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Surgery presentations of coloured knots
and of their covering links

ANDREW KRICKER

DANIEL MOSKOVICH

We consider knots equipped with a representation of their knot groups onto a dihedral
group D2n (where n is odd). To each such knot there corresponds a closed 3–
manifold, the (irregular) dihedral branched covering space, with the branching set
over the knot forming a link in it. We report a variety of results relating to the problem
of passing from the initial data of a D2n –coloured knot to a surgery presentation
of the corresponding branched covering space and covering link. In particular, we
describe effective algorithms for constructing such presentations. A by-product
of these investigations is a proof of the conjecture that two D2n –coloured knots
are related by a sequence of surgeries along ˙1–framed unknots in the kernel of
the representation if and only if they have the same coloured untying invariant (a
Zn –valued algebraic invariant of D2n –coloured knots).

57M12; 57M25

1 Introduction

The starting point for this work was the authors’ desire to explore the quantum topology
of covering spaces as a means of acquiring a deeper understanding of how quantum
invariants actually encode topological information. Recent results in the case of cyclic
covering spaces (see eg Garoufalidis and Kricker [9; 10]) suggest the existence of such
a theory.

Having understood the cyclic case, the natural next step is to consider the branched
dihedral covering spaces. These spaces have long played an important role in knot
theory, dating back to Reidemeister’s use of the linking matrix of a knot’s dihedral
covering link to distinguish knots with the same Alexander polynomial [21] (see also
eg Perko [19]). More recently they have also been used in investigations of knot
concordance (eg Gilmer [12]). In addition, branched dihedral covers are useful in
3–manifold topology: for example, it turns out that every 3–manifold is a 3–fold
branched dihedral covering space over some knot (see eg Burde and Zieschang [2,
Theorem 11.11]).
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Quantum invariants for 3–manifolds are typically constructed using surgery presenta-
tions. To investigate the quantum topology of covering spaces, then, it seems we need
a combinatorial theory of surgery presentations of covering spaces.

The cyclic case is well-known. Recall that there is a famous trick for obtaining surgery
presentations of n–fold cyclic covers for any natural number n (see eg Rolfsen [22,
Chapter 6D]). We wish to generalize this trick to dihedral covers, so we’ll begin by
reviewing how it goes.

One first performs crossing changes to untie the knot by introducing ˙1–framed
unknots along which surgery is carried out. The unknots are chosen to have linking
number zero with the knot. After this step, we have a surgery presentation of the
given knot as a ˙1–framed link L lying in the complement of an unknot U , where
each component of L has linking number zero modulo n with U . For the purpose of
generalization, this last condition can be restated: every component of L lies in the
kernel of the mod n linking homomorphism LinknW H1.S3�N.U //�Zn . If this
condition is satisfied, the construction of a surgery presentation of the cyclic cover can
now be completed by lifting L to the n–fold cyclic cover of S3 branched over U ,
which is of course again S3 .

We would like analogous procedures for classes of covering spaces corresponding to
other groups, in particular to the dihedral groups. The key feature which permitted
construction in the cyclic case was the existence of a knot (the unknot) which every
other knot could be transformed into via surgeries in the kernel of the mod n linking
homomorphism, and whose branched cyclic cover could be constructed explicitly.

To discuss how this generalizes it’s worth introducing a few definitions.

Definition 1 (G–coloured knots) For a finite group G and a closed orientable 3–
manifold M , define a G –coloured knot in M to be a pair .K; �/ of an oriented knot
K �M and a surjective representation �W �1.M �N.K//�G . Unless otherwise
specified it will be assumed that M D S3 .

Definition 2 (Surgery in ker �) Let .K; �/ be a G –coloured knot in a 3–manifold M .
If L �M �K is a framed link1 each of whose components is specified by a curve
lying in ker � then we can perform surgery along L to obtain a new G –coloured knot
.K0; �0/ in a 3–manifold M 0 , as follows:
� Remove tubular neighbourhoods N.Li/ of the components Li of L and reattach

them to M �
S

N.Li/ so as to match the meridional discs to the framing curves.
This gives the knot K0 in the 3–manifold M 0 .

1A framed link in M is a link in which each component Li comes equipped with a simple closed curve
on the boundary of a regular neighbourhood of Li which is parallel to Li in the regular neighbourhood.
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� To specify the induced representation �0 , we must state the value it takes for an
arbitrary curve  in M 0�K0 . Homotope  into M �

S
N.Li/, then evaluate

it in the restriction of � . This value is well-determined because the components
of L lie in the kernel of � .

In this situation we say that .K0; �0/ has been obtained from .K; �/ by surgery in
ker � .

Definition 3 (Complete set of base-knots) A complete set of base-knots2 for a
group G is a set ‰ of G–coloured knots .Ki ; �i/ in 3–manifolds Mi , such that
any G–coloured knot .K; �/ in S3 can be obtained from some .Ki ; �i/ 2 ‰ by
surgery in ker �i .

To generalize the procedure from the cyclic case to some other group G , we must find
a complete set of base-knots whose desired covering spaces (and covering links) we
know how to construct explicitly, and into whose covering spaces we know how to lift
surgery presentations for any G –coloured knot.

This paper deals with the case when G is the dihedral group D2n with n any odd
integer—the group of permutations of the vertices of a regular polygon with n sides.
Its presentation is

D2n WD
˚

t; s
ˇ̌
t2
D sn

D 1; tst D s�1
	
:

As permutations on the set of vertices of the regular polygon, these generators corre-
spond to

t D

�
1 2 3 � � � n� 1 n

1 n n� 1 � � � 3 2

�
s D

�
1 2 3 � � � n� 1 n

2 3 4 � � � n 1

�
:and

Elements in D2n of the form sa are called rotations, and elements of the form tsa

are called reflections. The cyclic group of rotations Cn WD hsi is a normal subgroup
in D2n .

Convention 1 We’ll present a D2n –colouring � of a knot K � S3 by labeling every
arc of a knot diagram for K by the image under � of the corresponding Wirtinger
generator3. More generally, we can present a D2n –colouring of a knot K in a closed
3–manifold M by a diagram of a link L[K1 in S3 where:

2The term base-knot imitates base-point.
3 Note that this is a different convention from the one used for a Fox n–colouring of a knot, in which

an arc which we would label by tsa is labeled simply by a (see Fox [7]).
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� L is integer-framed, and surgery along L turns .S3;K1/ into .M;K/.

� Every arc of the diagram is labeled by an element of D2n .

� Wirtinger relations are satisfied.

� When the framing curve of any component of L is expressed as a product of
Wirtinger generators of �1.S3�N.L[K1//, the product of the corresponding
labels is 1 2D2n .

Our goal in this paper is to give combinatorial procedures for constructing surgery
presentations of the irregular dihedral branched covering space corresponding to some
D2n –coloured knot, together with the covering link it contains. In Section 2 we’ll
recall exactly what these phrases refer to.

Roughly speaking, we’ll describe two approaches to this problem, corresponding to
two different complete sets of base-knots for D2n . The sets of base-knots will be
introduced shortly. The construction of their corresponding dihedral covering spaces,
covering links, and how to lift surgery presentations in the complement of the base-knot
will be discussed in detail in Section 3 and Section 4.

The untying approach

This first approach begins with exactly the same procedure for untying knots as is
used when constructing surgery presentations of cyclic covers. It may be viewed as an
adaptation of that approach to the case of D2n .

Theorem 1 Consider the following diagram, which (according to Convention 1) de-
picts a D2n –coloured unknot U in the .kn; 1/–lens-space that results from surgery on
the separated kn–framed unknot.

framingD kn

s t

U

This set of D2n –coloured knots for k D 0; 1; : : : ; n� 1 is a complete set of base-knots
for D2n .
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The previous theorem is saying that every D2n –coloured knot in S3 has a presentation
(in the sense of Convention 1) of the following form, where 0� k < n:

framingD kn

s
T

t

U

Here, T is some framed tangle, and each of the thick lines depicts a number of
blackboard parallel strands. Each arc of the framed link L0 which results from T

together with the thick lines is labeled 1 2D2n . After surgery on L WDL0[C , where
C is the s–labeled kn–framed unknot, U becomes the desired D2n –coloured knot
.K; �/ in S3 .

We remark that it will follow from the proof that L can be chosen so that each of its
components has linking zero with U .

As an example, see the surgery presentation for a D14 –coloured 52 knot given in
Figure 1.

t

ts5 ts3

ts

ts2 frD�7

s t

U

Figure 1: A surgery presentation for a D14 –coloured 52 knot

Theorem 2 A surgery presentation for the irregular dihedral branched covering
space M determined by the D2n –coloured knot .K; �/, and for the covering link
zK of K sitting inside M is as shown in Figure 2. In that figure, a small zero near an

introduced surgery component means it has zero framing and zU1[ � � � [
zU.nC1/=2 is

the covering link of U , becoming zK after the surgeries are performed.

Band projection approach

This approach is based on a choice of band projection for a Seifert surface F of the
D2n –coloured knot. Such a choice determines a basis for H1.F /. To a basis for H1.F /
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zU1
zU2

zU3 zU.nC1/=2

T

0 0 0

framingD k

T T T

T T T

� � �

Figure 2: The surgery presentation for the covering space in the untying approach

there corresponds a Seifert matrix and a colouring vector (to be defined in Section
4.1.1). The colouring vector determines the D2n –colouring of the knot (Lemma 14).
The heart of this approach will be realizing algebraic operations on the Seifert matrix
and colouring vector by sliding bands and performing ˙1–framed surgeries on unknots
lying in the complement of the Seifert surface and in ker � . While this method seems
to be less efficient in practice, it is a stronger theoretical result because it arises from an
equivalence relation on D2n –coloured knots in S3 whose corresponding equivalence
classes can be detected with a certain algebraic invariant: the coloured untying invariant
(see Moskovich [16]).

Definition 4 We say that two D2n –coloured knots .K1; �1/ and .K2; �2/ in S3 are
�–equivalent if one can be obtained from the other by a sequence of surgeries on
˙1–framed unknots in ker � .

We alert the reader that we are restricting to surgeries along ˙1–framed unknots, so
that this is an equivalence relation on D2n –coloured knots in S3 .

This equivalence can be defined as an equivalence relation on coloured knot diagrams
without reference to surgery in the following way:

g1 g2 gr

� � � ”

g1 g2 gr

� � �

2� twist

� � �

with
Qr

iD1 gi D 1 2D2n .
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Theorem 3 Any D2n –coloured knot .K; �/ is �–equivalent to one of the D2n –
coloured knots of Figure 3 for k D 0; 1; : : : ; n � 1. This implies that this set of
knots (the pretzel knots p..2kC 1/n; 1;�n/ for k D 0; 1; : : : ; n� 1 with the specified
colouring) is a complete set of base-knots for D2n .

ts
t t

ts

:::
:::

.2kC 1/n

half-twists

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

9>>>>>>>=>>>>>>>;
�n

half-twists

Figure 3: The base-knots in the band projection approach

Because too much extra notation would need to be introduced at this point in order to
explain it, an explicit construction of the irregular branched dihedral covering spaces
corresponding to the set of base-knots of Theorem 3 is pushed off to Section 4.4.

We remark that our proof shows that the same theorem holds if the �–equivalence
relation is strengthened to require that the ˙1–framed unknots not only lie in ker � ,
but moreover have linking zero with K .

Having just defined a new equivalence relation, several questions immediately arise.
How many equivalence classes are there? Can they be detected with algebraic informa-
tion?

What we would really like is a theorem characterizing these classes in terms of a
readily computable algebraic invariant. There are many prototypes for this in the recent
literature. One example is the result of Murakami–Nakanishi [17], which is closely
related to results of Matveev [15], which characterizes �–equivalence classes of links
in terms of their linking matrices. Another is the result of Habiro [13] classifying knots,
all of whose finite-type invariants up to a certain degree are equal, via surgery along
tree claspers. Yet another is the work of Naik–Stanford [18] which links S –equivalence
classes of knots to double-delta moves. The influence of this point of view on recent
research should be clear.

Moskovich [16, Section 6] defined a nontrivial function from D2n –coloured knots
to Zn . Its value for a D2n –coloured knot in S3 , in terms of a Seifert matrix S and a

Algebraic & Geometric Topology, Volume 9 (2009)



1348 Andrew Kricker and Daniel Moskovich

vector Ew which determines the D2n –colouring � , is given by the formula

cu.K; �/D
2. EwT �S � Ew/

n
mod n:

The value cu.K; �/ 2 Zn was called the coloured untying invariant4 of .K; �/. It
was proven there that cu is invariant under surgery in ker � , and so, in particular, is
a constant function on �–equivalence classes (see also Litherland and Wallace [14]).
It was also shown there that every possible value is realized by some D2n –coloured
knot. These facts imply that the number of �–equivalence classes is at least n. On the
other hand, because the complete sets of base-knots in Theorem 1 and in Theorem 3
both have cardinality n, it follows that n is also an upper bound for the number of
�–equivalence classes. Thus a by-product of our constructions is:

Corollary 4 Two D2n –coloured knots have the same coloured untying invariant if
and only if they are �–equivalent. In particular, the number of �–equivalence classes
of D2n –coloured knots is n.

For n prime this was [16, Conjecture 1], where it was proved for n D 3 and for
nD 5. This conjecture was also the subject of [14], where the machinery of Cochran–
Gerges–Orr [5] was used to put an upper bound of 2n on the number of �–equivalence
classes.

The view from here

As stated at the beginning of the introduction, our motivation is to develop a theory of
quantum topology for dihedral covering spaces and covering links. How to proceed?
Many tantalizing hints can be found in the literature.

One possible route would be to generalize recent results in the cyclic case [8; 9] due to
Garoufalidis and Kricker. The results culminate in a universal formula for the LMO
invariant of a cyclic branched cover in terms of the rational lift of the loop expansion
of the Kontsevich invariant [10]. This rational lift may be viewed as a version of the
Kontsevich invariant coloured by the canonical representation �1.S3�N.K//!Z.

Using the surgery presentations in this paper, one should be able to obtain a version of
these constructions where the colouring group is D2n instead of Z. Taking the “1–loop
part” will give an analogue to the Alexander polynomial. The 2–loop part should
determine the Casson(–Walker–Lescop) invariant for an irregular dihedral covering
space M (which can be any 3–manifold).

4The authors thank Pat Gilmer for informing them that he had earlier considered this quantity in
relation to Casson–Gordon invariants [11].
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Another clue for the shape of such a theory is a mysterious formula for the Rohlin
invariant of a dihedral branched covering space that was discovered in the seventies by
Cappell and Shaneson [3; 4]. Recall that the Rohlin invariant is the mod 2 reduction
of the Casson–Walker invariant, which is the unique finite type invariant of degree 1.

The theory of knot concordance has long been a blind spot for “traditional” quantum
topology. The classical invariants which access this type of information are typically
constructed from systems of covering spaces. One of our longer term goals is to develop
sufficient technology to make contact with these constructions.

Odds and ends

The paper concludes in Section 5 with a variety of odds and ends which are immediate
corollaries of the constructions in the previous sections. First, the choice of a complete
set of base-knots in Theorem 3, which was made after trial and error, is of course not the
only one possible. Some other choices are also worth mentioning. By choosing the twist
knots in Figure 4 as a complete set of base-knots, we can prove that the surgery link in
Theorem 1 can be chosen to have linking number zero with the component labeled by s .
In that figure, mD 1� .nC1/2=2 if .nC1/=2 is even, while if .nC1/=2 is odd then
mD 2� .n2C 1/=2. Choosing the torus knots of Figure 5 gives a picture that is easy
to lift (see Moskovich [16] for the nD 3 and nD 5 cases) but is not a natural end-point
for our algorithms. Using it we can prove that a 3–manifold with D2n –symmetry
has a surgery presentation with D2n –symmetry, extending a “visualization” result of
Przytycki and Sokolov [20] and of Sakuma [25]. Finally, we may choose a complete
set of base-knots which differ only by the choice of their D2n –colouring, as shown in
Figure 6.

Although the methods in this paper are elementary, the results appear to be new. Swenton
[27], and independently Yamada [28] for n D 3, give quite different algorithms for
translating from dihedral covering presentations to surgery presentations, “forgetting”
the knot.

Some further problems
� Explore the relationship between the untying approach and the band projection

approach. In particular, how can one calculate the coloured untying invariant of
a D2n –coloured knot in a 3–manifold other than S3 ?

� Explore the possibility of using Goeritz surfaces instead of Seifert surfaces in
the band projection approach, giving the torus knots as a complete set of base
knots directly.
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t
ts

:::
knCm
half-twists

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Figure 4

t
ts

:::
.2kC 1/n

half-twists

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Figure 5

s

sk

:::
n

half-twists

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

Figure 6

� Find minimal complete sets of base-knots for groups other than dihedral groups.
Use these to find presentations for other classes of covering spaces.

� Extend the results of this paper to D2n –coloured algebraically split links (the
extension to boundary links is straightforward).

Acknowledgements The authors would like to thank Tomotada Ohtsuki and Dror
Bar-Natan for their support. The presentation was substantially improved by comments
of the referee. We also thank Dan Silver for some useful comments. DM also thanks
Osaka City University and the Tata Institute of Fundamental Research for their hos-
pitality during the period this paper was being written and refereed and is pleased to
acknowledge the support of a JSPS Research Fellowship for Young Scientists.

2 Dihedral branched covering spaces

In this section we recall the way in which .K; �/ presents a closed 3–manifold M .
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We first recall how a monodromy representation characterizes an (unbranched) covering
space. Let prW zX � X be an n–fold (unbranched) covering space of a closed 3–
manifold X with basepoint �. An oriented loop `�X based at � lifts to a collection of
distinct paths `1; : : : ; `n each starting and ending at one of the n preimages �1; : : : ;�n

of � in zX . Sending the initial point of each of these paths to its endpoint gives a
permutation of �1; : : : ;�n , inducing a representation

�1.X;�/! Sym.pr�1.�//

which is unique up to relabeling lifts of the basepoint. Choosing a different basepoint
in X modifies the representation via some bijection pr�1.�/' pr�1.�0/.

The theory of covering spaces tells us that two covering spaces are equivalent (that is,
homeomorphic by a homeomorphism respecting the covering map) if and only if their
monodromy representations are the same (after some relabeling). Thus we can specify
a covering space by means of a representation �1.X;�/! Sym.pr�1.�//.

From an intuitive cut-and-paste point of view it is natural to present a covering space by
means of its monodromy. This allows one to construct it by cutting the base space into
cells, taking the appropriate number of copies of each cell, and gluing them together
according to the representation. The following example, which plays a part in the proof
of Theorem 2, is a good illustration of this.

Example 1 Consider a genus two handlebody equipped with base point and a represen-
tation � from its fundamental group onto D14 . To construct the covering space whose
monodromy group is given by this representation, we begin by cutting the handlebody
into a cell:

s t

A

B

C

D

Now we take seven copies of this cell, and glue them together according to � .
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D C D C D C

7 6 5

1
A
B

B
A

A
B

B
A

A
B

B
A

A
B

D
C

2 3 4

C D C D C D

We now construct M . Begin from a D2n –coloured knot .K; �/, and consider the n–
sheeted (unbranched) covering space zX of the knot complement X of K (the closure
in S3 of the complement of a tubular neighbourhood N.K/ of K ) with monodromy
given by � , where D2n is thought of as a subgroup of Sym .�1; : : : ;�n/.

Consider the boundary of this covering space. What is it? Well, the D2n –colouring �
sends a meridian to a reflection, and the longitude may be chosen so that it is sent
to 1. It follows that the boundary of zX is a collection of .nC 1/=2 tori—.n� 1/=2

two-sheeted coverings and 1 one-sheeted covering of the boundary torus @N.K/ of X .
Glue .nC1/=2 solid tori into these boundary components, longitude to longitude, such
that a meridional disc is glued into some lift of a power of the meridian downstairs.

This is the desired space M : the branched dihedral covering space of S3 associated
to the D2n –coloured knot .K; �/. The cores of the glued-in tori, with orientations
induced by the orientation of K , form the covering link zK .

Remark It is more usual to specify a covering space by a conjugacy class of subgroups
of �1.X / (corresponding to the image of �1. zX / under the projection). If a covering
space is determined by a monodromy representation then the corresponding class of
subgroups is given by taking the stabilizer of a chosen element in Sym .�1; : : : ;�n/.

Remark The 3–manifold M is usually referred to as the irregular branched dihedral
covering space associated to .K; �/ (as we referred to it in the introduction), because
it corresponds to the preimage under � of hti which is not a normal subgroup of D2n .
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3 Untying approach

This approach consists of two steps. The first is to obtain a surgery presentation of
a D2n –coloured knot .K; �/ in the complement of an unknot in a lens-space (one
of the base-knots of Theorem 1). Such a presentation is called a separated dihedral
surgery presentation of .K; �/. The second step is to lift the separated dihedral surgery
presentation to a surgery presentation of the dihedral branched covering space and of
the covering link.

3.1 Obtaining a separated dihedral surgery presentation

The construction consists of three steps: use surgery to untie the knot, perform han-
dleslides to concentrate the nontrivial labels onto a single surgery component, and finish
with another round of surgery to untie that surgery component. We’ll also describe
some moves which put the labels and surgery curves in the resulting diagram in a
standard form.

3.1.1 Untying the knot We can untie any knot K by crossing changes, realized by
surgery on ˙1–framed unknots which have linking number zero with K . This allows
us to present K as a ˙1–framed link L in the complement of a standard unknot
U � S3 , such that surgery on L recovers K � S3 . In the following section we
generalize this procedure to D2n –coloured knots.

Note that the arcs of a knot in S3 are all coloured by reflections (elements of the
form tsa 2D2n ) for the following reason. Near a crossing where the over-crossing
arc is labeled g1 , the under-crossing arcs must be labeled g2 and either g�1

1
g2g1

or g1g2g�1
1

for some g2 2D2n . So if any arc is labeled by a rotation then all arcs
in the knot diagram would be labeled by rotations (because Cn GD2n ) which would
contradict surjectivity of the D2n –colouring � .

When performing surgery, the colours of the arcs of the introduced surgery component
are induced as follows:

Lemma 5 Let g1 and g2 be elements in D2n . The local moves depicted below induce
colours on the added surgery components as shown. (The two strands “being twisted”
can be from the knot or from surgery components.)

g1

g2

g�1
2

g1g2

g�1
2 g1g2g�1

1 g2

”

g1

g2

g�1
2

g1g2

g�1
2

g1g2g�1
1

g2

g2g�1
1

g�1
1

g2(3-1)
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g1

g1g2g�1
1

g2g1g�1
2

g2

”

g1

g1g2g�1
1

g2g1g�1
2

g2

g2
1
g�1

2
g�1

1
g1g�1

2(3-2)

Proof The precise claim is that there is a PL–homeomorphism h between the two
spaces, taking the knot in one space onto the knot in the other space, such that the
pulled-back representation of the knot group is as shown. The homeomorphism h is
to cut S3�T along a disc spanning T , a tubular neighbourhood of the introduced
surgery component, do a 2� twist in the appropriate direction, then reglue the disc and
the solid torus.

The label on an arc of the right-hand diagram is determined by the image under h of
a path representing the appropriate element of the fundamental group. For example,
we obtained the label g�1

1
g2 in the first local move by finding the image under h of

”

Figure 7

the Wirtinger generator corresponding to the appropriate meridian of the introduced
surgery curve in Figure 7.

Shortly, we’ll use this lemma to untie D2n –coloured knots. In that case we’ll have
g1 D tsa and g2 D tsb for some a; b 2 Zn , so that g�1

1
g2 D sb�a , and the typical

move will look like:

tsa

tsb

ts2a�b

ts3b�2a

”

tsa

tsb

ts2a�b

ts3b�2a

sa�b sb�a
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Here is what we are going to do:

(1) First, we’ll do a special surgery to ensure that the first of our surgery components
has an arc labeled s .

(2) Then, we’ll untie the knot using Lemma 5.

At each step in this untying process, arcs of the knot are labeled by reflections, and arcs
of the introduced surgery components are labeled by rotations. Because conjugation
of a rotation by a reflection inverts it, while conjugation by another rotation leaves it
unchanged, for each introduced surgery component there exists j 2Zn such that all of
its arcs are labeled either sj or s�j .

We begin with the special surgery: Because � is surjective, there exists an element
 2 �1.S3�N.K// such that �. / D s 2 D2n . It is possible to arrange the knot
diagram so that a representative for  appears as on the left hand side of the following
diagram. It is also possible to choose  to have linking number zero with the knot
(this is because it must have even linking number to map to s , and because each arc
of the knot is labeled by an element of order 2, so that we can change the sense in
which  crosses an arc, which changes the linking number by 2, but does not change
the image of  under �). We can now introduce a surgery component C as shown on
the right hand side, and the induced label will be s , as shown.



� � �

”

s
C

� � �

� � �

2� twist

After introducing this special surgery component C , which we’ll call the distinguished
surgery component, use Lemma 5 to completely untie the resulting knot. After these
manipulations we have a link U [C [L1[ � � � [L� in S3 , where:

� U is the unknot.

� C is the distinguished surgery component (each arc of which is labeled either s

or s�1 ).

� L1; : : : ;L� are further surgery components whose arcs are labeled by various
rotations.
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1356 Andrew Kricker and Daniel Moskovich

3.1.2 Handleslides The second step of the construction is to perform handleslides
so as to arrange that every surgery component except for the distinguished surgery
component C has all its arcs labeled 1 2 D2n . The following lemma tells us how
labels transform under handleslides.

Lemma 6 Two diagrams that differ by one of the moves shown below present equiva-
lent D2n –coloured knots. (The displayed components are surgery components.)

sa sb s�b

”

sa
s�a

sa

sb�a

sa�b

sa
sb s�b

”

sa
s�a

sa

sbCa

s�a�b

Proof When two diagrams are related by a handleslide, the corresponding spaces are
related by a PL–homeomorphism which is the identity outside a genus two handlebody
containing the two involved components and the “path” of the slide.

To observe how labels transform: pick a curve representing some arc in the right-
hand diagram, isotope the curve so that it lies outside the genus two handlebody
corresponding to a handle slide which will take us to the left-hand diagram, then read
off what that curve maps to in the left-hand diagram.

For example, the label sb�a , above can be obtained as shown below:

* *

*
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Note further that once we know what the label on one of the arcs of a component is, the
labels on all of its arcs are determined by the fact that they must induce a well-defined
representation onto D2n .

By Lemma 6 we may repeatedly perform handleslides until all of the surgery compo-
nents except the distinguished surgery component C has each of its arcs labeled 1,
for the following reason. Recall that C has an arc labeled s . For each 1< i � � let
ai 2Zn be an element such that some arc of Li is labeled sai . The effect of sliding
C over Li is to replace sai either by sai�1 or by saiC1 depending on which version
of the handleslide is used. Thus sliding C over Li repeatedly either ai times or n�ai

times kills the labels of the arcs of Li . Do this for each L1; : : : ;L� .

Remark Readers who try some examples will find that this second step can add
significant complexity to the construction. However things are not so bad when nD 3.
The reason is that there will only ever be a single handleslide required to kill the label
on a surgery component, because 1C 2D 0 mod 3 or 1� 1D 0 mod 3. Note further
that in this situation the surgery components will remain framed unknots after the
handleslides.

3.1.3 Putting the presentation into a standard form After the first two steps we
have a diagram where:

� The knot K has been untied and is in its standard position U .

� There are a number of surgery components, each of which has linking number
zero with the knot.

� Every surgery component except C has all of its arcs labeled 1 2D2n .

� The distinguished surgery component C has each of its arcs labeled either s or
s�1 .

The final step is to add extra surgery components so that the two component sublink
U [C becomes a standard two component unlink. We will require that the surgery
components introduced to make this happen have all of their arcs labeled 1 2D2n .

In the neighbourhood of a crossing in C , either all arcs will be labeled s , in which
case we can reverse the crossing by:

(3-3)

s s

s

”

s

s

s

s

1 and

s s

s

”

s

s

s

s

1
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or the crossing will have one incident arc labeled s and another incident arc labeled
s�1 , which can be dealt with by:

(3-4)

s s�1

s

”

s s�1

s�1 s1

and

s s�1

s�1

”

s s�1

s�1 s1

Thus, we can reverse any crossing on C by introducing such components, untying C

and unlinking it from U .

Notice that the framing of the distinguished component must end up a multiple of n.
This is because labels induce a well-defined representation of �1.S3�N.K// onto
D2n , so contractible curves map to 1. The framing curve of every surgery component
(in particular, of the distinguished component) bounds a disc in the corresponding
torus being glued in and is thus contractible. Since each arc of C is labeled s , and
C is separated from U , its framing curve f maps to sLink.f;C / . This implies that
Link.f;C /D 0 mod n.

It is possible to introduce extra surgery components into the presentation which will
change that framing by n2 . It follows that k may be chosen so that 0� k < n. To do
this, coil the distinguished surgery component into n parallel strands:

(3-5)
n strands

framingD kn

s t

Then add a ˙1–framed surgery component. (Choose C1 to increase framing by n2 ,
and �1 to decrease framing by n2 .)

(3-6)

framingD kn� n2

2� twist
s t

The distinguished surgery component may now be tied in a knot5, but we can untie
it using surgery along components whose arcs are all labeled 1 2D2n , as shown in
Equation (3-3). Observe that such moves do not change the framing of the distinguished

5For p D 3 for example, (3-5) and (3-6) will tie the distinguished surgery component into a trefoil.
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Surgery presentations of coloured knots and of their covering links 1359

surgery component because the linking number of the introduced surgery components
with C is zero.

All arcs of U are labeled by some reflection tsa 2D2n . Because n is odd, there exists
an integer b such that aC2bD 0 mod n. By repeating the ambient isotopy of Figure 8
b times, we may conjugate the label tsa by sb , so that the label on the arcs of U

becomes tsaC2b D t . We thus obtain a presentation for .K; �/ in which all arcs of U

are labeled t .

s

Figure 8: Ambient isotopy of the surgery picture to conjugate the label on U

by s

To summarize:

Proposition 7 Any D2n –coloured knot .K; �/ has a separated dihedral surgery pre-
sentation, ie it has an surgery presentation LD C [L1[ � � � [Lm such that:

� The distinguished surgery component C has all its arcs labeled s and has framing
kn with 0� k < n.

� All arcs of the other components L1; : : : ;Lm are labeled 1.

� All arcs of U are labeled t .

� C [U is the standard 2–component unlink.

framingD kn s t

U

Figure 9: A separated dihedral surgery presentation

Observe that this Proposition is equivalent to our Theorem 1.
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In Section 5.1.1 we will additionally show that a separated dihedral surgery presentation
may be chosen such that the components L1; : : : ;Lm all have linking number zero
with the distinguished component C .

3.1.4 Example: The D14 –coloured 52 knot As an example, let’s see how we
obtain a separated dihedral surgery presentation of a D14 –coloured 52 knot.

t ts

ts2

ts3ts5

Surgery

t ts2

ts2

ts4

ts5

ts6s

s�1

Isotopy

s
s s�1

s

s�1

s�1
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t

Surgery

1

2

s

s�1 s s�1 s�1

s�1s�1

ts2

t

1 1

Isotopy framingD�7

s t

U

3.2 Constructing the cover

Take a separated dihedral surgery presentation of some D2n –coloured knot .K; �/. It
consists of a framed link L in a genus two handlebody H , embedded into a link in
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Surgery presentations of coloured knots and of their covering links 1361

the way shown in Figure 9. Our goal in this section is to lift this picture to a surgery
presentation of M , the n–fold dihedral covering space of S3 branched over the knot K

whose monodromy is given by � .

Our starting point is Figure 10, which tells us how to use the separated dihedral surgery
presentation to construct the knot complement X WD S3�N.K/. This is achieved
by doing surgery on L, attaching 2–handles to the curves A and B , and finishing by
attaching a ball to the resulting S2 boundary component.

kn strands A

B

l

m

Figure 10: How to construct X WD S3�N.K/

The knot complement X comes equipped with the representation �W �1 .X /�D2n .
The value that � takes on the generators of the fundamental group of H are as follows:

s t

Observe that A and B , the attaching circles of the 2–handles, lie in the kernel of � as
required (because they bounds discs in S3�N.K/).

On the boundary of H we have also marked the meridian m and a choice of longitude l

of K . This data will be referred to below as the peripheral markings. We recover S3

with the knot K embedded in it by gluing a solid torus N.K/, displayed in Figure 11,
into the boundary of X (a torus), so as to match up the curves m and l .

With these preliminaries in hand, we can now describe the construction of M . The
first step is to construct zX� , which is defined to be the (unbranched) covering space
of X whose monodromy is specified by � . The following steps construct zX� .
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m

K

l

Figure 11: The solid torus N.K/ with embedded knot K

(1) Take zH� , the n–fold covering space of H whose monodromy is specified by � .
Lift the surgery link in H to zH� and do surgery on that link.

(2) Lift A and B , the 2–handle attaching circles, to systems of curves fAig
n
iD1

and
fBig

n
iD1

on zH� .

(3) Attach 2–handles to these systems of curves.

(4) Attach a ball to each of the n resulting S2 boundary components.

Figure 13 shows how the attaching circles and peripheral markings lift to zH� , in the
special case that nD 7. The general case is clear from this picture.

Consider now the boundary of zX� , the space we have just constructed. Inspecting
Figure 13 we observe that it consists of .nC 1/=2 tori:

@. zX�/D T1 tT2 t � � � tT.nC1/=2:

The torus T1 is marked as shown in Figure 12 on the left. Under the restriction of the
covering map zX�!X to this boundary component, T1 is a one-sheeted covering of
@N.K/. The other tori, Ti where i runs from 2 to .nC1/=2, are marked as shown in
Figure 12 on the right. These tori give two-sheeted coverings of @N.K/.

m1

l1
mi

mn�iC2

li

ln�iC2

Figure 12: The torus T1 (on the left) and a torus Ti for some 2� i� .nC1/=2

(on the right), together with their markings

The branched irregular dihedral covering space M , together with the covering link
f zKig

.nC1/=2
iD1

, is obtained from zX� by:
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(1) Gluing a copy of N.K/ into T1 so as to match m to m1 and l to l1 .

(2) For each i such that 2� i � .nC 1/=2, gluing a copy of N.K/ into Ti so as
to match m to the curve mimn�iC2 , and l to either li or ln�iC2 .

This completes the construction of M .

kn kn kn kn

kn kn kn

A1

A2 A3 A4

A5A6A7

m1
m2 m3 m4

l1

l2 l3 l4

l5l6l7m5 m6 m7

Figure 13: The lifts of the attaching circles and peripheral markings to zH� ,
in the case that nD 7

Our task is to turn the construction we have just detailed into a surgery presentation for
M . Consider the sequence below, where the index i runs from 2 to .nC 1/=2, and
j D n� i C 2.

Aj

mj

Ai
li

lj

mi

Aj

Ai

ljli

mj mi

Aj

ljli

mj mi

Aj

zKi
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The first move is to slide the attaching circle Ai over the attaching circle Aj . Before
we do that, we’ll get the longitude marking li out of the way by sliding it over Aj first.
Next we attach a 2–handle to Ai . Observe that the result can be embedded in S3 , and
that the torus Ti is now embedded in this diagram. Glue a copy of N.K/ into Ti in
the required way (matching m to mimj ). In a similar way we can immediately attach
a 2–handle to A1 and glue a copy of N.K/ into T1 . These are the three steps which
we carried out in the sequence above.

After the above sequence, if we attach 2–handles to the circles A.nC3/=2 through An

and another 2–handle to B1 , then the boundary of the space is a copy of S2 (it is
connected and of genus 0). Call this S2 boundary Y . Plugging this boundary Y

with a 3–ball right away is the same as attaching 2–handles to the attaching circles
B2; : : : ;Bn � Y and then plugging each of the resulting S2 boundary components
with 3–balls (all the extra 2–handles and 3–balls pair up into canceling pairs of
complementary handles—see eg Rourke and Sanderson [24, Lemma 6.4]). In other
words, we can discard B2; : : : ;Bn without changing the result.

In the same way, we can add extra attaching circles for 2–handles into Y without
changing the result. Let’s then attach 2–handles into Y to cut the complement in S3

of the handlebody into solid tori, in the way indicated in Figure 14. The attaching
circles of the extra 2–handles are labeled E1; : : : ;E.nC1/=2 in the figure.

We are done. The space constructed is in the complement of a .nC 1/=2 component
unlink in the three-sphere, and attaching the remaining 2–handles and balls is equivalent
to doing surgery on that unlink, in precisely the way detailed in Theorem 2.

To illustrate with an example, the surgery presentation for the dihedral branched
covering space and covering link for the D14 –coloured 52 knot considered in Section
3.1.4 is as given in Figure 15.

4 Band projection approach

In this approach we obtain a surgery presentation of a D2n –coloured knot .K; �/ as a
link L consisting of ˙1–framed unknotted surgery components in ker � which live
in the complement of an element in a complete set of base-knots in S3 . We then
lift this presentation to a surgery presentation of the branched dihedral cover M . A
by-product of this approach is a proof of a conjecture that two D2n –coloured knots
are �–equivalent if and only if they have the same coloured untying invariant.
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A5 A4

E1

E2

B1

Figure 14: The final diagram, after we have discarded B2 through Bn and
attached extra 2–handles E1 thorough E.nC1/=2 so as to cut the complement
of the handlebody into solid tori

zU1
zU2

zU3
zU4

0

0

0

framingD�7

Figure 15: A surgery presentation for the dihedral covering space and
covering link of the D14 –coloured 52 knot of Section 3.1.4
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4.1 Preliminaries

In Section 4.1.1, given a D2n –coloured knot .K; �/, for each choice of Seifert surface
F for K and for each choice of basis for H1.F / we introduce a pair .S; Ev/ consisting
of a Seifert matrix S for K and a vector Ev which (loosely speaking) represents the
D2n –colouring � restricted to the complement of F . The precise correspondence
between � and Ev is given in Proposition 8. The pair .S; Ev/ is called surface data for
.K; �/, and may be thought of as an analogue of the Seifert matrix for coloured knots.
The material in this section is somewhat standard, but doesn’t appear in the literature
in precisely the form we need, so for the purpose of completeness we describe it in
some detail.

In Section 4.1.2 we recall the coloured untying invariant, which is an obstruction to
�–equivalence given in terms of surface data.

Following this, in Section 4.1.3, we restrict to the case that our chosen basis for H1.F /

is a “symplectic” basis induced by a band projection for K . The action of the mapping
class group of F on surface data for .K; �/ with respect to such a basis for H1.F /

can be interpreted in terms of sliding bands. Some of these band slides are investigated
in Section 4.1.4.

4.1.1 The surface data Let .K; �/ be a D2n –coloured knot. Let F � S3�N.K/

be a Seifert surface for K , and let F � Œ�1; 1�� S3�N.K/ be a bicollar for F . Thus
.@F /�Œ�1; 1� is an annulus embedded in @N.K/. Set N.F / to be N.K/[.F�Œ�1; 1�/.
Choose a basepoint ? in S3�N.F /. See Figure 16 for an illustration. Denote by �
the inclusion mapping �W S3�N.F / ,! S3�N.K/.

The image of the induced map ��W �1.S3�N.F // ! �1.S3�N.K// lies in the
commutator subgroup of the knot group �1.S3�N.K//. This is because the abelian-
ization map AbW �1.S3�N.K//�Z is given by Ab.x/D Link.x;K/, while any
?–based loop in the complement of F has linking zero with K (in fact Link.x;K/
equals the algebraic intersection number of x with F ). It follows that the image of the
composition � ı �� is contained in the normal subgroup of rotations:

Im .� ı ��/� Cn CD2n:

Let the induced map from the first homology of the Seifert surface complement to Cn

be denoted x� :
x�W H1.S3�N.F //! Cn:

Taking some small liberties, we will refer to this map as the restriction of the represen-
tation � to the complement of the Seifert surface.
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Definition 5 Let x1; : : : ;x2g be a basis of H1.F / and let �1; : : : ; �2g be the associ-
ated basis for H1.S3�N.F // which is uniquely characterized by the condition that
Link.xi ; �j /D ıij (see eg Burde and Zieschang [2, Definition 13.2]). The colouring
vector associated to this Seifert surface F and choice of basis is defined to be the
vector

Ev WD .v1; : : : ; v2g/
T
WD .x�.�1/; : : : ; x�.�2g//

T
2 .Cn/

2g:

We’ll assume the “+” side of the bicollar is the side pointed to by the normal vector to
F determined by the orientation of K . Let the push-off maps �˙W F ! S3�N.F /

be the maps which take x 2 F to .x;˙1/ 2 F � f˙1g � S3�N.F /. The Seifert
matrix is the matrix which describes these maps with respect to the chosen dual bases
x1; : : : ;x2g and �1; : : : �2g . Namely, if coefficients Sij are determined by

��� .xi/D

2gX
jD1

Sij�j ;

then we set the Seifert matrix S to be: S D .Sij /. The following formula follows
from this definition:

Sij D Link
�
��� .xi/;xj

�
:

The map corresponding to the push-off in the positive direction is given by the transpose
of the Seifert matrix:

�C� .xi/D

2gX
jD1

.ST /ij�j :

Below we will need the following, which follows directly from our definitions. An
integer vector zEv D .z1; : : : ; zn/

T 2 Z2g will be called an integral lift of a colouring
vector Ev WD .v1; : : : ; vn/

T 2 .Cn/
2g if vi D szi for i D 1; : : : ; n. Then, if a DP2g

iD1
aixi 2H1.F /:

(4-1) x�
�
�C� .a/

�
D s.a1;:::;a2g/S

zEv:

Similarly:

(4-2) x�
�
��� .a/

�
D s.a1;:::;a2g/S

T zEv:

Definition 6 The pair .S; Ev/ is called the surface data corresponding to the D2n –
coloured knot .K; �/, a Seifert surface F , and a choice of basis x1; : : : ;x2g of H1.F /.

The following theorem will summarize the relationships between the representation � ,
the restricted representation x� , and the colouring vector Ev . The statement of the
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theorem will use the notion of rotation-equivalent representations. We will say that
two representations

�1; �2W �1.S3�N.K//!D2n

are rotation-equivalent precisely when there is a fixed integer j with the property that
for all g 2 �1.S3�N.K//,

�2.g/D sj�1.g/s
�j
2D2n:

Note the immediate fact that if two representations are rotation-equivalent �1 � �2

then their restrictions are equal:
x�1 D x�2:

Proposition 8 Let K be an oriented knot, let F be a Seifert surface for K , and let
x1; : : : ;x2g be a basis for H1.F /. Corresponding to this data, there are bijections
between three sets:

(1) The set of epimorphisms f�W �1.S3�N.K//�D2ng modulo rotation-equiva-
lence.

(2) The set of epimorphisms f W H1.S3�N.F //� Cng satisfying the condition
that for every a 2H1.F /,  

�
�C� .a/

�
D  

�
��� .a/

��1 .

(3) The set of vectors fEv D .v1; : : : ; v2g/ 2 C2g
n g satisfying the two conditions that:

(a) The elements fv1; : : : ; v2gg together generate Cn .
(b) For any integral lift zEv of Ev :

.S CST / zEv D E0 mod n:

The map from the first set to the second set is restriction of a representation

�W �1.S3�N.K//!D2n

to a representation x�W H1.S3�N.F //! Cn . The map from the second set to the third
is to take the colouring vector corresponding to the given choice of basis for H1.F /.

To establish these bijections we’ll employ a presentation of the fundamental group
�1.S3�N.K// that results from a Seifert–van Kampen calculation based on the
Seifert surface F . The presentation is stated in the following lemma. Our description
will be somewhat broad because the details are standard (see eg Rotman [23, Chapter
11, pages 407–410]).

The presentation depends on a choice of a special curve  . This curve will be chosen
as follows. Let ?F be a base-point on F . Choose a simple path C in S3�N.F /

from the basepoint ? to .?F ; 1/, recalling that we defined N.F / at the start of this
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section to be N.K/[ .F � Œ�1; 1�/. Similarly, choose a second simple path � in
S3� .F � Œ�1; 1�/, disjoint from the first C , from ? to .?F ;�1/. Let  0 denote the
natural path in F � Œ�1; 1� from .?F ; 1/ to .?F ;�1/ (the path whose projection to
F is constantly ?F ). Now set  D C 0.�/�1 . Make these choices so that  is a
simple closed PL curve in general position with respect to F . We can choose  to be
homotopic to a meridian of K . See Figure 16.

 0

C

�



F
N.K/

?

F � f1g

F � f0g

F � f�1g

Figure 16: A schematic picture of a cross-section of F

The presentation employs two homomorphisms

�˙W �1.F; ?F /! �1.S3�N.F /; ?/:

The definition is: take ˛ , some ?F –based curve in F , representing some element
Œ˛� 2 �1.F; ?F /. Then �˙.Œ˛�/ is represented by the curve

�˙.Œ˛�/D Œ˙ � .˛�˙1/ � .˙/�1�:

Lemma 9 Consider the following free product, where hmi denotes the infinite cyclic
group generated by m:

�1.S3�N.F /; ?/� hmi:

Let N denote the smallest normal subgroup containing the elements˚
m�1�C.z/m.��.z//�1 ; z 2 �1.F; ?F /

	
:

There is an isomorphism

'W
�1.S3�N.F /; ?/� hmi

N
'
�! �1.S3�N.K/; ?/;

where the subgroup �1.S3�N.F /; ?/ maps by the inclusion map �, and the element m

is mapped to Œ � 2 �1.S3�N.K/; ?/.
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Proof This is a standard Seifert–van Kampen calculation. See eg Rotman [23, Chapter
11, pages 407–410].

Proof of Proposition 8 We’ll address the two bijections in turn, working directly with
the presentation in the lemma.

Between sets (1) and (2) In this case we are taking a surjective representation

�W
�1.S3�N.F /; ?/� hmi

N
�D2n ;

satisfying the property that �.�1.S3�N.F /; ?//� Cn , and considering the induced
map (its “restriction”)

x�W H1.S3�N.F //! Cn:

We’ll check each part of the statement in turn.

� ( x� satisfies the stated algebraic condition.) First we’ll explain why the restriction
satisfies the condition that for every a 2H1.F /,

x�.�C� .a//D x�.�
�
� .a//

�1
2 Cn:

The reason is that � must be well-defined modulo the normal subgroup N . So
for every z 2 �1.F; ?F /, the element

�.m/�1�.�C.z//�.m/�.��.z//�1
2D2n

must be trivial. Now in order for � to be surjective, it must map m to a reflection.
So the above element of D2n will equal �.�C.z//�1�.��.z//�1 , which is the
same as x�.�C� .zz//�1x�.��� .zz//

�1 where zz denotes the image of z in H1.F /.
This explains the required condition.

� ( x� is surjective.) Next we’ll ask: Why is the restriction x� surjective onto Cn if
� is surjective onto D2n ? Our task is to find some element in H1.S3�N.F //

which x� maps to s 2 Cn . Well, if � is surjective, then there is some word

w WD x1mn1x2mn2 � � �xkmnk ;

with each xi 2 �1.S3�N.F /; ?/, such that �.w/ D s 2 D2n . Because
�.x1/; : : : ; �.xk/ are rotations, while �.m/ is a reflection, �.xim/D �.mx�1

i /

for all 1� i �k . Thus we may push all powers of m to the head of the word, and
�.w/D �.mn1C���Cnk /�.x1/

˙1 � � � �.xk/
˙1 for certain choices of signs. On the

other hand, because �.w/D s it follows that �.mn1C���Cnk / vanishes. Therefore

x�.˙zx1 � � � ˙ zxk/D s:
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� (Surjectivity of the “restriction” correspondence) Now we’ll check that every  
satisfying the stated conditions is the restriction of a surjective representation � .
Choose some reflection T D tsj , then define

�W
�1.S3�N.F /; ?/� hmi

N
� D2n

by

(1) �.x/D  .zx/ if x 2 �1.S3�N.F /; ?/,
(2) �.m/D T .

The condition on  ensures that N is sent to the identity. It is also clear that �
is surjective onto D2n .

� (Injectivity of the “restriction” correspondence) If two representations �1 and
�2 have the same restriction, then they only differ in which reflection m is sent
to. But any two such choices will be related by a rotation-equivalence.

Between sets (2) and (3) It is clear that the set of homomorphisms H1.S3�N.F //!

Cn corresponds bijectively with C2g
n : the set of vectors of images of the basis elements

�1 up to �2g . What we have to check is that the two extra conditions imposed on the
homomorphisms are equivalent to the algebraic conditions imposed on the vectors.
We’ll check these conditions in turn.

� (Surjectivity of x�) It is clear that x� is surjective precisely when it is possible to
construct s from the images of the base elements.

� (The pushoff condition) Choose zi 2Z so that x�.�i/Dszi . Following Equations
(4-1) and (4-2), if

aD

2gX
iD1

aixi 2H1.F /

then x�
�
�C� .a/

�
x�
�
��� .a/

�
D s.a1;:::;a2g/.SCST /.z1;:::;z2g/

T

:

It follows that the conditions imposed on the sets (2) and (3) are equivalent.

Remark The vectors zEv and zEv mod n are called the p–colouring vector in [14] and
in [16], respectively.
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4.1.2 The coloured untying invariant Let .K; �/ be a D2n –coloured knot. We
have just explained how a choice of Seifert surface F and choice of basis for H1.F /

determines surface data .S; Ev/. In [16, Section 6] it was shown that the expression

(4-3) cu.K; �/D
2.zEvT �S � zEv/

n
mod n;

where zEv is an integral lift of Ev , depends neither on the choice of Seifert surface F nor
on the choice of basis for H1.F /. Hence it is an invariant of D2n –coloured knots. It is
also shown that this is a nontrivial Zn –valued invariant of D2n –coloured knots in S3

which is constant on �–equivalence classes. A homological version of this invariant
provides a generalization to D2n –coloured knots in more general 3–manifolds [14;
16].

The culmination of this section is to show that two knots are �–equivalent if and only
if they have the same coloured untying invariant.

4.1.3 Band projection Any knot has a band projection (see for instance Burde and
Zieschang [2, Proposition 8.2]). This is a projection of form shown in Figure 17. Pairs
of bands B2i�1 and B2i for i D 1; : : : ;g will be called twin bands.

B1 B2

B3 B4 B2g�1 B2g
�1 �2

� � �

D2x1
x2

Figure 17: A band projection of a knot, in which we have indicated the
orientation of the knot, a basis x1; : : : ;x2g for H1.F / , and the associated
basis �1; : : : ; �2g for H1.S3�N.F //

A knot in band projection comes equipped with a canonical choice of a Seifert surface F

and a choice of basis for H1.F /: let x1; : : : ;x2g be elements of H1.F / such that
for each 1 � i � 2g the class xi is represented by a curve in F which threads
once through the band Bi , with orientations as determined by Figure 17. Recall that
the associated basis �1; : : : ; �2g for H1.S3�N.F // is determined by the condition
Link.xi ; �j /D ıij . In this case the class �i is represented by the appropriately oriented
boundary of a small disc which the band intersects the interior of transversely as shown
in Figure 17.

The surface data of a knot in band projection refers to the Seifert matrix and colouring
vector for this canonical choice of basis.
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4.1.4 Band slides At the heart of this approach are moves which allow us to realize
algebraic manipulations of the surface data by ambient isotopy, modifying the choice
of band projection of a fixed D2n –coloured knot.

We say that some band projection is obtained from another by doing a band slide of
band B2i�1 counterclockwise over band B2i if it is obtained by the following sequence
of ambient isotopies:

�! �!

Similarly we can slide B2i�1 clockwise over B2i , and we can slide B2i over B2i�1

both clockwise and counterclockwise.

These moves fix F but change the choice of basis for H1.F /, and so will change the
surface data. The effect on the choice of basis is:

� Sliding B2i�1 counterclockwise (respectively clockwise) over B2i :�
x1; : : : ;x2i�1;x2i ; : : : ;x2g

�
7!
�
x1; : : : ;x2i�1˙x2i ;x2i ; : : : ;x2g

�
� Sliding B2i counterclockwise (respectively clockwise) over B2i�1 :�

x1; : : : ;x2i�1;x2i ; : : : ;x2g

�
7!
�
x1; : : : ;x2i�1;x2i ˙x2i�1; : : : ;x2g

�
And the corresponding effect on the colouring vector is as follows:

� Sliding B2i�1 counterclockwise (respectively clockwise) over B2i :�
v1; : : : ; v2i�1; v2i ; : : : ; v2g

�
7!
�
v1; : : : ; v2i�1; v2i � v

�1
2i�1

; : : : ; v2g

�
� Sliding B2i counterclockwise (respectively clockwise) over B2i�1 :�

v1; : : : ; v2i�1; v2i ; : : : ; v2g

�
7!
�
v1; : : : ; v2i�1 � v

�1
2i
; v2i ; : : : ; v2g

�
The corresponding effects on the Seifert matrix are S 7! .P˙

.2i�1;2i/
/S.P˙

.2i�1;2i/
/T

and S 7! .P˙
.2i;2i�1/

/S.P˙
.2i;2i�1/

/T for P˙
j ;k
WD I ˙Ej ;k .

Example 2 Let .K; �/ be a D2n –coloured genus one knot for which

(4-4) .S; Ev/D

 �
a11 a12

a21 a22

�
,

�
v1

v2

�!

Algebraic & Geometric Topology, Volume 9 (2009)



1374 Andrew Kricker and Daniel Moskovich

with respect to a basis of H1.F / determined by a band projection. The effect of band
sliding B1 over B2 counterclockwise is as follows:

(4-5)
�
S; Ev

�
7!

 �
a11C a12C a21C a22 a12C a22

a21C a22 a22

�
,

�
v1

v2 � v
�1
1

�!

The following two lemmas are crucial in this approach. They show how much freedom
band slides give us to engineer the colouring vector.

Lemma 10 For twin bands B2i�1 and B2i for which either v2i�1 or v2i generates
Cn , band slides allow us to transform the pair .v2i�1; v2i/ to any other pair .v0

2i�1
; v0

2i
/

for which either v0
2i�1

or v0
2i

generates Cn .

Proof Assume without the limitation of generality that v2i�1 generates Cn . Then by
sliding B2i�1 over B2i an appropriate number of times, we can transform v2i into a
generator of Cn (in fact into any element of Cn ). We can therefore assume that both
v2i�1 and v2i generate Cn . Symmetrically, we can assume that both v0

2i�1
and v0

2i

generate Cn . Slide B2i�1 over B2i until the corresponding entry in the colouring
vector becomes v0

2i
and then sliding B2i over B2i�1 until the corresponding entry in

the colouring vector becomes v0
2i�1

.

Lemma 11 For any pair of twin bands B2i�1 and B2i , by band slides we can obtain
a band projection which induces a colouring vector such that either v2i�1 vanishes, or
v2i vanishes, as desired.

Proof Totally order Cn as fs0; s1; : : : ; sn�1g, and for each i D 1; : : : ;g slide B2i

over B2i�1 if v2i�1�v2i , or B2i�1 over B2i otherwise. We obtain a pair .v0
2i�1

; v0
2i
/

which is smaller than .v2i�1; v2i/ in the lexicographical ordering. Repeat until we kill
v2i (in which case we’re finished) or v2i�1 .

Now that we have obtained a colouring vector with v2i�1D s0 , if we want a colouring
vector with v2i D s0 , exchange the .2i/–th and the .2i �1/–st entries in the colouring
vector by a sequence of band slides corresponding to the following operations on entries
of the colouring vector:

.s0; v2i/! .v2i ; v2i/! .v2i ; s
0/

Analogously, if v2i D s0 and we want v2i�1 to vanish, we can reverse the sequence
of band slides above.
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4.2 Reduction of genus

The goal of this section is to show that any D2n –coloured knot .K; �/ of genus g is
�–equivalent to a D2n –coloured knot of genus 1. The proof consists of three steps. We
first show that for any .K; �/ we may choose a band projection such that the induced
colouring vector has its first entry equal to s . The second step is to arrange every other
entry to be 1. Having prepared such a band projection the final step is to reduce genus
by �–equivalences.

4.2.1 Step 1: Engineer a band projection such that v1 D s . If n is prime, engi-
neering a band projection such that v1 D s is straightforward (Lemma 10), and one
may proceed directly to Step 2. If n is composite, however, a more involved argument
may be required. Our strategy is to construct the desired band projection directly, by
finding an appropriate cut system. For the purpose of this section’s discussion we’ll
formalize a few terms.

Definition 7 A cut on some Seifert surface for some knot K is a simple nonseparating
oriented curve lying on the surface whose two boundary points lie on K .

Definition 8 Consider some cut C on some Seifert surface F with boundary K .
Recall that N.F / was defined to be N.K/[ .F � Œ�1; 1�/, where F is regarded as
occupying the 0–slice of F � Œ�1; 1�. The ring around C is a particular simple closed
oriented curve in S3�N.F / constructed in the following way. Let the boundary
points of C be C0 and C1 (so that C runs from C0 to C1 ). The ring around C is
now the loop which starts at C0 � f1g, follows the curve C � 1 to C1 � f1g, loops
around K to C1�f�1g via the path 1 shown in Figure 18, returns along C �f�1g to
C0 � f�1g, then loops back around K to its starting point using the obvious path 0 .

So given a cut on a Seifert surface, we may take the ring around it, which now evaluates
in the representation � to give a well-defined element of Cn .

The constructions which resolve this step can now be described by the following two
lemmas.

Lemma 12 Consider a D2n –coloured knot .K; �/, and a Seifert surface F for K . If
there exists a cut C on the surface whose corresponding ring evaluates to s , then the
knot has a band projection whose corresponding colouring vector has its first entry, v1 ,
equal to s .

Lemma 13 Every Seifert surface F of a D2n –coloured knot .K; �/ has a cut on it
whose corresponding ring evaluates to s .
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C

K

F

C � f�1g

C � f1g

C1 � f1g

C1 � f�1g

F 1

K

Figure 18: The path 1

We’ll explain the proofs of these lemmas in turn.

Proof of Lemma 12 This proof is essentially a rereading of the standard manipulations
that show that every Seifert surface has a band projection (see eg Seifert and Threfall [26,
Chapter 6]).

A system of cuts C1 through C2g on F is called a cut system if when we remove the
bands coming from the regular neighbourhoods of the cuts, we are left with a disc.
If we have a cut system on F , then the disc that remains after we remove the bands
from it has its boundary marked with 2g pairs of intervals, corresponding to the two
sides that are created when an arc is cut open. Label these intervals using B1 through
B2g , say, depending on which cut an interval came from. (So, in particular, each label
will appear twice.) If we have chosen our cuts so that these labels appear in the usual
“product of commutators” order, then an ambient isotopy which takes this disc into a
standard unknotted disc position will carry the original Seifert surface into standard
band-projection position. Furthermore, that ambient isotopy will also carry the rings
around the cuts to the rings around the “standard” cuts of a knot in band projection
(see Figure 19), which are the usual �i ’s.

B1 B2 B3 B4 B2g�1 B2g

D2

� � �

Figure 19: The “standard” cuts of a band projection
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So our only task is to show that any given cut C1 may be completed to a cut system,
C1 through C2g , marking the disc in the desired “product of commutators” order. This
is a standard manipulation.

Proof of Lemma 13 Begin with any band projection of the given D2n –coloured knot.
Using Lemma 11 kill odd numbered entries in the colouring vector by band slides.

Next we’ll introduce the collection of cuts amongst which we’ll find our desired cut.
To every vector .a1; : : : ; ag/ 2 Zg associate a cut in the way illustrated by Figure 20.

Figure 20: The cut for g D 2 and .a1; a2/D .3;�2/

We claim that we can choose the vector .a1; : : : ; ag/ so that the ring around the
corresponding cut evaluates under � to s .

Our next task, then, is to determine how the image under � of the ring around one of
these cuts depends on the given vector. Well, observe that this ring is homologous in
H1.S3�N.F // to

gX
iD1

�
ai.�

Cx2i�1� �
�x2i�1/C .�

�x2i � �
Cx2i/

�
;

where, recall, �˙x denotes the push-off from the Seifert surface of a curve x in the
positive (resp. negative) direction. Furthermore, note for all i that �Cx2i�1��

�x2i�1

is homologous to �2i and ��x2i � �
Cx2i is homologous to �2i�1 (see Figure 21).

Thus the ring around the cut corresponding to the vector .a1; : : : ; ag/ evaluates under
� to

.v2/
a1.v4/

a2 � � � .v2g/
ag :

To finish the proof we ask: can we choose the vector .a1; : : : ; ag/ so that this ex-
pression evaluates to s? The answer is yes, because � is surjective. Therefore, by
Proposition 8, its restriction x� is also surjective. Thus x� maps some homology class
 2H1.S3�N.F // to s 2 Cn . So we can write  as a product

.�1/
k1.�2/

k2 � � � .�2g/
k2g :
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x2i�1
�Cx2i�1

���x2i�1

��2i

Figure 21: The class �Cx2i�1� �
�x2i�1 is homologous to �2i for all i D 1; 2; : : : ;g .

As v2i�1 D 1 for all i , this is mapped via x� to the expression:

x�. /D .v2/
k2.v4/

k4 � � � .v2g/
k2g ;

which equals s by the choice of  . Therefore a representative z 2 �1.S3�N.K//

of  is mapped to s by � . This gives the desired expression as .a1; : : : ; ag/ D

.k2; : : : ; k2g/.

4.2.2 Step 2: Kill vi for i > 1. First, kill v2i for i D 1; : : : ;g by Lemma 11 (note
that this leaves v1 untouched because s generates Cn ). If v3 D sa with a¤ 0 mod n,
first exchange v1 and v2 by band slides using Lemma 10, then slide bands as follows:

1 s
sa

1
1

s saC1 1

saC1

s 1
1

1 s saC1 1

Repeat the above sequence of band-slides n� a times to kill v3 without altering the
rest of the colouring vector. Now slide B3 and B4 over B5 and B6 :

and repeat the argument above to kill v5 .

Repeat all steps above to kill v2i�1 for all i D 2; 3; : : : ;g , and the colouring vector
becomes Ev D .s; 1; : : : ; 1/T as required.
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4.2.3 Step 3: Reduction of genus via �–equivalence After Step 2 we have a D2n –
coloured knot .K; �/ in band projection whose colouring vector is Ev D .s; 1; : : : ; 1/T .
In this section we will show that .K; �/ is �–equivalent to a genus 1 knot.

So assume that the genus of K is g> 1. We will now show that .K; �/ is �–equivalent
to a knot with Seifert surface of genus g�1. We’ll present this argument as a sequence
of 8 observations and �–equivalences.

(1) Note that crossings of a band with itself can always be changed by �–equivalence:

(4-6) C ”

Note that the introduced surgery component C lies in ker � , so that this is indeed a
�–equivalence. The first step is to change crossings of B2g , the rightmost band, with
itself, so as to untie it and to put the knot into the position shown in Figure 22.

Z



2�m

CBA

D

Figure 22: The local picture for the genus reduction step. The box labeled
2�m denotes m full clockwise twists in B2g . Inside this local picture,
linkage of B1; : : : ;B2g�1 with B2g can be bunched together into the inside
of a cylinder Z as shown.

(2) Recall that the arcs A and B come labeled with reflections. Because v2g�1 , the
colour corresponding to B2g�1 , has been prepared to be s0 D 1, the labels on A and
B must be the same: tsa for some a 2Zn .

(3) Continuing, because v2g is also trivial, the label on arc C must also be tsa .

(4) Arc D will also be labeled tsa . To see this we’ll determine the labels on the arcs
in the box of twists from the bottom up. We have determined that the two lowermost
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arcs B and C are both labeled tsa . When an arc labeled tsa passes under another arc
labeled tsa , the label on the resulting arc is again tsa . So working from the bottom up,
we see that all of the arcs in the box of twists, including the arc D , will be labeled tsa .

(5) The next step is to determine �. /, where  is a path which rings Z once as
shown in Figure 22. First observe that because  lies in the complement of the Seifert
surface, �. / will be of the form sj for some j 2Zn . The index j is determined by
the condition, clear from the diagram, that this element will conjugate the label of A to
the label of D . Because tsa D s�j � tsa � sj D tsaC2j and because n is odd, j must
be zero.

(6) Therefore, the surgery curve C in Figure 23 will also lie in ker � . So surgery on
C is a �–equivalence, and it unlinks everything from B2g (while adding a 2� twist to
B2g ).

cZ
C

2�m

Figure 23: The �–equivalence which reduces genus

(7) Using the fact that v2g D 1, untwist B2g by the following �–equivalence:

(4-7)

tsa tsa

”

tsa tsa

(8) The resulting diagram represents a D2n –coloured knot with Seifert surface of
genus g� 1, because the bands B2g and B2g�1 come unraveled (see Figure 24).

4.3 Genus one knots

For k D 0; : : : ; n� 1, denote the D2n –coloured pretzel knots p
�
2knC 1;�1;�n

�
drawn in Figure 3 by f.B0; �0/; : : : ; .Bn�1; �n�1/g correspondingly.
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”

Figure 24: The local picture after untwisting B2g , untying it and unlinking
everything from it

In the last section we saw that any D2n –coloured knot .K; �/ is �–equivalent to a
D2n –coloured genus one knot .K0; �0/. The goal of this section is to complete the
proof of Theorem 3 by showing that .K0; �0/ is �–equivalent to .Bk ; �k/ for some
k D 0; : : : ; n� 1. We prove this assertion in two steps. First, we show that .K0; �0/ is
�–equivalent to a D2n –coloured knot .K00; �00/ which has the same surface data as
.Bk ; �k/ for some k D 0; : : : ; n�1. We then show that in fact .K00; �00/ and .Bk ; �k/

are �–equivalent.

4.3.1 Step 1: Modifying the surface data With respect to a given band projection,
write the surface data of .K0; �0/ as

(4-8) .S; Ev/ WD

 �
a11 a12

a12C 1 a22

�
,

�
v1

v2

�!
:

The goal of this section is to show that .K0; �0/ is �–equivalent to a D2n –coloured
knot .K00; �00/ with surface data

(4-9) .Sk ; Evk/D

 �
knC nC1

2
0

1 1�n
2

�
,

�
s

s�1

�!
;

for some 0� k < n, which coincides with the surface data of the D2n –coloured knot
.Bk ; �k/ with respect to the obvious band projection. Performing a single band slide, it
is sufficient then to show that .K0; �0/ is �–equivalent to a D2n –coloured knot whose
surface data with respect to some band projection is:

(4-10) .S; Ev/D

 �
kn n�1

2
nC1

2
1�n

2

�
,

�
s

1

�!
:

The proof comprises of the following 5 observations and �–equivalences:

(1) By Lemma 10, there exists a band projection for .K0; �0/ with respect to which
its colouring vector is

�
v1
v2

�
D
�

s
1

�
.
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(2) By Proposition 8, we know that�
2a11 2a12C 1

2a12C 1 2a22

��
1

0

�
D

�
0

0

�
:

Therefore, because n is odd, a11 D 0 mod n and 2a12C 1D 0 mod n.

(3) The fact that 2a12 C 1 D 0 mod n means that a12 D j ..n � 1/=2/ for some
integer j . Below, we show how to add or subtract n from a12 by �–equivalence.
Thus j may be chosen to be 1. First, coil B1 into 2n parallel strands, then add a
˙1–framed unknotted surgery component around those strands and B2 . (Choose C1

to increase a12 by n, and �1 to decrease a12 by n.) This is clearly a �–equivalence.
After this move, we will have changed a12 by n, and we will also have changed a11

by n2 and changed a22 by 1. The move is illustrated below in the case nD 3.

(4-11) ” ”

(4) In Step (2) we saw that a11D kn for some integer k . Below, we show how to add
or subtract n2 from a11 by �–equivalence without changing the rest of the surface data
(compare with (3-5) and (3-6)). It follows that k may be chosen so that 0�k<n. First,
coil B1 into 2n parallel strands, then add a ˙1–framed unknotted surgery component
around them. (Choose C1 to increase a11 by n2 , and �1 to decrease a11 by n2 .)
This is a �–equivalence. The move is illustrated below in the case nD 3, where it is
used to subtract 9 from a11 .

(4-12) ” ”
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(5) Using the fact that v2 D 1, twist or untwist B2 as in (4-7) to set a22 to .1�n/=2.
The rest of the surface data remains unchanged.

Having set a11 , a12 , a22 , v1 , and v2 to their required values, we have shown that
.K0; �0/ is �–equivalent to a D2n –coloured knot with the same surface data as one of
the knots f.B0; �0/; : : : ; .Bn�1; �n�1/g with respect to some band projection.

4.3.2 Step 2: Genus one knots with the same surface data are �–equivalent At
this point we have shown that any D2n –coloured knot .K; �/ is �–equivalent to a
D2n –coloured knot .K00; �00/ which shares the same surface data as one of the D2n –
coloured genus one knots f.B0; �0/; : : : ; .Bn�1; �n�1/g in Figure 3. It remains to show
that two genus one knots which share the same surface data are �–equivalent.

We begin by fixing the D2n –colouring �00 on a knot diagram D of K00 using ambient
isotopy. The proof is then completed by Lemma 15.

Lemma 14 Let �1 and �2 be D2n –colourings of a knot K such that x�1 D x�2 . Then
.K; �1/ and .K; �2/ are ambient isotopic.

Proof By Proposition 8, x�1 D x�2 implies that there exists a 2 Cn such that for all
g 2 �1.S3�N.K//, we have �2.g/ D a�1�1.g/a. If a vanishes there is nothing
to prove, so we assume a ¤ s0 . Fix a knot diagram D for K . Because �1 is
surjective, there exist nonzero integers a1; : : : ; an such that aD�1.wn/

an � � � �1.w1/
a1 ,

where w1; : : : ; wn are Wirtinger generators of the knot group, corresponding to arcs
A1; : : : ;An in D . We exhibit a sequence of Reidemeister moves converting .K; �1/

to .K; �2/.

Perform a Reidemeister I move on A1 , and push the entire knot though it, then undo
the Reidemeister I move as follows:

T D
T

D

T
D T :

Here T denotes the .1; 1/–tangle whose closure is K .

The effect of the above sequence is to conjugate �1 by �1.w1/, without changing D .
Repeat a1 times, then perform the above sequence a2 times on A2 , and so on until,
after repeating the above sequence an times on An , we will have conjugated �1 by a,
concluding the proof.
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In this section, if T denotes a framed tangle, then T .2/ will denote the unframed tangle
that results from doubling each component of T using the framing.

Let Xa;b;c denote the following blackboard framed .4; 4/–tangle:

9>>>>>>>=>>>>>>>;
a

9>>>>>>>=>>>>>>>;
b

9>>>>>>>=>>>>>>>;
c

Let Ka;b;c denote the following knot:

.Xa;b;c/
.2/

t

Lemma 15 Let .K; �/ be a D2n –coloured knot presented by a genus 1 band projec-
tion. If the corresponding surface data is of the form��

a b

bC 1 c

�
;

�
v1

v2

��
then .K; �/ is �–equivalent to the D2n –coloured knot .Ka;b;c ; �0/, where �0 is
determined by the colouring vector .v1; v2/

T .

Proof Begin with a diagram for the assumed genus 1 band projection of the following
form:

T .2/

t
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Here T denotes a framed .0; 4/–tangle representing the position of the bands. This
framed tangle has two components, and satisfies:

� The framing of the first band is a. (In other words, the linking number between
the two boundary components of the first band, when co-oriented, is a.)

� The framing of the second band is c .

� The linking number between the two bands (the signed sum of crossings when
the two bands are oriented according to our convention, from the outside in)
is b .

The first step in our manipulations will be to introduce a cancelling pair of copies of
Xa;b;c :

T .2/

t

ambient
isotopy

.TX�1
a;b;c

/.2/

.Xa;b;c/
.2/

t

Let Y denote the framed .0; 4/–tangle TX�1
a;b;c

. Observe that each of the two com-
ponents of Y have framing zero, and that their mutual linking number is zero. For
the discussion below, let L denote the left component, and let R denote the right
component.

Recall that by a single �–equivalence we can change a crossing of a band with itself in
a way that does not change the framing of the band. So it remains for us to show that
we can perform crossing changes of the components of Y with themselves in order to
trivialize Y , so that it becomes:

Because the framings of the components of Y are not affected by these moves, we can
ignore them for the remainder of this proof.
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There are three steps:

(1) The first step is to change crossings of L with itself, and to use ambient isotopy,
in order to trivialize L and put it into the obvious standard position. This step
does not require further comment.

(2) The second step is to change crossings of R with itself, and use ambient isotopy,
in order to obtain a diagram in which there are no crossings between the two
components.

(3) The final step is to trivialize R.

It remains for us to explain the details of the second step above, which echoes the proof
that the fundamental group of S1 is Z.

So assume that the first step is complete, so that L has been trivialized. Obtain a
general position diagram for the resulting tangle (ignoring framings). Orient the two
components according to our convention: from the outside in.

From this diagram construct a word in the symbols C and � by following R along
its whole length in the direction of its orientation and, every time that R crosses L,
writing down the sign of that crossing. Observe that, because the mutual linking number
of these two components is zero, this word must contain an equal number of C’s and
�’s. We will regard the length of this word as the complexity of the diagram.

To reduce complexity: find a place in this word where a C is adjacent to a �, and
consider the crossings they represent in the diagram. Either R crossed over L in both
crossings, or it crossed under L in the both crossings.

If over: consider the arc A of R that goes between these two crossings. Change
crossings between this arc and other arcs of R so that, traveling along A in the
direction of its chosen orientation, we always overcross. After doing this, we can do an
ambient isotopy to reduce complexity:

L

R crossing
changes

L
R

If under: the corresponding moves are obvious.
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4.3.3 Section summary After having shown in Section 4.2 that any D2n –coloured
knot .K; �/ is �–equivalent to a D2n –coloured knot .K0; �0/ of genus one, in this
section we have shown that .K0; �0/ may be chosen to have the same surface data as
one of the knots f.B0; �0/; : : : ; .Bn�1; �n�1/g (Equation (4-9)). We then showed that
any two genus one D2n –coloured knots with the same surface data are �–equivalent.
Combining these facts proves Theorem 3.

4.4 Constructing the cover

In the previous section we proved that for any D2n –coloured knot .K; �/ with coloured
untying invariant 0� k < n there exists a ˙1–framed link L in the complement of the
D2n –coloured pretzel knot .Bk ; �k/ of Figure 25, whose components are unknotted
and in ker � , and surgery along which recovers .K; �/. The goal of this section is to
construct the branched dihedral covering space and covering link corresponding to this
data, and to lift the surgery information to this cover.

ts
t t

ts

.2kC 1/n

half-twists

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

:::
:::

9>>>>>>>=>>>>>>>;
�n

half-twists

T

Figure 25: The D2n –coloured knot .Bk ; �k/ with the surgery link in its complement

4.4.1 Language and notation Coordinates in R3 � S3 will be employed to explic-
itly describe configurations of objects in 3–space. Denote by †�R2 the surface arising
from a sufficiently large disc when small discs centred at the points .�2; 0/, .�1; 0/,
.1; 0/ and .2; 0/ are removed. The surgery link L will lie inside †� Œ0; 1��R3 . We
will think of L as being the closure of a ˙1 framed tangle T such that diagram of L

arising from the projection onto †� f0g is as pictured in Figure 26.
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x2

x1

T

Figure 26: A diagram of the surgery link L�†� Œ0; 1�

The knot Bk over which we’ll be taking a branched dihedral cover can be assumed
to live in R3 � .†� Œ0; 1�/, as pictured in Figure 27 (using the convention that the
coordinate x2 increases into the page).

x3

x1

�n
half-twists

8̂̂̂̂
<̂
ˆ̂̂:

:::

†� Œ0; 1�

:::

9>>>>=>>>>;
.2kC 1/n
half-twists

Figure 27: The cylinder †� Œ0; 1� sitting inside the knot complement R3�Bk
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The D2n –colouring � induces a representation from �1 .†� Œ0; 1�/ into D2n , which
we shall also call � by abuse of notation. To describe this representation, choose a base
point for †� Œ0; 1� lying on the surface †� f0g, and specify the images of generators
of �1 .†� Œ0; 1�/ with respect to this basepoint as shown in Figure 28. The two “outer”
generators map to ts , while the two “inner” generators map to t .

ts

t t

ts

Figure 28: Generators for �1.†� Œ0; 1�/ and their images in D2n

4.4.2 Constructing C†�Œ0; 1� We now have language and notation which is suffi-
ciently explicit to describe the construction of C†�Œ0; 1�, the dihedral cover of †� Œ0; 1�
with respect to � , and its embedding in the branched dihedral covering over .Bk ; �k/,
which is S3 because Bk is a 2–bridge knot (see eg [1]).

We build C†�Œ0; 1� embedded in R2�Œ0; 1��R3 by slotting together copies of †�Œ0; 1�
cut open along planes, as shown in Figure 29. These are our “lego blocks”, which
we can bend, stretch, and shrink. To construct C†�Œ0; 1� (embedded in R3 ) we take n

blocks denoted X1; : : : ;Xn (copies of the cut-open †� Œ0; 1� of Figure 29) and slot
them together in the usual way: always matching an A to an A0 , and so on, and using
the representation to decide which copy of the 3–cell one passes to when crossing a
cut.

T

T

C D D0 C 0 E F F 0 E0

A0 B0 B A G0 H 0H G

Figure 29: A block Xi obtained by cutting open †� Œ0; 1� along planes and
Xi after being “opened out” by isomorphism
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To see that combinatorially the blocks end up lined up in a line, consider the graph with
n vertices labeled 1; : : : ; n and an arc connecting vertices i and j if and only if Xi

and Xj are incident in C†�Œ0; 1�, ie if and only if we slot Xi and Xj together, which is
if and only if t.i/D j or ts.i/D j where D2n is acting on 1; : : : ; n by symmetries
of the regular n–gon (remember that when crossing a cut labeled t we are going to be
crossing from Xi to Xt.i/ , and similarly for ts ). When nD 7 the graph is given in
Figure 30. Because t.1/D 1 and ts..nC 3/=2/D .nC 3/=2, the graph will consist of
two loops and a path from 1 to .nC 3/=2.

1

2

3

4

5

6

7

t

ts

1

2

3

4

5

6

7

Figure 30: The graph showing in which order the blocks Xi slot together to
build B†�Œ0; 1�

Now that we know what C†�Œ0; 1� looks like combinatorially, we describe its embedding
in R3 which we will use in the presentation of the final result. For this purpose it is
useful to notice that the construction of C†�Œ0; 1� defines a permutation � of 1; : : : ; n,
taking i (representing Xi ) to the position of Xi on the path from 1 to .nC 3/=2 (one
plus its distance on the graph from the vertex labeled 1). Thus for Figure 30:

� D

�
1 2 3 4 5 6 7

1 2 4 6 7 5 3

�
Now, for each i D 1; : : : ; n, if �.i/ is even, bend the arms of the dumbbell (Figure
29) down and place the block Xi in R3 the position shown in Figure 31. If �.i/ is
even, bend the arms up and place the result in the position shown in Figure 32. The
reader can observe that the resulting identifications are exactly those determined by
the representation. Finish the construction by gluing up the four remaining pairs of
cuts—the cuts next to each other around the points .�n� 1; 0; 0/, .�1; 0; 0/, .1; 0; 0/
and .nC 1; 0; 0/.

For example, the result for nD 3 is displayed in Figure 33.
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x2 D �.i/C 1

x2� �.i/

x2 D 1=2

x2 D�1=2

x1 D��.i/� 1 x1 D��.i/ x1 D �.i/ x1 D �.i/C 1

T

C

D
D0
C 0

A0
B0
B

A

G

H
H 0
G0

E0
F 0
F

E

Figure 31: Xi with arms bent down

x2 D 1=2

x2 D�1=2

x2 D��.i/

x2 D��.i/� 1

x1 D��.i/� 1 x1 D��.i/ x1 D �.i/ x1 D �.i/C 1

T

A0

B0

B

A

C

D
D0

C 0

E0

F 0

F

E

G

H
H 0

G0

Figure 32: Xi with arms bent up

4.5 The branching set

We began this section with a framed link in †� Œ0; 1� in the complement of a coloured
knot Bk . Since Bk happens to be a 2–bridge knot, its dihedral covering space is S3

with an ..nC 1/=2/–component covering link embedded in it (see eg Birman [1]). It
remains for us to describe this link, and show how C†�Œ0; 1� embeds into its complement.
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T

T

T

Figure 33: B†�Œ0; 1� embedded in R3 for nD 3

To present the result we need to introduce some additional notation. The result will use
certain braids on 2.nC 1/ strands. The strands of the braids will be indexed by the set

In D f�n� 1� i � nC 1 ; i 2 Z=f0gg:

The coordinate x3 will be the vertical coordinate of the braid, and the projections of
the endpoints of the strands to the .x1;x2/–plane will be the points f.x; 0/;x 2 Ing.
(Note that these are precisely the coordinates of the “holes” in the construction we just
gave of C†�Œ0; 1�.)
Let i < j be indices from In . Let XŒi; j � denote the braid you get by putting a
clockwise half-twist into the group of strands starting with the strand at position i , up
to the strand at position j . For example, if nD 4, then:

XŒ�2; 2� D

We can now state the result.

Theorem 16 Take the construction given earlier of C†�Œ0; 1� as a subset of R3 . The
branching set over Bk lies in its complement as shown in Figure 34, where B denotes
the braid:

XŒ�n; n� �XŒ�nC 1; n� 1� � � � XŒ�2; 2� �XŒ�1; 1�:
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:::

� � � XŒ1;pC 1��.2kC1/

B†�Œ0; 1�

B

XŒ�p� 1;�1� � � �

:::

Figure 34: The lifted picture

5 Odds and ends

In this section we consider several corollaries to the constructions given in the previous
sections. In Section 5.1 we list some different choices of complete sets of base knots
which we might end up with via the band projection approach. In Section 5.2 we show
how one of these choices leads to a proof that closed 3–manifolds with D2n –symmetry
have surgery presentations with D2n –symmetry.

5.1 Different choices for a complete set of base-knots

Our choice of .Bk ; �k/ as a complete set of base-knots was made because we have an
explicit algorithm to reduce any D2n –coloured knot to one of them by surgery, and
because in addition we know how to explicitly find their branched dihedral covering
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spaces, covering links, and the lifts of the surgery presentations. This set was found by
trial and error. Other complete sets of base-knots are possible of course, and some of
these have advantages over .Bk ; �k/.

Our starting point is a genus one knot with unknotted bands and with the surface data
given by Equation (4-10), repeated here for the reader’s convenience:

.S; Ev/D

 �
kn n�1

2
nC1

2
1�n

2

�
,

�
s

1

�!
:

5.1.1 Linking number zero with the distinguished component In this section we
prove that we may choose a separated dihedral surgery presentation such that the curves
in ker � all have linking number zero with the distinguished surgery component. First
perform the band slide we did in order to obtain .Bk ; �k/:

.S; Ev/D

 �
kn n�1

2
nC1

2
1�n

2

�
,

�
s

1

�!
7!

 �
knC nC1

2
0

1 1�n
2

�
,

�
s

s�1

�!
Perform .nC 1/=2 additional surgeries between the bands:

.S; Ev/ 7!

 �
.kC 1/nC 1 nC1

2
nC3

2
1

�
,

�
s

s�1

�!
Slide B2 over B1 repeatedly .nC 1/=2 times:

.S; Ev/ 7!

 �
.kC 1/nCm 0

1 1

�
,

 
s

s�
nC3

2

!!
where k D 0; : : : ; n� 1 and mD .nC 1/=2� 2

P.nC1/=2
iD1

i � 1. If .nC 1/=2 is even,
then mD 1� .nC 1/2=4, while if .nC 1/=2 is odd then mD 2� .n2C 1/=2. This is
the twist knot with .kC 1/nCm twists. Untie this knot by a single surgery as shown
in Figure 35. Put this into a separated dihedral surgery presentation by untying the
distinguished surgery component by surgery in ker � . We obtain a separated dihedral
surgery presentation where all surgery components in ker � have linking number zero
not only with the knot, but also with the distinguished surgery component.

5.1.2 Torus knot presentation By constructing complete sets of base knots with
cardinality n in previous sections, we proved Corollary 4 which states that two knots
are �–equivalent if and only if they have the same coloured untying invariant. As
calculated by Moskovich [16] (see also Litherland and Wallace [14]), the left-hand
..2kC 1/n; 2/–torus knots of Figure 5, with k D 0; : : : ; n� 1, have coloured untying
invariant k mod n and thus realize all possible values of the coloured untying invariant.
Thus we have:
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ts

t

s

8̂̂̂̂ˆ̂̂̂̂̂̂<̂̂ˆ̂̂̂̂̂̂ˆ̂̂̂:.kC 1/nCm half-twists

� � �

T

Figure 35: Untying the twist knot

Corollary 17 The knots depicted in Figure 5 (the left-hand ..2kC1/n; 2/–torus knots
with the given colouring for k D 0; : : : ; n� 1) comprise a complete set of base-knots
for D2n .

The surgery presentation of the branched dihedral covering and of the covering link
which this picture gives is:

Bk

with the thick line denoting nC 1 parallel strands and with

L

L

L � � � L

being the lift of the covering link, slotted into the lift of the torus knot at the dotted
line, where the strands of the covering link of the torus knot thread up out of the page
through the holes indicated.
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5.1.3 One knot, different colourings We can choose a complete set of base-knots
as a fixed knot K whose colouring varies. Using the triviality of v2 , kill a22 by a
series of �–equivalences of the form shown in Equation (4-7). Then for a11 D kn,
slide B2 over B1 counterclockwise repeatedly k times. We obtain:

(5-1) .S; Ev/ 7!

 �
0 n�1

2
nC1

2
0

�
,

�
s

sk

�!
Because a D2n –coloured knot modulo �–equivalence is uniquely characterized by its
surface data, we obtain the minimal complete set of base-knots shown in Figure 6.

5.2 Visualizing dihedral actions on manifolds

The following section deals with an observation due to Makoto Sakuma, that Corollary
17 implies a visualization theorem for dihedral actions on manifolds. We summarize
his argument, essentially contained in [25].

Let D2n act on a closed oriented connected smooth 3–manifold M via orientation
preserving diffeomorphisms f WD .ft ; fs/ where f 2

t D f
n

s D 1, and ftfsft D f
n�1

s .
In fact the assumption that ft and fs are smooth may be replaced by the weaker
assumption that they be locally linear [25, Remark 2.3]. Viewing the 3–sphere as a
one point compactification of R3 , the claim is then that M has a surgery presentation
L� S3 such that L is invariant under 2�=n rotation around the Z–axis and under �
rotation around the X –axis as a framed link.

The proof is by taking the quotient smooth orbifold O WDM=D2n (see eg Cooper,
Hodgson and Kerckhoff [6, Section 2.1]), with singular set †. So prW M�O is a 2n–
fold regular dihedral branched covering space (see eg Rolfsen [22]) with monodromy
given by a representation  W �1.O �†/� D2n induced by the action of f. The
idea is to construct an integral framed surgery link L to make the following diagram
commute:

(5-2)

M
surg. zL/
 ���� S3 � zL

pr 

??y ??ypr�t

†� O  ����
surg.L/

S3 � L[ t..2kC 1/n; 2/

where surg.�/ performs surgery by its argument (note that this is not a map), and
† and t..2k C 1/n; 2/ are the covering loci. The lifted link zL will then have the
required dihedral symmetry by construction, inherited from the dihedral symmetry of
t..2kC 1/n; 2/ lying symmetrically along a torus.
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The link L is constructed as the combination of two framed links L1[L2 such that

(1) The sublink L1 is in ker � , its components are ˙1–framed and are unknotted,
and surg.L1/W S

3 �! S3 takes .t..2k C 1/n; 2/; �t/ to some D2n –coloured
knot .K0; �0/.

(2) For the integral framed sublink L2 , the procedure surg.L2/W S
3 �!O takes

.K0; �0/ to .†; /.

The sublink L1 is given to us by Corollary 17, while L2 may be constructed in complete
analogy with [25, pages 383–384 and Section 4].
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