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Dold spaces in homotopy theory

EUGENIA SCHWAMBERGER

RAINER M VOGT

We study a class of spaces whose importance in homotopy theory was first highlighted
by work of Dold in the 1960s, and that we accordingly call Dold spaces. These are the
spaces that possess a partition of unity supported in sets that are contractible to a point
within the ambient space. Dold spaces form a broader class than spaces homotopy
equivalent to CW complexes, but share the feature that a number of well known weak
equivalences are genuine ones if Dold spaces are involved. In this paper we give a
first systematic investigation of Dold spaces. After listing their elementary properties,
we study homotopy pullbacks involving Dold spaces and simplicial objects in the
category of Dold spaces. In particular, we show that the homotopy colimit of a
diagram of Dold spaces is a Dold space and that the topological realization functor
preserves fibration sequences if the base is a path-connected Dold space in each
dimension. It follows that the loop space functor commutes with realization up to
homotopy for Dold spaces. Finally, we give simple conditions which assure that free
algebras over a topological operad are Dold spaces.

55P99; 55P35, 55P48, 55U10

1 Introduction

A Dold space is a topological space X which admits a partition of unity by functions f˛
whose supports form a locally finite cover of X by sets S˛ for which the inclusion
maps S˛ ,! X are nullhomotopic. Dold spaces include CW complexes and, more
generally, all paracompact locally contractible spaces as well as spaces homotopy
equivalent to such spaces since a space homotopy equivalent to a Dold space is a Dold
space. Other examples are the classifying spaces of wellpointed topological monoids
(see Corollary 5.2), arbitrary nonreduced suspensions and, more generally, the join
X �Y of any two spaces. The suspension of a compact space whose homology is not
finitely generated does not have the homotopy type of a CW complex (as shown in
Example 2.6), so Dold spaces are more general than the standard category of spaces
homotopy equivalent to CW complexes.

The purpose of this paper is to give the first systematic account of Dold spaces. We
start by recalling what is known about them so far.
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A Dold was the first who realized the importance of Dold spaces in homotopy theory:
recall that a map pW E! B is a homotopy fibration or h-fibration, for short, if it is
fiberwise homotopy equivalent to a fibration qW yE!B . In 1963 Dold [5, Theorem 6.3]
proved:

Theorem 1.1 Given a commutative diagram

E
f //

p ��@
@@

@@
@@

E0

p0~~}}
}}

}}
}

B

such that p and p0 are h-fibrations and B is a Dold space then f is a fiberwise homo-
topy equivalence if and only if its restriction to every fiber is a homotopy equivalence.

By explicitly constructing an appropriate partition of unity Dold [5, Proposition 6.7]
also proved:

Proposition 1.2 Each CW complex is a Dold space.

In 1970 and 1971 D Puppe used Dold’s result to show that some important weak
homotopy equivalences are genuine ones. Let k Top� denote the category of based
k –spaces, ie compactly generated not necessarily weak Hausdorff spaces. For X

in k Top� let JX denote the James construction on X in k Top� , ie the based free
topological monoid on X . In [4, Section 17] and [14, Section 3] Puppe gave two
different proofs of the following:

Theorem 1.3 If X is an h–wellpointed, path-connected Dold space, then JX '

�†X .

For a definition of h–wellpointed, see Definition 3.11.

In 1981 Puppe’s student H Meiwes proved a related result. For X in k Top� let
C�n .X / denote the based free algebra over the operad Cn of little n–cubes. P May [10]
constructed a weak equivalence C�n .X / ! �n†nX for X path-connected. In his
thesis [12], Meiwes proved:

Theorem 1.4 If X is an h–wellpointed, path-connected Dold space, then May’s map
C�n .X /!�n†nX is a genuine homotopy equivalence.

Algebraic & Geometric Topology, Volume 9 (2009)



Dold spaces in homotopy theory 1587

In the context of these theorems we share D Puppe’s point of view [14]: “Frequently
a weak homotopy equivalence is considered as good as a genuine one, because for
spaces having the homotopy type of a CW–complex there is no difference and most
interesting spaces in algebraic topology are of that kind. I am not going to argue against
this because I agree with it, but I do think that the methods by which we establish the
genuine homotopy equivalences give some new insight into homotopy theory.”

Indeed, if you try to construct genuine homotopy equivalences between spaces which are
not necessarily of the homotopy type of CW–complexes you do not have the algebraic
side of homotopy theory at your disposal. So these constructions have a different,
more geometric flavor. Algebraic tools like homotopy or homology groups give you a
weak homotopy equivalence. But a weak homotopy equivalence between Dold spaces
need not be a genuine one, because otherwise Dold spaces would be equivalent to CW
complexes by taking CW approximations of them.

Another result illustrating this is G Allaud’s delooping of homotopy equivalences of
1972 [1]. A based map f W X!Y of path-connected spaces such that �f W �X!�Y

is a homotopy equivalence is a weak homotopy equivalence, but it need not be a genuine
one: the loop space of the Warsaw circle is contractible, but the Warsaw circle is not.
Allaud proved:

Proposition 1.5 Let f W X ! Y be a based map of path-connected Dold spaces such
that �f W �X !�Y is a homotopy equivalence. Then f is a homotopy equivalence.

Results about properties of Dold spaces are fairly scarce in the literature. Meiwes and
Puppe proved some technical lemmas, which replaced quasi-fibrations by maps closer
to a fibration and which involved Dold spaces. They needed these results for their
proofs of Theorems 1.4 and 1.3. But one can find only few properties of Dold spaces
in print.

In [4; 14], Puppe just listed the properties he needed in the context of Theorem 1.3. In
[4, (12.7) and (17.3)] he proved:

Proposition 1.6 (1) Let X be a Dold space with a homotopy associative multipli-
cation �W X �X !X with a homotopy unit e . If � induces a group structure
on �0.X /, then � has a homotopy inverse invW X !X .

(2) If X dominates Y and X is a Dold space then so is Y .
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In [14] you find:

Lemma 1.7 (1) The product of two Dold spaces is a Dold space.

(2) The (nonreduced) mapping cone of a map f W X ! Y into a Dold space Y is a
Dold space. The (nonreduced) suspension of any space is a Dold space.

(3) The same holds for the reduced versions provided all spaces are h-wellpointed.

(4) If X and Y are h-wellpointed Dold spaces, then X _ Y and X ^ Y are Dold
spaces.

(5) The colimit of a sequence of h-cofibrations (for a definition see Definition 3.5)
of Dold spaces is a Dold space.

For the proof of Theorem 1.4 Meiwes also needed [12, Satz 3.4]:

Proposition 1.8 The k –fold symmetric product SPk.X /DX k=†k of a Dold space X

is a Dold space.

Let 4 denote the category of finite ordered sets Œn�Df0<1< � � �<ng and order preserv-
ing maps. A simplicial space is a functor X�W 4

op!Top, Œn� 7!Xn . Let rW 4!Top
be the standard simplex functor mapping Œn� to the standard n–simplex �n . The (thin)
topological realization jX�j is defined as a

n�0

Xn ��
n

!
=�

with the relations .X�.˛/.x/; t/ � .x;r.˛/.t// for ˛ 2 4.Œk�; Œl �/; x 2 Xl ; t 2 �k .
If we restrict the relations to injective morphisms ˛ in 4 we obtain the fat realization
kX�k.

An element x 2 Xn is called degenerate if it is in the image of some X�.˛/ with
˛ ¤ id surjective. We call X� proper if the inclusions sXn �Xn of the subspaces of
degenerate elements are cofibrations for all n.

Remark 1.9 Apparently D Puppe knew a lot more about Dold spaces than has appeared
in print:

(1) In [16] G Segal attributed the following result to Puppe: The topological realiza-
tion of a proper simplicial space is a Dold space if the space of 0–simplices is
contractible. (No proof is given.)

(2) Let X� denote a based simplicial space, ie a functor from 4op to Top� , and let
�Y denote the loop space of Y . In discussions with the second author, Puppe
sketched a proof of the fact that k�X�k is homotopy equivalent to �kX�k if
each Xn is a path-connected Dold space.
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Recently Dold spaces entered into work of J Smrekar who proved that the space of
functions between two CW complexes is of the homotopy type of a CW complex if
and only if it is a Dold space [17, Theorem 2.2.1]. The proof uses Allaud’s Proposition
1.5 above; no further interesting properties of Dold spaces are mentioned. Smrekar
also coined the name Dold space.

Overview of the results of this paper In Section 2 we will recall the definition of
Dold spaces and some facts about covers admitting a partition of unity. In Section 3 we
will list a number of elementary facts about Dold spaces including proofs of Proposition
1.6 and the statements of Lemma 1.7. Statement (1) of Lemma 1.7 is fairly obvious.
We extend it to:

Proposition 3.10 The total space of a fibration is a Dold space if the base and the
fibers are Dold spaces.

Statements (2) to (5) of Lemma 1.7 are consequences of:

Proposition 3.4 and Proposition 3.13 The double mapping cylinder of f W A! X

and gW A! Y is a Dold space if X and Y are Dold spaces. If f and g are based
maps and A, X , and Y are h–wellpointed the same holds for the reduced double
mapping cylinder.

In Corollary 3.9 we give an alternative proof of Proposition 1.2.

Good tools for proving results like Theorem 1.3 are homotopy pullbacks and homotopy
pushouts. Homotopy pullbacks of Dold spaces have particularly nice properties. With
the exception of one statement, The cube theorems 4.8, we will prove them in Section 4.
We demonstrate their usefulness by giving comparatively short proofs of Proposition
1.5 and an extension of Theorem 1.3.

Homotopy pullbacks and homotopy pushouts will also be used in the study of simplicial
Dold spaces in Section 5. We first prove a useful extension of Remark 1.9 (1) due to
D Puppe and communicated to us by Meiwes [13]:

Proposition 5.1 If X� is a simplicial space such that X0 is a Dold space, then kX�k
is a Dold space. If, in addition, X� is proper, then jX�j is a Dold space.

From this we deduce:

Algebraic & Geometric Topology, Volume 9 (2009)
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Proposition 5.3 and Proposition 5.4 The homotopy colimit of a diagram of Dold
spaces is a Dold space. The reduced homotopy colimit of a diagram of h–wellpointed
Dold spaces is a Dold space.

We then give a characterization of Dold spaces. For a based space .X;x0/ let Sing0
�X

denote the simplicial space whose n–th space Sing0
nX is the space of maps .�n; �n

0
/!

.X;x0/, where �n
0

is the 0–skeleton of the n–simplex �n . The evaluation maps
Sing0

nX ��n!X induce a map

evW kSing0
�Xk!X:

Proposition 5.6 A path-connected based space X is a Dold space if and only if
evW kSing0

�Xk!X is a homotopy equivalence.

We use this to show:

Proposition 5.17 Given a commutative diagram of based simplicial spaces

A�
f� //

q�

��

E�

p�

��
B�

g� // X�

which is a homotopy pullback for each Œn� 2 ob4, then

kA�k
kf�k //

jjq�j

��

kE�k

kp�k

��
kB�k

kg�k // kX�k

is a homotopy pullback, provided each Bn and each Xn is a path-connected Dold
space.

Remark 1.9 (2) is an immediate consequence.

In Section 6 we apply these results to algebras over an operad P in the categories
k Top and k Top� of k –spaces respectively based k –spaces. We call P reduced if
P.0/ consists of a single element. If X is a P–space and P is reduced, the single
element of P.0/ determines a basepoint in X . Let P Top be the category of P–spaces.
The forgetful functors

U W P Top! k Top
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and, if P is reduced,
U �W P Top! k Top�

have left adjoints

P W k Top! P Top; respectively, P�W k Top�! P Top :

We show:

Proposition 6.3 If P is an operad such that each P.n/=†n is a Dold space and
X 2 k Top is a path-connected Dold space, then P.X / is a Dold space.

Proposition 6.4 If X 2 k Top� is an h–wellpointed path-connected Dold space, then
P�.X / is a Dold space for each reduced operad P.

Proposition 1.8 is an easy consequence of Proposition 6.3.

We close with a remark about function spaces. We had an email exchange with J Smrekar
about function space properties of Dold spaces. They turned out to be so restrictive
that we did not include them in this paper. In fact, the category of Dold spaces is rather
badly behaved with respect to function spaces. In particular, loop spaces of Dold spaces
need not be Dold spaces (as shown in Example 5.15).

Prerequisites The reader is supposed to be familiar with the basic properties of
fibrations, cofibrations and simplicial spaces. An excellent reference for fibrations,
cofibrations, h–fibrations and h–cofibrations is tom Dieck, Kamps and Puppe [4]. For
basic properties of simplicial spaces and their realizations we recommend May [10,
Sections 11 and 12; 11, Appendix]. Boardman and Vogt [2, Appendix] may also
be helpful. For Section 6 some knowledge of operads and their algebras is required,
but Sections 1 and 2 of [10] will suffice. We will rely on Theorem 1.1 and the first
cube theorem 4.8, but we will not prove them. Neither will we prove the second cube
theorem 4.8, which we include because it contains a Dold space version. Proofs of the
first cube theorem and the first part of the second cube theorem as well as more details
about homotopy pushouts and pullbacks can be found in Mather [9].

Acknowledgments We thank A Hatcher for an email exchange about Example 2.6
and J Smrekar for an email exchange about function space properties of Dold spaces
and suggesting the name “Dold space”. We are indebted to E Floyd and W Floyd for
contributions to Section 4. Most of all we are indebted to the referee who generalized
Hatcher’s Example 2.6 and made a large number of very helpful suggestions about the
organization of the paper and the explicit formulations of parts of the abstract and the
introduction.
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2 Dold covers

In this section we recall the basic definitions and list results related to coverings.

Let faj I j 2 J g denote a set of elements of RC D fx 2RIx � 0g. We define

X
j2J

aj D sup

(X
j2E

aj I E � J finite

)
:

Definition 2.1 A partition of unity on a space X is a set of maps ffj W X!Œ0; 1�I j 2J g

such that X
j2J

fj .x/D 1 for all x 2X:

Definition 2.2 Let X be a space. A subset A� X is called ambiently contractible if
the inclusion A!X is nullhomotopic.

Definition 2.3 Let U D fU˛I˛ 2Ag be a cover of X .

(1) U is called locally finite if each x 2X has a neighborhood V such that V \U˛¤

∅ for only finitely many ˛ 2A.

(2) A numeration of U is a partition of unity ff˛I˛ 2 Ag on X such that the set
fSupp.f˛/I˛ 2Ag is locally finite and Supp.f˛/� U˛ for all ˛ 2A. (Recall,
the support Supp.f / of a map f W X ! I is the closure of f �1.�0; 1�/.) If U
admits a numeration, it is called a numerable cover.

(3) U is called an ambiently contractible cover if each U˛ is ambiently contractible.

(4) U is called a Dold cover if it is numerable and ambiently contractible.

Definition 2.4 A space X is called ambiently locally contractible if it has an ambiently
contractible open cover. We call X a Dold space if it has a Dold cover.

Remark In the literature the term “weakly contractible” or “semilocally contractible”
is used for what we call “ambiently contractible”. In [4] D Puppe uses the term
“numerierbare nullhomotope Überdeckung” (numerable nullhomotopic cover) for a
Dold cover and in [14] the term “numerably contractible space” for a Dold space. For
Allaud a Dold space is a space which is “locally contractible in the large” [1] and for
Meiwes a space which is “numerierbar lokal zusammenziehbar” (numerably locally
contractible) [12].
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Examples 2.5 (1) Each contractible space is a Dold space.

(2) The unreduced suspension of an arbitrary space is a Dold space.

(3) More generally, the join of any two spaces is a Dold space.

(4) Each paracompact ambiently locally contractible space is a Dold space.

(5) By [7, Theorem II.3] each paracompact locally equiconnected space is a Dold
space.

(6) The product of two Dold spaces is a Dold space.

(7) Each CW–complex is a Dold space (see Corollary 3.9).

(8) The classifying space of an h–wellpointed topological monoid is a Dold space
(see Corollary 5.2).

We will show in Corollary 3.3 that a space of the homotopy type of a Dold space is a
Dold space. So the standard category of spaces homotopy equivalent to CW complexes
is a subcategory of the category of Dold spaces. The following example shows that the
latter is larger than the former.

Example 2.6 (1) Let X be the unreduced suspension of a compact space Y with
H�.Y / not finitely generated (eg take Y D f1

n
I n 2Ng[ f0g �R). Then X is

a Dold space which is not homotopy equivalent to a CW complex.

(2) A weak homotopy equivalence between Dold spaces need not be a genuine one.

Proof (1) Let f W X !Z be any map into a CW complex Z . Since X is compact
f factors through a finite subcomplex A � Z , and f�W H�.X /! H�.Z/ factors
through H�.A/. Since H�.X / is not finitely generated but H�.A/ is, the map f�
cannot be injective and hence f cannot be a homotopy equivalence.

(2) If qW xX!X is a CW approximation of X , then q is a weak homotopy equivalence,
but not a genuine one.

We will make use of the following results.

Lemma 2.7 [3, page 347] If ffj ; j 2 J g is a partition of unity on X , then
ff �1

j .�0; 1�/I j 2 J g is a numerable cover of X .

Lemma 2.8 [3, page 349] Let ffj W X ! RCI j 2 J g be a set of maps such that
U D ff �1.�0;1Œ/I j 2 J g is a locally finite cover of X , then U is a numerable cover.
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Corollary 2.9 The following are equivalent:

(1) X is a Dold space.

(2) X has a partition of unity ffj I j 2 J g such that ff �1
j .�0; 1�/I j 2 J g is an

ambiently contractible open cover of X .

(3) there is a set of maps ffj W X !RCI j 2 J g such that ff �1
j .�0;1Œ/I j 2 J g is

a locally finite ambiently contractible cover of X .

Proposition 2.10 Let U D fU˛I˛ 2 Ag be a cover of X by Dold spaces. Suppose
that U has a numerable refinement V D fVj I j 2 J g, ie a numerable cover of X such
that each Vj is contained in some U˛ . Then X is a Dold space.

Proof Let ffj I j 2 J g be a numeration of V . Since each U˛ is a Dold space there
are partitions of unity

fg˛;k W U˛! I I k 2K˛g

such that fSupp.g˛;k/I k 2K˛g is locally finite and Supp.g˛;k/ is contractible in U˛
and hence in X for all k 2K˛ .

Choose a function ˇW J !A such that Vj �Uˇ.j/ . For k 2Kˇ.j/ define fj ;k W X !

Œ0; 1� by

fj ;k.x/D

�
fj .x/ �gˇ.j/;k.x/ for x 2 Supp.fj /;

0 for x 2Xnf �1
j .�0; 1�/:

Then fj ;k is well-defined and continuous, because Supp.fj / and Xnf �1
j .�0; 1�/ are

closed in X . The collection ffj ;k I j 2 J; k 2Kˇ.j/g is a partition of unity and

f �1
j ;k .�0; 1�/D f

�1
j .�0; 1�/\gˇ.j/;k.�0; 1�/� Supp.gˇ.j/;k/:

Hence f �1
j ;k
.�0; 1�/ is contractible in X . Now apply Corollary 2.9.

The numeration condition on the cover U in Proposition 2.10 is essential as the following
example shows.

Example 2.11 Let X �R2 be the cone on M D f.0; 0/g[f.1
n
; 0/I n 2Ng with cone

point .0; 1/. Then X is a Dold space. Now let

Y D .X tX /=.0; 0/� .0; 0/:

The two copies of X form a closed cover of Y , but Y is not a Dold space, because no
open neighborhood of .0; 0/ is contractible in Y .
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3 Elementary properties

Suppose U �X is ambiently contractible in X to a point x0 , then U must lie in the
path-component of x0 . We obtain:

Proposition 3.1 (1) X is a Dold space if and only if its path-components are open
and Dold spaces.

(2) If X D j̀2J Xj , then X is a Dold space if and only if each summand Xj is a
Dold space.

This observation allows us to restrict our attention to path-connected Dold spaces.

Proposition 3.2 A space Y dominated by a Dold space X is itself a Dold space.

Proof [4, page 235] Let fV�I� 2 ƒg be a Dold cover of X , and f W X ! Y and
gW Y ! X be maps such that f ı g ' idY . Then fg�1.V�/I� 2ƒg is a numerable
cover of Y and each g�1.V�/ is contractible in Y because

g�1.V�/
g // V� �X

f // Y

is nullhomotopic and homotopic to the inclusion g�1.V�/� Y .

Corollary 3.3 If X and Y are homotopy equivalent then X is a Dold space if and
only if Y is a Dold space.

Proposition 3.4 Given a diagram

X A
foo g // Y

with X and Y Dold spaces, then the double mapping cylinder �M .f;g/ is a Dold
space.

Proof �M .f;g/ D .X tA � Œ0; 1� t Y /= � with .a; 0/ � f .a/ and .a; 1/ � g.a/.
Let U be the image of X tA� Œ0; 1Œ in �M .f;g/ and V the image of A� �0; 1�tY /.
Then fU;V g is a numerable cover of �M .f;g/ by Dold spaces, because U 'X and
V ' Y . Hence �M .f;g/ is a Dold space by Proposition 2.10.

Algebraic & Geometric Topology, Volume 9 (2009)
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Definition 3.5 A map f W A!X is called an h–cofibration if there is a commutative
triangle

A
f

~~~~
~~

~~
~ j

��@
@@

@@
@@

X
h // Y

with j a cofibration and h a homotopy equivalence under A. Dually, an h–fibration
is a map f W A!X which is homotopy equivalent over X to a fibration E!X .

Corollary 3.6 Let

A
f //

g

��

B

��
C // X

be a pushout square with f an h–cofibration and B and C Dold spaces. Then X is a
Dold space.

Proof Since f is an h–cofibration, the canonical map �M .f;g/!X is a homotopy
equivalence.

Corollary 3.7 (1) For any map f W A! X into a Dold space X , the unreduced
mapping cone is a Dold space.

(2) If f W A!X is an h–cofibration and X a Dold space, then X=f .A/ is a Dold
space.

Proposition 3.8 Let X0

f0 //X1

f1 //X2

f2 // � � � be a sequence of maps of Dold
spaces. Then

(1) the mapping telescope TX D .
`

n�0 Xn � I/=� with .x; 1/ 2Xn � I related
to .fn.x/; 0/ 2XnC1 � I is a Dold space.

(2) if each fi is an h-cofibration, colim Xn is a Dold space.

Proof TX is the double mapping cylinder of`
n even Xn

`
n�0 Xn

.gn/oo .hn/ //
`

n odd Xn

with gn.x/D

�
x n even;
fn.x/ n odd;

hn.x/D

�
fn.x/ n even;
x n odd:

If all the fn are h-cofibrations, the canonical map TX ! colim Xn is a homotopy
equivalence.
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Corollary 3.9 [5, Proposition 6.7] Each CW–complex X and hence each space of
the homotopy type of a CW–complex is a Dold space.

Proof Let X .n/ denote the n–skeleton of X . Then X .n/ is a Dold space by induction
on n using Corollary 3.6. Hence X is a Dold space by Proposition 3.8 (2).

Proposition 3.10 Let pW E ! B be any map. Assume that B and the homotopy
fibers F.p; b/ of p over b are Dold spaces for all b 2 B , then E is a Dold space.

Proof By Proposition 3.1 we may assume B is path-connected, and by Corollary 3.3
we may assume pW E!B is a fibration whose fiber F over a fixed b0 2B is a Dold
space. Let U D fU�I� 2ƒg be an open Dold cover of B and ff�W B! Œ0; 1�I� 2ƒg

a numeration of U , and let V D fV ;  2 �g with fg W F ! Œ0; 1�I  2 �g be the
corresponding data for F . Let

H�W U� � I ! B

be a homotopy from the inclusion i�W U� �B to the constant map to b0 . Since p is a
fibration there is a homotopy K�

p�1.U�/� 0
� � // E

p

��

T
p�1.U�/� I

H�ı.p�id/ //

K�

77oooooooooooooooo

B

from the inclusion j�W p
�1.U�/ � E to a map p�1.U�/

k�
! F � E . Define maps

��; W E! Œ0; 1� by

��; .e/D

�
f�.p.e// �g .k�.e// e 2 p�1.Supp.f�//;
0 e … p�1.f �1

�
.�0; 1�/:

Since the k�1
�
.g�1
 .�0; 1�//,  2 � , cover p�1.U�/ and since the p�1.f �1

�
.�0; 1�//

� p�1.U�/, � 2ƒ, cover E ,

W D fW�; D �
�1
�; .�0; 1�/I� 2ƒ;  2 �g

covers E . This cover is locally finite and ambiently contractible: K� deforms W�;

into k�.W�; /� V � F , and V is ambiently contractible in F . Let e 2E . Then
there is an open neighborhood U of p.e/ such that U \U� D∅ for all but finitely
many �1; : : : ; �n . So p�1.U / only meets p�1.U�i

/, i D 1; : : : ; n. Each k�i
.e/ has
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an open neighborhood Vi such that Vi\V D∅ for all but finitely many i1; : : : ; iri
.

Then

p�1.U /\

n\
iD1

k�1
�i
.Vi/\ �

�1
�; .�0; 1�/¤∅

only if .�;  / 2 f.�i ; ij /I 1� i � n; 1� j � rig.

So E is a Dold space by Corollary 2.9.

We now treat the based case.

Definition 3.11 We call a based space .X;x0/ wellpointed, if the inclusion fx0g �X

is a closed cofibration, and h-wellpointed if it is an h-cofibration.

The condition that X be wellpointed can be achieved functorially by a whiskering
process.

The whiskering process 3.12 For a based space .X;x0/ we define XI D .X t I/=

.x0� 1/ and choose 02 I as basepoint of XI . Then XI is wellpointed, and the natural
map qX W XI !X mapping I to x0 is a homotopy equivalence. If X is h-wellpointed,
qX is even a based homotopy equivalence.

Proposition 3.13 Given a diagram

X A
foo g // Y

of h-wellpointed spaces and based maps with X and Y Dold spaces. Then the reduced
double mapping cylinder M.f;g/ is a Dold space.

Proof By the whiskering process we may assume that A; X , and Y are wellpointed,
because the reduced double cylinder construction is compatible with based homotopies.
For wellpointed spaces the inclusion

I ! �M .f;g/; t 7! .a0; t/

of I into the unreduced mapping cylinder is a cofibration. Hence the projection�M .f;g/!M.f;g/ is a homotopy equivalence.

Corollary 3.14 (1) The reduced suspension of an h-wellpointed space is a Dold
space.

(2) The reduced join of h-wellpointed spaces is a Dold space.
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(3) Let ..X˛;x˛0 /I˛2A/ be a family of h-wellpointed Dold spaces. Then
W
˛2A X˛

is a Dold space.

(4) If X and Y are h-wellpointed Dold spaces, then X ^Y is a Dold space.

Proof (1) follows from Proposition 3.13, (2) holds because a reduced join is homotopy
equivalent to a reduced suspension. For (3) note that

`
˛ x˛

0
�
`
˛ X˛ is an h–

cofibration. Hence
W
˛ X˛ Š

`
˛ X˛=

`
˛ x˛

0
is a Dold space by Corollary 3.7. For

(4) we have the cofibration XI _YI !XI �YI . Hence XI ^YI is a Dold space by
Corollary 3.7. Now use that X ^Y 'XI ^YI .

Remark 3.15 Example 2.11 shows that Corollary 3.14 (3) does not hold without some
assumptions on the basepoints.

We finally prove Proposition 1.6 (1) (see tom Dieck, Kamps and Puppe [4, (12.7)]):

Proposition 3.16 Let X have a homotopy associative multiplication �W X �X ! X

with homotopy unit e such that � induces a group structure on �0.X /. Then

(1) the left and right translations lx; rx W X ! X by x 2 X are homotopy equiva-
lences.

(2) if X is a Dold space, the shearing maps

sh1W X �X !X �X; .x;y/ 7! .x;x �y/

sh2W X �X !X �X; .x;y/ 7! .x �y;y/

are homotopy equivalences.

(3) if X is a Dold space, � has a homotopy inverse invW X !X .

Proof (1) Since �0.X / is a group there is an xx 2 X such that xx � x is in the
path-component of e . Since � is homotopy associative we get

lxx ı lx ' lxx�x ' le ' id and similarly lx ı lxx ' id :

(2) Consider the commutative diagram

X �X
sh1 //

p1 ##GG
GG

GG
GG

G X �X

p1{{ww
ww

ww
ww

w

X

where pi is the projection onto the i –th factor. The restriction of sh1 to the fiber
p�1

1
.x/ is left translation by x . Since X is a Dold space, p1 is a fibration, and each lx
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is a homotopy equivalence, the map sh1 is a fiberwise homotopy equivalence by Dold’s
Theorem 1.1.

(3) By (2) there is a fiberwise homotopy inverse ' of sh1 , and x 7! p2 ı'.x; e/ is a
right homotopy inverse map.

4 Homotopy pullbacks and the James construction

The mapping path space of a map gW B!X is the subspace

P .g/D f.!; b/ 2X I
�BI !.1/D g.b/g

of X I �B , where X I is the path space of X . The map

P .g/!X; .!; b/ 7! !.0/

is a fibration. The double mapping path space of two maps f W A!X and gW B!X

P .f;g/D f.a; !; b/ 2A�X I
�BI !.0/D f .a/; !.1/D g.b/g

is then the pullback

P .f;g/DA�X P .g/Š P .f /�X B:

Definition 4.1 A homotopy commutative diagram

X1

F
H)

u //

g

��

Y1

f

��
X0

v // Y0

with commuting homotopy F is called a homotopy pullback if the map

r D .g;F ad;u/W X1 �! P .v; f /�X0 �Y I
0 �Y1;

where F adW X1! Y I
0

is the adjoint of F WX1 � I ! Y0 , is a homotopy equivalence.

It is called a homotopy pushout if the map

.v;F; f /W �M .g; v/! Y0

is a homotopy equivalence.
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To simplify the exposition we restrict ourselves to strictly commuting squares, although
the results also hold for homotopy commutative squares with specified commuting
homotopies. The induced map X1 �!P .v; f / will usually be denoted by r . It factors
as

X1
˛ // P .u/

r1 // P .v;g/ ;

where ˛ is the homotopy equivalence of the standard factorization of u into a homotopy
equivalence followed by a fibration, and the square above is a homotopy pullback if
and only if r1 is a homotopy equivalence.

We start with a result which is a consequence of Proposition 3.10.

Proposition 4.2 Given a commutative diagram

P //

��

X

f

��

||yyy
yy

yy

Q

Y
g //

44hhhhhhhhhhhh
B

with B a path-connected Dold space, whose outer square is a homotopy pullback and
whose inner square is a homotopy pushout, then Q is a Dold space.

Proof If F.f / and F.g/ are the homotopy fibers of f and g respectively, the
homotopy fiber of the induced map r W Q!B is homotopy equivalent to the join F.f /�

F.g/ (eg see Vogt [19, Proposition 5.5]). The result now follows from Proposition
3.10.

Proposition 4.3 Let

X1
u //

f

��

Y1

g

��
X0

v // Y0

be a commutative square.

(1) If v is a homotopy equivalence, then the square is a homotopy pullback if and
only if u is a homotopy equivalence.

(2) If the square is a homotopy pullback, u is a homotopy equivalence, g induces
a surjection of sets of path-components, and Y0 is a Dold space, then v is a
homotopy equivalence.
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Proof Consider the commutative diagram

X1
u //

r
%%K

K

f

��

Y1

g

��

P .v;g/

��

x�

55kkkkkkk

X0
// P .v/

� // Y0

where X0!P .v/!Y0 is the standard factorization of v into a homotopy equivalence
followed by a fibration.

(1) Since v is a homotopy equivalence, so is � . Since the inner square is a pullback
with � a fibration, x� is a homotopy equivalence. Hence u is a homotopy equivalence
if and only if r is a homotopy equivalence.

(2) Since r and u are homotopy equivalences x� is a homotopy equivalence. Hence
each fiber Fy D x�

�1.y/; y 2 Y1 is contractible. Apply Dold’s Theorem 1.1 to the
diagram of fibrations

P .v/
� //

� ##GGGGGGG
Y0

id}}{{
{{

{{
{

Y0

and use the fact that ��1.g.y//Š Fy .

Example 4.4 Proposition 4.3 (2) does not hold if we drop the assumptions on g and
Y0 : let

�C
i // PC // C

be the classical path-space fibration over the Warsaw circle C with contractible PC .
Then

�C
i //

��

PC

��
�

j
// C

is a homotopy pullback, i is a homotopy equivalence, but j is not one.

Proposition 4.5 Let
X1

u //

f

��

Y1

g

��
X0 v

// Y0

be a commutative square and F.u;y/ the homotopy fiber of u over y 2 Y1 .
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(1) If the square is a homotopy pullback, then the induced map

F.u;y/! F.v;g.y//

is a homotopy equivalence for each y 2 Y1 .

(2) If for each y 2 Y1 the map F.u;y/! F.v;g.y// is a homotopy equivalence
and Y1 is a Dold space, the square is a homotopy pullback.

Proof (1) Consider the commutative diagram:

F.u;y/ //

��

P .u/
�1 //

r1
&&MMM

s

��

Y1

g

��

P .v;g/

}}{{
{{

{{

�0

55kkkkkkk

F.v;g.y// // P .v/
�0 // Y0

Since �0 and �1 are fibrations, r1 is a homotopy equivalence over Y1 , inducing a
homotopy equivalence

F.u;y/D ��Y1
P .u/!��Y1

P .v;g/D ��Y1
Y1 �Y0

P .v/

Š ��Y0
P .v/D F.v;g.y//:

(2) The map F.u;y/! F.v;g.y// factors as

F.u;y/D ��1
1 .y/! �0

�1.y/! ��1
0 .g.y//D F.v;g.y//:

The second map is a homeomorphism. Hence r1 is a fiberwise homotopy equivalence
over Y1 by Dold’s theorem.

Corollary 4.6 Let

P
g //

q

��

E

p

��
X

f // B

be a homotopy pullback, let X and the homotopy fibers F.p; b/ of p over all b 2 B

be Dold spaces. Then P is a Dold space.

Proof The homotopy fiber F.q;x/ of q over x 2 X is homotopy equivalent to
F.p; f .x// and hence a Dold space. So P is a Dold space by Proposition 3.10.
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Proposition 4.7 Consider the commutative diagram:

X1
u //

f

��
I

Y1

p //

g

��
II

Z1

h
��

X0
v // Y0

q // Z0

(1) Suppose that II is a homotopy pullback. Then I is a homotopy pullback if and
only if the combined square IC II is a homotopy pullback

(2) Suppose that I and IC II are homotopy pullbacks, that v induces a surjection of
sets of path-components and Y0 is a Dold space, then II is a homotopy pullback.

Proof Consider the commutative diagrams:

P .f /
sI //

r1
&&NNN

�X

��

P .g/
sII //

r2
&&MMM

�Y

��

P .h/

�Z

��

P .v;g/

||zzzzzz

44jjjjjjj
P .q; h/

�Z}}zz
zz

zz

55jjjjjjj

X0
v // Y0

q // Z0

P .f /
sICII //

r3
((PPPP

�X

��

P .h/

�Z

��

P .q ı v; h/

zzvvvvvvv

44iiiiiii

X0

qıv // Z0

We obtain an induced commutative diagram

P .f /
r1

uullllllllllll
r3

**UUUUUUUUUUUUUUU

P .v;g/DX0 �Y0
P .g/

.id;r2/ // X0 �Y0
Y0 �Z0

P .h/Š P .q ı v; h/

(1) We have to show that r1 is a homotopy equivalence if and only if r3 is one. By
assumption r2 is a homotopy equivalence over Y0 . Hence the horizontal map .id; r2/

of the previous diagram is a homotopy equivalence.
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(2) For each x 2X0 we have a commutative diagram

F.f;x/
s0I //

s0ICII &&LLLLLLLL
F.g; v.x//

s0IIwwppppppppp

F.h; q.v.x///

where the maps s0 are the restrictions of the maps s to the fibers. By Proposition 4.5
the maps s0I and s0ICII are homotopy equivalences. Hence s0II is a homotopy equivalence
for each v.x/ 2 Y0 . Since v is surjective on path-components s0II is a homotopy
equivalence for each y 2 Y0 . Now apply Proposition 4.5.

We will also make use of the first one of the two cube theorems:

The cube theorems 4.8 Let

A0
//

��

&&MMMMM A1

��

&&MMMMM

A2
//

��

A3

f

��
B0

//

&&MMM
MMM

B1

&&MMM
MMM

B2
// B3

be a commutative cube.

The first cube theorem If the back and the left faces are homotopy pullbacks and the
top and the bottom faces are homotopy pushouts then the right and the front faces are
homotopy pullbacks.

The second cube theorem Suppose all vertical faces are homotopy pullbacks. Then

(1) the top face is a homotopy pushout if the bottom face is a homotopy pushout.

(2) the bottom face is a homotopy pushout if the top face is a homotopy pushout, f
induces a surjection on path-components, and B3 is a Dold space.

Proof For a proof of the first cube theorem, refer to Puppe [15, Lemma 2] or Mather [9,
Theorem 18]. For the first part of the second cube theorem, refer to Mather [9, Theo-
rem 25].

We now prove Allaud’s result using homotopy pullbacks:

Proposition 1.5 Let f W X ! Y be a based map of path-connected Dold spaces such
that �f W �X !�Y is a homotopy equivalence. Then f is a homotopy equivalence.
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Proof Consider the diagram

�X

I�f

��

// PX

IIPf

��

pX // X

f

��
�Y // PY

pY // Y

where the rows are the usual path-space fibrations. Since �f is a homotopy equivalence
and X is a Dold space, square II is a homotopy pullback by Proposition 4.5. Since PX

and PY are contractible, Pf is a homotopy equivalence. Since Y is a path-connected
Dold space f is a homotopy equivalence by Proposition 4.3.

We next address an extension of Theorem 1.3.

For the rest of this section we work in k Top� , the category of based k –spaces. Let
TMON denote the category of topological monoids and continuous homomorphisms.
The underlying space functor U W TMON! k Top� has a left adjoint

J W k Top�! TMON;

known as the James construction. For .A;�/ 2 k Top� it is given by

JAD

 a
n�1

An

!
=�

with the relation

.a1; : : : ; ai ; : : : ; an/� .a1; : : : ; ai�1; aiC1; : : : ; an/ if ai D �:

The multiplication is defined on representatives by

.a1; : : : ; ak/ � .b1; : : : ; bl/D .a1; : : : ; ak ; b1; : : : ; bl/:

It is associative and has .�/ as neutral element.

A map f W A! B defines a map Jf W JA! JB given on representatives by

Jf .a1; : : : ; an/D .f .a1/; : : : ; f .an//

making J into a functor.
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Let f W A! X be a based map and M.f / the reduced mapping cylinder. Define
J.A; f / to be the pushout

JA�A
m //

��

JA

i
��

JA�M.f / // J.A; f /

where mW JA�A! JA is the multiplication.

Let C.f / denote the reduced mapping cone of f . The projection

JA�M.f /!M.f /! C.f /

induces a map
qW J.A; f /! C.f /:

The following theorem is an extension of Theorem 1.3 and a reformulation D Puppe’s
theorem [14, Theorem 3.1].

Theorem 4.9 Let f W A!X be a based map of h–wellpointed spaces.

(1) If A is a path-connected Dold space, then the commutative diagram

JA
i //

��

J.A; f /

q

��
� // C.f /

is a homotopy pullback.

(2) If A and X are path-connected Dold spaces, then there is a homotopy pullback

J.A; f /
q //

��

C.f /

p

��
� // †A

where pW C.f /!†A is the projection.

We will need:

Lemma 4.10 If A is h–wellpointed and X is a point then J.A; f / is contractible.
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Proof The proof is due to D Puppe [14, Lemma 3.3]. We include it for the reader’s
convenience.

Due to the whiskering process 3.12 it suffices to prove the lemma for wellpointed
spaces, because the James construction is compatible with based homotopies.

Note that M.f /D CA, the reduced cone on A. We filter J.A; f / by word lengths,
ie J.A; f /n is the image of .JA/n �CA in J.A; f /. Then

J.A; f /0 D CA and J.A; f /n=J.A; f /n�1 DA^ � � � ^A^CA:

Since CA is contractible, all these spaces are contractible. Since A is wellpointed
J.A; f /n�1 � J.A; f /n is a closed cofibration. In particular,

J.A; f /n�1
//

��

J.A; f /n

��
� // J.A; f /n=J.A; f /n�1

is a homotopy pushout. So, by induction and the dual of Proposition 4.3 (1),

J.A; f /n! J.A; f /n=J.A; f /n�1

is a homotopy equivalence. Hence each J.A; f /n is contractible. As colimit of a
sequence of cofibrations between contractible spaces J.A; f / is contractible.

Proof of Theorem 4.9 We may assume that A and X are wellpointed.

(1) The proof is essentially due to E Floyd [8, Theorem 6.19]. Consider the commuta-
tive diagram

JA�M.f /

Ip

��

JA�Aoo

IIp1

��

m // JA

��
M.f / Aoo // �

where p and p1 are projection maps. Square I is a pullback of fibrations and hence a
homotopy pullback. Since JA!� is a fibration, square II is a homotopy pullback if
and only if the induced map into the product

sh2W JA�A! JA�A; .w; a/ 7! .w � a; a/

is a homotopy equivalence. The restriction of sh2 to the fiber over a 2 A is right
translation by a, which is homotopic to the identity, because A is path-connected. By
Dold’s theorem sh2 is a homotopy equivalence.
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We now take pushouts of the rows to obtain a commutative cube. Since JA�A!

JA�M.f / and A!M.f / are cofibrations, the top and bottom faces of the cube
are homotopy pushouts. Hence the result follows by the first cube theorem 4.8.

(2) The commutative square

A
f // X

��
A

g // �

induces a map of homotopy pullbacks:

JA //

CC
CC

C
CC

CC
C

��

J.A; f /

��

''NNN
NNN

JA //

��

J.A;g/

��

� //

DD
DD

DD

DD
DD

DD
C.f /

p

''OOOOOOO

� // †A

Since front and left side are homotopy pullbacks, the combined square

JA

I

//

��

J.A; f / //

��
II

J.A;g/

��
� // C.f /

p // †A

is a homotopy pullback. Since I is a homotopy pullback and C.f / is a path-connected
Dold space, II is a homotopy pullback by Proposition 4.7. By the lemma, J.A;g/'�,
hence the result follows.

We obtain Theorem 1.3 as a corollary.

Corollary 4.11 If A is an h–wellpointed, path connected Dold space, there is a
homotopy equivalence

JA!�†A:

Proof Apply the theorem with X D �. Then J.A; f /' � and C.f /D†A:
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5 Simplicial spaces

Let 4 denote the category of finite ordered sets Œn� D f0 < 1 < � � � < ng and order
preserving maps and Mon4 the subcategory of injective order preserving maps. A
simplicial space is a functor X�W 4

op! Top, Œn� 7! Xn , a semisimplicial space is a
functor X� W .Mon4/op! Top.

Let jX�j denote the usual topological realization, also called thin realization of the
simplicial space X� , and kX�k denote the realization of the semisimplicial space X� ,
also called fat realization. Since a simplicial space can be considered as a semisimplicial
one, it has a fat and a thin realization. An element x 2 Xn is called degenerate if
it is in the image of some X�.˛/ with ˛ ¤ id surjective. A simplicial space X� is
called proper if the inclusions sXn �Xn of the subspaces of degenerate elements are
cofibrations for all n.

Proposition 5.1 (1) If X� is a semisimplicial space such that X0 is a Dold space,
then kX�k is a Dold space.

(2) If X� is a proper simplicial space such that X0 is a Dold space, then jX�j is a
Dold space.

Proof The following proof is due to D Puppe. We are indebted to H Meiwes for
sending us the details [13].

(1) Let kXk.n/ denote the n–skeleton of the fat realization. Since kXk.n/�kXk.nC1/

is a cofibration it suffices to show that each kXk.n/ is a Dold space. Assume inductively
that kXk.n�1/ is a Dold space. Recall that

kXk.n/ D kXk.n�1/
[Xn�@4n Xn �4

n;

where 4n is the standard n–simplex. Choose two different points u1 ¤ u2 in the
interior of 4n . For a space Y let C Y D .Y � I/=.Y � 0/ be the cone on Y with
cone-point �, and 'W C Y ! I the map .y; t/ 7! t . Define maps

�i W .4
n;ui/

hi
! .C.@4n/;�/

'
! .I; 0/ i D 1; 2

by choosing based homeomorphisms hi keeping the boundary fixed. The maps

Xn �4
n proj
��!4

n �i
�! I

together with the constant map to 1 on kXk.n�1/ define maps fi W kXk
.n/ ! I ,

and ff �1
1
.�0; 1�/; f �1

2
.�0; 1�/g is a numerable cover of kXk.n/ by Lemma 2.8. The

subspaces
f �1

i .�0; 1�/D kXk.n�1/
[Xn�@4n Xn � .4

n
nfuig/
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deformation retract onto kXk.n�1/ . Hence they are Dold spaces. So kXk.n/ is a Dold
space by Proposition 2.10.

(2) If X is a proper simplicial space the natural map kXk ! jX j is a homotopy
equivalence. Hence jX j is a Dold space.

Corollary 5.2 The classifying space BM of an h–wellpointed topological monoid M

is a Dold space.

Proof Recall that BM D jN�M j where N�M is the nerve of M . Since the classi-
fying space construction is compatible with based homotopies, we may assume that
M is wellpointed by the whiskering process 3.12. (Extend the multiplication of M to
MI by x � t1 D t1 �x D x and maxft1; t2g for x 2M and t1; t2 2 I .) But then N�M

is a proper simplicial space. The result follows from Proposition 5.1 because N0M is
a point.

Proposition 5.3 Let J be a small category and DW J!Top a diagram of Dold spaces.
Then hocolim D is a Dold space.

Proof hocolim D is the topological realization of the proper simplicial space

Œn� 7!
a

i;j2J

Jn.i; j /�D.i/

with Jn.i; j /D f.˛1; : : : ; ˛n/ 2 .morJ /n ; ˛1 ı � � � ı˛nW i ! j g for n> 0 and

J0.i; j /D

�
id i D j ;

∅ i ¤ j:

Its 0–th space is j̀2J D.j / and hence a Dold space.

We now consider the based case. The homotopy colimit of a diagram D in the category
of based spaces is the reduced homotopy colimit hocolim�D which in general is not
homotopy equivalent to hocolim D . Let BJ denote the classifying space of J . The
inclusions of the basepoints define a map

BJ ! hocolim D;

and hocolim�D D .hocolim D/=BJ .

Proposition 5.4 Let DW J ! Top� be a diagram of h–wellpointed Dold spaces and
based maps. Then hocolim�D is a Dold space.

Proof Since the reduced homotopy colimit is compatible with based homotopies, we
may assume that D is a diagram of wellpointed spaces by the whiskering process 3.12.
But then BJ ! hocolim D is a cofibration. Now apply Corollary 3.7.
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Example 5.5 Recall that a closed class C in the sense of Dror Farjoun [6, 2.D.1] is a
full subcategory of the category S� of wellpointed spaces of the homotopy type of a
CW–complex which is closed under homotopy equivalences and reduced homotopy
colimits.

The class of wellpointed Dold spaces is closed under homotopy equivalences and
reduced homotopy colimits, but Dror Farjoun’s results do not generalize to this class:

Let F !E!B be a fibration sequence with path-connected B . If F and E are in a
closed class C , then so is B [6, 2.D.11].

This does not hold for Dold spaces. Consider the usual path-space fibration

�C ! PC ! C

over the Warsaw circle C with a nice point c0 2 C . It is well-known that �C and
PC are contractible and hence Dold spaces, but C is not a Dold space.

We next give a characterization of path-connected Dold spaces which needs some
preparations. For a based space .X;x0/ let Sing0

�X denote the simplicial space whose
n–th space Sing0

nX is the space of maps .�n; �n
0
/! .X;x0/, where �n

0
is the 0–

skeleton of the n–simplex �n . Boundaries and degeneracies are defined as for the
singular functor.

The evaluation maps Sing0
nX ��n!X; .�; t/ 7! �.t/ induce a map

evW kSing0
�Xk!X:

Proposition 5.6 A path-connected based space X is a Dold space if and only if
evW kSing0

�Xk!X is a homotopy equivalence.

Remark 5.7 We cannot replace Sing0
�X by Sing�X , the usual topologized singular

functor, because kSing�Xk ' X for any X : the maps Œn� ! Œ0� in 4 induce a
simplicial map ��W c�X!Sing�X from the constant simplicial space on X to Sing�X .
Since each �n is a homotopy equivalence k��kW kc�Xk! kSing�Xk is a homotopy
equivalence, and X ' kc�Xk.

We postpone the proof of Proposition 5.6 a little.

Let pW E!X

be a map of based spaces with path-connected X and F.p/ the homotopy fiber of p

over the basepoint x0 . With p we associate a map

q�W E�.p/! Sing0
�X
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of simplicial spaces as follows: Let C4n denote the cone on 4n with cone point c0 .
We define

En.p/D f.e; w/ 2E �Top..C4n;4n
0/; .X;x0//I w.c0/D p.e/g:

Boundaries and degeneracies are defined by the corresponding maps of the standard
simplices just like for the singular functor. We define

qnW En.p/! Sing0
nX; .e; w/ 7! wj4n :

Let Ln �4
n be the union of edges joining the i –th with the .i C 1/–st vertex of 4n .

Since Ln �4
n is a strong deformation retract and the inclusion is a cofibration there

is a fibration and homotopy equivalence

Sing0
nX ! Top..Ln;Ln\4

n
0/; .X;�//Š .�X /n:

Since C4n Š4nC1 we have a similar homotopy equivalence

En.p/! F.p/� .�X /n;

and En.p/ //

qn

��

F.p/� .�X /n

proj
��

Sing0
nX // .�X /n

commutes. Using this it is easy to show that q� W E�.p/! Sing0
�X is a simplicial

object in the category Pull, whose objects are maps and whose maps are commutative
squares which are homotopy pullbacks. A result of V Puppe [15, Theorem] implies

F.p/ //

��

kE�.p/k

kq�k
��

� // kSing0
�Xk

is a homotopy pullback. The horizontal maps are the inclusions of the 0–skeleta.

Let P .p/D f.e; ˛/ 2E �X I I ˛.0/D p.e/g be the mapping path-space of p . The
maps

En.p/�4
n
! P .p/; .e; w; t/ 7! .e; xw/

with xw.s/D w.s; t/ for .s; t/ 2 C4n D .I �4n/=.0�4n/, define a map

uW kE�.p/k �! P .p/:
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We obtain a map of fiber sequences

.5:8/

F.p/ //

id
��

kE�.p/k
kq�k //

u

��
I

kSing0
�Xk

ev

��
F.p/ // P .p/ // X

Since kSing0
�Xk is a Dold space by Proposition 5.1, square I is a homotopy pullback

by Proposition 4.5.

Proof of Proposition 5.6 Since kSing0
�Xk is a Dold space so is X if ev is a homotopy

equivalence. For the converse take E to be a point. Then P .p/ is contractible, and
so is kE�.p/k: Note that En.p/Š Sing0

nC1X , so that E�.p/ is the simplicial based
path-space construction P .Sing0

�X / in Top4
op

whose fat realization kP .Sing0
�X /k is

known to be homotopy equivalent to Sing0
0X D � (eg see Segal [16, page 296]). So u

is a homotopy equivalence. Hence ev is a homotopy equivalence by Proposition 4.3, if
X is a path-connected Dold space.

Corollary 5.9 If X is a path-connected Dold space, then for any based map pW E!X

the maps u and ev of (5.8) are homotopy equivalences.

Remark 5.10 From Corollary 5.9 we obtain an alternative proof of Proposition 3.10.
Let pW E!X be a map, X a path-connected Dold space, and suppose the homotopy
fiber F.p/ is also a Dold space, then E is a Dold space: Consider

kE�.p/k
u
! P .p/

r
!E

with r.e; ˛/D e . The maps u and r are homotopy equivalences. Since E0.p/DF.p/,
the space kE�.p/k is a Dold space by Proposition 5.1, and hence so is E .

We will now apply our set-up to simplicial maps.

Proposition 5.11 Let p�W E� ! X� be a map of based semisimplicial spaces. Let
F.pn/ denote the homotopy fiber of pnW En! Xn . If each Xn is a path-connected
Dold space, then

kF.p�/k //

��

kE�k

��
� // kX�k

is a homotopy pullback.
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Proof We apply our construction to each map pnW En ! Xn . This gives us bi-
semisimplicial spaces, ie functors

X�˘W .Mon4/op
� .Mon4/op

! Top; .Œk�; Œn�/ 7!Xkn:

Since our construction is natural we have a commutative diagram of semisimplicial
spaces

F.p�/ //

id
��

kE˘.p�/k //

u�

��

kSing0
˘X�k

ev�
��

F.p�/

id
��

P .p�/ //

r�

��

X�

id
��

F.p�/ // E�
p� // X�

where the realizations are taken with respect to ˘. The vertical maps are homotopy
equivalences in each degree and hence induce homotopy equivalences of fat realizations.
So it suffices to show that

kŒk� 7! F.pk/k //

��

kŒk� 7! kE˘.pk/k k

��
� // kŒk� 7! kSing0

˘Xkk k

is a homotopy pullback. For this we study the map

qn;k W En.pk/! Sing0
n.pk/

of bisemisimplicial spaces. Since its total fat realization is independent of the order
in which we realize, we may first realize with respect to k and obtain a map of
semisimplicial spaces

xqnW kEn.p�/k! kSing0
nX�k

Claim xqn is a semisimplicial object in Pull, ie

kEn.p�/k
d i

//

xqn
��

kEn�1.p�/k

xqn�1
��

kSing0
nX�k

d i
// kSing0

n�1X�k

is a homotopy pullback for each n and i .

Proof Let j ¤ i . There is a strong deformation retraction of C4n to 4n[
S
vj
Œc0; vj �,

where Œc0; vj � is the line from the cone point c0 to the j –th vertex vj of 4n . This
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deformation retraction can be chosen compatibly with d i yielding a commutative
square

En.pk/ //

d i

��

F.pk/�Sing0
nXk

id�d i

��
En�1.pk/ // F.pk/�Sing0

n�1Xk

whose horizontal maps are homotopy equivalences. Since the fat realization preserves
products up to homotopy, we obtain a commutative diagram

kEn.p�/k //

d i

��

kF.p�/k� kSing0
nX�k

id�d i

��
kEn�1.p�/k // kF.p�/k� kSing0

n�1X�k

whose horizontal maps are homotopy equivalences. So it suffices to show that

kF.p�/k� kSing0
nX�k

id�d i
//

proj
��

kF.p�/k� kSing0
n�1X�k

proj
��

kSing0
nX�k

d i
// kSing0

n�1X�k

is a homotopy pullback. But this is evident. This proves the claim.

We now apply V Puppe’s result [15] again: Since kF.p�/k is the 0–skeleton of
kŒn� 7!En.p�/ k, we obtain a homotopy pullback:

kF.p�/k //

��

kE˘.p�/k

��
� // kSing0

˘X�k

This completes the proof of Proposition 5.11.

As an immediate consequence we obtain:

Proposition 5.12 Let X� be a based semisimplicial space such that each Xn is a
path-connected Dold space. Then there is a canonical homotopy equivalence

k�X�k!�kX�k:

In particular, �kX�k is a Dold space if �X0 is a Dold space (eg if X0 is based
contractible). Here �X� is the semisimplicial space Œn� 7!�Xn .
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Proof Let � denote the semisimplicial point. Apply Proposition 5.11 to the map
p�W � !X� . Since F.p�/D�X� and k � k is contractible, the statement follows.

Remark 5.13 The proofs of the previous two propositions are based on ideas of
D Puppe who sketched a proof of Proposition 5.12 to the second author during a private
conversation. Instead of Sing0

�X Puppe used the nerve N��M X of the Moore loop
space �M X of X . There is a simplicial map [18, Lemma 2.8]

˛�W N��M X ! Sing0
�X

which is degreewise a homotopy equivalence inducing a homotopy equivalence

k˛�kW kN��M Xk! kSing0
�Xk:

We note that N��M X is proper if X is wellpointed, because �M X is wellpointed
respectively h-wellpointed if X is [4, (11.3)].

The remark and the whiskering process 3.12 imply:

Proposition 5.14 If X is an h–wellpointed path-connected space, then X is a Dold
space if and only if ev ıj˛�jW B�M X !X is a based homotopy equivalence, where
B is the classifying space functor.

In general, loop spaces of Dold spaces need not be Dold spaces as the following
example shows:

Example 5.15 Q with the subspace topology of R is not a Dold space. Let N�Q
denote the nerve of .Q;C/. Since .Q;C/ is a topological group there is a homotopy
equivalence Q!�kN�Qk. Hence �kN�Qk is not a Dold space but kN�Qk is one.

We can show:

Proposition 5.16 If X is a path-connected h-wellpointed Dold space, then �†X is a
Dold space.

Proof By the whiskering process 3.12 we may assume that X is wellpointed. We
make use of the dual W�.X / of the better known cobar construction. W�.X / is
the simplicial space where Wn.X / is the n–fold wedge of X . The boundary maps
d i W Wn.X /! Wn�1.X / are given by deleting the first respectively the last wedge
summand if i D 0 respectively i D n. For 0 < i < n they are given by applying
the fold map to the i –th and i C 1–st wedge summand. The i –th degeneracy map
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maps .x1; : : : ;xn/ to .x1; : : : ;�;xi ; : : : ;xn/ where � is the basepoint of X . Since
all elements of Wn.X / are degenerate for n� 2 we have jW�.X /j Š†X .

Apply Proposition 5.11 to p�W �!W�.X /. Since W�.X / is proper, we have homotopy
equivalences

kF.p�/k D k�W�.X /k '�kW�.X /k '�jW�.X /j Š�†X:

Since F.p0/ is a point, kF.p�/k and hence �†X is a Dold space.

We close this section with an extension of Proposition 5.11.

Proposition 5.17 Given a commutative diagram of based semisimplicial spaces

A�
f� //

q�

��

E�

p�

��
B�

g� // X�

which is a homotopy pullback in each dimension. If each Bn and each Xn is a
path-connected Dold space, then

kA�k
kf�k //

jjq�j

��

kE�k

kp�k

��
kB�k

kg�k // kX�k

is a homotopy pullback.

Proof From Proposition 5.11 we obtain a diagram

kF.q�/k //

��

''OOOOO
kA�k

$$JJJ
J

��

kF.p�/k //

��

kE�k

��

�

''OOOOOOOOOO // kB�k

$$JJJ
J

� // kX�k

whose front face .F / and back face .B/ are homotopy pullbacks. Since the map
F.q�/ ! F.p�/ is a homotopy equivalence in each dimension by assumption, its
realization is a homotopy equivalence. Hence the left face .L/ is a homotopy pullback.
If .R/ denotes the right face, we find that .B/C .R/ is a homotopy pullback, because
.L/C .F / is one. Hence .R/ is a homotopy pullback by Proposition 4.7.
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6 k–spaces and free algebras over operads

Throughout this section we work in the category k Top of k –spaces and its based
version k Top� . Recall that X is a k –space if a subset U � X is open precisely if
f �1.U / is open for all maps f W C !X and all compact Hausdorff spaces C . The
inclusion functor i W k Top� Top has a right adjoint kW Top! k Top obtained from X

by declaring the subsets U satisfying the condition above as open. Hence the topology
of k.X / is finer than the one of X , and we obtain:

Proposition 6.1 If X is a Dold space so is k.X /.

Since i preserves colimits and k limits, we moreover have:

Proposition 6.2 The results of the previous sections also hold in the category k Top
respectively k Top� .

We include k Top into our considerations because Theorems 1.3 and 1.4 are phrased
in k Top� .

In his proof of Theorem 1.4 Meiwes needed to show that C�n .X / and the k –fold
symmetric product SPk.X /DX k=†k of X are Dold spaces if X is a (h–wellpointed
for C�n .X /) Dold space. He did this by explicitly constructing Dold covers. We will
obtain these results from more general easy to prove facts.

Let P be a topological operad. We call P reduced if P.0/ consists of a single element.
If X is a P–space and P is reduced, the single element of P.0/ determines a basepoint
in X . Let P Top be the category of P–spaces. We have forgetful functors

U W P Top! k Top

and, if P is reduced,
U �W P Top! k Top�:

They have left adjoints

P W k Top! P Top; respectively, P�W k Top�! P Top

defined by

P.X /D
1a

nD0

P.n/�†n
X n and P�.X /D

 
1a

nD0

P.n/�†n
X n

!�
� :
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The relation � in the definition of P�.X / is defined as follows: Let � 2P.0/ denote
the single element and � 2X the basepoint, and let

�i W P.k/! P.k � 1/; ˛ 7! ˛ ı
�
idi ��� idk�i�1

�
si W X

k�1
!X k ; .x1; : : : ;xk�1/ 7! .x1; : : : ;xi ;�;xiC1; : : : ;xk�1/:

Then .�i.˛/;x/� .˛; si.x//.

Proposition 6.3 Let P be an operad such that each P.n/=†n is a Dold space, and let
X 2 k Top be a path-connected Dold space. Then P.X / is a Dold space.

Proposition 6.4 Let X 2 k Top� be an h–wellpointed path-connected Dold space.
Then P�.X / is a Dold space for each reduced operad P.

The proofs make use of the following result of May [10, Theorem 12.2]:

Proposition 6.5 (1) Let X� be a simplicial k –space, then there is a natural homeo-
morphism jP.X�/j ! P.jX�j/.

(2) Let X� be a wellpointed simplicial k –space and P a reduced operad. Then there
is a natural homeomorphism jP�.X�/j ! P�.jX�j/.

May proves the based case, but the proof applies verbatim also to the nonbased case.

Proof of Proposition 6.3 Choose a basepoint x0 2 X and let qX W XI ! X be the
homotopy equivalence of the whiskering process. Since XI is a wellpointed Dold
space the map

ev ı j˛�jW jN��M XI j !XI

of Proposition 5.14 is a based homotopy equivalence. By Proposition 6.5 we have a
sequence of homotopy equivalences (we ignore basepoints)

jP.N��M XI /j ! P.jN��M XI j/! P.XI /! P.X /:

N0�M XI is a single point. Hence

P.N0�M XI /D P.�/D
1a

nD0

P.n/=†n

which is a Dold space. Hence jP.N��M XI /j and P.X / are Dold spaces by Proposi-
tion 5.1, because P.N��M XI / is proper.
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Proof of Proposition 6.4 If X is h–wellpointed the map qW XI ! X is a based
homotopy equivalence. Since the construction P� is compatible with based homotopies
we obtain a sequence of based homotopy equivalences

jP�.N��M XI /j ! P�.jN��M XI j/! P�.XI /! P�.X /:

Since P�.�/D �, all spaces are Dold spaces by Proposition 5.1, as P�.N��M XI / is
proper.

Corollary 6.6 The n–fold symmetric product SPn.X / of a Dold space X 2 k Top is
a Dold space.

Proof Let fX˛I˛ 2 Ag be the set of path-components of X . Then SPn.X / is the
disjoint union of spaces

SPr1
.X˛1

/� � � � �SPrq
.X˛q

/; r1C � � �C rq D n:

By Proposition 3.1 and Examples 2.5 (6) it suffices to prove the result for path-
connected X .

Let Com be the operad for commutative monoid structures, ie Com.r/ is a single
point for each r . Then

Com.X /D
a

n

SPn.X /

is a Dold space by Proposition 6.3. So SPn.X / is a Dold space by Proposition 3.1.

Remark 6.7 Proposition 6.4 provides an alternative proof of Proposition 5.16 in
the category of k –spaces. Let Mon be the operad for monoid structures and X an
h–wellpointed path-connected k –space. Then Mon�.X /D JX is a Dold space by
Proposition 6.4, and JX '�†X by Corollary 4.11.
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