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Finiteness of mapping degrees and PSL.2 ; R/–volume
on graph manifolds

PIERRE DERBEZ

SHICHENG WANG

For given closed orientable 3–manifolds M and N let D.M;N / be the set of
mapping degrees from M to N . We address the problem: For which N is D.M;N /

finite for all M ? The answer is known for prime 3–manifolds unless the target is a
nontrivial graph manifold. We prove that for each closed nontrivial graph manifold N ,
D.M;N / is finite for any graph manifold M .

The proof uses a recently developed standard form of maps between graph manifolds
and the estimation of the ePSL.2;R/–volume for a certain class of graph manifolds.

57M50; 51H20

1 Introduction

Let M and N be two closed oriented 3–dimensional manifolds. Let D.M;N / be the
set of degrees of maps from M to N , that is,

D.M;N /D fd 2 Z jf W M !N; deg.f /D dg:

According to J A Carlson and D Toledo [3], M Gromov considered determining the set
D.M;N / to be a fundamental problem in topology. Indeed the supremum of absolute
values of degrees in D.M;N / was addressed by J Milnor and W Thurston in the
1970’s [11]. A basic property of D.M;N / is reflected in the following:

Question 1 (See also Reznikov [12, Problem A] and Wang [15, Question 1.3].)
For which closed orientable 3–manifold N is the set D.M;N / finite for all closed
orientable 3–manifolds M ?

This question can be interpreted as a way to detect some new rigidity properties of
the geometry and the topology of a manifold. More precisely, when M is fixed, then
one can expect that if the geometry-topology of a manifold N is complicated, then the
possible degree of maps f W M !N is essentially controlled by the data of N . For
geometric 3–manifolds (ie 3–manifolds which admits a locally homogeneous complete
Riemannian metric) the answer to this question is summarized in the following:
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Theorem 1.1 (Thurston [13]; Brooks and Goldman [1; 2]; Wang [15]) Let N denote
a closed orientable geometric 3–manifold.

(i) If N supports the hyperbolic or the ePSL.2;R/ geometry, then D.M;N / is
finite for any M .

(ii) If N admits one of the six remainding geometries, S3 , S2�R, Nil, R3 , H2�R
or Sol then D.N;N / is infinite.

To study the set D.M;N / we need to introduce a special kind of 3–manifold invariant.
More precisely, we say that a nonnegative 3–manifold invariant ! has the degree
property or simply Property D , if for any map f W M !N , !.M /� jdeg.f /j!.N /.
We say ! has the covering property or simply Property C , if for any covering pW M !

N , !.M /D jdeg.p/j!.N /. The invariants with Property D are important in studying
Question 1 due to the following fact (see Lemma 3.1):

Fact (?) If ! has Property D and if N admits a finite covering zN such that !. zN / 6D0

then the set D.M;N / is finite for all M .

When N is hyperbolic, the finiteness of the set D.M;N / is essentially controlled by the
volume associated to the Riemannian metric with constant negative sectional curvature
which satisfies Property D . When N admits a ePSL.2;R/ geometry D.M;N / is
essentially controlled by the ePSL.2;R/–volume SV introduced by Brooks and Gold-
man [2; 1]: it satisfies Property D and it is nonzero for Seifert manifolds supporting a
ePSL.2;R/ geometry.

To study Question 1 for more general manifolds, M Gromov [7] introduced the simplicial
volume kN k of a manifold N . This invariant always satisfies Property D . For
example, using the simplicial volume and the work of Connell and Farb [4], Lafont
and Schmidt [9] generalized point (i) of Theorem 1.1 when the target manifold N is a
closed locally symmetric space of noncompact type. However, closed locally symmetric
manifolds are a special class of complete locally homogeneous manifolds and thus
Question 1 is still open for nongeometric manifolds with zero simplicial volume.

In this paper we focus on closed 3–manifolds. Recall that according to the Perelman
Geometrization Theorem, 3–manifolds with zero Gromov simplicial volume are pre-
cisely graph manifolds. We call a 3–manifold covered by either a torus bundle or a
Seifert manifold a trivial graph manifold. Hence for prime 3–manifolds, Question 1 is
reduced to:

Question 2 Suppose N is a nontrivial graph manifold. Is D.M;N / finite for all
closed orientable 3–manifolds M ?
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The main difficulty in studying Question 2 for a nontrivial graph manifold N is to find
a 3–manifold invariant satisfying Property D which does not vanish on N . Based on
Fact (?), it is natural to ask:

Question 3 Let N be a closed orientable nontrivial graph manifold. For some finite
covering zN of N , does SV. zN / 6D 0?

The ePSL.2;R/–volume is rather strange and very little is known about it. It can be
either zero or nonzero for hyperbolic 3–manifolds [2]; whether it has Property C

is still unclear, and it was not addressed for nongeometric 3–manifolds since it was
introduced more than 20 years ago.

A main result of this paper is a partial answer of Question 3: we verify that for a family
of nongeometric graph manifolds N , they do have finite cover zN with SV. zN / 6D 0

(Proposition 4.1). Such a partial answer, combined with the standard form of nonzero
degree maps developed by Derbez [6], enables us to solve Question 2 when we restrict
to graph manifolds.

Theorem 1.2 For any given closed prime nontrivial graph manifold N , D.M;N / is
finite for any graph manifold M .

Remark Some facts related to Theorem 1.2 were known before: D.N;N / is finite
for any prime nontrivial graph manifold N (see Wang [14] and also Derbez [5]). The
covering degrees are uniquely determined by the graph manifolds involved (see Yu and
Wang [17]).

This paper is organized as follows.

In Section 2 we define the objects which will be used in the paper: For graph manifolds,
we will define their coordinates and gluing matrices, canonical framings, the standard
forms of nonzero degree maps, the absolute Euler number and the absolute volume.
We also recall ePSL.2;R/–volume and its basic properties.

In Section 3 we state and prove some results on coverings of graph manifolds which
will be used in the paper.

Section 4 is devoted to the proof of Proposition 4.1. The strategy is to use a finite
sequence of coverings to get a very ”large” and ”symmetric” covering space which
allows some free action of a finite cyclic group so that the quotient can be sent onto a
3–manifold supporting the ePSL.2;R/ geometry via a nonzero degree map.

In Section 5 we prove Theorem 1.2. The strategy is to use the standard form of nonzero
degree maps between graph manifolds to show that one can reduce the problem to the
case where the target is a graph manifold satisfying the hypothesis of Proposition 4.1.
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2 Notations and known results

From now on all 3–manifolds are irreducible and oriented, and all graph manifolds are
nontrivial.

Suppose F (resp. P ) is a properly embedded surface (resp. an embedded 3–manifold)
in a 3–manifold M . We use M nF (resp. M nP ) to denote the resulting manifold
obtained by splitting M along F (resp. removing intP , the interior of P ).

2.1 Coordinated graph manifolds and gluing matrices

Let N be a graph manifold. Denote by TN the family of JSJ tori of N , by N � the set
N n TN D f†1; : : : ; †ng of the JSJ pieces of N , by � W @N �! @N � the associated
sewing involution defined by Jaco and Shalen [8].

A dual graph of N , denoted by �N , is given as follows: each vertex represents a JSJ
piece of N ; each edge represents a JSJ torus of N ; an edge e connects two vertices
v1 and v2 (may be v1 D v2 ) if and only if the corresponding JSJ torus is shared by
the corresponding JSJ pieces.

Call a dual graph �N directed if each edge of �N is directed, in other words, is
endowed with an arrow. Once �N is directed, the sewing involution � becomes a well
defined map, still denoted by � W @N �! @N � .

Suppose N � contains no pieces homeomorphic to I.K/, the twisted I –bundle over
the Klein bottle.

Let † be an oriented Seifert manifold which admits a unique Seifert fibration, up to
isotopy, and @†¤∅. Denote by h the homotopy class of the regular fiber of †, by
O the base 2–orbifold of † and by †0 the space obtained from † after removing the
singular fibers of †. Then †0 is a S1 –bundle over a surface O0 obtained from O
after removing the exceptional points. Then there exists a cross section sW O0!†0 .
Call † is coordinated, if

(1) such a section sW O0!†0 is chosen,
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(2) both @O0 and h are oriented so that their product orientation is matched with
the orientation of @† induced by that of †.

Once † is coordinated, then the orientation on @O0 and the oriented fiber h give a
basis of H1.T IZ/ for each component T of @†. We also say that † is endowed with
a .s; h/–basis.

Since N � has no I.K/–components then each component †i of N � admits a unique
Seifert fibration, up to isotopy. Moreover each component †i has the orientation
induced from N . Call N is coordinated, if each component †i of N � is coordinated
and �N is directed.

Once N is coordinated, then each torus T in TN is associated with a unique 2� 2–
matrix AT provided by the gluing map � jW T�.s�; h�/!TC.sC; hC/: where T�;TC
are the two components in @N � provided by T , with basis .s�; h�/ and .sC; hC/
respectively, and

�.s�; h�/D .sC; hC/AT :

Call fAT ;T 2 T g the gluing matrices.

2.2 Canonical framings and canonical submanifold

Let † denote an orientable Seifert manifold with regular fiber h. A framing ˛ of † is
to assign a simple closed essential curve not homotopic to the regular fiber of †, for
each component T of @†. Denote by †.˛/ the closed Seifert 3–manifold obtained
from † after Dehn fillings along the family ˛ and denote by �†W †!†.˛/ the natural
quotient map. Let pW �†!† be a finite covering. Assume that † and �† are endowed
with a framing ˛ and z̨ . Then we say that .�†; z̨/ covers .†; ˛/ if each component
of z̨ is a component of p�1.˛/. In this case, the map pW .�†; z̨/! .†; ˛/ extends to
a map ypW �†.z̨/!†.˛/ and the Euler number of †.˛/ is nonzero if and only if the
Euler number of �†.z̨/ is nonzero [10]. When N contains no I.K/–component in its
JSJ decomposition, each Seifert piece † of N � is endowed with a canonical framing
˛† given by the regular fiber of the Seifert pieces of N � adjacent to †. Denote by�† the space †.˛†/. By minimality of JSJ decomposition, �† admits a unique Seifert
fibration extending that of †.

Call a submanifold L of a graph manifold N canonical if L is a union of some
components of N n T , where T is subfamily of TN . Similarly call ˛L D ftU � U g

where tU is the regular fiber of the Seifert piece adjacent to L along the component U ,
when U runs over the components of @L, the canonical framing of L, and denote by
yL the closed graph manifold obtained from L after Dehn fillings along the family ˛L .
From the definition we have:
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Lemma 2.1 For a given closed graph manifold M , there are only finitely many
canonical framed canonical submanifolds .L; ˛L/, and thus only finitely many yL.

2.3 Standard forms of nonzero degree maps

We recall here two results which are proved in [6] in a more general case. The first
result is related to the standard forms of nonzero degree maps.

Proposition 2.2 [6, Lemma 3.4] For a given closed graph manifold M , there is
a finite set H D fM1; : : : ;Mkg of closed graph manifolds satisfying the following
property: for any nonzero degree map gW M ! N into a closed nontrivial graph
manifold N without I.K/ piece in N � , there exists some Mi in H and a map
f W Mi!N such that

(i) deg.f /D deg.g/,

(ii) for each piece Q in N � , f �1.Q/ is a canonical submanifold of Mi .

The following technical ”mapping lemma” will be also useful:

Lemma 2.3 [6, Lemma 4.3] Suppose f W M ! N is a map between closed graph
manifolds and N � contains no I.K/ piece. Let S and S 0 be two components of M �

which are adjacent in M along a subfamily T of TM and satisfy

(i) f .S 0/� int.†0/ for some piece †0 of N � ,

(ii) f�.ŒhS �/ 6D 1, where tS is the regular fiber of S .

Then there exists a piece † of N � and a homotopy of f supported in a regular
neighborhood of S such that f .S/� int.†/. Moreover if f .hS / is not homotopic to
a power of the regular fiber of †, then one can choose †D†0 .

[6, Lemma 4.3] was stated for Haken manifolds. Since here we consider only nontrivial
graph manifolds instead of Haken manifolds, then we can state [6, Lemma 4.3] in term
of the JSJ pieces of N instead of in term of the characteristic Seifert pair of N .

2.4 ePSL.2 ; R/–volume, absolute volume and absolute Euler number

ePSL.2;R/–volume SV was introduced by Brooks and Goldman [2; 1]. (It is also
considered as a special case of volumes of representations; see Reznikov [12] and
Wang and Zhou [16]). Two basic properties of SV are reflected in the following:

Lemma 2.4 (i) SV has Property D [2].
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(ii) If N supports the ePSL.2;R/ geometry, ie, N admits a Seifert fibration with
nonzero Euler number e.N / and whose base 2–orbifold ON has a negative
Euler characteristic, then [1]

SV.N /D

ˇ̌̌̌
�2.ON /

e.N /

ˇ̌̌̌
:

When N is a closed graph manifold with no I.K/ piece in N � , using the notation
introduced in Section 2.2, one can define the so-called absolute volume jSV j by setting

jSV j.N /D
X
†2N�

SV.�†/:
In the same way one can define the absolute Euler number of N by setting

jej.N /D
X
†2N�

je.�†/j:
In Section 3.3 we will study the relations between jej.N / and jSV j.N / (see Lemma
3.6).

3 Reduction of complexity via coverings

In this section we state some results on finite coverings of surfaces and 3–manifolds
which will be used in the proofs of Proposition 4.1 and Theorem 1.2.

3.1 Two general statements

The first result says that to prove the finiteness of the set D.M;N / one can replace N

by a finite covering of it.

Lemma 3.1 (1) Let pW N 0 ! N be a finite covering of a closed oriented 3–
manifold N . If D.P;N 0/ is finite for any closed 3–manifold P , then D.M;N /

is finite for any closed 3–manifold M .

(2) Let pW N 0!N be a finite covering of a closed graph manifold N . If D.P;N 0/
is finite for any closed graph manifold P , then D.M;N / is finite for any closed
graph manifold M .

Proof (1) For each nonzero degree map f W M !N , let M.f / be the connected
covering space of M corresponding to the subgroup f �1

� .p�.�1N 0// of �1M which
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we denote by r W M.f /!M . Let f 0W M.f /!N 0 be a lift of f , then pıf 0Df ır .
We claim that the set

C D fM.f /; when f runs over the nonzero degree maps from M to N g

is finite. To see this, first note that the index of f �1
� .p�.�1N 0// in �1M is bounded

by the index of p�.�1N 0/ in �1N . Indeed, the homomorphism f�W �1M ! �1N

descends through an injective map

xf�W
�1M

f �1
� .p�.�1N 0//

!
�1N

p�.�1N 0/
:

Since �1M contains at most finitely many subgroups of a bounded index, it follows
that M.f / has only finitely many choices which proves that the set C is finite. By the
construction we have

deg.f /D
deg.p/
deg.r/

deg.f 0/:

By the finiteness of the set C and assumption on N 0 , the set fdeg.f 0/ j f W M 0!N 0;

M 0 2 Cg is finite. Clearly deg.r/ have only finitely many choices, so the lemma is
proved.

(2) If M and N are graph manifolds, then all manifolds M.f /, N 0 in the proof of
(1) are graph manifolds. Clearly (2) follows.

Lemma 3.2 Let N be a closed 3–manifold with nontrivial JSJ decomposition. Then
there exists a 2–fold covering zN of N such that each JSJ–torus of zN is shared by two
different pieces of zN � .

Proof Let fT1; : : : ;Tkg be the family of JSJ tori of N such that each Ti is shared
by the same piece of N � . Let e1; : : : ; ek be the corresponding edges in �N . Then
e1; : : : ; ek are the edges of �N with the two ends of each ei being at the same vertex.
Clearly H1.�N IZ/D he1i˚ � � �˚ heki˚G .

Let r W N ! �N be the retraction. Consider the following epimorphism

�W H1.N;Z/
r�
!H1.�N IZ/

q
! he1i˚ � � �˚ heki

�
! Z=2Z

where r� is induced by r , q is the projection, and � is defined by �.Œei �/ D x1 for
i D 1; : : : ; k . Then the double covering zN of N corresponding to � satisfies the
conclusion of the lemma, since the double covering of �N corresponding to � ı q ,
which is the dual graph of zN , contains no edge with two ends being at the same vertex.
See Figure 1 for the local picture.
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Figure 1

3.2 Separable and characteristic coverings

Let N be a closed graph manifold without I.K/ JSJ piece. Let T be a union of tori
and let m be a positive integer. Call a covering pW zT ! T m–characteristic if for
each component T of T and for each component zT of zT over T , the restriction
pjW zT ! T is the covering map associated to the characteristic subgroup of index
m�m in �1T . Call a finite covering zN !N of a graph manifold N m–characteristic
if its restriction to T zN ! TN is m–characteristic.

Next we define the separable coverings. Let † be a component of N � with base
2–orbifold O . Let †0 , O0 , and sW O0 ! †0 are be given as in Section 2.1. Let
pW �†!† denote a finite covering. Recall that p is a fiber preserving map.

Recall that the vertical degree of p is the integer dv such that p�.zh/D hdv , where h

and zh denote the homotopy class of the regular fiber in † and �†, and the horizontal
degree dh is the degree of the induced branched covering xpW zO!O , where zO denotes
the base of the bundle �†. We have deg.p/D dv � dh .

On the other hand, p induces a finite covering pjW �†0Dp�1.†0/!†0 and a covering
pjbW zF0!O0 , with zF0 connected. More precisely, pjb corresponds to the subgroup
s�1
� ..pj/�.�1

�†0//. Note that p and pj have the same degree, same vertical degree
and same horizontal degree. If deg.pjb/ D dh , then we say that the covering p is
separable. The following result provides two classes of separable coverings which will
be used later.

Lemma 3.3 Let pW �†!† be an oriented Seifert manifold finite covering.

(i) If p has fiber degree one, then p is a separable covering.

(ii) If † D F � S1 and p is a regular covering corresponding to an epimorphism
�W �1† D �1F � Z ! G D G1 � G2 satisfying �.�1F � f1g/ D G1 and
�.f1g �Z/DG2 then p is separable.
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Proof Using the same notation as above it is easy to see that the map pjbW zF0!O0

factors through covering maps qW zF0! zO0 and xpW zO0!O0 where zO0 denotes the
base of the bundle �†0 . Then we get

deg.pjb/D dh � deg.q/D deg.p/� deg.q/

since p has vertical degree one. On the other hand, since deg.pjb/ � deg.p/ then
deg.q/D 1. This proves (i).

If † is homeomorphic to a product F �S1 then we have the following commutative
diagram

zF
zs //

pjb
��

�†
p

��
F

s // †

where zF is connected. Since �.�1F�f1g/DG1 then p�1.s.F // has jG2j components
and thus deg.p/ D deg.pjb/� jG2j. Since deg.p/ D jG1j � jG2j then deg.pjb/ D
jG1j D dh . This proves (ii).

3.3 Lifting of coordinates and gluing matrices

From now on we assume the graph manifold N is coordinated. Let pW zN !N be a
finite covering of graph manifolds. Then obviously � zN can be directed in a unique
way such that the induced map p#W � zN ! �N preserves the directions of the edges.
Below we also assume that � zN is directed in such a way.

Let pW zN ! N be a finite covering of graph manifolds. Call p is separable if the
restriction pjW �† ! † on connected Seifert pieces is separable for all possible �†
and †. Call a coordinate on zN a lift of the coordinate of N , if for each possible
covering pjW �†!† on connected Seifert pieces, the .s; h/–basis of �† is lifted from
the .s; h/–basis of †.

Lemma 3.4 (i) Let pW zN !N be a separable finite covering of graph manifolds.
Then the coordinate of N can be lifted on zN .

(ii) Moreover, if the covering p is characteristic, then for each component T of TN

and for each component zT over T we have AT DA zT , where the coordinate of
zN is lifted from N .

Proof To prove (i), one need only to show that for a separable finite covering pW �†!†

of a connected Seifert piece, then any .s; h/–basis of † lifts to a .s; h/–basis of �†.
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Using the same notation as in the proof of Lemma 3.3 we have

deg.pjb/D dh � deg.q/:

Since we assume deg.pjb/D dh , we have deg.q/D 1 and thus zs is a cross section.
This proves (i).

Once N is coordinated, then each torus T in TN is associated with a unique 2�2–
matrix AT provided by the gluing map � jW T�.s�; h�/ ! TC.sC; hC/ such that
�.s�; h�/D .sC; hC/AT :

Similarly with lifted coordinate on zN we have z� jW zT�.zs�; zh�/! zTC.zsC; zhC/ and
�.zs�; zh�/D .zsC; zhC/A zT :

Since the coordinate of zN are lifted from N , and p is m–characteristic for some m,
we have the following commutative diagram:

.zs�; zh�/
A zT //

�m

��

.zsC; zhC/

�m

��
.s�; h�/

AT // .sC; hC/

Then one verifies directly that A zT DAT . This proves (ii).

3.4 The absolute volume and the absolute Euler number

We end this section with a result (see Lemma 3.6) which states the relation between the
absolute volume and the absolute Euler number of a graph manifold. First we begin
with a technical result.

Lemma 3.5 Suppose N is a closed graph manifold without I.K/ JSJ piece.

(i) For any finite covering zN !N , jej. zN /D 0 if and only if jej.N /D 0.

(ii) There is a finite covering pW zN !N which is separable and characteristic, and
each Seifert piece of zN is the product of a surface of genus at least 2 and the
circle. Moreover zN may be chosen so that � zN has two vertices if �N has two
vertices.

Proof (i) follows from the definition and [10, Proposition 2.3].

(ii) It has been proved in [10, Proposition 4.4], that there is a characteristic finite
covering pW zN !N whose each piece is the product of a surface and the circle. By
checking the proof, it is easy to see that the condition “genus at least 2” can be satisfied;
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moreover the restriction pjW �† ! † on connected JSJ pieces is a composition of
separable coverings described in Lemma 3.3, which is still separable.

If moreover �N has exactly two vertices †1 and †2 , then for i D 1; 2, denote by
pi W †

0
i!†i the m–characteristic separable finite covering such that †0i is the product

of a surface of genus at least 2 and the circle. There exists a 1–characteristic finite
covering qi W

�†i!†0i such that @�†1 and @�†2 have the same number of components.
Next one can glue �†1 and �†2 by the lift of the sewing involution of N to get a
characteristic and separable finite covering pW zN ! N whose dual graph has two
vertices. This completes the proof of the lemma.

Lemma 3.6 Let N be a closed graph manifold without I.K/ JSJ pieces.

(i) If jej.N / 6D 0 then N admits a finite covering zN with jSV j. zN / 6D 0.

(ii) If jej.N /D 0 then N admits a finite covering zN which can be coordinated such
that each gluing matrix is in the form

˙

�
0 1

1 0

�
:

Proof By Lemma 3.5 (ii), let pW zN !N be a finite covering which is separable and
characteristic and each piece of zN � is a product F �S1 with g.F /� 2.

By Lemma 3.5 (i), jej.N / 6D 0 implies jej. zN / 6D 0. By definition of jej, e.�†/ 6D 0 for
some †D F �S1 2 zN � . Since g.F /� 2, SV.�†/ 6D 0, and hence jSV j. zN / 6D 0 by
definition in Section 2.4. This proves (i).

Denote by †1; : : : ; †n the components of N � . For each i D 1; : : : ; n, denote by
.†i ; ˛i/ the Seifert piece †i of N � endowed with its canonical framing. Since
e.N /D 0 then e.†i.˛i//D e.�†i/D 0 and thus there exists a finite covering of �†i ,
with fiber degree one, homeomorphic to a product. By pulling back this covering via the
quotient map � W †i!

�†i we get a covering �†i of †i such that the framing .�†i ; z̨i/

satisfies the following condition: there exists a properly embedded incompressible
surface Fi in �†i such that �†i ' Fi �S1 and @Fi D z̨i .

Suppose T is a component of @†i and T 0 is a component of @†j such that T is
identified to T 0 then the sewing involution � jT W T ! T 0 lifts to a sewing involution
z� W zT ! zT 0 , where zT , resp. zT 0 , denotes a component of @�†i , resp. a component of
@�†j , over T , resp. T 0 . Indeed by our construction the induced coverings zT ! T

and zT 0! T 0 correspond exactly to the subgroup of �1T , resp. of �1T 0 , generated
by h and h0 , where h is the fiber of †i represented in T and h0 is the fiber of †j

represented in T 0 , hence the gluing map lifts by the lifting criterion.
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Denote by �i the degree of the covering map �†i!†i . Let

�D lcmf�1; : : : ; �ng:

For each i D 1; : : : ; n, take ti D �=�i copies of �†i and glue the components of
na

iD1

.ti copies of �†i/

together via lifts of the sewing involution � of N to get a separable finite covering
pW zN ! N . By coordinating each piece z†i of zN � with such a section Fi and its
regular fiber, zN is coordinated. Clearly each component of @Fi is identified with the
regular fiber of its adjacent piece and vice versa. Therefore each gluing matrix should
be in the form �

0 ˙1

˙1 0

�
:

Since the determinant should be �1, therefore the gluing matrix is in the form

˙

�
0 1

1 0

�
:

This proves point (ii).

4 APSL.2 ; R/–volume of graph manifolds

Let N be a closed graph manifold which consists of two JSJ pieces †1 and †2 and n

JSJ tori fT1; : : : ;Tng, moreover no †i is I.K/ and each Ti is shared by both †1 and
†2 . Call such a manifold n–multiple edges graph manifold, whose dual graph �N is
shown in Figure 2. We assume �N is also directed as in Figure 2. In this section we
use Ai for ATi

for short.

Proposition 4.1 Let N be a n–multiple edges graph manifold which is coordinated.
Assume that the gluing matrices of N satisfy the condition A1 D˙A2 D � � � D ˙An .
Then N admits a finite covering space zN such that SV. zN / 6D 0.

Corollary 4.2 Suppose N is a closed graph manifold whose dual graph has two
vertices and one edge. Then D.M;N / is finite for any 3–manifold M .

Proof We may suppose that N contains no I.K/ piece. Otherwise N is doubly
covered by a nontrivial graph manifold which contains no I.K/ piece and whose dual
graph still has two vertices and one edge (since we assume that N is nontrivial graph
manifold). In any case N has a finite cover zN such that SV. zN / 6D 0 by Proposition
4.1. Then by Lemmas 2.4 and 3.1, D.M;N / is finite for any 3–manifold M .
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T1

T2

Tn

†1 †2

Figure 2: Multiple edges graph manifold

The proof of Proposition 4.1 follows from the sequence of lemmas below.

Let N be a n–multiple edges coordinated graph manifold. We define Property I for
N as follows:

Property I (1) The JSJ piece †i is homeomorphic to a product Fi � S1 where
Fi is an oriented surface with genus � 2, for i D 1; 2.

(2) A1 DA2 D � � � DAn .

Lemma 4.3 Let N be a n–multiple edges graph manifold satisfying the assumption of
Proposition 4.1. Then there exist separable and characteristic finite coverings p1W N1!

N and p2W N1!N2 such that N2 satisfies Property I .

Proof By Lemma 3.5 (ii) and Lemma 3.4, we may assume that N is a n–multiple
edges graph manifold satisfying the assumption of Proposition 4.1, and moreover †i is
homeomorphic to a product Fi �S1 where Fi is an oriented surface with genus � 2.

We may assume that A1 D � � � D Ak D �A and AkC1 D � � � D An D A, 0 < k < n,
shown as in the right of Figure 3.

Denote by ci;j the loops of �N corresponding to the “composition” Ti : .�Tj /, note
that here Ti represents an oriented edge. Then ci;kC1 for i D 1; : : : ; k and cj ;n for
j D kC 1; : : : ; n� 1 form a basis of H1.�N / and we have

H1.�N /D

� kM
iD1

hci;kC1i

�
˚

� n�1M
jDkC1

hcj ;ni

�
:
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Next we define an epimorphism

�W H1.N;Z/
r�
!H1.�N IZ/

q
!

kM
iD1

hci;kC1i
�
! Z=2Z

where r� is induced by the retraction r W N ! �N , q is the projection and � is defined
by �.ci;kC1/Dx1 for any i 2 f1; : : : ; kg. Denote by p1W N1!N the 2–fold covering
corresponding to � , and by � the deck transformation of this covering.

It is easy to see that this covering is separable and 1–characteristic. Moreover with the
lifted coordinates of N , the directed graph �N1

with gluing matrices ˙A, as well as
the two lifts †1

i and †2
i of †i , i D 1; 2, are shown in the left of Figure 3.

A

A

A

A

A

A

�A �A �A �A

�A

�A

p1
†1 †2

†1
1 †1

2

†2
2 †2

1

Figure 3

Let †j
i D F

j
i �S1 . It is not difficult to see that there is an orientation preserving

involution �j
i on †j

i satisfying the following:

(1) �
j
i reverses both the orientation of F

j
i and S1 .

(2) For each coordinated component .T; .s; h// of @†j
i ,

�
j
i ..T; .s; h///D .T; .�s;�h//:

Then all those �j
i , i; j D 1; 2 match together to get an involution � on N1 .

Keep the coordinate of †1
i for i D 1; 2, and re-coordinate †2

i for i D 1; 2 by
.T; .�s;�h// for each component of @†2

i for i D 1; 2, and denote the new coordinated
graph manifold by N 0

1
(N 0

1
is N1 if we forget their coordinates). Then all gluing

matrices of N 0
1

are A.

Now consider the composition � ı�, it is easy to see that
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(1) � ı� is free involution on N 0
1

,

(2) for each JSJ piece † of N 0
1

, � ı� sends the coordinate systems of † to the
coordinate systems of � ı�.†/.

Now consider the double covering p2W N1 D N 0
1
! N2 D N 0

1
=� ı �. Since the

coordinates of N 0
1

are invariant under � ı�, and all gluing matrices of N 0
1

are A, we
conclude that N2 has Property I .

Lemma 4.4 Let N be a d –multiple edges graph manifold satisfying Property I .
Then there exists a finite separable d –characteristic covering pW N1! N such that
N1 is a d –multiple edges graph manifold satisfying Property I and each JSJ piece †1

i

is the product F1
i �S1 with g.F1

i /D aid C bi � 2 for some positive integers ai ; bi .

Proof Denote by Fi the orbit space of †i , by hi its fiber, and by ci
1
; : : : ; ci

d
the

components of @Fi and consider the homomorphism

"i W �1†i D �1Fi � hŒhi �i ! Z=dZ�Z=dZ

defined by "i.al/ D .x0;x0/ for l � 1, "i.bj / D .x0;x0/ for j � 1, "i.c
i
1
/ D � � � D

"i.c
i
d�1

/D .x1;x0/ and "i.hi/D .x0;x1/, where �1Fi has a presentation:

ha1; b1; : : : ; agi
; bgi

; ci
1; : : : ; c

i
d j Œa1; b1� � � � Œagi

; bgi
�ci

1 � � � c
i
d D 1i;

where gi D g.Fi/. Since ci
1
C � � �C ci

d�1
C ci

d
D 0 in H1.Fi IZ/ and since d � 1 is

invertible in Z=dZ then "i.c
i
l
/ is of order d in Z=dZ for l D 1; : : : ; d . Denote by

p1
i W †

1
i !†i the associated covering, then the number of components of @†1

i is d

by the construction. Denote by pW N1!N the d2 –fold covering of N obtained by
gluing †1

1
with †1

2
. This is possible since the p1

i induce the d –characteristic covering
on the boundary for i D 1; 2. This defines a finite separable d –characteristic covering
by construction. Since p1

i has horizontal degree d then �.F1
i /D d�.Fi/, where F1

i

denotes the orbit space of †1
i . This implies that

2g.F1
i /C d � 2D d.2g.Fi/C d � 2/:

Hence we get

g.F1
i /D d.g.Fi/� 1/C

�
d.d � 1/

2
C 1

�
:

This proves the lemma.

Call a proper degree one map pW F 0! F between compact surfaces a pinch if there
is a disc D in intF such that pjW p�1.V /! V is a homeomorphism, where V D

F � int.D/. We call a proper degree one map f W F 0 �S1! F �S1 a vertical pinch
if f D p� id, where p is a pinch.
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Lemma 4.5 Let N be a d –multiple edges graph manifold satisfying Property I and
assume that g.Fi/D aid C bi for some positive integers ai ; bi and for i D 1; 2. Then
N dominates a ePSL.2;R/–manifold.

Proof First note that after performing a vertical pinch on †1 D F1 � hh1i and on
†2 D F2�hh2i we may assume that g1 D g2 D adC1 for some a 2 ZC . Note there
is a cyclic d –fold covering p0i W Fi ! Fi

0 with g.F 0i / D aC 1, @F 0i connected, and
the restriction of p0i is trivial on each component of @Fi . This covering is given by a
rotation of angle 2�=d on Fi whose axis does not meet Fi (see Figure 4).

ai holes

ai holes ai holes

rotation axis

ai C 1 holes

d1

2

3

Figure 4: Fixed point free action of Z=dZ
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The coverings p0i W Fi ! F 0i trivially extend to coverings p0i W †i D Fi � hhii !†0i D

F 0i � hh
0
ii by setting p0i.hi/D h0i for i D 1; 2. Since all the gluing matrices of N are

A by Property I , then the coverings p0i W †i !†0i extend to a covering p0W N !N 0 ,
where the graph manifold N 0 consists of the Seifert pieces †0

1
and †0

2
and the gluing

matrix A under obvious basis.

We fix some notation. For i D 1; 2, denote by @F 0i D si and � 0W @†0
1
D s1 � h0

1
!

@†0
2
D s2 � h0

2
the induced sewing map satisfying � 0.s1; h

0
1
/D .s2; h

0
2
/A, where

AD

�
a b

c d

�
2 SL.2;Z/

with ad � bc D�1. Moreover b 6D 0 by the basic properties of JSJ decomposition.

Note that � 0�.s1/D as2C ch0
2

and � 0�1
� .s2/D�ds1C ch0

1
. If ac 6D 0, then first pinch

†0
1
D F 0

1
� h0

1
into a solid torus V1 DD2 � h0

1
by pinching s1 . This pinch provides

a degree one map � W N 0! �†0
2

where �†0
2

is the closed 3–manifold obtained from
†0

2
by Dehn filling along the curve as2C ch0

2
. Since ac 6D 0 then �†0

2
is a ePSL.2;R/–

manifold. If dc 6D 0 similarly one can perform the same construction with †0
1

. This
proves the lemma when ac 6D 0 or dc 6D 0.

Let us assume now that ac D dc D 0. Then either c D 0 or a D d D 0. Since
ad � bc D�1, then either

AD˙

�
1 b

0 �1

�
with b 6D 0 or AD˙

�
0 1

1 0

�
:

Keeping the coordinate on †0
1

and re-coordinating †0
2

by .�s2;�h0
2
/ if needed, we

may assume that

AD

�
1 b

0 �1

�
or AD

�
0 1

1 0

�
:

Suppose first

AD

�
1 b

0 �1

�
:

Denote F 0
1
' F 0

2
by F . Denote by

� W F 01 � h01

a
F 02 � h02!†D F � h

the trivial 2–fold covering map, where �.h0i/ D h and �.si/ D s D @F . Denote by
�W †! �† the quotient map associated with the Dehn filling on @† along the curve

b

.2; b/
s�

2

.2; b/
h
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where .2; b/ denotes the greatest common divisor of 2 and b . Note that, since b 6D 0,
then �† is a ePSL.2;R/–manifold.

One can verify routinely that in the �1 level the relations provided by gluing †0
1

and
†0

2
via � 0 are sent to the relation provided by Dehn filling on † via

b

.2; b/
s�

2

.2; b/
h

under � , hence the map � ı� W †0
1

`
†0

2
! �† factors through

†0
1

`
†0

2

� 0
'N 0

which is sent into �† by a degree 2 map, since the sewing involution � 0 is orientation
reversing so that N 0 inherits compatible orientations from the pieces †0

1
and †0

2
.

In the case

AD

�
0 1

1 0

�
;

we can perform the same construction as above, replacing the filling curve .b=.2; b//s�
.2=.2; b//h by the curve s� h. This proves Lemma 4.5.

By Lemmas 4.3, 4.4 and 4.5 and their proofs, we have the following diagram

N1

p1

��
p2 !!B

BB
BB

BB
B

N3

p3

�� p4 !!B
BB

BB
BB

B

N N2 N4

where p1 and p2 are coverings provided by Lemma 4.3, p3 is the coverings provided
by Lemma 4.4, and the nonzero degree map p4 is provided by Lemma 4.5, where
SV.N4/ 6D 0. Since SV has Property D , SV.N3/ 6D 0.

Consider the covering zN corresponding to the finite index subgroup p2�.�1N1/\

p3�.�1N3/ in �1N2 . Then zN covers both N1 (and thus N ) and N3 , and SV. zN / 6D 0.
Then the proof of Proposition 4.1 is complete.

5 Proof of Theorem 1.2

5.1 Simplifications

Let N be a closed nontrivial graph manifold. We are going to show that jD.M;N /j

is finite for any given graph manifold M .
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(1) First we simplify N : By Lemma 3.2 and Lemma 3.5, there is a finite covering zN
of N satisfying the following condition:

(�)
�

Each JSJ piece of zN is a product of an oriented surface with genus � 2

and the circle, and each JSJ torus is shared by two different JSJ pieces.

By Lemma 3.1, if jD.M;N /j is not finite for some graph manifold M , then jD.P; zN /j

is not finite for some graph manifold P . So we may assume N already satisfies
condition (�).

(2) Then we simplify M : For given M , let HD fM1; : : : ;Mkg be the finite set of
graph manifolds provided by Proposition 2.2. By Proposition 2.2 (i), if jD.M;N /j is
not finite, then jD.Mi ;N /j is not finite for some Mi 2H . So may assume

(��) M DMi 2H for some i 2 f1; : : : ; kg:

5.2 Proof of Theorem 1.2 when jej.N / ¤ 0

Suppose jej.N / 6D0. By Lemma 3.6 and (�), we may assume that jSV j.N / 6D0. Then
there exists a Seifert piece Q of N � such that SV. yQ/ 6D 0. By (��) and Proposition
2.2 (ii), we may assume that LQ.f / D f

�1.Q/ is a canonical submanifold of M .
Below we denote LQ.f / as LQ for short.

Lemma 5.1 LQ can be chosen so that any component T of @LQ is shared by two
distinct Seifert pieces of M : one in LQ and another in M nLQ .

Proof Indeed if not, then there exist two distinct components T and T 0 of @LQ

which are identified by the sewing involution �M of M and such that T and T 0 are
sent by f into the same component of @Q. Denote by xLQ the canonical submanifold
of M obtained by identifying T and T 0 via �M . Since each component of @Q is
shared by two distinct Seifert pieces of N by assumption (��), f induces a proper
map xf W xLQ!Q. After finitely many such operations, we reach a new LQ satisfying
the requirement of Lemma 5.1

Below we assume that LQ satisfies the requirement of Lemma 5.1. Now we choose
LQ to be maximal in the sense that for any Seifert piece S in M nLQ adjacent to
LQ , S is not able to be added into LQ by homotopy on f . Then f .S/�BS , where
BS is a Seifert piece of N , distinct from Q and adjacent to Q.

Since LQ is maximal, by Lemma 2.3, we deduce that for any Seifert piece S adjacent
to LQ along a component of @LQ , f jS W S ! BS is fiber preserving. Hence the
proper map f jLQW LQ!Q preserves the canonical framings, and it induces a map
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yf W yLQ !
yQ between the closed manifolds obtained after Dehn filling along the

canonical framings. By Lemma 2.4 we have

SV. yLQ/� jdeg. yf /jSV. yQ/:

Since deg.f /D deg.f jLQ/D deg. yf /, we get

jdeg.f /j �
SV. yLQ/

SV. yQ/
:

Therefore

jdeg.f /j �max
�

SV. yL/

SV. yQ/

ˇ̌̌̌
Q 2N �;SV. yQ/¤ 0IL is canonical in M

�
:

By Lemma 2.1 there are only finitely many yQ and only finitely many yL. So the right
side of the above inequality is finite. This completes the proof of Theorem 1.2 when
jej.N / 6D 0.

5.3 Proof of Theorem 1.2 when jej.N / D 0

By Lemma 3.1 and Lemma 3.6 we can assume each gluing matrix of N is equal to

˙

�
0 1

1 0

�
:

Choose two distinct adjacent Seifert pieces S1 and S2 in N , denote by T D @S1\@S2

and by Q the connected graph manifold S1 [T S2 (such Seifert pieces exist by
Section 5.1). By Proposition 2.2, we may assume that f �1.Q/DLQ is a canonical
submanifold of M .

Since each JSJ torus of N is shared by two different JSJ pieces, by the same arguments
as in Section 5.2, we may assume that each component of @LQ is shared by two distinct
Seifert pieces of M one in LQ and another in M nLQ . Furthermore we can arrange
LQ to be maximal in the sense of Section 5.2, then by Lemma 2.3, we deduce that any
Seifert piece S 0 of M adjacent to LQ is sent by f to a Seifert piece B0 adjacent to
Q such that f jS 0W S 0! B0 is fiber preserving.

As in Section 5.2, it follows that the proper map f jLQW LQ ! Q induces a map
yf W yLQ !

yQ between closed graph manifolds obtained by Dehn filling along the
canonical framings. Moreover, as in Section 5.2 we have deg.f / D deg.f jLQ/ D

deg. yf / and thus

jD.M;N /j �max
˚
jD. yL; yQ/jL is canonical in M

	
:
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Note that yQD yS1 [T yS2 , where ySi is obtained by Dehn filling along the canonical
framings on @Si nT , i D 1; 2. It follows that yQ satisfies the hypothesis of Proposition
4.1. Then yQ has a finite covering zQ with SV. zQ/¤ 0 by Proposition 4.1. Hence by
Lemma 3.1, the set jD. yL; yQ/j is finite for any yL. Since by Lemma 2.1 there are only
finitely many yL, this completes the proof of Theorem 1.2 when jej.N /D 0. Hence
Theorem 1.2 is proved.
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