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Chains on suspension spectra

NEIL P STRICKLAND

We define and study a homological version of Sullivan’s rational de Rham complex
for simplicial sets. This new functor can be generalised to simplicial symmetric
spectra and in that context it has excellent categorical properties which promise to
make a number of interesting applications much more straightforward.
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1 Introduction

In this paper we will define and study a functor ˆ from simplicial sets to rational chain
complexes, with the property that H�.ˆ�.X // is just the ordinary rational homology
of X .

Some background is needed to understand why this functor deserves attention. There is
a much simpler functor called N� (normalised simplicial chains) from simplicial sets to
integral chain complexes that computes integral homology, and one can just tensor with
Q to compute rational homology. There is a dual complex N � that calculates integral
cohomology. This is equipped with a natural product N �.X /˝N �.X /! N �.X /

which is commutative up to homotopy but not on the nose. The theory of Steenrod
operations shows that if we work integrally then neither N �.X / nor any reasonable
replacement can be given a strictly commutative product (even with the usual signs).
Rationally, however, the situation is better: in [10] Sullivan developed a rational and
simplicial version of de Rham theory giving a cochain complex ��.X / with a strictly
commutative product that computes the ordinary rational cohomology of X . This
can be used as a starting point for the rich and powerful theory of rational homotopy
(originally introduced by Quillen [8] using slightly different machinery). One can
then stabilise and consider the category SQ of rational spectra, which makes things
considerably simpler: it is well-known that the homotopy category of SQ is equivalent
to the category of graded rational vector spaces. However, we can make things harder
again by considering rational spectra with a ring structure or a group action. To handle
these, we need to improve the homotopy classification of rational spectra to some kind
of monoidal Quillen equivalence of SQ with a suitable model category ChQ of rational
chain complexes.
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1682 Neil P Strickland

Work of this type has been done especially by Greenlees [5], Greenlees and Shipley [6],
Shipley [9] and Barnes [1], leading to very concrete and interesting descriptions
of the homotopy theory of G–spectra for various compact Lie groups G , among
other things. However, some of the arguments involved are more awkward than one
might like, because they do not have a single symmetric monoidal Quillen functor
‰�W SQ ! ChQ , but a zig-zag of Quillen functors whose monoidal properties fit
together in an inconvenient way.

Recently, the author and Stefan Schwede independently discovered a functor ‰� as
above, which promises to simplify many applications such as those of Greenlees et al.
This will be explained in a separate paper by Schwede and the present author. It is
then natural to ask for a calculation of ‰�.T / for various popular spectra T , including
suspension spectra. One of the most intriguing aspects of the story is that the complex
ˆ�.X /D‰�.†

1XC/ has a very natural description in terms of simplicial de Rham
theory, although nothing of that kind is visible in the definition. In particular, we
obtain a chain complex similar in spirit to ��.X / that computes H�.X IQ/ rather
than H�.X IQ/; this cannot reasonably be done by naive dualisation, as ��.X / is
infinite-dimensional (even when X is finite) and has no natural topology. This forms
the main subject of the present paper.

It will be convenient for us to work in a slightly different order from that suggested
by the above discussion. We will give a definition of ˆ�.X / that does use de Rham
theory, and investigate the properties of ˆ using that definition. Eventually, in Theorem
2.10 we will obtain a description of ˆ�.X / as a colimit of groups that do not involve
differential forms. When we have defined ‰ (in a separate paper) it will be clear from
that description that ‰�.†1XC/Dˆ�.X /.

Appendix A contains some recollections and notational conventions about the simplicial
category (especially the theory of shuffles) which will be in place throughout the paper.
Appendix B contains formulae for integrals of polynomials over simplices. These are
surely standard, but we do not know a convenient source.

2 de Rham chains

Let K be a field of characteristic zero. Some of our constructions will seem most
natural for KDQ and others for KDR, but in fact everything works for any K.
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Given a finite set I , we put

zPI DKŒti j i 2 I �

PI D
zPI=

�
1�

X
i

ti

�
;

so PI is the ring of polynomial functions on an algebraic simplex �alg
I
D spec.PI / of

dimension jI j � 1. We also put

WI DKfdti j i 2 Ig
ı�X

i

dti

�
�1

I D PI ˝K WI D PI fdti j i 2 Ig
.�X

i

dti

�
��I D PI ˝Kƒ

�.WI /Dƒ
�
PI
.�1

I /:

Here ��
I

is graded with jti j D 0 and jdti j D 1, and we give ��
I

the standard de
Rham differential, making it a differential graded algebra. All of these constructions
are contravariantly functorial in I : a map ˛W I ! J of finite sets gives a ring map
˛�W PJ !PI with ˛�.tj /D

P
˛.i/Dj ti , and this extends naturally to a map ˛�W ��

J
!

��
I

. If ˛ is just the inclusion of a subset, we write resJ
I

for ˛� .

In particular, the assignment n 7!��
Œn�

is a simplicial object in the category of DGA’s,
so for any simplicial set X we can define

�k.X /D sSet.X; �k
� /

and this gives us a differential graded algebra ��.X /. It is well-known that H���.X /

is the usual cohomology H�.X IK/.

We would like a version of this construction that is well-related to homology rather
than cohomology. The most obvious approach is to dualise and put

ŷ
I;k D HomK.�

k
I ;K/;

giving a chain complex that is covariantly functorial in I . However, this is inconvenient
because ŷ k

I
is most naturally a product (rather than direct sum) of countably many

copies of Q, which introduces numerous technical complications. We will therefore
use a smaller subcomplex ˆI;� �

ŷ
I;� .
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Definition 2.1 We define

W _I D HomK.WI ;K/

‚I;m D PI ˝ƒ
m.W _I /Dƒ

m
PI
.PI ˝W _I /

ˆI;m D

M
∅¤J�I

‚J ;m:

We write iJ for the inclusion ‚J ;m!ˆI;m . We will occasionally use a bigrading on
ˆI;� : we put

ˆI;.p;q/ D

M
jJ jDp

‚J ;pCq

so that ˆI;m D
L

pCqDmˆI;.p;q/ .

We want to interpret ˆI;� as a subcomplex of ŷI;� , and for this we need to define
various bilinear pairings. First, we define a pairing of ƒm.W _

I
/ with ƒm.WI / by the

formula

h˛1 ^ � � � ^˛m; !1 ^ � � � ^!miI D .�1/m.m�1/=2 det.h˛i ; !j i/
m
i;jD1:

This is a perfect pairing, and we will silently use it to identify ƒm.W _
I
/ with ƒm.WI /

_ .
Next, we can extend this linearly over PI to get a pairing

h � ; � iI W ‚I;m˝�
m
I ! PI

given by essentially the same formula. Occasionally we will use the convention
h˛; !i D 0 if ˛ 2‚I;m and ! 2�p

I
with p ¤m.

Remark 2.2 The factor .�1/m.m�1/=2 is inserted to ensure that the term
Q

ih˛i ; !ii

in the determinant comes with the standard sign for converting the term

˛1˝ � � �˝˛m˝!1˝ � � �˝!m

˛1˝!1˝˛2˝!2˝ � � �˝˛m˝!m:to the term

In other words, if we defined the pairing by a diagram in the usual notation of symmetric
monoidal categories, then the sign would come from the twist maps and so would not
need to be inserted explicitly.

We really want a pairing with values in K rather than PI , and for this we need to
integrate.
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Definition 2.3 Given a monomial t� D
Q

i2I t
�i

i , we put nD jI j � 1 and defineZ
I

t� D

�Y
i

�i !

�
=.nC

X
i

�i/! 2K:

This extends to a linear map
R

I W
zPI !K, and one can check (see Lemma B.1) that

it factors through the quotient PI D
zPI=.1�

P
i ti/. It is often convenient to use the

notation �!D
Q

k.�k !/ and t Œ��D t�=�! and j�j D
P

i �i , so that
R

I t Œ��D 1=.nCj�j/!.

Remark 2.4 One can also check (see Lemma B.2) that in the case KDR, the mapR
I W PI !R is just integration over the simplex �I with respect to a natural measure.

Remark 2.5 There is a theory of integration for functions on a space with a measure,
and also a theory of integration for differential forms on a manifold with orientation.
In discussing de Rham cohomology it is more usual to use integration of forms, but
in our application it is painful to keep track of the orientations, so we have chosen to
reformulate everything in terms of integration of functions.

Definition 2.6 We define a pairing

. � ; � /W ˆI;m˝�
m
I !K

.iJ .˛/; !/D

Z
J

h˛; resI
J .!/i:by

In particular, for ˛ 2‚I;m �ˆI;m we just have .˛; !/D
R

I h˛; !i. We let �W ˆI;m!

ŷ
I;m be adjoint to . � ; � /.

Our main results about ˆ are summarised below; proofs will be given in the subsequent
sections of the paper.

Theorem 2.7 (a) The map �I is injective, and the image (which we will identify
with ˆI;� ) is a subcomplex of ŷI;� .

(b) ˆI;� is a covariant functor of I , and the maps ˛�W ˆI;�!ˆJ ;� are quasiiso-
morphisms.

(c) For the singleton 1D f0g we have ˆ1;� DQ (concentrated in degree zero).

Definition 2.8 If X is a simplicial set, we let ˆ�.X / be the coend of the functor
�op
��! ChK given by .n;m/ 7! ZŒXn�˝ˆŒm�;� .

Algebraic & Geometric Topology, Volume 9 (2009)
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Theorem 2.9 ˆ is a lax symmetric monoidal functor from spaces to chain complexes,
with a natural isomorphism H�ˆ�.X / D H�.X IK/. There is a natural K–linear
isomorphism

ˆd .X /D
M

k

Nk.X /˝‚Œk�;d ;

where N�.X / is the group of normalised chains on X .

Theorem 2.10 There is a natural isomorphism

ˆ�.X /D lim
�!

A

Hom. zH�.SA/; zN�.S
A
^XC//;

where A runs over the category of finite sets and injective maps.

3 The differential

We next introduce a differential ıW ˆI;mC1!ˆI;m . This involves interior multiplica-
tion, which we now recall.

Definition 3.1 Let U be a finitely generated free module over a ring R, with dual
U_ D HomR.U;R/. Given u 2 U and a 2 ƒkC1.U_/, we let u ` a 2 ƒk.U_/

denote the unique element such that

hu ` a; vi D .�1/kC1
ha;u^ vi for all v 2ƒk.U /

(using the standard pairings described in Section 2).

Lemma 3.2 (a) If a 2 U_ Dƒ1.U_/ we have u ` aD�hu; ai.

(b) If a 2 ƒp.U_/ and b 2 ƒq.U_/ then u ` .a^ b/D .u ` a/^ bC .�1/pa^

.u` b/.

(c) If u; v 2 U and a 2ƒk.U_/ then u ` .v ` a/C v ` .u ` a/D 0.

(d) If a 2 ƒkC1.U / then u ` a 2 ƒk..U=u/_/ � ƒk.U_/. Moreover, there is a
well-defined multiplication u^ . � /W ƒk.U=u/!ƒkC1.U / and in this context
we again have hu ` a; vi D .�1/kC1ha;u^ vi.

Proof This is fairly standard multilinear algebra and is left to the reader.

Definition 3.3 Suppose we have ∅ ¤ J � I and f 2 PJ and ˛0 2 ƒ
d .W _

J
/, so

iJ .f ˛0/ 2ˆI;d . Note that we have an interior product �1
J
˝PJ

‚J ;d !‚J ;d�1 , so
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we can interpret df ` ˛0 as an element of ‚J ;d�1 . Also, if j 2 J we can interpret
dtj ` ˛0 as an element of ƒd�1..WJ =dtj /

_/Dƒd�1.W _
J nfjg

/. We can thus put

ı0.iJ .f ˛0//D�iJ .df ` ˛0/

D�

X
j2J

iJ ..@f=@tj / dtj ` ˛0/

ı00.iJ .f ˛0//D�
X
j2J

iJ nfjg.resJ
J nfjg.f / dtj ` ˛0/

ı.˛/D ı0.˛/C ı00.˛/:

(Here the second description of ı0.iJ .f ˛0// relies on the choice of a lift of f 2 PJ

to zPJ , but the first description shows that the result is independent of the lift.) This
gives maps

ˆI;.p;q/
ı0 //

ı00

��

ˆI;.p;q�1/

ı00

��
ˆI;.p�1;q/

ı0
// ˆI;.p�1;q�1/

and thus ıW ˆI;m!ˆI;m�1 . We will show that the square above anticommutes.

Proposition 3.4 We have ı0ı00C ı00ı0 D 0 and .ı0/2 D 0 and .ı00/2 D 0 and ı2 D 0,
so that ˆI;.�;�/ is a double complex.

Proof The first three equations follow directly from the definitions, using the second
description of ı0 , the commutation of partial derivatives and the rule u ` .v ` a/C

v ` .u` a/D 0. We can then expand out .ı0C ı00/2 to see that ı2 D 0.

Proposition 3.5 The map �W ˆI;� !
ŷ

I;� is a chain map. Equivalently, for ˛ 2
ˆI;dC1 and ! 2�d

I
we have

.ı.˛/; !/D .�1/dC1.˛; d!/:

In order to prove this, we need a definition and a lemma.

Definition 3.6 For any vector x 2KI we write rx for the operator
P

i xi.@=@ti/ on
zPI . We note that this induces an operation on PI D

zPI=.1�
P

i ti/ if and only ifP
i xi D 0.
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Lemma 3.7 For f 2 PI and
P

i xi D 0 we haveZ
I

rxf C
X

i

xi

Z
Infig

resI
Infig f D 0:

(This is a version of Stokes’ Theorem, but it is easier to prove it directly than to do the
translation necessary to quote it from elsewhere.)

Proof It will suffice to prove this for a monomial f D t Œ�� . Put � D 1=.j�jC n� 1/

and J D fi 2 I j �i > 0g, and suppose that i 2 J . Let ıi W I !f0; 1g be the Kronecker
delta, so @f=@ti D t Œ��ıi � and j�� ıi j D j�j�1. We then have

R
I xi@f=@ti D xi� , but

resI
Infig

f D 0. Suppose instead that i 62 J . Then @f=@ti D 0 but
R

Infig resI
Infig

f DR
Infig t Œ��D � . Thus the first term in the claimed equation is

P
i2J xi� , and the second

term is
P

i 62J xi� , so altogether we have � :
P

I xi D 0.

Lemma 3.8 Proposition 3.5 holds when ˛ 2‚I;dC1 �ˆI;dC1 .

Proof We reduce by linearity to the case where ˛ D f ˛0 and ! D g !0 for some
f;g 2 zPI and ˛0 2ƒ

dC1.W _
I
/ and !0 2ƒ

d .WI /. Put

xi D hdti ` ˛0; !0i D .�1/dC1
h˛0; dti ^!0i 2K;

and observe that
P

i xi D 0 (because
P

i dti D 0). We can thus apply Lemma 3.7 to
the function fg givingZ

I

f : nablax.g/C

Z
I

rx.f / :gC
X

i

xi

Z
Infig

resI
Infig.fg/D 0:

From the definitions we find that

f :rx.g/D .�1/dC1
X

i

f
@g

@ti
h˛0; dti ^!0i

D .�1/dC1
hf ˛0; dg^!0i D .�1/dC1

h˛; d!i:

By a similar argument, we have rx.f /g D hdf ` ˛0; !i. Next, recall that we can
interpret dti ` ˛0 as an element of ƒd .W _

Infig
/, and then we have

xi D hdti ` ˛0; resI
Infig.!0/i:

It follows that

xi resI
Infig.fg/D hresI

Infig.f /dti ` ˛; resI
Infig.!/i;
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and thus that Z
Infig

xi resI
Infig.fg/D .iInfig.resI

Infig.f /dti ` ˛0/; !/:

The lemma now follows by combining these facts with the definition of ı.˛/.

Proof of Proposition 3.5 The element ˛2ˆI;mC1 can be written as
P

∅¤J�I iJ .˛J /,
with ˛J 2 ‚J . By applying Lemma 3.8 to the pairs .˛J ; resI

J
.!// we recover the

statement of Proposition 3.5.

Lemma 3.9 The map
�I W ˆI;k !

ŷ
I;k :

is injective.

Proof If we can prove this for KDR then it will follow for KDQ by restriction,
and then for arbitrary K by tensoring up again. We therefore take KDR for the rest
of the proof.

Consider a nonzero element ˛D
P

J iJ .˛J / of the domain. Choose a set J of largest
possible size with ˛J ¤ 0 in ‚J ;k . As ˛J is nonzero, and ‚J ;k is dual over PJ to
�k

J
, and the restriction map �k

I
!�k

J
is surjective, we can choose ! 2�k

I
such that

the element f0 D h˛J ; resI
J
.!/i 2 PJ is nonzero. We can then choose f 2 PI with

resI
J
.f / D f0 . We also put g D

Q
j2J tj 2 PI and � D fg! 2 �k

I
. We claim that

�I .˛/.�/D .˛; �/¤ 0. Indeed, we have

.iJ .˛J /; �/D

Z
J

h˛J ; resI
J .fg!/i D

Z
J

f 2
0 resI

J .g/:

Now g > 0 on the interior of the simplex �J , and f 2
0

is nonnegative everywhere and
strictly positive on a nonempty open set, so the integral is strictly positive. However, we
also need to consider the other terms .iK .˛K /; �/ for K ¤ J . If K is a strict superset
of J then ˛K D 0 by our choice of J . If K 6� J then we can choose j 2 J nK

and then resI
K
.tj /D 0 so resI

K
.g/D 0. Either way we find that .iK .˛K /; !/D 0. It

follows that .˛; !/D .iJ .˛J /; !/> 0, as required.

Definition 3.10 Let �WI be the vector space freely generated by fdti j i 2 Ig, so
WI D

�WI=
P

i dti . Let fei j i 2 Ig be the obvious basis for �W _
I

, so that W _
I

is
spanned by the elements ei � ej . Next, in the case I D Œn�D f0; 1; : : : ; ng put

z�Œn� D e0 ^ e1 ^ � � � ^ en 2ƒ
nC1. �W _Œn�/

�Œn� D .e1� e0/^ .e2� e0/^ � � � ^ .en� e0/

D .e1� e0/^ .e2� e1/^ � � � ^ .en� en�1/ 2ƒ
n.W _Œn�/�‚Œn�;n:
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It is an exercise to check that the two expressions for �Œn� are the same, and that
ei ^ �Œn� D z�Œn� for all i , and that �Œn� is the unique element of ƒn.W _

Œn�
/ with this

property.

If I is any finite ordered set with jI j D nC 1 then there is a unique ordered bijection
Œn�! I , and we use this to define z�I 2ƒ

nC1. �W _
I
/ and �I 2ƒ

n.W _
I
/. It is easy to

see that ƒnC1. �WI /DK : z�I and ƒn.WI /DK : �I .

Lemma 3.11 We have ı0.�Œn�/D 0 and

ı00.�Œn�/D ı.�Œn�/D�
X

j2Œn�

.�1/j iŒn�nfjg.�Œn�nfjg/:

Proof By inspection of the definitions, this reduces to the claim that

dtj ` �Œn� D .�1/j�Œn�nfjg:

For j D 0 it is most convenient to use the expression

�Œn� D .e1� e0/^ .e2� e1/^ � � � ^ .en� en�1/

and the derivation property

dt0 ` .a^ b/D .dt0 ` a/^ bC .�1/jaja^ .dt0 ` b/:

We have dt0 ` .e1� e0/D�hdt0; e1� e0i D 1 and dt0 ` .ekC1� ek/D 0 for k > 0.
It follows that

dt0 ` �Œn� D .e2� e1/^ .e3� e2/^ � � � ^ .en� en�1/D �Œn�nf0g

as claimed.

For j > 0 we instead use the expression

�Œn� D .e1� e0/^ .e2� e0/^ � � � ^ .en� e0/:

We have dtj ` .ek � e0/D 0 for k ¤ j , so only the term dtj ` .ej � e0/ contributes,
and this has a factor .�1/j�1 because of its position in the list. We also have dtj `

.ej � e0/D�hdtj ; ej � e0i D �1 which gives one more sign change, so dtj ` �Œn� D

.�1/j�Œn�nfjg as claimed.

Lemma 3.12 For any totally ordered set J we have H�.‚J ;�I ı
0/DK : �J .

(The ordering is only used here to fix the sign of the generator.)
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Proof We may assume that J D Œm� for some m, so PJ DKŒt1; : : : ; tm� and WJ D

Kfdt1; : : : ; dtmg. Let fw1; : : : ; wmg be the dual basis for W _
J

and put C.i/� D

KŒti �f1; wig, so that ‚J ;� D
N

i C.i/� . It is not hard to see that this decomposition
is compatible with the differentials, and that in C.i/� we have ı0.f .ti/wi/D f

0.ti/

and ı0.g.ti//D 0. It follows that H�.C.i/�I ı
0/DK : wi , and thus, by the Künneth

theorem, that H�.‚J ;�I ı
0/DK :

V
i wi DK : �J .

We can now calculate the homology of ˆI;� . Note that for j 2 I we have ‚fjg;�DK
(concentrated in degree zero), so we have an element ifjg.1/ 2ˆI;0 , which is a cycle
for degree reasons.

Proposition 3.13 The elements ifjg.1/ are all homologous to each other, and the
corresponding homology class generates H0.ˆI;�I ı/ freely over K. Moreover, we
have Hd .ˆI;�I ı/D 0 for all d ¤ 0.

Proof We may assume that I is totally ordered, which gives an ordering on each
subset J � I and thus defines elements �J as before.

We now regard ˆI as a double complex under ı0 and ı00 , and use the resulting spectral
sequence. We write C� for the E1 page, which is just

C� DH�.ˆI;�I ı
0/DKf�J j∅¤ J � Ig:

The differential is given by Lemma 3.11. Note also that

ƒ�. �W _I /Dƒ�.ei j i 2 I/DKfz�J jJ � Ig

(and here we do have a term for J D ∅). We can make this a differential graded
ring with d.ei/D 1 for all i , and the resulting homology is zero. We can then define
�W ƒ�. �W _

I
/! †C� by �.z�J / D †�J when J ¤ ∅, and �.1/ D �.z�∅/ D 0. It

follows from Lemma 3.11 that � is a chain map. The short exact sequence

K!ƒ�. �W _I / ��!†C�

gives a long exact sequence in homology. This in turn shows that Hi.C�/ D 0 for
i ¤ 0, and gives an isomorphism H0C�DH1.†C�/DK. Our spectral sequence must
therefore collapse at the E2 page, so Hi.ˆI;�/D 0 for all i ¤ 0, and the construction
gives an isomorphism H0.ˆI;�/! K. We leave it to the reader to check that this
sends ifjg.1/ to 1 for all j .
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4 Functorality of ˆI

Definition 4.1 Let � W I ! J be a surjective map. As in Section 2 this gives maps
��W PJ ! PI and ��W WJ !WI and ��W ��

J
! ��

I
. Next, for any map �W I !

Z we define ���W J ! Z by .���/.j / D
P
�.i/Dj �.i/. We then define a map

��W zPI !
zPJ (of abelian groups, not of rings) by ��.t Œ��/ D t Œ��.�C1/�1� . We also

let ��W ƒ�.W _I /!ƒ�.W _
J
/ be dual to the map ��W ƒ�.WJ /!ƒ�.WI /, and we

again write �� for the map

��˝ ��W zPI ˝ƒ
�.WI /

_
! zPJ ˝ƒ

�.WJ /
_:

Remark 4.2 It is easy to check that in all the contexts mentioned we have .��/� D
���� for any pair of surjective maps

I
�
�! J

�
�!K:

Lemma 4.3 The map ��W zPI !
zPJ induces a map ��W PI ! PJ which satisfiesR

J ��.f /D
R

I f .

Proof Put rI D
P

i2I ti , so that PI D
zPI=.1�rI / zPI and rI t Œ��D

P
i.�iC1/t Œ�Cei � .

A straightforward calculation shows that ��.rI t Œ��/D rJ ��.t
Œ��/, and it follows that

�� induces a map PI ! PJ .

For the integral formula, put nD jI j � 1 and mD jJ j � 1, so
R

I t Œ�� D 1=.nC j�j/!

and
R

J t Œ��D .mCj�j/!. It will suffice to show that nCj�j DmCj�j, which is again
straightforward.

Remark 4.4 If we let  W I! 1 be the unique map to a singleton, we find that P1DK
and �.f /D

R
I f . This gives another way to see that

R
J ��.f /D

R
I f .

Lemma 4.5 More generally, for f 2 PI and g 2 PJ we have
R

I f : �
�.g/ DR

J ��.f / :g .

Remark 4.6 One can deduce that in the case KDR, the map �� is given by integrating
over fibres of the map ��W �I !�J of simplices.

Proof We may assume that f D t Œ�� and gD t Œ�� for some �W I!N and �W J!N .
Put nD jI j � 1 and mD jJ j � 1 and � D 1=.nCj�jC j�j/!. Put x� D ��.�C 1/� 1,
so that ��.t Œ��/D t Œx�� and jx�j D j�jC n�m and jx�jC j�jCmD j�jC j�jC n. Put
uj D .x�j ; �j / so ��.t Œ��/t Œ�� D .

Q
j uj /t

Œx�C�� . and so
R

J ��.t
Œ��/t Œ�� D .

Q
j uj /� .
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Next, put Ij D �
�1fj g, and let ƒj be the set of maps �W Ij !N with j�j D�j . The

binomial expansion tells us that

��t
Œ�j �

j D

 X
i2Ij

ti

!Œ�j �
D

X
�2ƒj

t Œ��:

Next, for � 2ƒj put c� D
Q

i2Ij
.�i ; �i/, and then put vj D

P
�2ƒj

c� . Put

ƒD
Y
j

ƒj ' f�W I !N j ��.�/D �g;

and for �D .�j /j2J put c� D
Q

j c�j , and then put v D
P
�2ƒ c� D

Q
j vj . We find

that t Œ����t Œ�� D
P
�2ƒ c�t Œ�C�� . For these terms we have j�j D j��.�/j D j�j and

so
R

I t Œ�C�� D � . It follows thatZ
I

t Œ����.t Œ��/D

�X
�

c�

�
� D

�Y
j

vj

�
�;

so it will suffice to show that uj D vj .

For this, we choose an identification of Ij with the set Œd �D f0; 1; : : : ; dg for some
d � 0. Let Ni be a totally ordered set of size �i , and put N D

`
i2Œd �Ni , ordered so

that Ni comes before NiC1 . Now put D D fi C 1
2
j 0� i < dg and call this the set of

“dividers”; we order N qD so that i C 1
2

comes between Ni and NiC1 . Let M be a
totally ordered set of size �j , and let U be the set of total orderings of N qDqM

that are compatible with the given orderings of N qD and M . Now jN qDj D x�j
and jM j D �j so jU j D .x�j ; �j / D uj . Given an ordering in U we can split M

along the dividers to get a decomposition M DM0q� � �qMd . Here the sets Mi are
consecutive intervals, so the decomposition is completely determined by the numbers
�iDjMi j, which satisfy

P
i �iD�i . Given the decomposition M D

`
i Mi , the order

on N qDqM is determined by the relative order of Mi and Ni within NiqMi ,
for which the number of choices is

Q
i.�i ; �i/D c� . Using this, one can check that

jU j D vj , so uj D vj as required.

Definition 4.7 Let � W I ! I 0 be an arbitrary map of finite sets. Given a subset
J � I and an element ˛ 2 ‚J ;� we can interpret � as a surjection J ! �.J / and
thus get an element i�.J /.��.˛// 2 ˆI 0;� . We define a map ��W ˆI;� ! ˆI 0;� by
��.iJ .˛//D i�.J /.��.˛//.
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Remark 4.8 Let ıj W Œn� 1�! Œn� be the unique increasing map with image Œn� n fj g.
We can now rewrite Lemma 3.11 as

ı00.�Œn�/D ı.�Œn�/D�
X

j2Œn�

.�1/j .ıj /�.�Œn�1�/:

Proposition 4.9 For ˛ 2ˆI;m and ! 2�m
I 0

we have .��.˛/; !/I 0 D .˛; ��.!//I .

Proof We may assume that ˛ D iJ .f ˛0/ for some J � I and some f 2 PJ and
˛0 2 ƒ

m.W _
J
/. Similarly, we may assume that ! D g!0 for some g 2 PI 0 and

!0 2ƒ
m.WI 0/. Put J 0 D �.J / and let � 0 denote the surjective map � W I 0! J 0 . Put

f 0 D � 0�.f / 2 PJ 0 and ˛0
0
D � 0�.˛0/ 2ƒ

m.WJ 0/
_ . Let i W J 0! I 0 be the inclusion,

so that i� 0 D � . Put g0 D i�g and !0
0
D i�! . From the definitions we then have

.��.˛/; !/I 0 D

Z
J 0
hf 0˛00;g

0!00i D h˛
0
0; !
0
0i

Z
J 0
f 0g0:

It is elementary that

h˛00; !
0
0i D h�

0
�.˛0/; i

�.!0/i D h˛0; .�
0/�i�!0i D h˛0; �

�!0i:

Similarly, we see from Lemma 4.5 thatZ
J 0
f 0g0 D

Z
J 0
� 0�.f /i

�.g/D

Z
I 0
f : .� 0/�i�.g/D

Z
I 0
f ��.g/:

The claim follows directly from this.

Corollary 4.10 The map ��W ˆI;�!ˆI 0;� is a chain map and a quasiisomorphism.

Proof We can now identify the above map as a restriction of the map ��W ŷI;�!
ŷ

I 0;� ,
which is dual to the chain map ��W ��

I 0
!��

I
and so is itself a chain map. It follows

from Proposition 3.13 that �� is also a quasiisomorphism.

5 de Rham chains on a simplicial set

We are now in a position to implement Definition 2.8: a simplicial set X gives a functor
�op
��!Ch by .n;m/ 7!ZŒXn�˝ˆŒm�;� , and we write ˆ�.X / for the coend. Thus

ˆ is a functor from simplicial sets to chain complexes that preserves all colimits, and
ˆ�.�n/DˆŒn�;� , and these properties characterise ˆ�.X /. Any generator of ˆd .X /

can be written as x˝˛ for some x 2Xm and ˛ 2ˆŒm�;d , subject to the relations that
x˝ ˛ is a K–linear function of ˛ and ��.x/˝ ˛ D x˝ ��.˛/ for all �W Œn�! Œm�

and ˛ 2ˆŒn�;d . The differential is just ı.x˝˛/D x˝ ı.˛/.
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Recall that �d .X / is the set of maps Xn!�d
Œn�

that are natural for Œn� 2�. There is
a natural pairing

. � ; � /X W ˆd .X /˝�
d .X /!K

given by .x˝˛; !/X D .˛; !.x//Œm� (for x 2Xm and ˛ 2ˆŒm�;d and ! 2�d
X

).

Definition 5.1 We write ŷ�.X /D HomK.�
�.X /;K/, so the above pairing gives a

natural chain map �W ˆ�.X /! ŷ�.X /.

Remark 5.2 In the rest of this paper, we will have a number of constructions related to
ˆI;� that depend on having a total order on I . If I is totally ordered and jI j D nC 1

then there is a unique order-preserving bijection between I and Œn� D f0; : : : ; ng.
Because of this, we can work with the sets Œn� where convenient, and we will transfer
the results to all other finite ordered sets without explicit comment.

We next compare ˆ�.X / with the usual normalised chain complex N�.X /. (We recall
the definition: an n–simplex x 2 Xn is called degenerate if it can be written as ˛�y
for some y 2 Xm and some noninjective map ˛ 2�.Œn�; Œm�/, and Nn.X / is freely
generated over K by the n–simplices modulo the degenerate ones.)

Proposition 5.3 There is a natural chain map �W N�.X /!ˆ�.X / given by �.x/D
.�1/nx˝ �Œn� 2ˆn.X / for all x 2Xn . (Here �Œn� is as in Definition 3.10.)

Proof The formula �.x/D .�1/nx˝�Œn� certainly defines a natural map Xn!ˆn.X /

of sets, which extends linearly to give a map �W Cn.X /DKfXng !ˆn.X / of vector
spaces. We make C�.X / into a chain complex using the alternating sum of face maps
in the usual way. We claim that � is then a chain map. Indeed, we have

�.dix/D �..ıi/
�x/D .�1/n�1.ıi/

�x˝ �Œn�1� D .�1/n�1x˝ .ıi/��Œn�1�:

By taking alternating sums and using Remark 4.8 we obtain

�.dx/D .�1/nx˝

�
�

X
i

.�1/i.ıi/��Œn�1�

�
D .�1/nx˝ ı.�Œn�/D ı.�.x//:

Now suppose that x is degenerate, say xD��.y/ for some surjective map � W Œn�! Œm�

with m<n. Then �.x/D˙��.x/˝�Œn�D˙x˝��.�Œn�/ and ��.�Œn�/2ƒn.W _
Œm�
/D0

so �.x/D 0. There is thus an induced chain map �W N�.X /!ˆ�.X / as claimed.

Proposition 5.4 There is a natural isomorphism of graded groupsM
m

Nm.X /˝‚Œm�;d !ˆd .X /:

(The interaction with differentials is complicated and will not be made explicit.)
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Proof Let E be the subcategory of � which contains all the objects but only the
surjective morphisms, and let i W E! � be the inclusion. We find that ‚ can be
regarded as a functor from E to the category V� of graded vector spaces over K, and
if we ignore the differential then ˆ is just the left Kan extension lim

�!i
‚. Now consider

a simplicial set X and an object V� 2 V� . We can define a functor T W �! V� by
Tn DMap.Xn;V�/ and from the universal properties of coends and Kan extensions
we see that

V�.ˆ�.X /;V�/D Œ�;V��.ˆ;T /D Œ�;V��
�

lim
�!

i

‚;T

�
D ŒE;V��.‚; i�T /:

Now let NDn.X / BE the set of nondegenerate n–simplices in X . There is an evident
map

`
m E.n;m/ � NDm.X / ! Xn sending .˛;x0/ to ˛�x0 , and it is a standard

fact that this is bijective. (The original reference is Eilenberg and Zilber [2, 8.3],
and we have given a proof as Lemma A.10 for convenience.) We therefore have
TnD

Q
m Map.E.n;m/;T 0m/, where T 0mDMap.X 0m;V�/. It follows using the Yoneda

Lemma that

ŒE;V��.‚; i�T /D
Y
m

V�.‚Œm�;�;T 0m/

D

Y
m

V�.ZfX 0mg˝‚Œm�;�;V�/

D V�
�M

m

Nm.X /˝‚Œm�;�;V�

�
:

We now see that ˆd .X / and
L

m Nm.X /˝‚Œm�;d represent the same functor, so
they are isomorphic in a canonical way.

Proposition 5.5 The map �X W N�.X /!ˆ�.X / is a quasiisomorphism.

Remark 5.6 The case where X is a point is easy. One way to prove the general case
would be to show that the functor H�ˆ�.X / is homotopy invariant, has Mayer–Vietoris
sequences, and preserves filtered colimits; then the claim would reduce to the usual
uniqueness argument for homology theories. Our proof will be slightly different; we
will rearrange the uniqueness proof so as not to rely on homotopy invariance, which
instead we deduce as a byproduct.

Proof Put X D fX j�X is a quasiisomorphism g; we must show that this contains all
simplicial sets. It is easy to see that X is closed under coproducts and filtered colimits.
Proposition 3.13 tells us that �n 2 X for all n. Now let Z be an n–dimensional
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simplicial set, and suppose inductively that all .n� 1/–dimensional simplicial sets lie
in X . Let Y be the .n� 1/–skeleton of Z , so we have a pushout square of the form

A� @�n
// i //

f

��

A��n

g

��
Y //

j
// Z

for some set A. This in turn gives a diagram

N�.A� @�n/ //

�

��

N�.A��n/˚N�.Y / //

�˚�

��

N�.Z/

�

��
ˆ�.A� @�n/ // ˆ�.A��n/˚N�.Y / // ˆ�.Z/:

It is standard that the top row is short exact (giving a Mayer–Vietoris sequence in
ordinary homology). Using Proposition 5.4 we see that ˆn.X / can be split naturally
as a direct sum of functors of the form Nm.X / for various m, and it follows that the
bottom row is also short exact. The first two vertical maps are quasiisomorphisms
by the induction hypothesis and Proposition 3.13. It follows that �Z must also be a
quasiisomorphism, so Z 2 X . By induction on dimension and passage to colimits we
see that X contains all simplicial sets, as required.

5.1 Monoidal properties

We now define natural maps

�X ;Y W �
�.X /˝��.Y /!��.X �Y /;

�X ;Y W ˆ�.X /˝ˆ�.Y /!ˆ�.X �Y /;

in several stages.

The cohomological version is straightforward.

Definition 5.7 Given ! 2�d .X / and � 2�e.Y / we define !^� to be the composite

Xn �Yn
!^�
���!�d

Œn� ��
e
Œn�

mult
��!�dCe

Œn�
:

This is natural for n2� and so gives !^� 2�dCe.X �Y /. This construction makes
� into a symmetric monoidal functor from simplicial sets to cochain complexes.
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For the homological version, we need to use the set †.n;m/ of .n;m/–shuffles; see
Appendix A for details of our approach to this and various other preliminaries about
the simplicial category.

Definition 5.8 In the ring PŒn� DKŒt0; : : : ; tn�=.1�
P

i ti/ we put si D
P

j<i tj , so
that s0D 0 and snC1D 1 and PŒn�DKŒs1; : : : ; sn�. This gives a basis fds1; : : : ; dsng

for WŒn� . Recall that �W _
Œn�

has basis e0; : : : ; en , and that W _
Œn�

is the subspace spanned
by the differences ei � ej . We put wi D ei�1� ei , and observe that w1; : : : ; wn is a
basis for W _

Œn�
, with hwi ; sj i D ıij .

The following observation is immediate from the definitions.

Lemma 5.9 If ˛W Œn� ! Œm� is surjective then ˛�.si/ D s˛|.i/ and so ˛�.dsi/ D

ds˛|.i/ .

Lemma 5.10 If .�; �/ 2†.n;m/, then the resulting maps

WŒn�˚WŒm�

.��;��/
�����!WŒnCm�

ƒ�.WŒn�/˝ƒ
�.WŒm�/

��˝��

����!ƒ�.WŒnCm�/˝ƒ
�.WŒnCm�/

mult
��!ƒ�.WŒnCm�/

PŒn�˝PŒm�
��˝��

����! PŒnCm�˝PŒnCm�

mult
��! PŒnCm�

��Œn�˝�
�
Œm�

��˝��

����!��ŒnCm�˝�
�
ŒnCm�

mult
��!��ŒnCm�

are isomorphisms. (We will write ��� for any of these maps.)

Proof The maps

Œn�0
�|

�! ŒnCm�0
�|

 � Œm�0

give a coproduct decomposition by Lemma A.13. The claim follows by Lemma 5.9.

Definition 5.11 Given a nondecreasing surjective map � W Œn� ! Œm�, we define
��W W _

Œm�
!W _

Œn�
by ��.wj /D w�|.i/ . We also write �� for ƒk.��/W ƒ�.W _

Œm�
/!

ƒ�.W _
Œn�
/ or for

��˝ ��W ‚Œm�;� D PŒm�˝ƒ
�.W _Œm�/! PŒn�˝ƒ

�.W _Œn�/D‚Œn�;�:

Remark 5.12 One can check directly from the definitions that h��.˛/; ��.!/iŒn� D
h˛; !iŒm� and ��.u/ ` ��.˛/D ��.u ` ˛/.
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Definition 5.13 Given a shuffle .�; �/W ŒnCm�! Œn�� Œm� we define an isomorphism

��� W ƒ
�.W _Œn�/˝ƒ

�.W _Œm�/!ƒ�.W _ŒnCm�/

by ���.˛˝ˇ/D ��.˛/^ ��.ˇ/. This extends to an isomorphism ‚Œn�;�˝‚Œm�;�!

‚ŒnCm�;� by putting

���.f ˛0˝gˇ0/D �
�.f /��.g/��.˛0/^ �

�.ˇ0/:

Lemma 5.14 For all ˛ 2‚Œn�;d and ˇ 2‚Œm�;e and ! 2�d
Œn�

and � 2�e
Œm�

we have

h���.˛˝ˇ/; ���.!˝ �/iŒnCm� D h���.˛˝ˇ/; �
�.!/^ ��.�/iŒnCm�

D .�1/jˇjj!j��.h˛; !iŒn�/�
�.hˇ; �iŒm�/:

Moreover, the following diagram commutes:

‚Œn�;�˝‚Œm�;�

��� ''OOOOOOOOOOO
� // ‚Œm�;�˝‚Œn�;�

���wwooooooooooo

‚ŒnCm�;�

(Here � is the usual twist map �.a˝ b/D .�1/jajjbjb˝ a.)

Proof Left to the reader.

Definition 5.15 We let sgn.�; �/ 2 f˙1g be the number such that

���.�Œn�˝ �Œm�/D sgn.�; �/�ŒnCm�:

We now recall the standard way to make N� into a symmetric monoidal functor (see
for example May [7, Section 29]).

Definition 5.16 We define a map �W Nn.X /˝Nm.Y /!NnCm.X �Y / (called the
shuffle product) by

�.x˝y/D
X

.�;�/2†.n;m/

sgn.�; �/.��.x/; ��.y//:

There are a number of known generalisations of this construction; for example, the
same formula gives a well-behaved map Rn˝Rm!RnCm for any simplicial ring R� .
As far as we understand it, none of these generalisations can be applied directly to our
situation, but nonetheless we can give a definition along the same lines.
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Definition 5.17 We define �W ˆ�.X /˝ˆ�.Y /!ˆ�.X �Y / by

�..x˝˛1/˝ .y˝ˇ1//D
X

.�;�/2†.n;m/

.��x; ��y/˝��;�.˛1˝ˇ1/

for x 2Xn , y 2 Ym , ˛1 2‚Œn�;� and ˇ1 2‚Œm�;� . To see that this is well-defined and
has good properties, we repeat the definition in a more long-winded form as follows. We
note that a shuffle .�; �/ gives a nondegenerate .nCm/–simplex x�� 2 .�n��m/nCm ,
and thus a basis element in NnCm.�n ��m/. We then define

�W ‚Œn�;�˝‚Œm�;�!ˆ�.�n˝�m/D
M

d

Nd .�n ��m/˝‚Œd �;�

�.˛1˝ˇ1/D
X
�;�

x�� ˝���.˛1˝ˇ1/:by

By a slight change of notation, if J and K are any finite, nonempty, totally ordered sets
we get natural maps �W ‚J ;�˝‚K ;�!ˆ�.�J ��K /. If J � Œn� and K � Œm� then
�J ��K ��n ��m , so we get a map �W ‚J ;�˝‚K ;�!ˆ�.�n ��m/. Adding
these up over all J and K , we get a map �W ˆŒn�;�˝ˆŒm�;�!ˆ�.�n��m/, which
is a natural transformation of functors ���! Ch. Given simplicial sets X and Y

we have functors .���/op ����! V� given by

.p; q; n;m/ 7! ZfXp �Xqg˝ˆŒn�;�˝ˆŒm�;�

.p; q; n;m/ 7! ZfXp �Xqg˝ˆ�.�n ��m/:and

The coend of the first is ˆ�.X / ˝ ˆ�.Y /, whereas the coend of the second is
ˆ�.X �Y /. The maps � therefore induce a well-defined map ˆ�.X /˝ˆ�.Y /!
ˆ�.X �Y /.

Proposition 5.18 The maps �W ˆ�.X /˝ˆ�.Y /!ˆ�.X �Y / make ˆ a symmetric
monoidal functor from simplicial sets to graded vector spaces.

We would also like to know that � is a chain map, but the proof of that fact is long so
we will do it separately in Proposition 5.21.

Proof First, for any .m; n;p/–shuffle .�; �; �/ we can define

���� W ‚Œm�;�˝‚Œn�;�˝‚Œp�;�!‚ŒmCnCp�;�

by the evident analogue of Lemma 5.10. Using this, we define

�3W ˆ�.X /˝ˆ�.Y /˝ˆ�.Z/!ˆ�.X �Y �Z/

�3.x˝˛1˝y˝ˇ1˝z˝1/D
X
�;�;�

.��.x/; ��.y/; ��.z//˝���� .˛1˝ˇ1˝1/:by
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Using Lemma A.15 we see that

� ı .�˝ 1/D �3 D � ı .1˝�/W ˆ�.X /˝ˆ�.Y /˝ˆ�.Z/!ˆ�.X �Y �Z/;

so we have made ˆ� into a monoidal functor. It follows from the diagram in Lemma
5.14 that � is also compatible with the relevant twist maps, so ˆ� is a symmetric
monoidal functor.

Proposition 5.19 The maps �W ˆ�.X / ˝ ˆ�.Y / ! ˆ�.X � Y / and the maps
^W ��.X /˝��.Y /!��.X �Y / satisfy

.�.˛˝ˇ/; ! ^ �/D .�1/jˇjj!j.˛; !/.ˇ; �/:

Proof We may assume that ˛ D x˝˛1 and ˇ D y˝ˇ1 for some x 2Xn , y 2 Ym ,
˛1 2 ‚Œn�;d and ˇ1 2 ‚Œm�;e . For a nonzero result we must then have ! 2 �d .X /

and � 2 �e.Y /, so we can put !1 D !.x/ 2 �d
Œn�

and �1 D �.y/ 2 �e
Œm�

. We
then put f D h˛1; !1i 2 PŒn� and g D hˇ1; �1i 2 PŒm� , so that .˛; !/ D

R
Œn� f and

.ˇ; �/D
R
Œm� g .

Using Lemma B.4 we see that

.˛; !/.ˇ; �/D

Z
Œn�

f �

Z
Œm�

g D
X

.�;�/2†.n;m/

Z
ŒnCm�

��.f /��.g/:

On the other hand, we have

�.˛˝ˇ/D
X
.�;�/

.��.x/; ��.y//˝���.˛1˝ˇ1/:

Here

h.��.x/; ��.y//˝���.˛1˝ˇ1/; !^�i D h���.˛1˝ˇ1/; !.�
�.x//^�.��.y//i

D h���.˛1˝ˇ1/; �
�!1 ^ �

��1i

D .�1/jˇjj!j��.h˛1; !1i/�
�.hˇ1; �1i/

D .�1/jˇjj!j��.f / ��.g/:

Proposition 5.20 The square

Nn.X /˝Nm.Y /
� //

�˝�

��

NnCm.X �Y /

�

��
ˆn.X /˝ˆm.Y / �

// ˆnCm.X �Y /

is commutative.
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Proof Suppose we have x 2Xn and y 2 Ym . Then

�.x˝y/D
X
�;�

sgn.�; �/.��.x/; ��.y//

��.x˝y/D .�1/nCm
X
�;�

sgn.�; �/.��.x/; ��.y//˝ �ŒnCm�

D .�1/nCm
X
�;�

.��.x/; ��.y//˝���.�Œn�˝ �Œm�/

D .�1/nCm�..x˝ �Œn�/˝ .y˝ �Œm�//

D �.�˝�/.x˝y/:

Proposition 5.21 The map �W ˆ�.X /˝ˆ�.Y /!ˆ�.X �Y / is a chain map.

The proof will follow after a number of preparatory results.

Recall that ı was defined in Definition 3.3 as the sum of two operators ı0 and ı00 .

Lemma 5.22 For ˛ D f ˛0 2 ‚Œn�;� � ˆŒn�;� D ˆ�.�n/ and ˇ D gˇ0 2 ‚Œm�;� �

ˆŒm�;� Dˆ�.�m/ we have

ı0.�.˛˝ˇ//D �.ı0.˛/˝ˇC .�1/j˛j�.˛˝ ı0.ˇ// 2ˆ�.�n ��m/:

Proof Let .�; �/ be a shuffle. Using Remark 5.12 we see that

ı0���.˛˝ˇ/D ı
0.��.f /��.˛0/^ �

�.g/��.ˇ0//

D�d.��.f /��.g// ` .��.˛0/^ �
�.ˇ0//

D�.��.g/��.df /C ��.f /��.dg// ` .��.˛0/^ �
�.ˇ0//

D���.df ` ˛0/�
�.ˇ/� .�1/j˛j��.˛/^ ��.dg ` ˇ0/

D ���.ı
0.˛/˝ˇC .�1/j˛j���.˛˝ ı

0.ˇ//:

Taking the sum over all shuffles .�; �/ gives the claimed result.

We now start to consider the ı00 terms.

Consider an element k 2 ŒnCm� and an injective map .�; �/W ŒnCm�nfkg! Œn�� Œm�.
We say that this pair is extendable if there exists a shuffle .�;  /W ŒnCm�! Œn�� Œm�

extending .�; �/. We will need to classify the possible extensions. We first suppose that
0< k < nCm. In that case, extendability means precisely that one of the following
three things must hold.
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(0) For some .i; j / 2 Œn�0 � Œm�0 we have .�; �/.k � 1/ D .i � 1; j � 1/ and
.�; �/.kC 1/D .i; j /. Here we say that .�; �/ has a diagonal gap. There are two
possible extensions, given by .�;  /.k/D .i �1; j / and .�;  /.k/D .i; j �1/.

(1) For some .i; j / 2 f1; : : : ; n� 1g � Œm� we have .�; �/.k � 1/D .i � 1; j / and
.�; �/.kC 1/D .i C 1; j /. Here we say that .�; �/ has a horizontal gap. There
is only one possible extension, given by .�;  /.k/D .i; j /.

(2) For some .i; j / 2 Œn�� f1; : : : ;m� 1g we have .�; �/.k � 1/ D .i; j � 1/ and
.�; �/.kC 1/D .i; j C 1/. Here we say that .�; �/ has a vertical gap. There is
only one possible extension, given by .�;  /.k/D .i; j /.

The situation is similar if kD 0, but with some slight adjustments. We must have either
.�; �/.1/ D .1; 0/ or .�; �/.1/ D .0; 1/ (otherwise there is not room for .�; �/ to be
injective). In these cases we say that .�; �/ has a horizontal (resp. vertical) gap. Either
way, there is a unique extension, with .�;  /.0/D .0; 0/. Similarly, if k D nCm then
we can have only a horizontal or vertical gap, and there is a unique extension given by
.�;  /.nCm/D .n;m/.

(This division into three cases is the same as in the well-known proof that the product
in Definition 5.16 is a chain map.)

Given an extendable pair .�; �/ and an extension .�;  /, the expression �.f ˛0˝gˇ0/2

ˆ�.�n��n/ contains a term .�;  /˝�� .f ˛0˝gˇ0/, so ı00�.f ˛0˝gˇ0/ contains
a term �.�; �/˝ �� , where

�� D resŒnCm�

ŒnCm�nfkg
.��.f / �.g//.dtk ` �� .˛0˝ˇ0//

D ��.f /��.g/.dtk ` �� .˛0˝ˇ0//:

Lemma 5.23 Suppose that .�; �/W ŒnCm�nfkg! Œn��Œm� has a diagonal gap between
.i � 1; j � 1/ and .i; j /, and let .�;  / and .x�; x / be the two shuffles that extend
.�; �/. Then for any ˛0 2ƒ

�.W _
Œn�

and ˇ0 2W _
Œm�

we have

dtk ` �� .˛0˝ˇ0/ C dtk ` �x� x .˛0˝ˇ0/D 0:

Proof Write ˛0 as ˛1Cwi ^˛2 , where ˛1 and ˛2 involve only the generators wp

with p ¤ i . In particular, this means that dti ` ˛0 D�˛2 . Write ˇ0 as ˇ1Cwj ^ˇ2

in the same way.
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As there is a diagonal gap, we must have 0< k < nCm. We have the following table
of values:

� x�  x 

k � 1 i � 1 i � 1 j � 1 j � 1

k i i � 1 j � 1 j

kC 1 i i j j

Using this we see that k D �|.i/D x |.j / and kC 1D x�|.i/D  |.j /. On the other
hand, for all p ¤ i we have �|.p/D x�|p 62 fk; k C 1g, and for all q ¤ j we have
 |.j /D x |.j / 62 fk; kC 1g, so ��.˛1/D x�

�.˛1/ and ��.˛2/D x�
�.˛2/. Similarly,

 �.ˇ1/D x 
�.ˇ1/ and  �.ˇ2/D x 

�.ˇ2/. Put

� D �� .˛0˝ˇ0/C�x� x .˛0˝ˇ0/:

We see that

�� .˛0˝ˇ0/D .�
�.˛1/Cwk ^�

�.˛2//^ . 
�.ˇ1/CwkC1 ^ 

�.ˇ2//

�x� x .˛0˝ˇ0/D .�
�.˛1/CwkC1 ^�

�.˛2//^ . 
�.ˇ1/Cwk ^ 

�.ˇ2//

� D 2��.˛1/^ 
�.ˇ1/

C .�1/j˛j.wk CwkC1/^�
�.˛1/^ 

�.ˇ2/

C .wk CwkC1/^�
�.˛2/^ 

�.ˇ1/

sk ` � D skC1 ` � D .�1/j˛jC1��.˛1/^ 
�.ˇ2/��

�.˛2/^ 
�.ˇ1/

tk ` � D .skC1� sk/ ` � D 0:

Corollary 5.24 With �; ; x� and x as in Lemma 5.23, we have �� C �x� x D 0.

Proof This follows from the expression

�� D �
�.f /��.g/.dtk ` �� .˛0˝ˇ0//:

We next consider the case of a pair .�; �/W ŒnCm�nfkg! Œn�� Œm� that has a horizontal
gap at i , and thus a unique extension .�;  /. We originally defined shuffles as
maps ŒpC q�! Œp�� Œq� with certain properties, but we can extend the notion in an
evident way to cover maps I ! J �K where I , J and K are any finite, totally
ordered sets with jI j D jJ j C jKj � 1. In this slightly extended sense, we see that
.�; �/W ŒnCm� n fkg ! .Œn� n fig/� Œm� is a shuffle, so it gives a map

��� W ‚Œn�nfig;�˝‚Œm�;�!‚ŒnCm�nfkg:
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Lemma 5.25 Suppose we elements ˛ D f ˛0 2‚Œn�;� and ˇ D gˇ0 2‚Œm�;� . Then,
in the situation described above we have

�� D ���.resŒn�
Œn�nfig

.f / .dti ` ˛0/˝gˇ0/:

Proof We will cover the case where 0< k < nCm, leaving the adjustments for kD 0

and k D nCm to the reader. We then have �.k�1/D �.k�1/D i �1 and �.k/D i

and �.k C 1/ D �.k C 1/ D i C 1. Also, for some j we have  .k � 1/ D  .k/ D

 .kC 1/D �.k � 1/D �.kC 1/D j . Using the expression

�� D �
�.f /��.g/.dtk ` �� .˛0˝ˇ0//

we reduce to the case f D g D 1, in which case we must prove that

dtk ` �� .˛0˝ˇ0/D ���..dti ` ˛0/˝ˇ0/:

We write

˛0 D ˛1Cwi ^˛2CwiC1 ^˛3Cwi ^wiC1 ^˛4;

where ˛1; : : : ; ˛4 do not involve wi or wiC1 . Put x̨t D �
�.˛t / and x̌0 D  �.ˇ0/.

Then

�� .˛0˝ˇ0/D .x̨0Cwk ^ x̨1CwkC1 ^ x̨2Cwk ^wkC1 ^ x̨3/^ x̌0;

and none of the terms x̨t or x̌0 involves wk or wkC1 . Using this together with the
relation tk D skC1� sk we obtain

dtk ` �� .˛0˝ˇ0/D .x̨2� x̨3C .wk CwkC1/^ x̨4/^ x̌0:

We now consider the map ��� arising from the shuffle

.�; �/W ŒnCm� n fkg ! .Œn� n fig/� Œm�:

Here the natural basis to use for W _
Œn�nfig

is the list

e1� e0; : : : ; ei�1� ei�2; eiC1� ei�1; eiC2� eiC1; : : : ; en� en�1;

or in other words

w1; : : : ; wi�1; wi CwiC1; wiC2; : : : ; wn:

Similarly, the natural basis for W _
ŒnCm�nfkg

is

w1; : : : ; wk�1; wk CwkC1; wkC2; : : : ; wnCm:
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We see that ��.wp/Dw�|.p/Dw�|.p/ for p¤ iC1 and ��.wiCwiC1/DwkCwkC1 .
Also, we have

dti ` ˛0 D .dsiC1� dsi/ ` .˛1Cwi ^˛2CwiC1 ^˛3Cwi ^wiC1 ^˛4/

D ˛2�˛3C .wi CwiC1/^˛4;

���..dti ` ˛0/˝ˇ0/D .x̨2� x̨3C .wk CwkC1/^ x̨4/^ x̌0;so

as required.

Lemma 5.26 If .�; �/W ŒnCm�n fkg! Œn�� Œm� has a vertical gap at j and .�;  / is
the unique extension of .�; �/ then

�� D .�1/j˛j���.f ˛0; resŒm�
Œm�nfjg

.g/.dtj ` ˇ0//:

Proof This follows from Lemma 5.25 by applying suitable twist maps.

Corollary 5.27 In ˆ�.�n ��m/ we have

ı.�.˛˝ˇ//D �.ı.˛/˝ˇC .�1/j˛j˛˝ ı.ˇ//:

Proof Lemma 5.22 tells us that this holds when ı is replaced by ı0 , so we need only
prove the corresponding formula for ı00 . We have seen that ı00.�.˛˝ˇ// is a sum of
terms �.�; �/˝�� , one for each extendable pair .�; �/ and each extension .�;  /.
The terms where .�; �/ has a diagonal gap all cancel out in pairs, by Lemma 5.23.
Those where .�; �/ has a horizontal gap add up to give �.ı0.˛/˝ˇ/, as we see from
Lemma 5.25. The remaining terms give .�1/j˛j�.˛˝ ı.ˇ//, by Lemma 5.26.

Proof of Proposition 5.21 The group ˆ�.X /˝ˆ�.Y / is generated by terms of the
form .x˝˛/˝ .y˝ˇ/ with x 2Xn and y 2 Ym and ˛ 2‚Œn�;� and ˇ 2‚Œm�;� . We
then have

�..x˝˛/˝ .y˝ˇ//D .x;y/˝�.˛˝ˇ/

ı.�..x˝˛/˝ .y˝ˇ///D .x;y/˝ ı.�.˛˝ˇ//

D .x;y/˝�.ı.˛/˝ˇC .�1/j˛j˛˝ ı.ˇ//

D�..x˝ ı.˛//˝ .y˝ˇ//

C .�1/j˛j�..x˝˛/˝ .y˝ ı.ˇ///:
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6 The colimit description

In this section, we explain and prove Theorem 2.10, which asserts that ˆ�.X / can be
written as a colimit of the groups Hom. zH�.SA/; zN�.S

A ^XC//, as A runs over the
category of finite sets and injective maps.

Definition 6.1 Given a finite set A, we put SA D
V

a2A S1 , where S1 D�1=@�1 .
More explicitly, we define BAD

Q
a2A�1 , so that .BA/nDMap.A;�.Œn�; Œ1�//. We

then put
.@BA/n DMap.A;�.Œn�; Œ1�// nMap.A;E.Œn�; Œ1�//;

which defines a subcomplex @BA. Finally, we have SA D BA=@BA.

It is clear that if jAj D n then SA is a model of the sphere Sn , so that zH�.SA/ is a
copy of Z, concentrated in degree n. However, there is no natural choice of generator
for this group. Instead, the best thing to say is that there is a natural isomorphism
ƒnZfAg ! zHn.S

A/.

Definition 6.2 Given a set A with jAj Dm and a simplex ˛ 2 .BA/d we define

z.˛/ 2 zHm.S
A/˝ˆŒd �;d�m D

zHm.S
A/˝ˆd�m.�d /

as follows. First, we note that Map.A; Œ1�/ can be regarded as a partially ordered set
using the pointwise order, and

.BA/d D Poset.Œd �;Map.A; Œ1�//D
Y
a2A

�.Œd �; Œ1�/:

Thus ˛ gives a system of maps ˛aW Œd �! Œ1�.

(a) If any ˛a is constant (or equivalently, not surjective) we put z.˛/D 0.

(b) Otherwise, we define f W A! Œd �0 by f .a/D ˛|
a.1/. If f is not injective, we

again put z.˛/D 0.

(c) Otherwise, we put

U DKfwf .a/ j a 2Ag

V D ker.˛�W W _Œd �!W _Map.A;Œ1�//

DKfwi j˛.i/D ˛.i � 1/g DKfwi j i 62 f .A/g:

(Here we are using the notation of Definition 5.8.) We find that W _
Œd �
D U ˚V ,

so there is a natural isomorphism

ƒm.U /˝ƒd�m.V /!ƒd .W _Œd �/DK�Œd �:
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Moreover, the map a 7!wf .a/ induces an isomorphism zHm.S
A/DƒmKfAg!

ƒm.U /, and there are natural inclusions

ƒd�m.V /�ƒd�m.W _Œd �/�‚Œd �;d�m �ˆd�m.�d /:

By putting these together, we get a map ƒd .W _
Œd �
/! zHm.S

A/˝ˆd�m.�d /.
We write z.˛/ for the image of �Œd � under this map.

Remark 6.3 For some purposes it is useful to be more explicit. Suppose that we are in
case (c) of the definition, so that f W A! Œd �0 is injective. We can then list the elements
of A as fa1; : : : ; amg, ordered in such a way that f .a1/ < � � �< f .am/. Similarly, we
list the elements of Œd �0 n f .A/ as fj1 < j2 < � � � < jd�mg. There is then a number
�.˛/ 2 f˙1g such that

�Œd � D �.˛/wf .a1/ ^ � � � ^wf .am/ ^wj1
^ � � � ^wjd�m

:

u.˛/D wf .a1/ ^ � � � ^wf .am/ 2ƒ
m.U /Put

z0.˛/D a1 ^ � � � ^ am 2ƒ
m.KfAg/D zHm.S

jAj/

z00.˛/D wj1
^ � � � ^wjd�m

2ƒd�m.W _Œd �/:

In this notation, the defining property of �.˛/ is that �Œd � D �.˛/u.˛/^ z00.˛/. We
find that z.˛/D �.˛/ z0.˛/˝ z00.˛/.

Definition 6.4 For any simplicial set X we define

�W Cd .BA�X /! zHm.S
A/˝ˆd�m.X /

as follows. Any d –simplex in BA�X has the form .˛;x/ where x 2Xd and ˛ is as
in Definition 6.2. The simplex x corresponds to a map yxW �d !X . We put

�.˛;x/D .1˝ yx�/.z.˛//D �.˛/z
0.˛/˝ .x˝ z00.˛//:

Remark 6.5 Clause (a) in Definition 6.2 tells us that the map � factors through
zC�.S

A ^XC/, and similarly �# induces a map

Hom. zH�.SA/; zC�.S
A
^XC//!ˆ�.X /:

Lemma 6.6 If the simplex .˛;x/ 2 .BA�X /d is degenerate then �.˛;x/D 0.

Proof As .˛;x/ is degenerate, there must exist a surjection � W Œd �! Œe� (with e < d )
and a map ˇW Œa�!Map.A; Œ1�/ and a simplex y2Xe such that ˛Dˇ� and xD��.y/.
As e < d we must have �.i � 1/D �.i/ for some i > 0. As ˛ D ˇ� this means that
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˛.i/D ˛.i � 1/, so wi 2 V . Clearly ��.wi/D ��.ei � ei�1/D e�.i/ � e�.i�1/ D 0,
so �� D 0 on ƒd�m.V /, so .1˝ ��/.z.˛//D 0. By definition we have

�.˛;x/D .1˝ yx�/.z.˛//D .1˝ yy�/.1˝ ��/.z.˛//D 0:

Corollary 6.7 There are induced maps �W zN�.SA ^XC/! zH�.S
A/˝ˆ�.X /.

Definition 6.8 Put

U�.A;X /D Hom. zH�.SA/; zN�.S
A
^XC//:

As zH�.SA/ is invertible under the tensor product, the map � gives rise to an adjoint
map U�.A;X /!ˆ�.X /, which we denote by �# .

Now consider ˛W Œd � ! Map.A; Œ1�/ and i 2 Œd �, giving a map ˛ıi W Œd � 1� !

Map.A; Œ1�/ and an element z.˛ıi/ 2 zHm.S
jAj/˝‚Œd�1�;d�m�1 . We can regard

ıi as a bijection Œd � 1� ! Œd � n fig, so we get an element .1 ˝ .ıi/�/z.˛ıi/ 2
zHm.S

jAj/˝‚Œd �nfig;d�m�1 . We also have a map �i W ‚Œd �;� ! ‚Œd �nfig;� given by
�i.�/D dti ` � .

Lemma 6.9 .�1/i.1˝ .ıi/�/z.˛ıi/D .�1/mC1.1˝ �i/.z.˛//.

Proof We will consider the case 0< i < d ; small adjustments for the end cases are
left to the reader. Note that ˛aW Œd �! Œ1� is surjective if and only if (˛a.0/D 0 and
˛a.d/D 1) if and only if ˛ıi is surjective. We may assume that this holds for all a,
otherwise both sides of the claimed identity are zero. Next, put f .a/D˛|

a.1/ as before,
and g.a/D .˛aıi/

|.1/. By a check of the various possible cases, we see that

g.a/D �i.f .a//D

(
f .a/ if f .a/� i;

f .a/� 1 if i < f .a/:

It follows that g is injective unless fi; i C 1g � f .A/.

Suppose that fi; iC1g� f .A/, so g is not injective, so z.˛ıi/D 0. In this case z00.˛/

does not involve wi or wiC1 , so dti ` z00.˛/D .dsiC1 � dsi/ ` z00.˛/D 0, and we
see that both sides of the claimed identity are again zero.

Suppose instead that fi; i C 1g 6� f .A/. One checks that z0.˛/D z0.˛ıi/. Let w0 be
the wedge of all the factors wjt

in z00.˛/ with jt 2 fi; iC1g, and let w00 be the wedge
of the remaining factors, so

z00.˛/D �0w0 ^w00

for some �0 2f˙1g. Because fi; iC1g 6�f .A/ we must have w0Dwi or w0DwiC1 or
w0Dwi^wiC1 . In computing .ıi/�z00.˛ıi/, we use that .ıi/�wj D .ıi/�.ei�ei�1/D
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wıi .j/ except in the case j D i , in which case we have .ıi/�.wi/DwiCwiC1 . There
are three cases to consider.

(a) If w0Dwi (so i 62 f .A/ but iC12 f .A/) we find that dsi ` z00.˛/D��0w00 and
dsiC1 ` z00.˛/D 0 so dti ` z00.˛/D �0w00 . On the other hand, as i 62 f .A/ we have
ıi.g.a//D ıi.�i.f .a///D f .a/ for all a, so ıi.Œd �1�0 ng.A//D .Œd �0 nf .A//n fig,
so .ıi/�z00.˛ıi/D w00 . We next need to understand �.˛ıi/. By definition we have

�.˛ıi/u.˛ıi/^ z00.˛ıi/D �Œd�1�:

As ıif D g and .ıi/�z00.˛ıi/D w00 we see that u.˛/D u.˛ıi/ and

�.˛ıi/u.˛/^w
00
D �Œd �nfig:

We then multiply both sides on the left by wi to get

.�1/m�.˛ıi/u.˛/^wi ^w
00
D .�1/i�1�Œd �:

On the other hand, by the definitions of �.˛/ and �0 we have

�0�.˛/u.˛/^wi ^w
00
D �Œd �:

It follows that �.˛ıi/D .�1/mCiC1�0�.˛/. This gives

.�1/i.1˝ .ıi/�/z.˛ıi/D .�1/i�.˛ıi/z
0.˛ıi/˝ .ıi/�z

00.˛ıi/

D .�1/i.�1/mCiC1�0�.˛/z0.˛/w00

D .�1/mC1�.˛/z0.˛/.dti ` z00.˛//

D .�1/mC1.1˝ �i/.z.˛//

as required.

(b) Now suppose instead that w0 D wiC1 , so that i 2 f .A/ but i C 1 62 f .A/. We
find that dsi ` z00.˛/D 0 and siC1 ` z00.˛/D�w00 , so dti ` z00.˛/D�w00 . On the
other hand, we find that

ıi.g.a//D ıi�i.f .a//D

(
f .a/ if f .a/¤ i;

i C 1 if f .a/D i:

From this we see that ıi.Œd � 1�0 n g.A// D .Œd �0 n f .A// n fi C 1g, and thus that
.ıi/�z

00.˛ıi/Dw
00 . We next need to understand �.˛ıi/. From the definitions we have

�.˛ıi/wıi g.a1/ ^ � � � ^wıi g.am/ ^ .ıi/�z
00.˛ıi/D �Œd �nfig:
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Let r be such that f .ar /D i , and let v be the wedge of the terms wf .ap/ for p ¤ r .
The above equation can then be written as

.�1/r�.˛ıi/wiC1 ^ v^w
00
D �Œd �nfig:

We now multiply both sides on the left by wi to get

.�1/r�.˛ıi/wi ^wiC1 ^ v^w
00
D .�1/iC1�Œd �:

On the other hand, by the definitions of �.˛/ and �0 we have

.�1/r�0�.˛/wi ^ v^wiC1 ^w
00
D �Œd �:

It follows that �.˛ıi/D .�1/mCi�0�.˛/. This gives

.�1/i.1˝ .ıi/�/z.˛ıi/D .�1/i�.˛ıi/z
0.˛ıi/˝ .ıi/�z

00.˛ıi/

D .�1/i.�1/mCi�0�.˛/z0.˛/w00

D .�1/m�.˛/z0.˛/.�dti ` z00.˛//D .�1/mC1.1˝ �i/.z.˛//

as required.

(c) Finally, suppose that neither i nor i C 1 is in f .A/, so w0 D wi ^wiC1 . As this
has even degree we have �0 D 1 and z00.˛/D w0 ^w00 . We then have dsi ` z00.˛/D

�wiC1^w
00 and dsiC1` z00.˛/Dwi^w

00 so dti ` z00.˛/D .wiCwiC1/^w
00 . On the

other hand, as in case (a) we see that f D ıig and ıi.Œd�1�0ng.A//D .Œd �0nf .A//nfig.
Suppose that i occurs as the r –th element in Œd � 1�0 ng.A/, so i C 1 occurs as the
r –th element in ıi.Œd � 1�0 ng.A//. Then

.ıi/�z
00.˛ıi/D .�1/r�1.ıi/�.wi/^w

00
D .�1/r�1.wi CwiC1/^w

00:

We next need to understand �.˛ıi/. By definition we have

�.˛ıi/u.˛ıi/^ z00.˛ıi/D �Œd�1�:

As ıif D g and .ıi/�z00.˛ıi/D .�1/r�1.wi CwiC1/^w
00 we have u.˛ıi/D u.˛/

and

.�1/r�1�.˛ıi/u.˛/^ .wi CwiC1/^w
00
D �Œd �nfig:

We then multiply both sides on the left by wi to get

.�1/mCr�1�.˛ıi/u.˛/^wi ^wiC1 ^w
00
D .�1/i�1�Œd �:
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After comparing this with the definition of �.˛/, we see that �.˛ıi/D .�1/mCrCi�.˛/.
This gives

.�1/i.1˝ .ıi/�/z.˛ıi/D .�1/i.�1/mCrCi�.˛/z0.˛/˝ .�1/r�1.wi CwiC1/^w
00

D .�1/mC1�.˛/z0.˛/.dti ` z00.˛//

D .�1/mC1.1˝ �i/.z.˛//

as required.

Corollary 6.10 The maps

�W zN�.S
A
^XC/! zH�.S

A/˝ˆ�.X /;

�#
W U�.A;X /!ˆ�.X /

are chain maps.

Proof Lemma 6.9 is the universal example. In more detail, we first note that z.˛/

involves only the exterior generators dti so .1˝ ı0/.z.˛//D 0 and

.1˝ ı/.z.˛//D .1˝ ı00/.z.˛//

D�

X
j

iŒd �nfjg.1˝ �j /.z.˛//

D .�1/m
X

j

.�1/j .1˝ .ıj /�/.z.˛ıj //:

Next, we will also write ı for the standard differential on zH�.SA/˝ˆ�.X /, which is
ı.a˝ b/D .�1/jaja˝ ı.b/. This gives

ı.z.˛//D .�1/m.1˝ ı/.z.˛//D
X

j

.�1/j .1˝ .ıj /�/.z.˛ıj //:

Now consider an element x 2 Xd , giving a map yxW �d ! X and thus a map
yx�W ˆŒd �;� Dˆ�.�d /!ˆ�.X /. If we apply the map 1˝ yx� to the above equation
and use the naturality of ı , the left hand side becomes ı.�.x; ˛//. The right hand side
becomes

P
j .�1/j .1˝bdj x

�
/.z.˛ıj //, which is �.d.x; ˛//. This shows that � is a

chain map, and it follows adjointly that the same is true for �# .
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Definition 6.11 We define �W U�.A;X /˝U�.B;Y /! U�.AqB;X � Y / by ap-
plying the functor Hom. zH�.SAqB/;�/ to the composite

zN�.S
A
^XC/˝ zN�.S

B
^YC/

�
�! zN�.S

A
^XC ^SB

^YC/

.1^�^1/�
�������! zN�.S

AqB
^ .X �Y /C/

and using the isomorphism zH�.S
A/˝ zH�.S

B/! zH�.S
AqB/.

Lemma 6.12 Suppose we have a shuffle .�; �/W ŒdCe�! Œd �� Œe� and maps ˛W Œd �!
Map.A; Œ1�/ and ˇW Œe�!Map.B; Œ1�/ (with jAjDm and jBjDn). Define  W ŒdCe�!

Map.AqB; Œ1�/ by a.k/ D ˛a.�.k// for a 2 A and b.k/ D ˇb.�.k// for b 2 B .
Let � denote the map

zH�.S
A/˝‚Œd �;�˝ zH�.S

B/˝‚Œe�;�
1˝�˝1
�����! zH�.S

A/˝ zH�.S
B/˝‚Œd �;�˝‚Œe�;�

�˝���
�����! zH�.S

AqB/˝‚ŒdCe�;�:

Then z. /D sgn.�; �/�.z.˛/˝ z.ˇ//.

Proof If any ˛a or ˇb fails to be surjective then so does the corresponding map a

or b , so both sides of the claimed equality are zero. We ignore this case from now on.

Put f .a/D ˛|
a.1/ and g.b/Dˇ

|
b
.1/ and h.c/D 

|
c .1/. As .�; �/ is a shuffle we know

that the maps

Œd �0
�|

�! Œd C e�0
�|

 � Œe�0

give a coproduct decomposition, and from the definitions we have h.a/D �|.f .a//

and h.b/ D �|.g.b//. It follows that h is injective if and only if both f and g are
injective, and we may assume that this is the case as otherwise both sides of the claimed
equality are zero.

From our description of h, we have

Œd C e�0 n h.AqB/D �|.Œd �0 nf .A//q �|.Œe�0 ng.B//;

so z00. / D ˙��.z00.˛// ^ ��.z00.ˇ//. By a similar argument we have z0. / D

˙�.z0.˛/˝ z0.ˇ// and so z. /D˙�.z.˛/˝ z.ˇ//. The real issue is just to control
the signs more precisely. For this we note that

�Œd � D �.˛/u.˛/^ z00.˛/; �Œe� D �.ˇ/u.ˇ/^ z00.ˇ/;

���Œd � ^ �
��Œe� D �.˛/�.ˇ/�

�u.˛/^ ��z00.˛/^ ��u.ˇ/^ ��z00.ˇ/:so
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After using Definition 5.15 and reordering the factors, this gives

�ŒdCe� D .�1/n.d�m/ sgn.�; �/�.˛/�.ˇ/��u.˛/^ ��u.ˇ/^ ��z00.˛/^ ��z00.ˇ/:

U DKfwh.c/ j c 2AqBgNow put

V DKfwi j  .i/D  .i � 1/g DKfwi j i 62 h.AqB/g

as in Definition 6.2. We find that

��u.˛/^ ��u.ˇ/ 2 U

��z00.˛/^ ��z00.ˇ/ 2 V;

so the above expression for �ŒdCe� can be used (together with the isomorphism
zHmCn.S

AqB/'ƒmCn.U / induced by h) to calculate z. /. The result is

z. /D .�1/n.d�m/ sgn.�; �/�.˛/�.ˇ/�.z0.˛/˝ z0.ˇ//˝ ��z00.˛/^ ��z00.ˇ/;

and this is the same as �.z.˛/˝ z.ˇ//.

Proposition 6.13 The following diagram commutes:

U�.A;X /˝U�.B;Y /
� //

�#˝�#

��

U�.AqB;X �Y /

�

��
ˆ�.X /˝ˆ�.Y / �

// ˆ�.X �Y /:

Proof It will be enough to check commutativity of the adjoint diagram

zN�.S
A ^XC/

˝ zN�.S
B ^YC/

� //

�˝�

��

zN�.S
A ^XC ^SB ^YC/

.1^�^1/�// zN�.SAqB ^ .X �Y /C/

�

��
zH�.S

A/˝ˆ�.X /

˝ zH�.S
B/˝ˆ�.Y / 1˝ �˝1

// zH�.S
A/˝ zH�.S

B/

˝ˆ�.X /˝ˆ�.Y / �˝�
// zH�.SAqB/˝ˆ�.X �Y /:

Consider elements ˛ 2 .BA/d and x 2Xd and ˇ 2 .BB/e and y 2 Ye . The generator
.˛;x/˝ .ˇ;y/ maps toX

�;�

sgn.�; �/.˛�; ˇ�; ��.x/; ��.y// 2 zNdCe.S
AqB

^ .X �Y /C/:

The term indexed by the shuffle .�; �/ then maps to sgn.�; �/.��.x/; ��.y//˝z.˛�; ˇ�/

in zH�.SAqB/˝ˆ�.X �Y /. It follows from Lemma 6.12 that the other route around
the diagram yields the same result.
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Definition 6.14 Suppose we have a set A with jAj Dm. We note that when k >m

we have NDk.S
A/D∅ and so zNk.S

A/D 0; this means that

zHm.S
A/D ker.d W zNm.S

A/! zNm�1.S
A//� zNm.S

A/:

The inclusion zHm.S
A/! zNm.S

A/ gives a cycle in

U0.A; 1/D Hom. zHm.S
A/; zNm.S

A//;

which we denote by �A .

Definition 6.15 Given an injective map �W A! B , we define

��W Hom. zH�.SA/; zN�.S
A
^XC//! Hom. zH�.SB/; zN�.S

B
^XC//

as follows. Firstly, if � is a bijection then we just transport the structure in the obvious
way. Next, suppose that � is just the inclusion of a subset, so B DAqZ for some Z .
We then have a map

�W U�.A;X /˝U�.Z; 1/! U�.AqZ;X � 1/D U�.B;X /

and we put ��.u/D �.u˝ �Z /. Finally, an arbitrary monomorphism can be written
uniquely as �D �1�0 , where �1 is a subset inclusion and �0 is a bijection. We then
put �� D .�1/�.�0/� .

Lemma 6.16 �� is a chain map and is functorial.

Proof Left to the reader.

Lemma 6.17 For any monomorphism �W A! B , the diagram

U�.A;X /
�� //

�# %%LLLLLLLLLL
U�.B;X /

�#yyrrrrrrrrrr

ˆ�.X /

commutes.

Proof This is clear if � is an isomorphism, and is a special case of Proposition 6.13
if � is a subset inclusion. The general case follows from these special cases.

Definition 6.18 We write U�.X / for the colimit of the complexes U�.A;X / as A

runs over the category of finite sets an injective maps. We let  W U�.X /! ˆ�.X /

denote the map induced by the maps �#W U�.A;X /!ˆ�.X / (which exists by Lemma
6.17).
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Theorem 6.19 The map  W U�.X /!ˆ�.X / is an isomorphism.

The proof will be given in several stages. Firstly, the construction given below immedi-
ately implies that  is surjective.

Construction 6.20 Suppose we have x 2NDn.X / and �W Œn�!N and J � Œn�0 , say
J D fj1 < � � �< jr g. Put wJ Dwj1

^� � �^wjr
2‚Œn�;r . We will construct an element

�.x; �;J / 2 U�.X / with  .�.x; �;J //D x˝ t Œ��wJ 2ˆ�.X /.

First put d D�1C
Pn

iD0.�i C 1/, and let � W Œd �! Œn� be the unique nondecreasing
surjective map such that j��1.i/j D �iC1 for all i . Put AD Œd �0n�|.J / and mD jAj

and let f W A! Œd �0 be the inclusion. Define ˛W Œd �!Map.A; Œ1�/ by

˛a.i/D

(
0 if i < f .a/;

1 if f .a/� i:

We find that z00.˛/Dw�|.J / and so (using Definition 4.1) we have ��.z00.˛//D t Œ��wJ .
Now let

�1.x; �;J /W zHm.S
A/! zNd .S

A
^X /

be the map that sends the generator �.˛/z0.˛/ to .˛;x/. Then �1.x; �;J / 2U�.A;X /

and �#�1.x; �;J /D x˝ t Œ��wJ . We also write �.x; �;J / for the image of �1.x; �;J /
in U�.X /, so that  .�.x; �;J //.

We next need the counterpart in U�.X / of the relation
P

i ti D 1.

Lemma 6.21 In the notation of Construction 6.20 we have
nX

iD0

.�i C 1/�.x; �C ıi ;J /D �.x; �;J /:

Proof We will freely use the notation of the above construction.

Put AC D Aq f1g so we have a class � D �.�1.x; �;J /˝ �f1g/ 2 U�.AC;X /

which represents �.x; �;J /. Now � can be written as a sum of terms, one for each
shuffle .�; �/W Œd C 1�! Œd �� Œ1�. Such a shuffle is determined by the number k D

�|.1/ 2 Œd C 1�0 ; indeed, � is forced to be the unique map in E.Œd C 1�; Œd �/ that takes
the value k�1 twice. Define �.k/W Œn�!N by �.k/i D j.��/�1figj�1. We find that
the k –th term in the product �.�1.x; �;J /˝�f1g/ represents �.x; �.k/;J /, and that
there are �i C 1 different values of k for which �.k/D �C ıi . The claim follows.
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Corollary 6.22 There is a well-defined map

�0W ˆ�.X /D
M

x 2NDn.X /

‚Œn�;�! U�.X /

given by �0.x˝ t Œ��wJ /D �.x; �;J /. Moreover, we have  �0D 1W ˆ�.X /!ˆ�.X /.

Proof The stated formula certainly defines a mapM
x 2NDn.X /

zPŒn�˝ƒ
�.W _Œn�/! U�.X /:

We simply need to pass from zPŒn� to PŒn� D zPŒn�=.1�
P

i ti/, and this is precisely
what we get from Lemma 6.21.

Lemma 6.23 The composite U�.A;X /
�#

�! ˆ�.X /
�0

�! U�.X / is just the colimit
inclusion map.

Proof Put mD jAj and fix a generator u 2 zHm.S
A/. Given v 2 zNd .S

A ^XC/ we
write u�1v for the element of U�.A;X / given by u 7! v . The group Ud .A;X / is
generated by elements u�1.˛;x/ where ˛W Œd �!Map.A; Œ1�/ and x 2Xd and the pair
.˛;x/ is nondegenerate. To avoid trivial cases, we may assume that each ˛aW Œd �! Œ1�

is surjective, so we can define f .a/D ˛|
a.1/ as usual.

If f is not injective, it is built into the definitions that z.˛/D 0 and so �#.˛;x/D 0,
so we must show that u�1.˛;x/ also maps to zero in the colimit. We can choose
a¤ a0 with f .a/D f .a0/, and let � denote the transposition that exchanges a and
a0 . We find that ��.u/D�u but ��.˛;x/D .˛;x/, so ��.u�1.˛;x//D�u�1.˛;x/,
which gives the required vanishing.

From now on we assume that f is injective. As in Lemma A.10 we can write xD��.y/

for some nondegenerate simplex y2Xn and some surjective map � W Œd �! Œn�. To avoid
further trivial cases, we may assume that the pair .˛;x/ is nondegenerate, which is equiv-
alent to the condition Œd �0Df .A/[�|.Œn�0/. Define �W Œn�!N by �iDj�

�1figj�1, so
that ��.1/D t Œ�� . Put J 0D Œd �0nf .A/, so that z00.˛/DwJ 0 . As Œd �0Df .A/[�|.Œn�0/

we must have J 0 D �|.J / for some J � Œn�0 , and this implies that J D �.J 0/ and so
��.z

00.˛// D t Œ��wJ . It follows that �#.u�1.˛;x// D �0x˝ t Œ��wJ , where the sign
�0 2 f˙1g is determined by the relation z.˛/D �0u˝z00.˛/. Now put A0Df .A/, so f
gives a bijection A!A0 and thus an isomorphism U�.A;X /!U�.A

0;X /. From the
definitions we see that �0�#.u�1.˛;x// is represented by �0�1.x; �;J / 2 U�.A

0;X /,
which is just the image of u�1.x; ˛/ under this isomorphism. The claim follows.

Proof of Theorem 6.19 Corollary 6.22 tells us that  �0D 1, and Lemma 6.23 implies
that �0 D 1.
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Appendix A Recollections on the simplicial category

In this section we recall some facts about the simplicial category. Most of them are fairly
standard but we will need to use the details so it is convenient to give a self-contained
account here. Many of these facts were first proved by Eilenberg and Zilber [2] or
Gabriel and Zisman [4]; the more recent book Fritsch and Piccinini [3] is also a useful
reference.

Definition A.1 As usual, we let � denote the category whose objects are the finite
ordered sets Œn�D f0; : : : ; ng, and whose morphisms are the nondecreasing maps. All
maps mentioned in this section are implicitly assumed to be nondecreasing. We also
write E.Œn�; Œm�/ for the subset of �.Œn�; Œm�/ consisting of surjective maps.

Definition A.2 Given a surjective map ˛W Œn� ! Œm�, we define ˛|W Œm� ! Œn� by
˛|.j /D minfi j˛.i/D j g. We also write Œn�0 D Œn� n f0g D f1; : : : ; ng and note that
˛|.0/D 0 and ˛|.Œm�0/� Œn�0 .

Lemma A.3 The map ˛| is injective, and ˛˛| D 1. Moreover, if ˇW Œn�! Œp� is
another surjection then .ˇ˛/| D ˛|ˇ| .

Proof Left to the reader.

Definition A.4 We say that a subset A � Œn� is pointed if 0 2 A. Given a pointed
subset A� Œn� with jAj DmC 1, we let �AW Œm�! Œn� be the unique injection with
�A.Œm�/DA, and we define �AW Œn�! Œm� by �A.i/Dmaxfj j �A.j /� ig. We also
define �A D �A�AW Œn�! Œn�, so �A.i/Dmaxfj 2A j j � ig and �2

A
D �A .

Lemma A.5 (a) Any injective map ˇW Œm� ! Œn� with ˇ.0/ D 0 has the form
ˇ D �A for some (unique) pointed set A, namely AD ˇ.Œm�/.

(b) Any surjective map ˛W Œn�! Œm� has the form ˛D�A for some (unique) pointed
set A, namely AD f0g[ fi > 0 j˛.i/ > ˛.i � 1/g.

(c) Let  W Œn�! Œn� be a map with i �  .i/ D  2.i/ for all i . Then  D �A for
some (unique) pointed set A, namely AD fi j  .i/D ig.

Proof Left to the reader.

Lemma A.6 Suppose we have pointed sets A � B � Œn� with jAj D mC 1 and
jBjDpC1. Put ˛D�A�BW Œp�! Œm�. Then ˛ is surjective and fits into a commutative
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diagram as follows.

Œm�
˛ // //

  
�B

  A
AA

AA
AA

1

��

Œp�

Œn�

�A
>> >>~~~~~~~

�B~~~~}}
}}

}}
}

Œm� Œp�

1

OO

``�A

``@@@@@@@

oo
˛|

oo

Moreover, ˛ is bijective if and only if ˛ D 1 if and only if AD B .

Proof Left to the reader.

Lemma A.7 If A and B are pointed subsets of Œn� then .�A�B/N D �A\B for N � 0.

Proof For any i 2 Œn� we have a decreasing sequence

i � �B.i/� �A�B.i/� �B�A�B.i/� � � � � 0:

Let  .i/ denote the eventual value of this sequence. We find that for N � 0 we
have  D .�A�B/N D �B.�A�B/N , from which it follows that  D �A D �B D  2

and i �  .i/. It follows that  D �C , where C D image. / D fi j  .i/ D ig. As
 D �A D �B we see that C D image. /� image.�A/\ image.�B/DA\B , but
it is clear that  is the identity on A\B so C DA\B .

A.1 Degeneracy

Lemma A.8 Let X be a simplicial set, and let x be an n–simplex of X . Then the
following conditions are equivalent.

(1) x D ˛�.y/ for some noninjective map ˛W Œn�! Œm� and some y 2Xm .

(2) xD ˇ�.z/ for some surjective map ˇW Œn�! Œp� (with p < n) and some z 2Xp .

(3) x D ��
A
.y/ for some proper pointed subset A� Œn� and some y 2XjAj�1 .

(4) x D ��
A
.x/ for some proper pointed subset A� Œn�.

Proof It is clear that (2) implies (1), and we can prove the converse by factoring ˛
as a surjection followed by an injection. Lemma A.5(b) tells us that (2) is equivalent
to (3). Using the facts that �A D �A�A and �A�A D 1 we see that (3) is equivalent
to (4).
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Definition A.9 We say that x is degenerate if the above conditions hold. We write
NDn.X / for the set of nondegenerate n–simplices.

The next result is known as the Eilenberg-Zilber lemma.

Lemma A.10 There is a canonical bijection  W
`

m E.Œn�; Œm�/ � NDm.X / ! Xn

given by  .˛;y/D ˛�.y/.

Proof Given x 2Xn , let A denote the collection of pointed subsets A� Œn� such that
x D ��

A
.x/. Using �A D �A�A and �A�A D 1 we see that AD fA jx 2 image.��

A
/g.

It is clear that Œn� 2A, and Lemma A.7 implies that A is closed under intersections,
so A has a smallest element, say A. Put mD jAj � 1 and y D ��

A
.x/ 2Xm and note

that x D ��
A
.y/.

Suppose that y D ˇ�.z/ for some surjection ˇW Œm�! Œp�. Then ˇ�A D �B for some
B �A, but x D ��

B
.Z/ so B 2A so A� B . It follows that AD B and p Dm and

ˇ D 1 so y D z . Using this we see that y is nondegenerate.

More generally, suppose we also have xD��
B
.z/ for some B (a priori unrelated to A)

and z 2Xp (a priori unrelated to y ). Then again B 2A so A� B so we can apply
Lemma A.6: the map ˛ D �A�BW Œp�! Œm� is surjective and satisfies ˛�B D �A . As
x D ��

B
.z/ we have z D ��

B
.x/D ��

B
��

A
.y/D ˛�.y/. If z is nondegenerate it follows

that we must have p D m and ˛ must be the identity so AD B and y D z . Using
this we see that  is a bijection.

A.2 Shuffles

We now recall some theory of shuffles.

Definition A.11 Given a sequence n D .n1; : : : ; nr / 2 Nr with
P

i ni D n, an n–
shuffle means a system of surjective maps �i W Œn�! Œni � such that the combined map
�W Œn�!

Q
i Œni � is injective. We write †.n/ for the set of all n–shuffles.

Remark A.12 We will most often need the case r D 2. An .n;m/–shuffle is then a
pair of surjections

Œn�
�
 � ŒnCm�

�
�! Œm�

such that the map .�; �/W ŒnCm�! Œn�� Œm� is injective.

Lemma A.13 Let n and n be as above, and suppose we have sets A1; : : : ;Ar � Œn�
0D

f1; : : : ; ng with jAi j D ni and we put �i D �Ai[f0gW Œn�! Œni �. Then the list � is an
n–shuffle if and only if Œn�0 D

`
i Ai .
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Proof From the definition of �Ai[f0g we see that Ai D fs 2 Œn�
0 j �i.s/ > �i.s� 1/g,

so that
S

i Ai D fs 2 Œn�
0 j �.s/ ¤ �.s � 1/g. Thus � is a shuffle if and only if � is

injective if and only if
S

i Ai D Œn�
0 , and if this happens then the union is automatically

disjoint by counting.

Corollary A.14 We have
j†.n/j D n!=

Y
i

ni ! :

In particular,
j†.n;m/j D .nCm/!=n!m! :

Lemma A.15 There are natural bijections

†.mC n;p/�†.m; n/
L
�!†.m; n;p/

R
 �†.n;mCp/�†.n;p/

given by L.�; �I�; /D .��;  �; �/ and R.�; �I�; /D .�; ��; � /.

Proof We will only discuss L; the case of R is similar.

Suppose that .�; �/ 2†.mCn;p/ and .�;  / 2†.m; n/. Then � , � , � and  are all
surjective, so the same is true of �� and  � . The maps .�;  /� 1W ŒmC n�� Œp�!

Œm�� Œn�� Œp� and .�; �/W ŒmCnCp�! ŒmCn�� Œp� are injective, so the same is true of
their composite, so L.�; �I�; /2†.m; n;p/. Next, observe that to give a three-piece
splitting ŒmCnCp�0 DAqBqC (with jAj Dm and jBj D n and jC j D p ) is the
same as to give a splitting ŒmC nCp�0 D U qC (with jU j DmC n and jC j D p )
together with a splitting U DAqB (with jAj Dm and jBj D n). Using this together
with the correspondence T $�T we obtain a bijection L0W †.mCn;p/�†.m; n/!

†.m; n;p/. We leave it to the reader to check that LDL0 .

Appendix B Integration over simplices

Recall that the map
R

I W
zPI !K is defined byZ

I

t� D

�Y
i

�i !

�.�
nC

X
i

�i

�
!;

(where nD jI j � 1) or equivalently
R

I t Œ�� D 1=.nCj�j/!.

Lemma B.1 The map
R

I W
zPI !K factors through PI .
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Proof We must show that
R

I annihilates the ideal generated by 1�
P

i ti , or equiva-
lently that

R
I t Œ�� D

P
i

R
I ti t

Œ�� . We have ti t
Œ�� D .1C �i/t

ŒıiC�� , where ıi W I !N
is the Kronecker delta, so jıi C �j D 1Cj�j. We thus have

X
i

Z
I

ti t
Œ��
D

X
i

.1C �i/

Z
I

t Œ�Cıi � D
1

.nC 1Cj�j/!

X
i

.1C �i/

D
nC 1Cj�j

.nC 1Cj�j/!
D

1

.nCj�j/!
D

Z
I

t Œ��:

Lemma B.2 If K D R then
R

I f is just the integral of f over the simplex �I D

fxW I !RC j
P

i xi D 1g, with respect to the usual Lebesgue measure normalised so
that �.�I /D 1=.jI j � 1/!.

Proof We may assume that I D f0; : : : ; ng and work by induction on n. We can
identify �n by projection with �0

I
D fx 2Rn j

Pn
iD1 xi � 1g. Define

Z 0
I

f D

Z
�0

I

f

�
1�

nX
iD1

xi ;x1;x2; : : : ;xn

�
dx1 � � � dxn:

We will show that
R

I t Œ�� D
R 0

I t Œ�� for any multiindex � with �0 D 0. This will suffice
because PI DRŒt1; : : : ; tn�. When nD 0 the claim is trivial. When nD 1, the claim
says that

R 1
tD0 t Œn� D 1=.1C n/!, which is also trivial. This implies that

R
D
R 0 even

on polynomials that are not in our preferred basis, which gives

Z 1

tD0

.1� t/Œi�t Œj � D 1=.1C i C j /! :

This will be useful later.

For n > 0 we define a map �W �0
n�1
� Œ0; 1�! �0n by �.t; s/ D .st; 1� s/. This is

bijective away from a set of measure zero, and the Jacobian is sn�1 . Given a multiindex
� D .0; �1; : : : ; �n/, write �0 for the truncated sequence .0; �1; : : : ; �n�1/. We then
have

�.t; s/Œ�� D .1� s/Œ�n�.ts/Œ�
0�
D .1� s/Œ�n�sj�

0jt Œ�
0�:
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We may assume inductively thatZ 0
Œn�1�

t Œ�
0�
D

1

.n� 1Cj�0j/!
;

Z 0
Œn�

t Œ�� D

Z 1

sD0

Z 0
Œn�1�

�.x; s/Œ��sn�1dsso

D

Z 1

sD0

.1� s/Œ�n�sn�1Cj�0jds

Z 0
Œn�1�

xŒ�
0�

D

Z 1

sD0

.1� s/Œ�n�sŒn�1Cj�0j�ds D
1

.1C �nC n� 1Cj�0j/!
D

1

.nCj�j/!
;

as required.

Now
R 0

I f is certainly the integral of f over �I with respect to some normalisation
of Lebesgue measure. To determine the normalisation, note that

R 0
I 1D

R
I t Œ0� D 1=n!

as required.

Lemma B.3 Take I D Œn� D f0; 1; : : : ; ng, use the parameters sk D
P

j<k tj for
k D 1; : : : ; n. Consider a monomial s� D

Qn
kD1 s

�k

k
. Put �k D

P
j�k.�j C 1/ and

�D
Q

i �i . Then
R
Œn� s

� D 1=�.

Proof It will suffice to prove this when KDR, in which case we have
R

I s� D
R 0

I s� .
By a straightforward change of variables this becomesZ

I

s� D

Z
0�s1�����sn�1

s�ds1 � � � dsn:

Suppose that the lemma holds for some n. Using the change of variables si 7! rsi

(which has Jacobian rn ) we see thatZ
0�s1�����sn�r

s� ds1 � � � dsn D rnC
P

i �i

Z
0�s1�����sn�r

s� ds1 � � � dsn D r�n=�:

Now multiply by rm and integrate from r D 0 to r D 1; the right hand side becomes
1=..mC 1C�n/�/. Now change notation, replacing r by snC1 and m by �nC1 ; this
gives the case nC 1 of the lemma.

Lemma B.4 Suppose that f 2 PŒn� and g 2 PŒm� . ThenZ
Œn�

f �

Z
Œm�

g D
X

.˛;ˇ2†.n;m//

Z
ŒnCm�

˛�.f /ˇ�.g/:

(Here †.n;m/ is the set of .n;m/–shuffles, as in Definition A.11.)
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Proof Put �00n D fs 2Rn j 0� s1 � � � � � sn � 1g. As implicitly used in the proof of
the previous lemma, there is a homeomorphism �Œn�!�00n given by

t 7!

�
t0; t0C t1; : : : ;

X
i<n

ti

�
:

Now consider a shuffle .˛; ˇ/ 2†.n;m/, and the corresponding maps

f1; : : : ; ng
�
�! f1; : : : ; nCmg

 
 � f1; : : : ;mg

given by �.j /Dminfi j˛.i/D j g and  .k/Dminfi jˇ.i/D kg. These give a map
.˛�; ˇ�/W �

00
nCm!�00n ��

00
m , with ˛�.s/i D s�.i/ and ˇ�.s/j D s .j/ . Let X˛ˇ be

the image of this map. It is standard that these are the top-dimensional simplices in a
triangulation of �00n ��

00
m , soZ

Œn�

f �

Z
Œm�

g D
X
˛;ˇ

Z
X˛ˇ

f ˝g:

Moreover, from the form of the maps ˛� and ˇ� it is clear that the Jacobian of
.˛�; ˇ�/W �

00
nCm!�00n ��

00
m is one. The lemma follows.
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