(3) Over the field of rational numbers these computations become easier because
rationally US2n 'Q S4n�1 and US2nC1 'Q S2nC1 �S2n .

(4) The computation of the loop algebra H�.LUSn/ is also related to two other
topological problems. One knows that the space USn is homotopy equivalent to the
configuration space F3.S

n/ of three points in Sn . In fact the projection

proj3;1W F3.S
n/! Sn

given by proj3;1.x1;x2;x3/D x1 is fiberwise homotopy equivalent to

pW USn
! Sn:

The computation of the homology of LUSn is essential in understanding of problems
of 3–body type in Sn ; we refer the reader to Fadell and Husseini’s monograph [8].
This computation is related to symplectic topology; from recent work of Abbondandolo
and Schwarz [1] one knows that the loop algebra H�.LUSn/ is isomorphic as an
algebra to Floer homology HF�..T USn/�/ of the cotangent bundle of USn together
with the pair of pants product.

Plan of the paper In Section 1, we recall some basic facts about immersion spaces
and string topology.

In Section 2, we build our main technical tool the Morse–Serre spectral sequence and
show its compatibility with the loop product. We play with various filtrations of loop
spaces: the length filtration, the energy filtration and the filtration by the square root of
the energy.
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Section 3 is devoted to the computation of the 0–th column of the Morse–Serre spectral
sequence.

In Sections 4 and 5, we compute H�.Imm.S1;S2n// and H�.Imm.S1;S2nC1//.

Acknowledgements The authors thank François Laudenbach for a careful reading of
a first version of this paper and the referee for his suggestions and corrections. The
authors are supported by the “Laboratoire Paul Painlevé, UMR 8524 de l’Université
des Sciences et Technologie de Lille et du CNRS” and by the GDR 2875 “Topologie
Algébrique et Applications du CNRS”. The first author’s research is supported in part
by the ANR grant 06-JCJC-0042 “Opérades, Bigèbres et Théories d’Homotopie”.

1 String topology of immersion spaces

1.1 Loop product

We recall the definition of the Chas–Sullivan loop product [7]. Let M be a d –
dimensional connected, compact oriented manifold. Moreover we suppose that M

is closed that is to say without boundary. Let ıM W M ,!M �M , x 7! .x;x/ be
the diagonal embedding. We also denote by zıM W LM �M LM ,! LM �LM the
embedding of composable loops where

LM �M LM D f.1; 2/ 2 LM �LM=1.0/D 2.0/g:

We have the pullback diagram

LM �M LM
zıM //

��

LM �LM

ev0 � ev0

��
M

ıM // M �M

and we have a composition map compM W LM �M LM ! LM that concatenates the
composable loops. To be more precise, the composition map is a continuous map given
by compM .;  0/.t/ D  .2t/ if 0 � t � 1=2 and compM .;  0/.t/ D  0.2t � 1/ if
1=2� t � 1.

As a pullback of the diagonal embedding, the embedding eıM is smooth and finite
codimensional, so it is possible to define a shriek map

eıM !W H�.LM �LM /!H��d .LM �M LM /:

Let us briefly recall the construction of this shriek map for a smooth embedding
j W X ,! Y of finite codimension k , where X and Y can be, and this is our case,
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infinite dimensional manifolds. We suppose that this embedding is co-oriented, that is
to say the normal bundle of j is an oriented vector bundle. For such an embedding we
suppose that there is a tubular neighbourhood Tub.X / of j .X / that is diffeomorphic
to the total space of the disc bundle Dk.X /! X of the normal bundle of j and
let Sk�1.X /!X be its associated sphere bundle. Then j!W H�.Y /!H��k.X / is
defined as the composition of

(a) the inclusion of pairs H�.Y /!H�.Y;Y � j .X //,

(b) the excision isomorphism

H�.Y;Y � j .X //!H�.Tub.X /;Tub.X /� j .X //;

(c) an isomorphism induced by an homotopy equivalence

H�.Tub.X /;Tub.X /� j .X //!H�.Dk.X /;Sk�1.X //;

(d) the Thom isomorphism H�.Dk.X /;Sk�1.X //! H��k.X / that is the com-
position of the cap product with the Thom class � 2 Hk.Dk.X /;Sk�1.X //

with the map �� induced by the canonical projection � W Dk.X /! X . If the
embedding is not co-oriented we have to use singular homology with local
coefficients.

The Chas–Sullivan loop product � is defined as the composition map

�W H�.LM /˝H�.LM /
�
�!H�.LM �LM /fıM !

��!H��d .LM �M LM /
compM�
�����!H��d .LM /:

where � denotes the cross product. For other constructions of this product we refer the
reader to Sullivan’s survey paper [19]. Let us recall some basic facts about this product:

(1) When suitably regraded ie we define H�.LM / WDH�Cd .LM / the loop product
is unitary and commutative.

(2) The loop product is compatible with the intersection product of M . Let us recall
that H�.M / WDH�Cd .M / together with the intersection product is a graded commu-
tative algebra called the intersection algebra. The evaluation map ev0W LM !M and
its section cW M ! LM the constant loop map induce two morphisms of algebras

.ev0/�W H�.LM /� H�.M / W.c/�:

The algebra H�.M / is isomorphic to a subalgebra of the loop algebra, the unit of �
is equal to .c/�.ŒM �/ where ŒM � is the fundamental class of M .

Algebraic & Geometric Topology, Volume 9 (2009)
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(3) The composition of based loops induces in homology

]W H�.�M /˝H�.�M /!H�.�M /

the Pontryagin product which has a unit and is associative. The inclusion j W �M!LM

can be considered as a codimension d embedding. Thus one can define a shriek map

Int WD j!W H�.LM /!H�.�M /:

This is a morphism of algebras called the intersection morphism.

(4) There are several constructions of the loop product, some are purely algebraic,
others use stable homotopy theory. A nice description of the loop product has been
given by F Laudenbach [13], who uses his approach to give a direct construction of the
multiplicative structures considered by Hingston and Goresky [10] and in this paper.

1.2 Hirsch and Smale’s theorem and loop products

Let M be a smooth Riemannian manifold and let UM be the unit tangent bundle. We
consider the evaluation map

ev0W Imm.S1;M /! UM

defined by ev0. /D P .0/=k P .0/k. This evaluation map is a fibration, this was first
proved by S Smale [17, Theorem B]. But one can prove a stronger result, in fact this
map is locally trivial. We use a theorem of R S Palais [15, Theorem A]: the group
of diffeomorphisms Diff.M / acts on Imm.S1;M / and UM , the evaluation map is
equivariant and UM is a Diff.M /–space admitting local cross-sections (let x 2 UM

be a unitary tangent vector there is a map � of a neighborhood U of x into Diff.M /

such that �.u/.x/D u for all u 2U ), then by [15, Theorem A] the map ev0 is locally
trivial.

We have the pullback diagram

Imm.S1;M /�UM Imm.S1;M /
zıUM //

��

Imm.S1;M /� Imm.S1;M /

ev0 � ev0

��
UM

ıUM // UM �UM

and a composition map

compW Imm.S1;M /�UM Imm.S1;M /! Imm.S1;M /:

Algebraic & Geometric Topology, Volume 9 (2009)
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One can proceed as in the preceding section and define an immersion product and an
immersion algebra

H�.Imm.S1;M // WDH�C2d�1.Imm.S1;M //:

We also notice that if u 2 UM and if Immu.S
1;M / WD .ev0/

�1.u/ we have an
intersection morphism

H�.Imm.S1;M //!H�.Immu.S
1;M //:

Remark The definition of the map comp needs to be modified slightly. First we
notice that the concatenation of two composable immersions is not well defined. Let 
and  0 be two composable immersions. At t D 0 the loops  and  0 do not have the
same tangent vector but their normalizations are the same by definition of the space
of composable immersions. Thus after concatenation of the composable immersions
we reparametrize the loop by its arc length. We also notice that the concatenation is a
piecewise C 2 –path. This space of piecewise C 2 –immersions is homotopy equivalent
to space Imm.S1;M / of C1–immersions. We should also work with piecewise
C 2 –paths rather than C1–paths (all these spaces of loops and paths are homotopy
equivalent – see Palais [16]).

Now we relate the immersion algebra to the string topology intersection algebra of
UM . By Hirsch and Smale’s homotopy theory of immersions [11; 18] we know that
the differential

DW Imm.S1;M /! LUM

is a homotopy equivalence. We have a map of fibrations

Immu.S
1;M /

j //

Du

��

Imm.S1;M /
ev0 //

D

��

UM

Id
��

�uUM
j // LUM

ev0 // UM:

This map is a morphism of fiberwise monoids in the sense of Gruher and Salvatore [9].
Thus we have:

Lemma 1.1 Let M be a connected closed smooth manifold then D� gives an iso-
morphism of algebras between the immersion algebra H�.Imm.S1;M // and the loop
algebra H�.LUM /.

Let us suppose that M is 1–connected. Following Cohen–Jones–Yan, the Serre
spectral sequence associated to ev0 is multiplicative with respect to the loop product.
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This structure involves the intersection product on the homology of the base and the
Pontryagin product on the homology of the fiber. Our first computational tool is the
multiplicative spectral sequence

E2
p;q WDHp.UM;Hq.�UM //)HpCq.LUM /:

Let us consider the unit tangent bundle

Sd�1
! UM

p
�!M:

Our second computational tool is associated to the fibration � WD Lp

LSd�1
! LUM

�
�! LM:

The second’s author has proved in his PhD thesis [14] that the Serre spectral sequence
of this fibration is multiplicative for the loop product. We have

E2
p;q WDHp.LM;Hq.LSd�1//)HpCq.LUM /:

If Um�M is a neighbourhood of a point m2M diffeomorphic to Rd , the differential
maps the space imm.S1;Um/ into LU Rd . Denote by triv the trivialization map

trivW U Rd
!Rd

�Sd�1

and define trW LU Rd ! LSd�1 as tr WD L.pr2 ıtriv/. If f W Imm.S1;M /! LUM

is the canonical inclusion, then we have a diagram

Imm.S1;Um/
//

tr ıD
��

Imm.S1;M /
f //

D

��

LM

Id
��

LSd�1 // LUM
� // LM:

In this diagram each vertical map is a weak homotopy equivalence. The right hand side
square is strictly commutative whereas the left hand side square is commutative only
up to homotopy.

1.3 Loop algebra for spheres

We have seen that the loop algebra of spheres plays a major role in the determination of
the immersion algebra of a manifold. Let us recall Cohen, Jones and Yan’s computation
of these algebras:

H�.LSn/Š

�
ƒ.a/˝ZŒu� for n odd;

.ƒ.b/˝ZŒa; v�/=.a2; ab; 2av/ for n even:
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In the Serre spectral sequence of

�Sn
! LSn

! Sn

we have a 2 H�n.LSn/ Š E1
�n;0

, b 2 H�1.LSn/ Š E1
�n;n�1

, u 2 Hn�1.LSn/ Š

E1
0;n�1

and v 2 H2n�2.LSn/ Š E1
0;2n�2

. In the next section we will show how to
recover these results using Morse theory.

2 Loop product and Morse theory

2.1 Morse theory for loop spaces

In this section we recall some basic facts about Morse–Bott theory for loop spaces, we
refer the reader to Bott’s papers [3; 5]. Let W be a manifold and f be a real valued
function on W . A connected submanifold N � W is said to be a nondegenerate
critical manifold of W if the following conditions are satisfied.

(1) Each point p 2N is a critical point of f .

(2) The Hessian of f is nondegenerate in the normal direction to N .

Spelled out this last condition takes this form:

(3) We consider a small tubular �–neighborhood W�.N / of N , which is fibered
over N by the normal discs swept out by geodesics of length � � in the normal
direction to N , relative to some Riemannian structure on W . Then, condition (2) is
equivalent to the following assumption:

f restricted to each normal disc is nondegenerate.

In this case we decompose the normal bundle �N into a positive and a negative part

�N D �CN ˚ ��N;

where �Cp N and ��p N are respectively spanned by the positive and negative eigendi-
rections of the Hessian of f . The fiber dimension of ��N will be denoted ˛N

and referred to as the index of N rel f . We refer to this conditions as “the Bott
nondegeneracy conditions” and say that f is Morse–Bott.

Let us concentrate on the case of the free loop space LM of a d –dimensional compact
Riemannian manifold M . We work with piecewise smooth loops, we consider the
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Sobolev class H 1.S1;M /. Such a model has the advantage to be a Hilbert manifold.
The function we consider is the energy functional

EW LM !R;  7!

Z
S1

k P .t/k2 dt:

The critical points of the energy are the closed geodesics. In order to use Morse theory
we pick a metric on M such that this function is Morse–Bott. Thus the critical points
of E are collected on compact critical manifolds that satisfy the Bott nondegeneracy
conditions.

In general this condition holds for a generic metric on M . According to R Bott [5] this
genericity follows already from general position arguments in Morse’s work. W Ziller
[20, Theorem 2] proves that globally symmetric spaces satisfy this condition. This
result was first proved by R Bott for the loop space with fixed endpoints �.M;p; q/

of a globally symmetric space.

Let 0D �0 < �1 < � � � be the critical values of the energy function E and

LM��i WDE�1.��1I�i �/:

The spaces LM��i give rise to a filtration of LM that provides a filtration of the
singular chain complex C�.LM /. We define

FpCpCq.LM / WD CpCq.LM��p /:

Now let us identify the graded module associated to this filtration. Let †r be the
critical submanifold associated to the critical value �r namely

†r D f 2 LM=E. /D �r and dE. /D 0g:

The manifold †r is finite dimensional.

For the moment we assume that the critical submanifold is connected. The tangent
bundle of LM restricted to †r splits into three parts

TLM j†r
' ��r ˚�

0
r ˚�

C
r

corresponding to the signature of the hessian of E at the point  . The main result of
Morse theory for free loop spaces is that there is a homotopy equivalence

LM��r ' LM��r�1 [fr
D.��r /

for a gluing map fr W S.�
�
r /! LM��r�1 . The quotient LM��r =LM��r�1 is ho-

motopically equivalent to the Thom space Th.��r / of the bundle ��r . This proves
that

FpCpC�.LM /=Fp�1CpC�.LM /D CpC�.LM��p ;LM��p�1/

Algebraic & Geometric Topology, Volume 9 (2009)
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is quasi-isomorphic to zCpC�.Th.��p //. The case of several isolated critical manifolds
can be treated in the same fashion.

The filtration leads to a homology spectral sequence called the Morse spectral sequence.

Theorem 2.1 Let M be a metric such that the energy is a Morse–Bott function. The
energy filtration of C�.LM / induces a spectral sequence

fEr
�;�.M/.LM /gr2N

converging to H�.LM /:

Er
p;q.M/.LM /)HpCq.LM /:

We suppose that the critical set †p with critical value �p is a union of connected
nondegenerate manifolds Ni and that ��i denotes the negative part of TLM jNi

.
Then the E1 –page E1

p;q.M/.LM / D HpCq.LM��p ;LM��p�1/ is isomorphic to
the reduced homology

L
i
zHpCq.Th.��i //.

Remark Let Ni be a connected component of a critical set †p , the theorem above
and the Thom isomorphism gives an isomorphism

H�.LM��p ;LM��p�1/Š zH��ap
.Ni ;Z/

only when the negative bundle ��i of dimension ap is oriented. Otherwise one has to
use coefficients in the orientation bundle of ��i .

2.2 Loop products in the Morse spectral sequence

In this section we lift the Chas–Sullivan product at the chain level in order to get a
multiplicative Morse spectral sequence. F Laudenbach [13] has given an alternative
construction of the multiplicative structure of this spectral sequence.

The use of the length filtration The composition map compM is not compatible with
the energy filtration. Hingston and Goresky [10] changed this map by a parameterized
composition map. However, if one wants to use the map compM one has to work with
the length filtration rather than the energy filtration. Because of its geometric flavour
this filtration is more natural and will be very useful in the fiberwise case.

Let LM�a
l

be the space of loops  of length L. / � a. By the Cauchy–Schwarz
inequality one has the inclusion

LM�a
! LM�a

l
:

Algebraic & Geometric Topology, Volume 9 (2009)
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This inclusion is a homotopy equivalence and this map has a homotopy inverse. Let us
be more precise we consider the subspace A.M /�a � LM of loops  parametrized
proportionally to arc length such that L. / � a. If  2 A.M /�a the length L. /

is equal to F. /. One can also filter the space A.M / by the length of loops by [10,
Proposition 2.2] this filtration is homotopy equivalent to the Morse filtration of LM

by F and to the length filtration of LM . In fact the inclusion A.M / � LM has a
homotopy inverse

AW LM !A.M /

which associates to any path the same path parametrized proportionally to arclength,
with the same basepoint. This map does not change the length of the loop. We have
the homotopy equivalences of pairs

.LM�a;LM�b/ .A.M /�a;A.M /�b/! .LM�a
l
;LM�b

l
/:

From now on, we use the length filtration in order to take advantage of the formula

L.compM .;  0//DL. /CL. 0/:

By abuse of notation we use the same notation for the length filtration and the energy
filtration.

The chain level product Let j W X ! Y be a co-oriented finite codimensional em-
bedding and let C�.X / be the singular chain complex of X . If we chose y� 2
C k.Dk.X /;Sk�1.X // representing the Thom class at the chain level, we can define
yj!W C�.Y /!C��k.X / that induces j! in homology whatever the choice of the cocycle
representing � is. So let us consider the Chas–Sullivan loop product at the chain level;
we have the following diagram:

CpCq.LM��p /˝Cp0Cq0.LM��p0 /

�

��

CpCqCp0Cq0.LM��p �LM��p0 /

fıM

��

CpCqCp0Cq0�d .LM��p �M LM��p0 /

.compM /�
��

CpCqCp0Cq0�d .LM��pC�p0 /
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Condition (Cl) Let M be as in the preceding section a d –dimensional compact
oriented Riemannian manifold. The main hypothesis that we need here is that all
geodesics  are closed and simply periodic with the same prime length l . We recall
that this means that  .0/D  .1/, P .0/D P .1/,  is injective on .0; 1/ and the length
of  namely L. / is equal to l if  is prime.

Moreover we suppose that all the negative bundles of critical sets are oriented. We call
this Condition (Cl). Spheres, complex projective spaces, more generally 1–connected
globally symmetric spaces of rank one all satisfy this condition. In fact R Bott proved
in [4] that the singular cohomology of a space that satisfies Condition (Cl) is isomorphic
to the cohomology of an irreducible symmetric space of rank 1.

The fundamental point for us is that Condition (Cl) implies that �r C�r 0 D r lC r 0l D

.r C r 0/l D �rCr 0 . Under this condition the loop product gives a product

FpCpCq.LM /˝Fp0Cp0Cq0.LM /! FpCp0CpCqCp0Cq0�d .LM /:

This implies the following proposition.

Proposition 2.2 Let M be a d –dimensional compact Riemannian manifold that
satisfies Condition (Cl). Then, the loop product induces a multiplicative structure on
the shifted Morse spectral sequence Er

p;q.M/.LM / WDEr
p;qCd

.M/.LM /.

Remark Of course the inequality �r C �r 0 � �rCr 0 is essential in order to have a
multiplicative structure. It would be interesting to investigate the existence of metrics
that satisfy this condition, in particular in the case of connected sums of symmetric
spaces.

The following Lemma gives the bigraded module structure of E1
�;�.M/.LM / in

function of H�.M /, H�.UM / and of ˛r . Where ˛r is the index of the critical value
�r namely the dimension of the fiber of ��r !†r .

Lemma 2.3 If M is a Riemannian manifold that satisfies Condition (Cl), then for
r > 0 we have isomorphisms of modules

�r W H�.LM��r ;LM��r�1/!H��˛r
.UM /:

Proof By retraction along the gradient flow lines of the energy functional the space
LM<�r retracts to LM��r�1 . This gives an isomorphism

H�.LM��r ;LM��r�1/!H�.LM��r ;LM<�r /:
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The right term is equal to H�.LM��r ;LM��r �†r /. By excision isomorphism,
it is isomorphic to H�.D˛r

.†r /;S˛r�1.†r //. Next, H�.D˛r
.†r /;S˛r�1.†r // is

isomorphic to H��˛r
.UM / by the Thom isomorphism. Since M satisfies Condition

(Cl), then †r is diffeomorphic to UM . The composition of these isomorphisms gives
the required isomorphism

�r W H�.LM��r ;LM��r�1/!H��˛r
.UM /:

Corollary 2.4 The bigraded module
L

p;q�0E1
p;q.M/.LM/ is isomorphic to Hq.M/

if p D 0 and to
L

p�1;q�0 HpCq�˛p
.UM / if p � 1.

Proof This is direct application of Theorem 2.1 and of Lemma 2.3.

The multiplicative structure In what follows we reformulate Corollary 12.7 of The-
orem 12.5 of [10]. We introduce a bigraded algebra A�;� . As bigraded module, A�;�
is a regraduation by a translation of d of the bigraded module of Lemma 2.3. We set

A0;q WDHq.M /;

Ap;q WDHpCq�˛p
.UM /hT pi if p > 0

where T is an element of bidegree .1; ˛1C d � 2/. Moreover we suppose that we
have Bott’s iteration formula:

p̨ D p˛1C .p� 1/C .d � 1/:

The multiplicative structure of A�;� is given by:

(1) the intersection algebra H�.M / if p D 0,

(2) the algebra HpCq�˛p
.UM /ŒT ��1 of polynomials of degree � 1 in T when p> 0,

(3) the products involving an element of H�.M /, and an element of the algebra
HpCq�˛p

.UM /ŒT ��1 , which are given by a topological H�.M /–module structure on
H�.UM /. We denote it by

mW Hs.M /˝Ht .UM /!HsCt .UM /:

This structure is given by the map

mDbıM ! ı�

where � is the cross product

Hi.M /˝Hj .UM /!HiCj .M �UM /
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and bıM ! is the Gysin map associated to bıM defined using the pullback map

M �M UM
� � cıM //

��

M �UM

id�p

��
M

� � ıM // M �M:

At the homology level we have the morphism

Hu.M /˝Hv.UM /T k
!HuCv.UM /T k

x˝yT k
7!m.x;y/T k :

Theorem 2.5 Let M be a d –dimensional compact Riemannian manifold that satisfies
Condition (Cl). As algebra, E1

�;�.M/.LM / is isomorphic to A�;� . In other words,
the multiplicative structure on the shifted Morse spectral sequence Er

p;q.M/.LM / WD

Er
p;qCd

.M/.LM / is given at the E1 –level by

E1
�;�.M/.LM /DH�.M /˚H�.UM /ŒT ��1:

The bidegree of T is .1; ˛1C d � 2/, elements of H�.M / and of H�.UM / are of
bidegree .0;�/. We have

E1
0;q.M/.LM /DHq.M /

and for p � 1,

E1
p;q.M/.LM /DHq�p˛1

.UM /hT p
i:

The multiplication between the 0–th column and the others is induced by the H�.M /–
module structure on H�.UM /.

Proof Corollary 2.4 tells us that E1
�;�.M/.LM / and A�;� are isomorphic as modules.

It remains to prove that there multiplicative structures are isomorphic. This is a direct
consequence of the diagram on page 39 of Hingston and Goresky [10]; see also
Laudenbach [13]. The diagonal map on UM factorizes as

UM
ıS
�! UM �M UM

ıM
��! UM �UM:
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For simplicity, we denote LM��r by ƒr . At the level of homology we have the
following commutative diagram:

Hp.ƒr ; ƒr�1/˝Hp0.ƒr 0 ; ƒr 0�1/
�r˝�r 0 //

�

��

Hp�˛r
.UM /˝Hp0�˛r 0

.UM /

�

��HpCp0.ƒr �ƒr 0 ;

ƒr �ƒr 0�1

S
ƒr�1 �ƒr 0/

�r��r 0 //

fıM !
��

Hp�˛rCp0�˛r 0
.UM �UM /

yıM !

��HpCp0�d .ƒr �M ƒr 0 ;

ƒr�Mƒr 0�1

S
ƒr�1�Mƒr 0/

�r�M�r 0//

compM �

��

Hp�˛rCp0�˛r 0�d .UM �M UM /

xıS !

��
HpCp0�d .ƒrCr 0 ; ƒrCr 0�1/

�rCr 0 // Hp�˛rCp0�˛r 0�d�.d�1/.UM /

We recall Bott’s iteration formula [4]:

˛rCr 0 D ˛r C˛r 0 C d � 1:

Then we have

HpCp0�d .ƒrCr 0 ; ƒrCr 0�1/
�rCr 0 // HpCp0�d�˛rCr 0

.UM /:

Thus we have for p � 1, the multiplicative identification

E1
p;q.M/.LM /DHq�p˛1

.UM /hT p
i:

For p D 0, we observe that H�.LM�0;LM��1/ with the loop product is in fact
H�.M / with the intersection product. This allows us to identify the 0–th column:

E1
0;q.M/.LM /DHq.M /:

And for p or p0 equal to zero, we get the E1
0;�
.M/–module structure given by m on

E1
�;�.M/.LM /.

2.3 The example of spheres

Let us illustrate the preceding theorem, we consider the case of spheres. The computa-
tion of the Betti numbers was done by Bott in [3]. Bott’s method was used by Ziller to
completely determine the homology of free loop spaces of symmetric spaces of rank
one [20]. Ziller proved that the Morse spectral sequence collapses at the E1 –term.

Algebraic & Geometric Topology, Volume 9 (2009)



952 David Chataur and Jean-François Le Borgne

We recall that on the n–sphere together with its standard Riemannian structure, the
closed geodesics are represented by nondegenerate critical manifolds of two types:

� Geod0 = Sn corresponding to constant loops,

� Geodk = USn corresponding to the great circles starting to a unit vector u2USn

and traversing that circle k times.

The indices for k > 0 are given by the formula

index.Geodk/D .2k � 1/.n� 1/:

We consider the Morse spectral sequence for spheres. The E1 –term is generated by
elements on E1

0;�
and on E1

1;�
. As we have a spectral of algebra the differential d1 is

a derivation, thus to compute d1 it suffices to compute it on E1
0;�

and E1
1;�

. Thanks
to inclusion of the constant loops in LSn , which is a section of the evaluation map,
we deduce that all the elements of E1

0;�
must survive. We thus have that d1 D 0. As

algebra we find that E1DE2 and for degree reasons the derivation satisfy dr D 0 for
r > 1. Finally we have E1 DE1 .

In the even case, there is no extension issue. In the odd case, one is left with one
multiplicative extension issue, but one can solve it by using the intersection morphism

H�.LSn/!H�.�Sn/:

At the end we recover that

H�.LSn/Š

�
ƒ.a/˝ZŒu� for n odd;

.ƒ.b/˝ZŒa; v�/=.a2; ab; 2av/ for n even:

In the Morse spectral sequence we have a 2 E1
0;�n

, b 2 E1
1;�2

, u 2 E1
1;n�2

and
v 2 E1

1;2n�3
.

It may be interesting to notice that the energy filtration on spheres corresponds to the
filtration of algebraic loops on spheres by their polynomial degree [2]; the same fact
holds for complex projective spaces.

2.4 Morse–Serre spectral sequences

In this section we define a fiberwise version of the preceding spectral sequence. This
spectral sequence is associated to a fibration

Fiber!E! B
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where we have a Morse filtration of the base B (in our case the length filtration of a
loop space) and we use it to filter the total space E . In the classical case, where we
have a smooth fiber bundle

Fiber!N !M

of closed oriented compact manifolds and a Morse function f W M !R, we recover
the Leray–Serre spectral sequence of the fiber bundle. This approach is very close in
spirit to the treatment of Floer homology of families; see for example M Hutchings’
paper [12].

2.4.1 Definition of the spectral sequence Let M be a d –dimensional compact
oriented Riemannian manifold. Assume that the critical points of the energy function
on LM are collected on compact critical manifolds. We also assume that each of these
critical manifolds satisfy the Bott nondegeneracy condition.

Let pW X !M be a Serre fibration (resp. a fiber bundle) over M with fiber F such
that F is a closed smooth manifold of finite dimension f . Let us consider the fibration
(the fiber bundle) � WD Lp W LX ! LM with fiber LF . As in the preceding sections,
we filter LM by the critical values �r of the energy functional. This filtration induces a
filtration on LX that we denote by LX��r

defined by the following pullback diagram.

LX��r

�

��

� � // LX

�

��
LM��r

� � // LM

We define f†r WD f 2 LX=E.�. //D �r and dE.�. //D 0g:

We remark that f†r is obtained from � and †r by the pullback diagram

f†r
� � //

�

��

LX

�

��
†r

� � // LM:

Moreover for the sake of simplicity we suppose that these critical sets are connected.
By pulling back over TLM , we define f��p in the following way. Let ATLX be the
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space defined by the pullback diagram

ATLX
fproj //

fT�
��

LX

�

��
TLM

proj // LM:

Where proj is the canonical projection of TLM . Then, since

TLM j†r
' ��r ˚�

0
r ˚�

C
r

the total space of the bundle

ATLM je†r

fT�
��! f†r

splits into three parts

ATLX je†r
'e��r ˚f�0

r ˚
e�Cr :

We have the following commutative diagram:

ATLX je†r
' f��r ˚f�0

r ˚
f�Cr fT� //

fproj
��

TLM j†r
' ��r ˚�

0
r ˚�

C
r

proj

��f†r
� // †r

Theorem 2.6 Let pW X !M be a fiber bundle over a Riemannian manifold equipped
with a metric such that the critical sets of the energy functional on LM satisfy the
Bott nondegeneracy condition. Then the fiberwise energy filtration of C�.LX / induces
a spectral sequence called the Morse–Serre spectral sequence fEr

�;�.MS/.�/gr2N

converging to H�.LX / denoted by

Er
p;q.MS/.�/)HpCq.LX /:

The E1 –page is given by

E1
p;q.MS/.�/DHpCq.LX��p

;LX��p�1
/

so that E1
p;q.MS/.�/ is isomorphic to the reduced homology zHpCq.Th.e��p //.
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Proof We have a pullback square

LX��p�1

�

��

� � // LX��p

�

��

LM��p�1
� � // LM��p :

The embedding of LX��p�1
into LX��p

has a normal bundle which is the pullback
of the normal bundle of the embedding of LM��p�1 into LM��p . We recall that
the space LM��p=LM��p�1 is homotopy equivalent to the Thom space Th.��p /
we deduce that LX��p

=LX��p�1
is homotopically equivalent to the Thom space

Th.e��p /.

2.4.2 Compatibility with the loop product We assume that M satisfies Condition
(Cl).

The embedding

ıX W X ,!X �X;

x 7! .x;x/

factorizes by the map ı1
X

defined by the pullback diagram

X �M X
� �

ı1
X //

p�M p

��

X �X

p�p

��
M

� � ıM // M �M

and by the canonical map

ı2
X W X ,!X �M X

induced by the diagonal map on X and the projection on M . Thus, we have

ıX D ı
1
X ı ı

2
X :

We denote by fıi
X

the pullback of ıi
X

over the free loop fibration, i D 1; 2. We remark
that ı1

X
is a smooth embedding of codimension dim.F /, and we denote it by f .
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Let us recall that FpCpCq.LX /D CpCq.LX��p
/ then the loop product is given by

the following composition map.

CpCq.LX��p
/˝Cp0Cq0.LX��p0

/

�

��
CpCqCp0Cq0.LX��p

�LX��p0
/

eı1
X

!
��

CpCqCp0Cq0�d .LX��p
�M LX��p0

/

eı2
X

!
��

CpCqCp0Cq0�d�f .LX��p
�X LX��p0

/

compX�

��
CpCqCp0Cq0�d�f .LX��pC�p0

/D CpCqCp0Cq0�d�f .LX��pCp0
/

This gives a multiplicative structure to the .0; d C f /–regraded Morse Serre spectral
sequence. We have the following proposition:

Proposition 2.7 Let M be a Riemannian compact d –dimensional manifold that
satisfies Condition (Cl). Let � W X ! M be a fibration over M . Then, the loop
product induces a multiplicative structure on the regraded Morse Serre spectral sequence
Er

p;q.MS/.�/ WDEr
p;qCdCf

.MS/.�/.

2.4.3 The first page Now let us focus on the E1 –page of the Morse–Serre spectral
sequence. In order to describe this first page and its multiplicative structure we will
introduce a bigraded algebra AF

�;� , this bigraded algebra is the fibrewise analogue of
the bigraded algebra A�;� introduced in the preceding sections.

Let �M and eUM the fiberwise analogues of the spaces M and UM :

(a) The space �M is defined as the pullback of the inclusion of constant loops M �

LM along the fibration � W LX !LM . We thus have a fibration cW �M !M .

(b) The space eUM is defined as the pullback of the map geodW UM ! LM

which associates to a unit tangent vector u the unique closed geodesic such that
P .0/D u. We also have a fibration bW eUM ! UM .

We define a multiplicative structure on H�.eUM / WDH�CdCd�1Cf .eUM / that mixes
the intersection product on UM and the loop product on the fiber LF of � . This
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product is associated to the following commutative diagram:

LF �LF // eUM �eUM
b�b // UM �UM

LF �LF //

D

OO

eUM �UM
eUM

b�UM b //
?�

eıUM

OO

UM
?�

ıUM

OO

LF �F LF

compF

��

//
?�

eıF

OO

eUM
�
1

compfUM
�
1

��

b //
?�

bıF

OO

UM

D

OO

D

��
LF // eUM

b // UM

where eUM
1

denotes the composable loops of eUM . The product is given by the
composition

compeUM
1 ıcıF ! ı eıUM ! ı� :

In the same way we a define a multiplicative structure for the homology of �M by con-
sidering it as the total space of the fibration c . This provides H�. �M / WDH�CdCf . �M /

with a structure of algebra.

Furthermore, there is a structure of H�. �M /–module on H�.eUM /. This structure
comes from the commutative diagram

LF �LF // �M �eUM
c�b // M �UM

LF �LF //

D

OO

�M �M
eUM //

?�

fcıM

OO

UM
?�

cıM

OO

LF �F LF

compF

��

//
?�

eıF

OO

eUM
1 //

?�

eıF

OO

compfUM
1

��

UM

D

OO

D

��
LF // eUM

b // UM
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where bıM denotes the inclusion

cıM W UM ,!M �UM

x 7! .proj.x/;x/

with projW UM !M is the canonical projection. The module structure

zmW H�. �M /˝H�.eUM /!H�.eUM /

is given by

zmD compeUM
1

�

ıfıF ! ı
ebıM ! ı� :

Definition 2.8 These products on H�.eUM / and on H�. �M / are called the fiberwise
intersection loop product. The module structure zm of H�. �M / on H�.eUM / is called
the fiberwise loop product module structure. The bigraded algebra AF

�;� is defined by

(1) AF
0;�
DH�. �M /,

(2) AF
p;q DHq�p˛1

.eUM /hT pi with T of bidegree .1; ˛1C d � 2/ for p > 0.

The multiplicative structure is given by the fiberwise loop product.

Let us give the main Theorem of this section. This theorem will be one of the main
computational tool of this paper.

Theorem 2.9 Let M be a d –dimensional compact oriented Riemannian manifold
that satisfies Condition (Cl). Let pW X !M be a fibration over M . The E1 –page of
the regraded Morse–Serre spectral sequence Er

p;q.MS/.�/ WDEr
p;qCdCf

.MS/.�/
is isomorphic as a bigraded algebra to AF

�;� .

Proof For r � 1, we define

e�r W H�.LX��r
;LX��r�1

/!H��˛r
.eUM /

by composition of the Thom isomorphism

T W H�.LX��r
;LX��r�1

/!H��˛r
.f†r /
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with the identification of H��˛r
.f†r / with H��˛r

.eUM /. Let us denote LX��r
by

ƒr , the proof follows from the following commutative diagram:

Hp.ƒr ; ƒr�1/˝Hp0.ƒr 0 ; ƒr 0�1/
e�r˝e�r //

�

��

Hp�˛r
.eUM /˝Hp0�˛r 0

.eUM /

�

��
HpCp0.ƒr �ƒr 0 ,

ƒr �ƒr�1[ƒr�1�ƒr 0/

e�r�e�r //

eıX !
��

HpCp0�˛r�˛r 0
.eUM �eUM /

bıF !ıeıUM !

��
HpCp0�d�f .ƒr �X ƒr 0 ,

ƒr �X ƒr�1[ƒr�1 �X ƒr 0/

e�r�Xe�r//

compX�

��

HpCp0�˛r�˛r 0�d�.d�1/�f .eUM
1
/

compfUM
1
�

��
HpCp0�d�f .ƒrCr 0/

e�rCr 0 // HpCp0�˛r�˛r 0�d�.d�1/�f .eUM /

The last line can be rewritten

HpCp0�d�f .ƒrCr 0 ; ƒrCr 0�1/!HpCp0�˛rCr 0�d�.d�1/�f .eUM /:

For pD 0, we notice that H�.LX�0;LX��1/ with the loop product is in fact H�. �M /

with the fiberwise intersection loop product. This allows the identification of the 0–th
column:

E1
0;q.MS/.�/DHq. �M /:

3 The 0–th column of the spectral sequence

In this section we begin the computation of H�.Imm.S1;Sn//. By using Hirsch–
Smale theory we replace the space Imm.S1;Sn/ by the loop space LUSn and we
consider the fiber bundle

LSn�1
! LUSn

! LSn

associated to the unit tangent bundle

Sn�1
! USn

! Sn:

We filter the space LUSn by the length filtration of the base LSn and compute the
associated spectral sequence. We notice that the 0–th column of the E1 –term of this
spectral sequence is the homology of the space of vertical loops of LUSn . Vertical
loops are the loops of USn constant on Sn . We denote this space by LUSn

v .
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3.1 The even case

Proposition 3.1 The algebra H�.LUS2n
v / is isomorphic to

ZŒa; b; c�=.b2; 2b; a2; ab/

with deg.a/D�4nC 1, deg.b/D�2n and deg.c/D 2n� 2.

Proof By Theorem 2.9 we have the isomorphism E1
0;�
.MS/.�/ŠH�.eS2n/. Let us

determine the .2n; 2nC1/–regraded Serre spectral sequence E��;�.c/ associated to the
fibration cW eS2n! S2n with fiber LS2n�1 . This spectral sequence is multiplicative
and

E2
�;�.c/DH�.S

2n
IH�.LS2n�1//DH�.S

2n/˝H�.LS2n�1/

since H�.S2n/ has no torsion. Then, E2
�;�.c/ is isomorphic to

ZŒx�2n�=x
2
�2n˝ZŒu2n�2;y�2nC1�=y

2
�2nC1:

In the diagram in Figure 1 and on the others of this paper, the symbols X represent
the abelian group Z and the symbols O the field Z=2Z. The generators of algebra are
represented by squares.

Since this spectral sequence is a spectral sequence of algebra, we only need to compute
the differentials on the generators. For reasons of degree, the only possible nonzero
differential is d2n.y�2nC1/. The map ev.0/W LUS2n

�0
! US2n has a section so

that H�2n.US2n/ is isomorphic to H�2n.
eS2n/ namely Z=2Z. This implies that

d2n.y�2nC1/D 2x�2n .

For degree reasons and by position in the filtration, there is neither linear nor multi-
plicative extension issues so that

H�.eS2n/Š ZŒw�4nC1;x�2n;u2n�2�=.w
2
�4nC1; w�4nC1x�2n;x

2
�2n; 2x�2n/

where w�4nC1 WD x�2ny�2nC1 . We denote by a,b and c respectively the image of
w�4nC1 , x�2n and u2n�2 under the isomorphism of graded algebra from H�.eS2n/ to
E1

0;�
.MS/.�/. The degrees are the same namely deg.a/D�4nC 1, deg.b/D�2n

and deg.c/D 2n� 2.

3.2 The odd case

Proposition 3.2 The algebra H�.LUS2nC1
v / is isomorphic to

ZŒ˛; ˇ; ; ı�=.˛2;  2; ˇ2; 2ˇı/

with deg.˛/D�2n� 1, deg.ˇ/D�2n, deg. /D�1 and deg.ı/D 4n� 2.
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Proof As in the preceding subsection, we compute E1
0;�
.MS/.�/ by computing the

.2nC 1; 2n/–regraded Serre spectral sequence associated to the fibration cWBS2nC1!

S2nC1 . See Figure 2.

In this case, the spectral sequence collapses at the E2 –level because the fibration
ev.o/W LUS2n

�0
! US2n admits a section and so H�2n�1.

BS2nC1/' Z. For reasons
of degree, there are no extension issues.

4 Computation of H�.LUS 2n/, n� 2

Strategy of the proof (1) We begin by computing H�.AUS2n/ in Section 4.1, we
will get E1

1;�
.MS/.�/. We do it by computing the Serre spectral sequence associated

to the fibration bW AUS2n! US2n .

(2) Then, we compute in Section 4.2 the H�.eS2n/–module structure on H�.AUS2n/.
This will give the multiplicative structure of the first page of the Morse–Serre spectral
sequence E1

�;�.MS/.�/.
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H�.S2nC1/ ˛
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ı
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(3) Next, in Section 4.4, we compute the E1–page of the Cohen–Jones–Yan spectral
sequence (that is also the E2 –page). This gives all the differentials on E1

�;�.MS/.�/
and leads to E1�;�.MS/.�/.
(4) Finally, we compare the E1–page of the two spectral sequences and we solve
the linear extension issues and the multiplicative extension issues.

The different stages of the proof are illustrated by pictures representing the different
spectral sequences for nD 4 namely in the case US8 .

4.1 The columns of the Morse–Serre spectral sequence: E1
p;�.MS/.�/,

p � 1

In this subsection, we compute the p–th columns of the Morse–Serre spectral sequence
of US2n for p � 1.

Proposition 4.1 The subalgebra E1
p;�.MS/.�/, p � 1, is isomorphic to the algebra

ZŒi; j ; k; l �=.i2; j 2; 2j ; ij ; k2/ŒT ��1

with deg.i/ D �4nC 1, deg.j / D �2n, deg.k/ D �2nC 1, deg.l/ D 2n� 2 and
bideg.T /D .1; 4n� 3/.
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Proof It suffices to compute E1
1;�
.MS/.�/, the other columns are isomorphic up to

a shifting and are given by multiplication by T .

We begin by applying Theorem 2.9. We first need to compute H�.CUS2n�1/. Let us
prove that the algebra H�.CUS2n�1/ is isomorphic to

ZŒx�4nC1; z�2n;u2n�2;y�2nC1�=.x
2
�4nC1; 2z�2n; z

2
�2n;y

2
�2nC1/:

In order to proceed let us compute the .4n�1; 2n�1/–regraded Serre spectral sequence
associated to the fibration bW AUS2n! US2n with fiber LS2n�1 . We have

E2
�;�.b/ŠH�.US2n

IH�.LS2n�1//:

Since H�.LS2n�1/ has no torsion, we also have

H�.US2n
IH�.LS2n�1//ŠH�.US2n/˝H�.LS2n�1/:

Namely this algebra is isomorphic to

ZŒx�4nC1; z�2n;u2n�2;y�2nC1�=.x
2
�4nC1; 2z�2n; z

2
�2n;y

2
�2nC1/:

On the spectral sequence in Figure 3 and on the others of the article, the symbol O
represents the abelian group Z=2Z.
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Let us prove that this spectral sequence collapses at the E2 –level. We first notice that
the fibration ≈W f†1 !†1 admits a section. This section is the map

sW †1!
f†1

 7!

�
;
P

k Pk

�
:

By the bundle isomorphism  of Proposition 2.7, this proves that bW AUS2n! US2n

admits a section. Then, for degree reasons, the other differentials vanish. To achieve
the proof we need to solve the extension issues. The only extension issue is the product
z�2ny�2nC1 which is defined modulo Z< x�4nC1 >. But z�2n is of 2–torsion, then
z�2ny�2nC1 is also of 2–torsion. Then the component of z�2ny�2nC1 is zero. The
same argument works for all products z�2ny�2nC1uk

2n�2
, k 2N .

We represent the first page of the Morse–Serre spectral sequence E1
�;�.MS/.�/ in

Figure 4.

4.2 The E1
0;�
.MS/.�/–module structure on E1

1;�
.MS/.�/

Proposition 4.2 The structure of H�.eS2n/–module on H�.AUS2n/ is entirely de-
scribed by the following products: c:i D li , c:j D lj , c:k D lk , c:l D l2 , b:k D j k ,
b:l D lj , a:l D klj . The other products are zero.

Proof It follows from the commutative diagram of Figure 1 that we have a E��;�.c/–
module structure on E��;�.b/. Then, we will compute this module structure using
these spectral sequences. At the E2 –level, this module structure is given by the
Chas–Sullivan loop product on the fiber and by the H�.S2n/–module structure on
H�.US2n/ induced by bıM (see Section 3.2). First, let us recall that

H�.S
2n/Š ZŒk�2n�=.k

2
�2n/

H�.US2n/Š ZŒg�4nC1; h�2n�=.g
2
�4nC1;g�4nC1h�2n; 2h�2n; h

2
�2n/:and

Lemma 4.3 The H�.S2n/–module structure on H�.US2n/ is given by the following
products: k�2n:g�4nC1 D 0, k�2n:h�2n D 0 and k�2n:1US2n D h�2n .

Proof The two first products vanish for degree reasons. For the last product, let us
consider the canonical fibration f W US2n! S2n . By Theorem 2 of [14], the pullback
diagram

US2n � � //

��

S2n �US2n

id�f
��

S2n � �
ı

S2n // S2n �S2n
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Figure 4

induces a structure of H�.S2n/–module on the shifted Serre spectral sequence of the
fibration f W US2n! S2n . This structure is easy to compute. There is no extension
issue for degree reasons. This proves Lemma 4.3.

Now, let us consider the two shifted multiplicative Serre spectral sequences associated
to the fibrations bW AUS2n! US2n and cW eS2n! S2n . At the E2 –level, the module
structure is given by the module structure of the preceding Lemma 4.3 on the base and
by the Chas–Sullivan loop product on the fiber. Then, we have
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(1) b:u2n�2 D z�2n:u2n�2 and b:y�2nC1 D z�2ny�2nC1 ,

(2) a:u2n�2 D z�2nu2n�2y�2nC1 ,

(3) c:u2n�2 D u2
2n�2

, c:y�2nC1 D u2n�2y�2nC1 , c:z�2n D u2n�2z�2n and
c:x�4nC1 D u2n�2x�4nC1 .

The other products vanish. For degree reasons, the only possible extension issue may
be c:y�2nC1z�2n . But since this product lifts to an element of 2–torsion, there is no
extension issue.

4.3 The multiplicative structure of E1
�;�.MS/.�/

This subsection is the application of Theorem 2.9. Since we know all the columns of the
Morse–Serre spectral sequence and its multiplicative structure, we have the following
result.

Proposition 4.4 The algebra E1
�;�.MS/.�/ is isomorphic to

ZŒa; b; c�=.b2; 2b; a2; ab/˚ZŒi; j ; k; l �=.i2; 2j ; j 2; k2/ŒT �

with deg.a/ D �4nC 1, deg.b/ D �2n,deg.c/ D 2n � 2 and deg.i/ D �4nC 1,
deg.j / D �2n, deg.k/ D �2nC 1,deg.l/ D 2n� 2, bideg.T / D .1; 4n� 3/. The
multiplication between an element of the 0–th column and an element of another
column is given by c:i D l:i , c:j D l:j , c:k D l:k , c:l D l2 , b:k D j:k , b:l D l:j ,
a:l D k:l:j .

This can be illustrated by the diagram in Figure 4. On this diagram, we have represented
the generators a, b , c of the 0–th column and the generators i , j , k , l of the first
column by squares. We also put a diamond ˘ around the generator T . We recall that
this generator is of bidegree .1; 4n� 3/ so that its total degree is 4n� 2D ˛1 .

4.4 Comparison with the Cohen–Jones–Yan spectral sequence

Let us determine the differentials of the Morse–Serre spectral sequence. Let us recall
the E1–page of the Cohen–Jones–Yan spectral sequence computed in [14], shown in
Figure 5.

The following proposition describes the multiplicative structure of this spectral se-
quence.
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Proposition 4.5 The algebra E1�;�Œev.0/� is isomorphic to

ZŒx�4nC1;y�2n; ˛2n�2; ˇ4n�2; k�1�=I

with I be the ideal generated by

˚
x2
�4nC1;x�4nC1y�2n;x�4nC1k�1; 2y�2n;y

2
�2n;

y�2nk�1�x�4nC1˛2n�2; 2k�1; 2˛2n�2

	
:

Proof As the Cohen–Jones–Yan spectral sequence collapses at the E2 –term, we
just have to give a description by generators and relations of the graded algebra
H�.US2nIH�.�US2//.
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First notice that this algebra is generated by the subalgebra H�.US2n/˝H�.�US2n/

and an element k�1 2H�2nC1.US2n;H2n�2.�US2n//D Z=2Z. We recall that

H�.US2n/˝H�.�US2n/Š ZŒx�4nC1;y�2n; ˛2n�2; ˇ4n�2�=J

where the ideal J is generated by˚
x2
�4nC1;x�4nC1y�2n; 2y�2n;y

2
�2n; 2˛2n�2

	
:

Thus we are left with the computations of the relations involving k�1 and the subalgebra
H�.US2n/˝H�.�US2n/. As k�1 is of 2–torsion we compute the Cohen–Jones–Yan
spectral sequence for the coefficient ring Z=2Z that we denote by Er

�;�Œev.0/IZ=2Z�.
This spectral sequence also collapses at the E2 –term and as we work over a field we
have

E1�;�Œev.0/IZ=2Z�DH�.US2n
IZ=2Z/˝H�.�US2n

IZ=2Z/:

The algebra morphism

E1�;�Œev.0/IZ�! E1�;�Œev.0/IZ=2Z�

allows us to prove that k�1y�2n D x�4nC1˛2n�2 and that k�1ˇ4n�2 and k�1˛2n�2

don’t vanish.

Let us now explain how to compute the nonzero differentials on E1
�;�.MS/.�/. The

module E1
�4nC1;2n�2

Œev.0/� is Z=2Z. Then, we must have

d1.kiT /D 2ac:

Since d1.iT /D 0 by comparison with the Cohen–Jones–Yan spectral sequence, we
must have

d1.kT /D 2c:

The multiplication by c 2 E1
0;2n�2

.MS/.�/ gives the differentials on c�kT D l�kT

and on c�kiT D l�kT , � 2N . The comparison with the Cohen–Jones–Yan spectral
sequence allows us to conclude that they are the only nonzero differentials from the
first column of E��;�.MS/.�/. We deduce the other differentials by multiplying by T .
See Figure 6.

The new generators are on the two first columns of E2
�;�.MS/.�/. For degree reasons

there could not have nonzero differentials on this page and on the others. Thus we have
E2
�;�.MS/.�/D E1�;�.MS/.�/. See Figure 7.
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4.5 Solve the linear extension issues

Now that we know the E1–terms of the two spectral sequences, we have to compare
them to solve their extension issues. In the Cohen–Jones–Yan spectral sequence we
have two linear extensions issues. They are located in total degree �1 and in degree
2n� 2.
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Proposition 4.6 The module H2n�2.LUS2n/ is equal to Z2˚Z2 .

Proof To solve this extension issue, we use the multiplicative structure of the spectral
sequences. By our preceding computations we have to decide if H2n�2.LUS2n/'

Z2 ˚ Z2 or Z4 . Let x2n�2 be an element of H2n�2.LUS2n/ that represents the
element ˛2n�2 in the Cohen–Jones–Yan spectral sequence and let x�4nC1 be the
element of lowest degree in H�.LUS2n/. Then, the product x2n�2x�4nC1 lies in
E1

0;�2n�1
.MS/.�/. This proves that x2n�2 lies in F0H2n�2.LUS2n/ according

to the Morse–Serre filtration and that this generator can not be of 4–torsion but of
2–torsion.
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4.6 Solve the extension issues of algebra

Proposition 4.7 There is no extension issues of algebra on the Cohen–Jones–Yan
spectral sequence E1�;�Œev.0/�.

Proof Now that we have solve the linear extension issues, we can write that x�4nC1 ,
y�2n , ˛2n�2 , ˇ4n�2 and k�1 as elements of H�.LUS2n/.

(1) From the Morse–Serre filtration, we know that x�4nC1 , y�2n and ˛2n�2 lie in
E1

0;�
.MS/.�/. Then, there is no extension issue of algebra on products between them.

(2) x�4nC1k�1 D 0 for degree reasons.

(3) There is no extension issues concerning the products x�4nC1ˇ4n�2 , y�2nk�1 ,
y�2nˇ4n�2 and k2

�1
because of there position in the filtration.

(4) On the Cohen–Jones–Yan spectral sequence, we see that there is a free module in
the filtration preceding the product ˇ4n�2k�1 . Since there is no 2–torsion element in
this module, there is no ambiguity.

(5) The possible ambiguity concerning ˇ2
4n�2

is solved by computing H�.LUS2n;Q/.
We use the fact that over the rational numbers US2n is homotopy equivalent to S4n�1

(the loop product is a rational homotopy invariant).

(6) The two last extension issues of algebra namely ˛2n�2k�1 and ˛2n�2ˇ4n�2 are
solved by using the Morse–Serre spectral sequence where there are no ambiguities for
these products.

5 Computation of H�.LUS 2nC1/, n� 2

Strategy of the proof We compute E1�;�.�/, the E1 term of the .2n C 1; 2n/–
regraded Serre spectral sequence associated to the fibration � W LUS2nC1! LS2nC1

in Section 5.1. There is no linear extension issue. Then, by computing the Cohen–
Jones–Yan spectral sequence E��;�.ev.0// in Section 5.2, and the Morse–Serre spectral
sequence E��;�.MS.�// in Section 5.3, we solve the extension issues of algebra from
E1�;�.�/ in Proposition 5.4.

5.1 The regraded Serre spectral sequence E�
�;�.�/

We compute the last page of the .2nC 1; 2n/–regraded Serre spectral sequence of the
fibration � W LUS2nC1! LS2nC1 . Then, we deduce the graded module structure of
H�.LUS2nC1/.
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Proposition 5.1 The last page of E��;�.�/, namely E1�;�.�/, is isomorphic to

H�.LS2nC1/˝H�.LS2n/

which is isomorphic to

ZŒx�2n�1; v2n�=.x
2
�2n�1/

˝ZŒy�2n;u4n�2; ��1�=.y
2
�2n;y�2n��1; �

2
�1; 2y�2nu4n�2/:

Proof Let us determine the .2nC1; 2n/–regraded Serre spectral sequence of the fibra-
tion � W LUS2nC1! LS2nC1 . The Chas–Sullivan loop product provides this spectral
sequence with a multiplicative structure (see Laudenbach [14]). Since H�.LS2nC1/

has no torsion, E2
�;�.�/ŠH�.LS2nC1/˝H�.LS2n/. There are five generators of

algebra: x of degree �.2nC 1/, y of degree �2n, u of degree 4n� 2, v of degree
2n and � of degree �1. This generators are represented by squares in Figure 8.
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For degree reasons the only nonzero differential starting from a generator is d2n . More
precisely, we only have to compute d2n.y/. Since there is a section US2nC1 !
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LUS2nC1 and since that H�.US2nC1/ D H�.S2nC1/ ˝H�.S2n/, we have that
d2n.y/D 0. This proves that this spectral sequence collapse at the E2 –level and that
the following figure represents E1�;�.�/.

By an easy check we have the following proposition.

Proposition 5.2 There is no linear extension issue in E1�;�.�/. Then, H�.LUS2nC1/

is isomorphic to H�.LS2nC1/˝H�.LS2n/ as a graded module.

5.2 The Cohen–Jones–Yan spectral sequence, E�
�;�.ev.0//

Since we know the module structure of H�.LUS2nC1/, we can deduce all the differ-
entials of the Serre spectral sequence E��;�.ev.0// of the fibration ev.0/W LUS2nC1!

US2nC1 .

Proposition 5.3 The algebra E1�;�.ev.0// is isomorphic to

ZŒa�2n�1; b�2n; c�1; d2n; e4n�2�=.a
2
�2n�1; b

2
�2n; c

2
�1; c�1b�2n; 2e4n�2b�2n/:

Proof Recall that H�.�US2nC1/ŠH�.�S2nC1/˝H�.�S2n/. As H�.�US2nC1/

is without torsion,

E2
�;�.ev.0//ŠH�.US2nC1/˝H�.�US2nC1/

Š ZŒa�2n�1; b�2n; d2n; f2n�1�=.a
2
�2n�1; b

2
�2n/:

These generators are represented by squares on the diagram in Figure 9.

Since we know the linear structure of H�.LUS2nC1/, we can deduce all the differen-
tials and compute E1�;�.ev.0// together with its algebra structure.

5.3 The Morse–Serre spectral sequence E�
�;�.MS/.�/

As for the even case, we determine E1
1;�
.MS/.�/ by computing the .4nC 1; 2n/–

regraded Serre spectral sequence of the fibration

bWCUS2nC1! US2nC1:

Proposition 5.4 The subalgebra E1
p;�.MS/.�/, p � 1, is isomorphic to

ZŒ�; �; �; �;  �=.�2; �2; �2; �2; 2 �/ŒT ��1

with deg.�/D�2n�1, deg.�/D�2n, deg.�/D�2n, deg.�/D�1, deg. /D4n�2

and bideg.T /D .1; 4n� 1/.
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a b
�2nC1 �2n

H�.�US2nC1/

e

d

4n�2

2n
2n�1

Figure 9

Proof We compute the E2 term of the .4nC 1; 2n/–shifted Serre spectral sequence
associated to the fibration bWCUS2nC1! US2nC1 . See Figure 10.

An easy inspection and the use of the section of � W f†1 !†1 as for the even dimen-
sional case (Section 4.1), shows that all the differentials of this spectral sequence must
vanish.

We deduce that E��;�.MS/.�/ collapses at the E1 level and we get E1�;�.MS/.�/.
See Figure 11.

Proposition 5.5 The algebras H�.LUS2nC1/ and E1�;�.�/ are isomorphic.

Proof There may have ambiguities on the products of generators on E1�;�.�/ for the
following products.

(1) The products involving ��1 , y�2n and u4n�2 . These generators lie in the column
E1

0;�
.MS/.�/ so there is no multiplicative extension issue.

(2) The product v2n��1 . We can drop the extension issue by considering the Cohen–
Jones–Yan spectral sequence E��;�.ev.0//.

(3) The last extension issue concerning the product v2n��1 can be solved by consid-
ering the multiplicative structure of the Morse–Serre spectral sequence and to be more
precise the E1

0;�
.�/–module structure on E1

1;�
.�/.
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