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The `2–homology of even Coxeter groups

TIMOTHY A SCHROEDER

Given a Coxeter system .W;S/ , there is an associated CW–complex, denoted
†.W;S/ (or simply †), on which W acts properly and cocompactly. This is
the Davis complex. The nerve L of .W;S/ is a finite simplicial complex. When L

is a triangulation of S3 , † is a contractible 4–manifold. We prove that when .W;S/

is an even Coxeter system and L is a flag triangulation of S3 , then the reduced
`2 –homology of † vanishes in all but the middle dimension.

20F55; 57S30, 20J05, 57T15, 58H10

1 Introduction

The following conjecture is attributed to Singer.

Singer’s Conjecture 1.1 If M n is a closed aspherical manifold, then the reduced
`2 –homology of �M n , H�. �M n/, vanishes for all � ¤ n

2
.

Singer’s conjecture holds for elementary reasons in dimensions � 2. Indeed, top-
dimensional cycles on manifolds are constant on each component, so a square-summable
cycle on an infinite component is constant 0. As a result, Singer’s Conjecture 1.1 in
dimension � 2 follows from Poincaré duality. In [9], Lott and Lück prove that it holds
for those aspherical 3–manifolds for which Thurston’s Geometrization Conjecture is
true. (Hence, by Perelman, all aspherical 3–manifolds.) For details on `2 –homology
theory, see Davis and Moussoung [6], Davis and Okun [7] and Eckmann [8].

Let S be a finite set of generators. A Coxeter matrix on S is a symmetric S � S

matrix M D .mst / with entries in N [ f1g such that each diagonal entry is 1 and
each off diagonal entry is � 2. The matrix M gives a presentation for an associated
Coxeter group W :

(1) W D
˝
S j .st/mst D 1; for each pair .s; t/ with mst ¤1

˛
:

The pair .W;S/ is called a Coxeter system. Denote by L the nerve of .W;S/. In
several papers (eg, [3; 4; 6]), M Davis describes a construction which associates to
any Coxeter system .W;S/, a simplicial complex †.W;S/, or simply † when the
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Coxeter system is clear, on which W acts properly and cocompactly. The two salient
features of † are that .1/ it is contractible and .2/ it permits a cellulation under which
the link of each vertex is L. It follows that if L is a triangulation of Sn�1 , † is an
n–manifold. There is a special case of Singer’s conjecture for such manifolds.

Singer’s Conjecture for Coxeter groups 1.2 Let .W;S/ be a Coxeter system such
that its nerve, L, is a triangulation of Sn�1 . Then

Hi.†.W;S//D 0 for all i ¤
n

2
:

In [7], Davis and Okun prove that if Conjecture 1.2 for right-angled Coxeter systems is
true in some odd dimension n, then it is also true for right-angled systems in dimension
nC 1. (A Coxeter system is right-angled if generators either commute or have no
relation.) They also show that Thurston’s Geometrization Conjecture holds for these
Davis 3–manifolds arising from right-angled Coxeter systems. Hence, the Lott and
Lück result implies that Conjecture 1.2 for right-angled Coxeter systems is true for nD3

and, therefore, also for n D 4. (Davis and Okun also show that Andreev’s theorem
[1, Theorem 2] implies Conjecture 1.2 in dimension 3 for right-angled systems.)
In [11], the author geometrizes arbitrary 3–dimensional Davis manifolds and shows
that Conjecture 1.2 in dimension 3 follows.

Right-angled Coxeter systems are specific examples of even Coxeter systems. We say
a Coxeter system is even if for any two generators s ¤ t , mst is either even or infinite.
The purpose of this paper is to prove the following:

Main Theorem 1.3 Let .W;S/ be an even Coxeter system whose nerve L is a flag
triangulation of S3 . Then Hi.†.W;S//D 0 for i ¤ 2.

In order to prove Main Theorem 1.3, we define a certain subspace � of † and its
boundary @�. In the right-angled case, � is a tubular neighborhood of a contractible 3–
manifold. The vanishing of the `2 –homology of the 3–manifold implies the vanishing
of the `2 –homology of the pair .�; @�/. This can be promoted, via an inductive
argument, to show the vanishing of the `2 –homology of the 4–manifold † except in
dimension 2. If .W;S/ is not right-angled, � is not a tubular neighborhood of a 3–
manifold. We therefore subdivide � into subspaces we call “boundary collars,” which
are isomorphic to B� Œ0; 1�, where B is a component of @�. We paint these boundary
collars with finitely many colors, which can be categorized as even or odd. This
painting is virtually invariant under the group action on �. Moreover, the intersection
of two components with even colors is 2–acyclic and the intersection of an odd colored
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component with the union of all even colored components is acyclic. Then using
Mayer–Vietoris, we are able to prove that H�.�; @�/D 0 for � D 3; 4.

Next, we prove that for any V � S , and any t 2 V ,

Hi.†.WV ;V //ŠHi.†.WV�t ;V � t//;

for i D 3; 4 and where WV is the subgroup of W generated by the elements of V . It
follows from induction and Poincaré duality that Main Theorem 1.3 is true.

2 Coxeter systems and the complex †

Coxeter systems Let .W;S/ be a Coxeter system. Given a subset U of S , define
WU to be the subgroup of W generated by the elements of U . .WU ;U / is a Coxeter
system. A subset T of S is spherical if WT is a finite subgroup of W . In this case,
we will also say that the subgroup WT is spherical. We say the Coxeter system .W;S/

is even if for any s; t 2 S with s ¤ t , mst is either even or infinite.

Given w 2W , we call an expression w D .s1s2 � � � sn/ reduced if there does not exist
an integer m < n with w D .s0

1
s0
2
� � � s0m/. Define the length of w , l.w/, to be the

integer n such that .s1s2 � � � sn/, is a reduced expression for w . Denote by S.w/ the set
of elements of S which comprise a reduced expression for w . This set is well-defined
[4, Proposition 4.1.1].

For T � S and w 2W , the coset wWT contains a unique element of minimal length.
This element is said to be .∅;T /–reduced. Moreover, it is shown in [2, Exercise 3,
pages 31–32], that an element is .∅;T /–reduced if and only if l.wt/ > l.w/ for all
t 2 T . Likewise, we can define the .T;∅/–reduced elements to be those w such
that l.tw/ > l.w/ for all t 2 T . So given X;Y � S , we say an element w 2W is
.X;Y /–reduced if it is both .X;∅/–reduced and .∅;Y /–reduced.

Shortening elements of W We have the so-called “Exchange” condition (E) for
Coxeter systems [2, Chapter 4, Section 1, Lemma 3; 4, Theorem 3.3.4]:

(E)

8̂̂<̂
:̂

Given a reduced expression w D .s1 � � � sk/ and an element s 2 S , either
`.sw/D kC 1 or there is an index i such that

sw D .s1 � � � bsi � � � sk/:

In the case of even Coxeter systems, the parity of a given generator in the set expressions
for an element of W is well-defined. (We prove this herein in Lemma 3.4.) So, in
(E), si D s ; ie, if an element of s 2 S shortens a given element of W , it does so by
deleting an instance of s in an expression for w .
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It is also a fact about Coxeter groups [4, Theorem 3.4.2] that if two reduced expressions
represent the same element, then one can be transformed into the other by replacing
alternating subwords of the form .sts � � � / of length mst by the alternating word
.tst � � � / of length mst . The proof of the first of the following two lemmas follows
immediately from this.

Lemma 2.1 Let t 2 S , w 2WS�t and v 2W with wtv reduced. If there exists an
r 2 S.w/�S.v/ with .r t/2¤ 1, then all r ’s appear to the left of all t ’s in any reduced
expression for wtv .

Lemma 2.2 Let .W;S/ be an even Coxeter system, let t; s 2 S be such that 2 <

mst <1 and let Ust D fr 2 S jmrt Dmrs D 2g. Suppose that tstw0 D wtv (both
reduced) where w0 2W , w 2WS�t and S.v/�Ust [fs; tg. Then S.w/�Ust [fsg.

Proof Suppose that w is a counterexample of minimum length. w cannot start with
an element of Ust , since if it did, multiplication on the left by this element would
produce a shorter counterexample. Nor can w begin with s , since by the exchange
condition, multiplication on the left by s would cancel an s in w0 , producing a
shorter counterexample. Therefore, w must start with some r which either does not
commute with t or does not commute with s . Lastly, suppose w D .ru1u2 � � �unr 0/x

where ui 2 Ust [ fsg .i D 1; 2; : : : ; n/, r 0 … Ust [ fsg and x 2WS�t . Then, by the
exchange condition, multiplication on the left by .unun�1 � � �u1r/ produces a shorter
counterexample. So by minimality we may also assume that every element appearing
after r in w is from Ust [fsg.

If r does not commute with t , then by Lemma 2.1, r appears to the left of t in any
reduced expression for wtv ; a contradiction to tstw0 D wtv . If r does commute
with t but does not commute with s , then multiply both sides of tstw0 D wtv by t

leaving stw0Dw00sv0 (both reduced) where w00 begins with r , S.v0/2Ust[fs; tg and
s … S.w00/. Then, with t in Lemma 2.1 replaced by s , we have that r appears to the
left of all s ’s in any reduced expression for wtv ; a contradiction to stw0 D w00sv0 .

The complex † Let .W;S/ be an arbitrary Coxeter system. Denote by S the poset
of spherical subsets of S , partially ordered by inclusion; and let S.k/ WD fT 2 S j
Card.T / D kg. Given a subset V of S , let S<V WD fT 2 S j T � V g. Similar
definitions exist for >;�;�. For any w 2W and T 2 S , we call the coset wWT a
spherical coset. The poset of all spherical cosets we will denote by W S .

The poset S>∅ is an abstract simplicial complex, denote it by L, and call it the nerve
of .W;S/. The vertex set of L is S and a nonempty subset of vertices T spans a
simplex of L if and only if T is spherical.
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Let K D jSj, the geometric realization of the poset S . It is the cone on the barycentric
subdivision of L, the cone point corresponding to the empty set, and thus a finite
simplicial complex. Denote by †.W;S/, or simply † when the system is clear, the
geometric realization of the poset W S . This is the Davis complex. The natural action
of W on W S induces a simplicial action of W on † which is proper and cocompact.
K includes naturally into † via the map induced by T !WT , T 2 S . So we view
K as a subcomplex of † and note that it is a strict fundamental domain for the action
of W on †.

For any element w 2W , write wK for the w–translate of K in †. Let w;w0 2W

and consider wK\w0K . This intersection is nonempty if and only if V D S.w�1w0/

is a spherical subset. In fact, wK \w0K is simplicially isomorphic to jS�V j, the
geometric realization of S�V WD fV

0 2 S j V � V 0g.

A cubical structure on † For each w 2W , T 2 S , denote by wS�T the subposet
fwWV j V � T g of W S . Put nD Card.T /. jwS�T j has the combinatorial structure
of a subdivision of an n–cube. We identify the subsimplicial complex jwS�T j of †
with this coarser cubical structure and call it a cube of type T . Note that the vertices
of these cubes correspond to spherical subsets V 2 S�T . (For details on this cubical
structure, see Moussoung [10].)

A cellulation of † by Coxeter cells † has a coarser cell structure: its cellulation by
“Coxeter cells.” (For reference, see Davis [4], Davis and Okun [7] and Davis, Dymara,
Januszkiewicz and Okun [5].) Suppose that T 2 S ; then by definition WT is finite.
Take the canonical representation of WT on RCard.T / and choose a point x in the
interior of a fundamental chamber. The Coxeter cell of type T is defined as the convex
hull C , in RCard.T / , of WT x (a generic WT –orbit). The vertices of C are in 1–1
correspondence with the elements of WT . Furthermore, a subset of these vertices is the
vertex set of a face of C if and only if it corresponds to the set of elements in a coset of
the form wWV , where w 2WT and V � T . Hence, the poset of nonempty faces of C

is naturally identified with the poset WTS�T WD fwWV jw 2WT ;V � T g. Therefore,
we can identify the simplicial complex †.WT ;T / with the barycentric subdivision of
the Coxeter cell of type T .

Now, for each T 2 S.k/ and w 2 W , the poset .W S/�wWT
is isomorphic to the

poset WTS�T via the map vWV ! w�1vWV . Thus, the subcomplex of †.W;S/

which is obtained from the poset .W S/�wWT
may be identified with the barycentric

subdivision of the Coxeter k –cell of type T . In this way, we put a cell structure on †
which is coarser than the simplicial structure by identifying each simplicial subcomplex
j.W S/�wWT

j with a Coxeter cell of type T .
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We will write †cc , when necessary, to denote the Davis complex equipped with this
cellulation by Coxeter cells. Under this cellulation, the vertices of †cc correspond to
cosets of W∅ , ie to elements from W ; and 1–cells correspond to cosets of Ws , s 2 S .
The features of this cellulation are summarized by the following, from [4].

Proposition 2.3 There is a natural cell structure on † so that

� its vertex set is W , its 1–skeleton is the Cayley graph of .W;S/ and its 2–
skeleton is a Cayley 2–complex.

� each cell is a Coxeter cell.

� the link of each vertex is isomorphic to L (the nerve of .W;S/) and so if L is a
triangulation of Sn�1 , † is a topological n–manifold.

� a subset of W is the vertex set of a cell if and only if it is a spherical coset.

� the poset of cells is W S .

It will be our convention to use the term “vertices” for vertices in the cellulation of †
by Coxeter cells or for vertices in L and to use “0–simplices” for 0–simplices in K

or translates of K .

Ruins The following subspaces are defined in [5]. Let .W;S/ be a Coxeter system.
For any U � S , let S.U /D fT 2 SjT �U g and let †.U / be the subcomplex of †cc

consisting of all cells of type T , with T 2 S.U /.

Given T 2 S.U /, define three subcomplexes of †.U /:

�.U;T / W the union of closed cells of type T 0, with T 0 2 S.U /�T ,��.U;T / W the union of closed cells of type T 00;T 00 2 S.U /;T 00 … S.U /�T ;

@�.U;T / W the cells of �.U;T / of type T 00, with T 00 … S.U /�T :

The pair .�.U;T /; @�.U;T // is called the .U;T /–ruin. For T D ∅, we have
�.U;∅/D†.U / and @�.U;∅/D∅.

The subspace � Let t 2 S . We call the .S; t/–ruin a one-letter ruin. Denote
U WD fs 2 S j mst < 1g, ie U is the vertex set of the star of t in L. From this
point on, U will denote this subset of S . 1–cells in �.S; t/ are of type u where
u 2 U . So two vertices w; v in a component of �.S; t/, thought of as group elements
of W , have the property that v D wp , where p 2WU . Thus, the path components
of �.S; t/ are indexed by the cosets W =WU . Denote by � the path-component of
�.S; t/ with vertex set corresponding WU . The action of WU on † restricts to an
action on �. Put K.U / WDK\� and note that the WU –translates of K.U / cover �,
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ie �D
S

w2WU
wK.U /. Let @� WD�\ @�.S; t/. Coxeter 1–cells of @�.S; t/ are

of type u where u 2 U � t ; so the path components of @� are indexed by the cosets
WU =WU�t .

If we restrict our attention to cubes of type T , where T � T 0 for some T 0 2 S�t ,
� is a cubical complex and @� is a subcomplex. Moreover, if B is a component of
@�, the space D WDB� Œ0; 1� is isomorphic to the union of the w–translates of K.U /

where w is a vertex of B . We call such subspaces boundary collars. It is clear that the
collection of boundary collars covers �. We denote by @in.D/ the end of this product
which does not lie in @�; the 0–simplices of @in.D/ correspond to elements of S�t .
The boundary collars intersect along subsets of these “inner” boundaries.

3 The `2–homology of �.S; t/

Here and for the remainder of the paper, we require that .W;S/ be an even Coxeter
system with nerve L. Fix t 2 S and let U , � and @� be defined as in Section 2.

Any s 2 U has the property that mst <1. Let S 0 WD fs 2 U jmst > 2g, and assume
that S 0 is not empty. The group WU has the following properties.

Lemma 3.1 Suppose that L is flag. Then for s; s0 2 S 0 , either s D s0 , or mss0 D1.

Proof Suppose that s ¤ s0 and that mss0 <1. Then fs; s0g 2 S , and since s; s0 are
both in U , the vertices corresponding to s , s0 and t are pairwise connected in L. L

is a flag complex, so this implies that fs; s0; tg 2 S . But

1

mss0
C

1

mst
C

1

mts0
�

1

mss0
C

1

4
C

1

4
� 1:

This contradicts fs; s0; tg being a spherical subset. So we must have that mss0 D1.

Corollary 3.2 Let s 2S 0 and let T 2S�fs;tg . Then mut DmusD 2 for u2T �fs; tg.

Let Lst denote the link in L of the edge connecting the vertices s and t . The above
Corollary states that the generators in the vertex set of Lst commute with both s and t .
As in Lemma 2.2, denote this set of generators by Ust .

Of particular interest to us will be elements of WU with a reduced expression of the
form tst � � � st for some s 2 S 0 . Since W is even, this expression is unique, and we
have the following lemma.

Lemma 3.3 Let s 2 S 0 and let u 2 Wfs;tg be such that u D tst � � � st , is a reduced
expression beginning and ending with t . Then u is .U � t;U � t/–reduced.
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Lemma 3.4 Let V;T � S and consider the function gV T W WV !WT induced by
the following rule: gV T .s/D s if s 2 V \T and gV T .s/D e (the identity element
of W ) for s 2 V �T . Then gV T is a homomorphism.

Proof We show that gV T respects the relations in WV . Let s;u 2 V be such that
.su/m D 1. Then

gV T ..su/m/D

8̂̂̂̂
<̂
ˆ̂̂:
.su/m if s 2 T;u 2 T;

sm if s 2 T;u … T;

um if u 2 T; s … T;

e if s … T;u … T:

In all cases, since .WV ;V / is even, gT ..su/m/D e .

Then with T 2 S�t and U as above, we define an action of WU on the set of cosets
WT =WT�t : For w 2WU and v 2WT , define

(2) w � vWT�t D gU T .w/vWT�t :

Coloring boundary collars Set

AD
Y

T2S�t

WT =WT�t :

We call A the set of colors and note that it is a finite set. The action defined in
Equation (2) extends to a diagonal WU –action on A; for w 2WU and a 2 A, write
w � a to denote w acting on a. Let xe be the element of A defined by taking the trivial
coset WT�t for each T 2 S�t . Vertices of � correspond to group elements of WU , so
we paint the vertices of � by defining a map cW WU !A with the rule c.w/ WDw � xe .

Remark 3.5 If an element w 2WU does not contain t in any reduced expression,
then w acts trivially on the element xe , ie w � xe D xe .

We paint the space wK.U / with c.w/. In this way, all of � is colored with some
element of A. For vertices w and w0 of the same component B of @�, hDw�1w0 2

WU�t . So c.w0/D c.wh/D wh � xe D w � xe D c.w/, where the third equality follows
from Remark 3.5. Therefore all of DDB� Œ0; 1� is painted with c.w/. Note that each
component of @� is monochromatic while each “inner” boundary is not.

Lemma 3.6 Let D D B � Œ0; 1� and D0 D B0 � Œ0; 1� be boundary collars where B

and B0 are different components of @�. Suppose that the vertices of B and B0 have
the same color. Then D\D0 D∅.
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Proof Suppose, by way of contradiction, that D \D0 ¤ ∅, ie there exist vertices
w 2B , w0 2B0 such that c.w/D c.w0/ and wK.U /\w0K.U /¤∅. Let V D S.v/,
where v D w�1w0 , and since w and w0 are from different components of @�, t 2 V .
Now c.w/D c.w0/)w � xeDwv � xe)xeD v � xe . Thus, for any T 2 S�t , we have that

(3) v �WT�t DWT�t :

But since v 2WV , the action of v on WV =WV�t defined in (2) is left multiplication
by v . But by Equation (3), we have that v 2WV�t which is a contradiction.

Now for c 2A, define the c–collar, Fc , to be the disjoint union of the boundary collars
D D B � Œ0; 1� where each component B of @� has the color c . The collection of
c–collars is a finite cover of �.

Even and odd collars Let T Dftg and consider the homomorphism gU T W WU!Wt

defined in Lemma 3.4. Under gU T , an element w 2 WU is sent to the identity in
Wt if w has an even number of t ’s present in some factorization (and therefore, all
factorizations) as a product of generators from U and an element w 2 WU is sent
to t 2Wt if w has an odd number of t ’s present in factorizations. Thus, we call a
vertex w even if gU T .w/ D e ; odd if gU T .w/ D t . If two vertices w and w0 are
such that c.w/D c.w0/, then clearly gU T .w/D gU T .w

0/, so we may also classify
the colors as even or odd. A c–collar is even or odd as c is even or odd and we refer
to it as an “even or odd collar.”

Of fundamental importance will be how these collars intersect. By Remark 3.5, we
know that in order for the vertices of a Coxeter cell to support two different colors, this
cell must be of type T 2 S�t . But, for a cell to support two different even vertices,
v and v0 , this cell must be of type T 2 S�fs;tg for exactly one s 2 S 0 (uniqueness is
given by Corollary 3.2). Moreover, wD v�1v0 has the properties that (1) fs; tg�S.w/

and that (2) it contains at least two, and an even number of t ’s in any factorization as a
product of generators. We call such w t –even.

Example 3.7 The following is representative of our situation. Suppose LD S1 , and
U D ft; r; s j .r t/2 D 1; .st/4 D 1g. � is represented in Figure 1. The black dots
represent the vertices of the Coxeter cellulation, with the vertices e and tst labeled. The
even collars are shaded. Even boundary collars intersect in a 0–simplex corresponding
to the spherical subset fs; tg. The intersection of one odd collar and all evens is the
inner boundary of the odd collar.
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tst

e

Figure 1: Even and odd colors of �

The intersection of even collars We now focus solely on our case: L a flag triangu-
lation of S3 . Let D0 denote the boundary collar containing the vertex e . Fix s 2 S 0

and let D2 denote the boundary collar containing the vertex u, where u 2Wfs;tg is
t –even and has a reduced expression ending in t . We study D0\D2 .

Lemma 3.8 Let W 0 WDWUst
, where Ust D fr 2 S jmrt Dmrs D 2g, and let K0 D

K.U /\uK.U /. Denote by W 0K0 the orbit of K0 under W 0 . Then D0\D2DW 0K0 .

Proof For any w2W 0 , the vertex w is in the same component of @� as e (by Remark
3.5), and therefore wK.U /�D0 . wuD uw , so wu is in the same component of @�
as u and wuK.U /�D2 . Thus wK0 D wK.U /\wuK.U /�D0\D2 .

Now let � be a 0–simplex in D0 \D2 . Then there exist w;w0 2 WU�t such that
� 2 wK.U /\ uw0K.U /, ie � is simultaneously the w– and uw0–translate of a 0–
simplex � 0 in K.U /. Let V be the spherical subset to which � 0 corresponds and let
v 2 WV be such that uw0 D wv . c.e/ D c.w/ and c.u/ D c.uw0/, so w and uw0

are differently colored even vertices of a cell of type V . By the paragraph preceding
Example 3.7, fs0; tg � S.v/� V for exactly one s0 2 S 0 and v is t –even.

Algebraic & Geometric Topology, Volume 9 (2009)



The `2 –homology of even Coxeter groups 1099

Claim 1 s0 D s .

Proof Since w0 2WU�t , c.u/D c.uw0/D c.wv/, ie u and wv act the same on every
coordinate of xe . Consider the fs; tg–coordinate. u2Wfs;tg is t –even, so u �Ws D uWs

and uWs ¤ Ws . But if s … S.v/, then v being t –even and w 2 WU�t imply that
wv �Ws DWs ; which contradicts u and wv having the same color. So Claim 1 is true,
and as a result V 2 S�fs;tg and � 0 2K0 . Moreover, by Corollary 3.2, V �Ust [fs; tg.
It remains to show that � is in the W 0–orbit of K0 .

Claim 2 S.w/� .Ust [fsg/.

Proof Take a reduced expression for u which ends in t . If this expression begins
with s , multiply u on the left by s , so that we have suw0D swv . The only change this
can effect on S.w/ is either adding or subtracting an s , which is inconsequential to
our claim. So, we may assume that u has a reduced expression of the form tst � � � st as
described in Lemma 3.3. Hence, u is .U � t;U � t/–reduced and uw0 has a reduced
expression beginning with the subword tst . wv has a reduced expression of the form
w00tv0 where w00 2 WU�t , S.v0/ � Ust [ fs; tg and where the difference between
S.w/ and S.w00/ is contained in Ust [ fsg. Claim 2 then follows from Lemma 2.2
applied to w00 .

We now finish the proof of Lemma 3.8. If s … S.w/, then w 2W 0 and we are done
since � is the w–translate of � 0 . If s 2 S.w/, then w may be written as qs , with
q 2W 0 and since s 2 V , qsWV D qWV . So � is also the q–translate of � 0 .

Proposition 3.9 .D0\D2/Š†.W
0;Ust /, an infinite connected 2–manifold.

Proof Since S.u/ D fs; tg, K0 is the geometric realization of the poset S�fs;tg D

fV 2 Sjfs; tg � V g: By Lemma 3.8, .D0 \D2/ Š jW
0S�fs;tgj, and by Corollary

3.2, S�fs;tg is isomorphic to S.Ust / via the map T ! T � fs; tg. So .D0 \D2/Š

jW 0S.Ust /j D†.W
0;Ust /.

Simplices in Lst correspond to spherical subsets T 2 S such that neither s nor t is
contained in T but T [ fs; tg 2 S . So by Corollary 3.2, the vertex set of a simplex
of Lst corresponds to a spherical subset of S.Ust /. Conversely, given a spherical
subset T 2 S.Ust /, WT[fs;tg DWT �Wfs;tg , which is finite. So T corresponds to
a simplex of Lst . Thus, Lst is the nerve of the Coxeter system .W 0;Ust /. Since L

triangulates S3 , Lst triangulates S1 . It follows from Proposition 2.3 that †.W 0;Ust /

is a contractible 2–manifold.
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Corollary 3.10 Let c; c0 2A be even. Then H2.Fc \Fc0/D 0.

Proof Suppose that Fc ¤ Fc0 are both even collars and Fc \Fc0 ¤ ∅. Then there
exist even vertices v and v0 with vK.U /\ v0K.U / ¤ ∅. Let w D v�1v0 and put
T D S.v�1v0/. T is a spherical subset, and v and v0 are both vertices of a cell of
type T . So we have exactly one s 2 S 0 with fs; tg � T . Factor w as w D xq where
x 2Wfs;tg is t –even and q 2WT�fs;tg . Now, x may not have a reduced expression
ending in t . If it does not, then xs does and it is in the same boundary collar as x

and w . So let

uD

(
x if x has a reduced expression ending in t ;

xs otherwise:

Then vK.U /\v0K.U /� vK.U /\vuK.U /. Act on the left by v�1 and we are in the
situation studied in Lemma 3.8 and Proposition 3.9. So Fc \Fc0 is the disjoint union
of infinite connected 2–manifolds. As a result, any 2–cycle must be constant 0.

Remark 3.11 If W is right-angled, or if S 0 D∅, then WU DWU�t �Wt and there
is one even and one odd collar.

Multiple even collars Suppose that D1;D2; : : : ;Dn;De are even boundary collars.
Then

De \

 
n[

jD1

Dj

!
D .De \D1/[ � � � [ .De \Dn/;

and suppose that for some 1� i < k � n we have that .De \Di/ and .De \Dk/ are
not disjoint. Let � be a 0–simplex contained in De \Di \Dk corresponding to a
coset of the form vWT . Then there exists w;w0 2WT such that v 2De , vw 2Di ,
vw0 2Dk and � 2 vK.U /\vwK.U /\vw0K.U /. These three vertices are differently
colored even vertices of a cell of type T , so fs; tg � T for exactly one s 2 S 0 and
both w and w0 are t –even. Then, as in the proof of Corollary 3.10, it follows that
De \Di DDe \Dk Š jW

0S�fs;tgj. So Corollary 3.10 generalizes to the following:

Corollary 3.12 Let Fc1
, Fc2

; : : : ;Fcn
;Fce

be even collars. Then

H2

 
Fce
\

 
n[

jD1

Fcj

!!
D 0:

Lemma 3.13 Define
@in.Fc/ WD

a
D�Fc

@in.D/:

Let FE denote the union of all even collars and let Fo be odd, then Fo\FE D @in.Fo/.
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Proof Since Fo is a disjoint union of boundary collars, it suffices to show that
D\FE D @in.D/ for some boundary collar D � Fo .

�: Let � be a 0–simplex in @in.D/. Then � corresponds to a coset of the form
wWV where V 2 S�t and w 2WU is an odd vertex of D . Consider the even vertex
wt . Then since t 2 V , wWV D wtWV , and � 2 wtK.U /� FE .

�: Now suppose that � is a 0–simplex contained in D \FE . Then there exists a
spherical subset V and cosets wWV D w

0WV where w is odd and w0 is even. Let
v Dw�1w0 . Since w is odd and w0 is even, v must contain an odd number of t ’s in
any of its reduced expressions. Therefore t 2 V and � 2 @in.D/.

As before, let FE denote the union of all even collars, and now let FO denote the
union of a subcollection of odd collars. Let FE0 D FE [FO and let Fo be an odd
collar not included in FO . Then by Lemma 3.13,

Fo\FE0 D .Fo\FE/[ .Fo\FO/D @in.Fo/[ .Fo\FO/:

Any 0–simplex in Fo which is also in a different collar must be of the form wWV ,
where w is a vertex of Fo and V 2 S�t . Therefore .Fo \ FO/ � @in.Fo/ and
Fo\FE0 D @in.Fo/.

It is clear from the product structure on boundary collars that @in.Fo/ Š Fo \ @�,
the latter a disjoint collection of components of @�. Since L is flag, we have a
1–1 correspondence between Coxeter cells of any component of @� and cells of
†.WU�t ;U � t/cc . Denote by Lt the link in L of the vertex corresponding to t , it is
a triangulation of S2 and it is isomorphic to the nerve of .WU�t ;U � t/. Then since
Singer’s Conjecture for Coxeter groups 1.2 is true in dimension 3 [11, Corollary 4.4],

(4) Hi.Fo\FE0/D 0

for all i .

Proposition 3.14 Let .W;S/ be an even Coxeter system whose nerve, L is a flag
triangulation of S3 . Let t 2 S . Then Hi.�.S; t/; @�.S; t//D 0 for i D 3; 4.

Proof It suffices to calculate H�.�; @�/. We first show that H4.�; @�/D 0. Con-
sider the long exact sequence of the pair .�; @�/:

!H4.�/!H4.�; @�/!H3.@�/!

� is a 4–dimensional manifold with infinite boundary, so H4.�/D0 and H3.@�/D0.
Then by exactness, H4.�; @�/D 0.
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Let FE0 denote the union of a collection of even collars or the union of all evens and
a collection of odd collars. Let Fc be a collar not contained in FE0 (if FE0 is not
all the even colors, require that Fc be an even color). Let @E0 D FE0 \ @� and let
@Fc
D Fc \ @�. Note that @E0 \ @Fc

D∅ and consider the relative Mayer–Vietoris
sequence of the pair .FE0 [Fc ; @E0 [ @Fc

/:

� � �!H3.FE0 ; @E0/˚H3.Fc ; @Fc
/!H3.FE0[Fc ; @E0[@Fc

/!H2.FE0\Fc/!� � �

Assume H3.FE0 ; @E0/D 0. Each color retracts onto its boundary, so H3.Fc ; @Fc
/D 0.

If Fc is even, the last term vanishes by Corollary 3.12, if Fc is odd, the last term van-
ishes by Equation (4). In either case, exactness implies that H3.FE0 [Fc ; @E0 [ @Fc

/D

0. It follows from induction that H3.�; @�/D 0.

4 The `2–homology of †

Lemma 4.1 Let V �S and let T � V be a spherical subset with Card.T /D 2. Then
H4.�.V;T /; @�.V;T //D 0.

Proof If S.V /.4/
>T
D ∅, then �.V;T / does not contain 4–dimensional cells, and

we are done. So assume that S.V /.4/
>T
¤ ∅. The codimension 1 faces of 4–cells of

�.V;T / are either faces of one other 4–cell in �.V;T / († is a 4–manifold), or they
are free faces, ie they are not faces of any other 4–cell in �.V;T /.

Suppose that cells of type T 0 2 S.V /.4/
>T

have a codimension one face of type R

which is a face of another 4–cell in �.V;T / of type T 00 . Then any relative 4–cycle
must be constant on adjacent cells of type T 0 and T 00 , where T 0 D R [ frg, and
T 00 D R [ fsg, R 2 S.V /.3/

>T
and r; s 2 V . Since L is flag and 3–dimensional,

mrs D1. So in this case, there is a sequence of adjacent 4–cells with vertex sets
WT 0 ;WT 00 ; sWT 0 ; srWT 00 ; srsWT 0 ; srsrWT 00 ; : : :. Hence, this constant must be 0.

Now suppose that for a given 4–cell of �.V;T /, every codimension one face is free.
This cell has faces not contained in @�.V;T /, so relative 4–cycles cannot be supported
on this cell.

Let V � S , be arbitrary; T � V spherical, � WD�.V;T /, @� WD @�.V;T /. Recall
that †.V / is the subcomplex of †cc consisting of cells of type T 0 , with T 0 � V . We
have excision isomorphisms (as in [5])

(5) C�.�.V;T /; @�/Š C�.†.V /;��.V;T //;
and for any s 2 T and T 0 WD T � s ,

(6) C�.†.V � s/;��.V � s;T 0//Š C�.��.V;T /;��.V;T 0//:
Algebraic & Geometric Topology, Volume 9 (2009)



The `2 –homology of even Coxeter groups 1103

Set �� WD ��.V;T /, and ��0 WD ��.V;T 0/. Consider the long, weakly exact sequence of
the triple .†.V /;��;��0/:

� � � !H�.��;��0/!H�.†.V /;��0/!H�.†.V /;��/! � � �
By Equations (5) and (6), the left hand term excises to the homology of the .V �s;T 0/–
ruin, the right hand term to that of the .V;T /–ruin and the middle term to that of the
.V;T 0/–ruin; leaving the sequence:

(7) � � � !H�.�.V � s;T 0/; @/!H�.�.V;T 0/; @/!H�.�.V;T /; @/! � � �

Proposition 4.2 Let .W;S/ be an even Coxeter system, whose nerve L is a flag
triangulation of S3 . Let V � S and t 2 V . Then

(8) Hi.�.V; t/; @�.V; t//D 0;

for i D 3; 4.

Proof It is clear that Hi.�.V; t// D 0 for i D 3; 4 whenever Card.V / � 2, so we
may assume that Card.V / > 2. We show Equation (8) by induction on Card.S �V /,
Proposition 3.14 giving us the base case. Let V DV 0[s and t 2V 0 . Assume (8) holds
for V . If mst D1 then .�.V 0; t/; @/ D .�.V; t/; @/ and we are done. Otherwise,
consider the sequence in Equation (7), taking T D fs; tg, T 0 D ftg:

0 ! H4.�.V
0; t/; @/ ! H4.�.V; t/; @/ ! H4.�.V; fs; tg/; @/ !

! H3.�.V
0; t/; @/ ! H3.�.V; t/; @/ ! � � �

Hi.�.V; t/; @/D 0 for i D 3; 4 by assumption and H4.�.V; fs; tg/; @/D 0 by Lemma
4.1. So by exactness, H4.�.V

0; t/; @/D 0.

Main Theorem 4.3 Let .W;S/ be an even Coxeter system whose nerve L is a flag
triangulation of S3 . Then

Hi.†/D 0 for i ¤ 2:

Proof Let V � S and t 2 V . Consider the following form of (7), where T D ftg:

0 ! H4.†.V � t// ! H4.†.V // ! H4.�.V; t/; @/ !

! H3.†.V � t// ! H3.†.V // ! H3.�.V; t/; @/ ! � � �

By Proposition 4.2, Hi.�.V; t/; @/D 0 for i D 3; 4. So by exactness,

Hi.†.V � t//ŠHi.†.V //;

for i D 3; 4. It follows that Hi.†/ Š Hi.†.∅// D 0 for i D 3; 4 and hence, by
Poincaré duality, Hi.†/D 0 for i ¤ 2.
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