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On fake lens spaces with fundamental group
of order a power of 2

TIBOR MACKO

CHRISTIAN WEGNER

We present a classification of fake lens spaces of dimension � 5 which have as
fundamental group the cyclic group of order N D 2K , which extends the results of
Wall and others in the case N D 2 .

57R65, 57S25

Introduction

A fake lens space is the orbit space of a free action of a finite cyclic group G on a sphere
S2d�1 . It is a generalization of the notion of a lens space which is the orbit space
of a free action which comes from a unitary representation. The classification of lens
spaces is a classical topic in algebraic topology and algebraic K–theory well explained
for example in Milnor [8]. For the classification of fake lens spaces in dimension � 5

methods of surgery theory are especially suitable. The classification of fake lens spaces
with G of order N D 2 or N odd was obtained and published in the books Wall [13]
and López de Medrano [7]. Since then, the problem has remained open for N ¤ 2

even. In this paper we address the classification for N D 2K .

One reason why the classification for all N was not finished in Wall [13] seems to
be that the so-called L–groups Ls

n.G/ for G D ZN were unknown for N even.
This is not the case anymore; see for example Hambleton and Taylor [3]. Using this
additional information and the general methods of Wall from [13, Chapter 14] we
reduce the classification question to a problem in the representation theory of G . The
main contribution of the present paper is that we develop calculational methods for
solving this rather complicated problem and we obtain the solution for N D 2K . In
the follow-up paper [5] we complete the analysis for all N 2N .

The classification of fake lens spaces up to simple homotopy equivalence for all N 2N
via Reidemeister torsion is described in [13, Chapter 14E]. The desired homeomorphism
classification within a simple homotopy type can be formulated in terms of the simple
structure set Ss.X / of a closed topological n–manifold X . An element of Ss.X / is
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represented by a simple homotopy equivalence f W M ! X from a closed topological
n–manifold M . Two such f W M ! X , f 0W M 0! X are equivalent if there exists
a homeomorphism hW M ! M 0 such that f 0 ı h ' f . The simple structure set
Ss.X / is a priori just a pointed set with the base point idW X !X . However, it can
also be endowed with a preferred structure (in some sense) of an abelian group (see
Ranicki [12, Chapter 18]). There exist versions of the simple structure set for smooth
and PL–manifolds, however, in this paper we only deal with the topological simple
structure set.

In general the simple structure set of an n–manifold for n � 5 can be determined
by examining the surgery exact sequence which is recalled below as (3-1). Besides
determining Ss.X / it is also important to find invariants that distinguish its elements.
In fact the calculation of Ss.X / is often conducted by combining the surgery exact
sequence with such invariants. This is the case also for fake lens spaces. Here it
follows from the calculations of Wall in [13, Chapter 14E] that the simple structure
set is detected by the �–invariant of Atiyah and Singer [1] and Wall [13, Chapter
14B], and by the so-called normal invariants. Our main Theorem 1.2 calculates the
simple structure set explicitly when N D 2K . This should be seen as an improvement
of the detecting result of Wall. This interpretation follows from Corollary 1.3 which
says that if N D 2K there is another collection of invariants which yields a one-
to-one correspondence. The collection contains the �–invariant as before, but the
other invariants are new. They depend on a certain choice and certainly a geometric
interpretation would still be desirable.

Another issue that arises is the action of the group of simple homotopy equivalences
Gs.X / of a manifold X on Ss.X / by postcomposition. The orbits of this action are
the homeomorphism types of manifolds simple homotopy equivalent to X rather than
homeomorphism types of manifolds equipped with a simple homotopy equivalence
to X . Hence it is an interesting question to describe the action. Following Wall one can
slightly modify the question and study the polarized homeomorphism types of polarized
fake lens spaces. These are fake lens spaces equipped with a choice of orientation
and a choice of a generator of the fundamental group. Corollary 1.4 describes this
classification.

Both authors are supported by SFB 478 Geometrische Strukturen in der Mathematik,
Münster.

1 Statement of results

Definition 1.1 A fake lens space L2d�1.˛/ is a manifold obtained as the orbit space
of a free action ˛ of the group G D ZN on S2d�1 .
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The fake lens space L2d�1.˛/ is a .2d � 1/–dimensional manifold with fundamental
group �1.L

2d�1.˛//Š G D ZN and universal cover S2d�1 . The main theorem in
this paper is:

Theorem 1.2 Let L2d�1.˛/ be a fake lens space with �1.L
2d�1.˛//Š ZN where

N D 2K and d � 3. Then we have

(1-1) Ss.L2d�1.˛//Š x†˚ xT Š x†˚

cM
iD1

Z2˚

cM
iD1

Z2minfK;2ig

where x† is a free abelian group of rank N=2� 1 if d D 2eC 1 and N=2 if d D 2e

and c D b.d � 1/=2c.

The isomorphism (1-1) has an interpretation in terms of known geometric invariants.
These are the reduced �–invariant and the normal invariants from surgery theory as
follows.

The reduced �–invariant is a homomorphism

z�W Ss.L2d�1.˛// �!QR yG
.�1/d

where the target is the underlying abelian group of the .�1/d –eigenspace of the
rationalized complex representation ring of G modulo the ideal generated by the
regular representation. The group x† is defined as the image of z� .

The normal invariant is a homomorphism �W Ss.L2d�1.˛//! N .L2d�1.˛// with
the target the group of normal invariants from surgery theory, which is easily calculable.
The reduced �–invariant induces the homomorphism

Œz��W �N .L2d�1.˛// �!QR yG
.�1/d =4 �R yG

.�1/d :

Here the source is the subgroup of N .L2d�1.˛// given by the image of � and in the
target we have the quotient group modulo the subgroup of elements in the .�1/d –
eigenspace of the representation ring which are divisible by 4. We use formulas of
Wall to show relations between the invariants z� and � in Proposition 4.12.

The group xT is defined as the kernel of Œz��. In the proof of Theorem 5.1 we describe a
map �W xT ! Ss.L2d�1.˛// which fits into a short exact sequence

0 �! xT
�
�! Ss.L2d�1.˛//

z�
�! x† �! 0:

Since x† is a free abelian group the sequence splits and we obtain the isomorphism
of Theorem 1.2. We denote the projection map on xT by rW Ss.L2d�1.˛//! xT . Our
main technical result is the calculation of xT in Theorems 5.2 and 5.3. It tells us that it

Algebraic & Geometric Topology, Volume 9 (2009)



1840 Tibor Macko and Christian Wegner

is a direct sum of copies of 2–primary cyclic groups which are indexed by 1� i � 2c .
We denote the projection on the i –th summand by r2i . Putting these considerations
together we obtain the following corollary.

Corollary 1.3 Let L2d�1.˛/ be a fake lens space with �1.L
2d�1.˛//Š ZN where

N D 2K and d � 3. There exists a collection of invariants

r4i W Ss.L2d�1.˛// �! Z2minfK;2ig and r4i�2W Ss.L2d�1.˛// �! Z2

where 1� i � cDb.d�1/=2c which together with the z�–invariant induce a one-to-one
correspondence between elements a 2 Ss.L2d�1.˛// and

(1) z�.a/ 2 x†�QR yG
.�1/d ,

(2) r2i.a/ 2 Z2;Z2minfK;2ig .

The invariants r4i�2 are the normal invariants t4i�2 from [13, Chapter 14E] and the
invariants r4i are related to the invariants t4i from [13, Chapter 14E], but they are
not the same. The invariants t2i can in principle be calculated using characteristic
classes (see Morgan and Sullivan [9]) and for the lens spaces this has been done by
Young [14], but the calculation does not include fake lens spaces. Admittedly, a similar
“calculational” description of the invariants r4i would be desirable. In the follow-up
paper [5] we offer an alternative, geometric obstruction theoretic description of the
invariants r4i obtained via the analysis of the question which fake lens spaces can be
“desuspended”.

The above results are about classification within a simple homotopy type. As stated in
the introduction the simple homotopy types of fake lens spaces can be distinguished by
the Reidemeister torsion which is a unit in QRG , the rational group ring of G modulo
the ideal generated by the norm element.

To obtain classification of fake lens spaces rather than classification of elements of
the simple structure set we follow Wall and work with polarized fake lens spaces; see
Definition 2.2. The simple homotopy type of a polarized lens space is given uniquely
by its Reidemeister torsion as described in Proposition 2.3. That means that for two
polarized fake lens spaces L2d�1.˛/ and L2d�1.ˇ/ with the fundamental group G

there is a simple homotopy equivalence f˛;ˇW L2d�1.˛/! L2d�1.ˇ/ of polarized
fake lens spaces unique up to homotopy if and only if the Reidemeister torsions of
L2d�1.˛/ and L2d�1.ˇ/ coincide. This f˛;ˇ gives us an element of the simple
structure set Ss.L2d�1.ˇ//. We can formulate the classification as follows:

Corollary 1.4 Let L2d�1.˛/ and L2d�1.ˇ/ be polarized lens spaces with the fun-
damental group G D ZN , where N D 2K and d � 3. There exists a polarized
homeomorphism between L2d�1.˛/ and L2d�1.ˇ/ if and only if
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(1) �.L2d�1.˛//D�.L2d�1.ˇ//,

(2) �.L2d�1.˛//D �.L2d�1.ˇ//,

(3) r2i.f˛;ˇ/D 0 for all i .

The paper is organized as follows. In Section 2 we briefly recall the simple homotopy
classification of fake lens spaces. In Section 3 we recall the general machinery of
surgery theory and we describe the known terms in the surgery exact sequence of the
fake lens spaces. In Section 4 we recall the definition and properties of the �–invariant.
Finally, in Section 5 we prove our main technical result which is the calculation of the
group xT . Sections 2, 3 and most of Section 4 are a summary of known results. Our
contribution is concentrated in a part of Section 4 and in the last Section 5.

We thank Diarmuid Crowley, Ian Hambleton, Andrew Ranicki and the anonymous
referee for useful comments.

2 Homotopy classification

In this section we briefly recall without proofs the statements of the homotopy and
simple homotopy classification of fake lens spaces from [13, Chapter 14E]. Apart from
definitions only Corollary 2.4 is of importance for the rest of the paper.

We start by introducing some notation for lens spaces which are a special sort of
fake lens spaces. Let N 2 N and xk D .k1; : : : kd /, where ki 2 Z are such that
.ki ;N /D 1. When GDZN define a representation ˛xk of G on Cd by .z1; : : : ; zd / 7!

.z1e2� ik1=N ; : : : ; zne2�ikd =N /. Any free representation of G on a d –dimensional
complex vector space is isomorphic to some ˛xk . The representation ˛xk induces a free
action of G on S2d�1 which we still denote ˛xk .

Definition 2.1 A lens space L2d�1.˛xk/ is a manifold obtained as the orbit pace of a
free action ˛xk of the group G DZN on S2d�1 for some xk D .k1; : : : kd / as above.1

The lens space L2d�1.˛xk/ is a .2d�1/–dimensional manifold with �1.L
2d�1.˛xk//Š

ZN . Its universal cover is S2d�1 , hence �i.L
2d�1.˛xk// Š �i.S

2d�1/ for i � 2.
There exists a convenient choice of a CW–structure for L2d�1.˛xk/ with one cell ei in
each dimension 0� i � 2d � 1. Moreover, we have Hi.L

2d�1.˛xk//Š Z when i D

0; 2d�1, Hi.L
2d�1.˛xk//ŠZN when 0< i < 2d�1 is odd and Hi.L

2d�1.˛xk//Š 0

when i ¤ 0 is even.

1In the notation of [13, Chapter 14E] we have L.˛xk/DL.N; k1; : : : ; kn/ .
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The classification of the lens spaces up to homotopy equivalence and simple homotopy
equivalence is presented for example in Milnor [8]. The simple homotopy classification
is stated in terms of Reidemeister torsion which is a unit in QRG . This ring is defined
as QRG D Q˝RG with RG D ZG=hZi where ZG be the group ring of G and
hZi is the ideal generated by the norm element Z of G . We also suppose that a
generator T of G is chosen. There is also an augmentation map "0W RG! ZN [13,
page 214]. The homotopy classification is stated in terms of a certain unit in ZN .
These invariants also suffice for the homotopy and simple homotopy classification of
finite CW–complexes L with �1.L/Š ZN and with the universal cover homotopy
equivalent to S2d�1 of which fake lens spaces are obviously a special case. It is
convenient to make the following definition.

Definition 2.2 A polarization of a CW–complex L as above is a pair .T; e/ where
T is a choice of a generator of �1.L/ and e is a choice of a homotopy equivalence
eW zL! S2d�1 .

Denote further by L2d�1.˛k/ the lens space L2d�1.˛xk/ with xk D .1; : : : ; 1; k/. By
Li.˛1/ is denoted the i –skeleton of the lens space L2d�1.˛1/. If i is odd this is a
lens space, if i is even this is a CW–complex obtained by attaching an i –cell to the
lens space of dimension i � 1.

Proposition 2.3 [13, Theorem 14E.3] Let L be a finite CW–complex as above
polarized by .T; e/. Then there exists a simple homotopy equivalence

hW L �!L2d�2.˛1/[� e2d�1

preserving the polarization. It is unique up to homotopy and the action of G . The chain
complex differential on the right hand side is given by @2d�1e2d�1 D e2d�2.T � 1/U

for some U 2 ZG which maps to a unit u 2 RG . Furthermore, the complex L is a
Poincaré complex.

(1) The polarized homotopy types of such L are in one-to-one correspondence with
the units in ZN . The correspondence is given by "0.u/ 2 ZN .

(2) The polarized simple homotopy types of such L are in one-to-one correspon-
dence with the units in RG . The correspondence is given by u 2RG .

The existence of a fake lens space in the homotopy type of such L is addressed in
[13, Theorem 14E.4]. Since the units "0.u/ 2 ZN are exhausted by the lens spaces
L2d�1.˛k/ we obtain the following corollary.

Corollary 2.4 For any fake lens space L2d�1.˛/ there exists k 2N and a homotopy
equivalence

hW L2d�1.˛/ �!L2d�1.˛k/:
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3 The surgery exact sequence

We proceed to the homeomorphism classification within a simple homotopy type. This
is the standard task of surgery theory whose main tool is the surgery exact sequence
computing the structure set Ss.X / for a given n–manifold X with n� 5:

(3-1) � � � !N@.X � I/
�
�!Ls

nC1.G/
@
�! Ss.X /

�
�!N .X / ��!Ls

n.G/;

where G D �1.X /. The other terms in the sequence are reviewed below. We note
that, since Ss.X / is a priori only a pointed set, the “exactness” is to be understood as
described in [13, Chapter 10] or [4, Chapter 5]. However, the sequence can also be
made into an exact sequence of abelian groups by the identification with the algebraic
surgery exact sequence of Ranicki as explained in [12, Chapter 18]. We will make
use of this structure since it makes certain statements and proofs easier. However, our
results can be also formulated without this identification, in a less neat way though.

By N .X / in (3-1) is denoted the set of normal invariants of X . An element of N .X /
is represented by a degree one normal map .f; b/W M !X which consists of a map
f W M ! X of oriented closed n–manifolds of degree 1 and a stable bundle map
bW �M ! � from the stable normal bundle of M to a stable topological reduction
� of the stable Spivak normal fibration of X . Two such degree one normal maps
.f; b/W M ! X , .f 0; b0/W M 0! X are equivalent in N .X / if there exists a degree
one normal map .F;B/W .W;M;M 0/! .X � I;X � 0;X � 1/ of manifolds with
boundary which restricts on the two ends to .f; b/, .f 0; b0/ respectively. Again this
is a priori a set, with a base point .id; id/W X ! X . However, the Pontrjagin–Thom
construction gives a bijection

(3-2) N .X / Š�! ŒX IG=TOP�

where Œ�;�� denotes the homotopy classes of maps and G=TOP is the classifying
space for topological reductions of spherical fibrations. The H –space structure on
G=TOP coming from Sullivan characteristic variety theorem [6, Chapter 4] (also called
“disjoint union H –space structure” in [11]) makes N .X / into an abelian group. This
H –space structure extends to an infinite loop space structure which expresses N .X /
via localization in terms of familiar cohomology theories.

Theorem 3.1 [6] There are compatible homotopy equivalences

G=TOP.2/ '…i�1K.Z.2/; 4i/�K.Z2; 4i � 2/;

G=TOP.odd/ ' BO.odd/;

G=TOP.0/ ' BO.0/ '…i�1K.Q; 4i/:
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Corollary 3.2 For a fake lens space L D L2d�1
N

.˛/ we have an isomorphism of
abelian groups

N .L/Š
M
i�1

H 4i.LIZ.2//˚H 4i�2.LIZ2/˚eKO .L/˝ZŒ1
2
�

where eKO .L/D ŒLIBO�.

Given n2Z and G a group there is defined an abelian group Ls
n.G/ [13, Chapter 5,6].

For nD 2k it is the Witt group of based .�1/k –quadratic forms over the group ring
ZG , for nD 2kC 1 it is a certain group of automorphisms of based .�1/k –quadratic
forms over ZG . An alternative description of [12] gives these groups uniformly for all
n as cobordism groups of bounded chain complexes of based ZG–modules with an
n–dimensional Poincaré duality. The precise definition is not that important for us. We
are mainly interested in the invariants which detect these groups for G Š ZN .

Theorem 3.3 For G D 1 we have

Ls
n.1/Š

8̂̂̂̂
<̂
ˆ̂̂:

8 �Z n� 0 .mod 4/ .signature/;

0 n� 1 .mod 4/;

Z2 n� 2 .mod 4/ .Arf/;

0 n� 3 .mod 4/:

Here “signature” in the last column means that Ls
4k
.1/Š 8 �Z is given by the signature

of a quadratic form over Z, and “Arf” means that Ls
4kC2

.1/ Š Z2 is given by the
Arf invariant of a quadratic form over Z2 . For G ¤ 1 functoriality gives maps
Ls

n.1/!Ls
n.G/ and Ls

n.G/!Ls
n.1/ yielding the splitting

(3-3) Ls
n.G/ŠLs

n.1/˚
zLs

n.G/:

Further information about the L–groups of finite groups is obtained using representation
theory. For a finite group G complex conjugation induces an involution on the complex
representation ring RC.G/. One can define .˙1/–eigenspaces. In terms of characters
the .C1/–eigenspace corresponds to real characters, the .�1/–eigenspace corresponds
to purely imaginary characters. We will denote

R˙C.G/D f�˙�
�1
j � 2RC.G/g:

Notice that by R�C.G/ is the .�1/–eigenspace, whereas RCC.G/ is a subspace of the
.C1/–eigenspace which contains .1C 1/, but does not contain 1.

A nondegenerate .�1/k –quadratic form over ZG can be complexified. One can take
its associated nondegenerate .�1/k –symmetric bilinear form and consider the positive
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and negative definite C–vector subspaces. These become G –representations and hence
can be subtracted in RC.G/. This process defines the G–signature homomorphism
(see Wall [13, Chapter 13] or Ranicki [12, Chapter 22])

G–signW Ls
2k.G/!R

.�1/k

C .G/:

Its image is 4 �R
.�1/k

C .G/. In case GDZN for N D 2K the L–groups are completely
calculated (see Hambleton and Taylor [3]):2

Theorem 3.4 For G D ZN we have that

Ls
n.G/Š

8̂̂̂̂
<̂
ˆ̂̂:

4 �R
.C1/
C .G/ n� 0 .mod 4/ .G–sign; purely real/;

0 n� 1 .mod 4/;

4 �R
.�1/
C .G/˚Z2 n� 2 .mod 4/ .G–sign; purely imaginary;Arf/;

Z2 n� 3 .mod 4/ .codimension 1 Arf/;

zLs
2k.G/Š 4 �R yG

.�1/k where R yG
.�1/k is R

.�1/k

C .G/ modulo
the regular representation.

Next we describe briefly the maps in (3-1). If n D 2k the map � is given by first
making the degree one normal map .f; b/W M ! X k –connected and then taking
the quadratic refinement of the .�1/k –symmetric bilinear form over ZŒG� on the
kernel of f�W Hk. �M /!Hk. zX /. The exactness at N .X / means that there is a degree
one normal map .f 0; b0/W M 0! X with f 0 a homotopy equivalence in the normal
cobordism class of .f; b/ if and only if �.f; b/D 0.

The map � is given by taking the stable normal bundle �M of f W M
's
��! X and

associating to it .f; b/W M !X with bW �M ! .f �1/��M induced by f .

To describe @ we need the realization theorem for elements of Ls
n.G/. It says

that if M n�1 is a manifold and x 2 Ls
n.G/ there exists a degree one normal map

.F;B/W .W; @0W; @1W / ! .M � I;M � 0;M � 1/, where I D Œ0; 1�, such that
@0F W @0W !M �0 is a homeomorphism, @1F W @1W !M �1 is a simple homotopy
equivalence and �.F;B/D x . The “map” @ in fact means that there is an action of
Ls

n.G/ on Ss.X / given as follows. Let f W M ! X 2 Ss.X / and x 2Ls
n.G/, then

@.x; f / is given by @1F1 ı f W @1W ! X where .F;B/W W !M � I realizes x .
When the abelian group structure of [12, Chapter 18] is imposed on Ss.X / the action
@ corresponds to the group action of the subgroup generated by the image of @ on
Ss.X /.

2The choice of the notation in the last line is explained later in Section 4.
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Hence the problem of determining Ss.X / in general consists of determining firstly
N .X /, which is tractable via standard algebraic topology, secondly Ls

n.G/ which we
know in our case, thirdly determining the maps @, �, � and finally solving an extension
problem which is left over.

Remark 3.5 One can also define the structure set Sh.X / of an n–manifold X .
Here, in comparison with the definition of Ss.X /, one replaces simple homotopy
equivalences by homotopy equivalences and the homeomorphism relation by the h–
cobordism relation. There is a version of the sequence (3-1) in this situation and again
the theory of [12, Chapter 18] makes it into a long exact sequence of abelian groups.
The obvious map Ss.X /! Sh.X / is a homomorphism.

3.1 Complex projective spaces

We also need the discussion of the classification problem for the complex projective
spaces. This is useful also since the discussion is simpler in this case and will give us a
simple example of the strategy we will need later.

The complex projective space CPd�1 is defined as the quotient of the diagonal S1 –
action on S2d�1 D S1 � � � � � S1 (d –factors). As a real manifold it has dimension
2d � 2 and �1.CPn/D 1. Hence from Theorem 3.3 we have that the surgery exact
sequence for CPd�1 becomes the short exact sequence

(3-4) 0! Ss.CPd�1/!N .CPd�1/
�
�!Ls

2d�2.1/! 0:

For the normal invariants we have

(3-5) N .CPd�1/Š

b.d�1/=2cM
iD1

H 4i.CPd�1
IZ/˚

bd=2cM
iD1

H 4i�2.CPd�1
IZ2/:

Further we can identify the factors

s4i W N .CPd�1/!H 4i.CPd�1
IZ/Š ZŠL4i.1/(3-6)

s4i�2W N .CPd�1/!H 4i�2.CPd�1
IZ2/Š Z2 ŠL4i�2.1/(3-7)

as surgery obstructions of degree one normal maps obtained from .f; b/W M!CPd�1

by first making f transverse to CPk�1 (for s2i where i D k �1) and then taking the
surgery obstruction of the degree one map obtained by restricting to the preimage of
CP i . The maps s2i are called the splitting invariants. We will sometimes use (3-5) to
identify the elements of N .CPd�1/ by s D .s2i/i .
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The surgery obstruction map � takes the top summand of N .CPd�1/ isomorphically
onto Ls

2d�2
.1/. Hence the short exact sequence (3-4) splits and we obtain the bijection

of Ss.CPd�1/ given by the splitting invariants s2i for 0< i < d � 1:

(3-8)
M

0<i<d�1

s2i W Ss.CPd�1/
Š
�!

M
0<i<d�1

Ls
2i.1/:

If we think of Ss.CPd�1/ as of an abelian group via Ranicki’s identification [12,
Chapter 18], then the map (3-8) is an isomorphism.

3.2 Preliminaries for lens spaces

When X is a fake lens space L2d�1.˛/ with �1.L
2d�1.˛//ŠG DZN for N D 2K

we obtain some information about the surgery exact sequence for L2d�1.˛/ from
Corollary 3.2 and Theorem 3.4. In more detail,

(3-9) N .L2d�1.˛//Š

b.d�1/=2cM
iD1

H 4i.L2d�1.˛/IZ/˚
bd=2cM
iD1

H 4i�2.L2d�1.˛/IZ2/:

We denote the factors

t4i W N .L2d�1.˛//!H 4i.L2d�1.˛/IZ/Š Z2K(3-10)

t4i�2W N .L2d�1.˛//!H 4i�2.L2d�1.˛/IZ2/Š Z2(3-11)

and similarly as above we will sometimes use (3-9) to identify the elements of
N .L2d�1.˛// by t D .t2i/i . More information is obtained from the following:

Theorem 3.6 [13]

(1) If d D 2e , then the map

� W N .L2d�1.˛//!Ls
2d�1.G/DLs

4e�1.G/D Z2

is given by �.x/D t4e�2.x/ 2 Z2 .

(2) The map
� W N@.L2d�1.˛/� I/!Ls

2d .G/

maps onto the summand Ls
2d
.1/.

Hence we obtain the short exact sequence

(3-12) 0! zLs
2d .G/

@
�! Ss.L2d�1.˛//

�
�! �N .L2d�1.˛//! 0
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where

�N .L4e�1.˛//D ker
�
t4e�2W N .L4e�1.˛//!H 4e�2.L4e�1.˛/IZ2/Š Z2

�
;�N .L4eC1.˛//DN .L4eC1.˛//:

In other words

(3-13) �N .L2d�1.˛//Š

cM
iD1

ZN ˚

cM
iD1

Z2

where cDb.d�1/=2c. The first term in the sequence (3-12) is understood by Theorem
3.4, the third term is understood by (3-13). Hence we are left with an extension problem.

3.3 The join construction

We will make use of the join construction from [13, Chapter 14A]. It can be explained
as follows. Let G be a group (in our case G � S1 ) acting freely on the spheres Sm

and Sn . Then the two actions extend to the join SmCnC1ŠSm�Sn and the resulting
action remains free. When we are given two lens spaces (complex projective spaces)
L and L0 , we can pass to universal covers (S1 –bundles), form the join and then pass
to the quotient again. The resulting space is again a fake lens space (a fake complex
projective space). This operation will be denoted L�L0 and it will be called the join.
When L0 DL1.˛1/ we call this operation a suspension.

The join with L1.˛k/ defines a map †k W Ss.L2d�1.˛1// �! Ss.L2dC1.˛k//. The
inclusion L2d�1.˛1/�L2dC1.˛k/ induces a restriction map on the normal invariants
resW N .L2dC1.˛k// �! N .L2d�1.˛1// and we have a commutative diagram [13,
Lemma 14A.3]:

(3-14)

Ss.L2d�1.˛1//
� //

†k

��

N .L2d�1.˛1//

Ss.L2dC1.˛k//
� // N .L2dC1.˛k//

res

OO

Note that we have t2i D res.t2i/. Hence the map

(3-15) resW �N .L2dC1.˛1// �! �N .L2d�1.˛1//

is an isomorphism when d D 2eC 1 and it is onto when d D 2e with the kernel equal
to ZN .t4e/. A similar diagram exists for the situation CPd DCPd�1 � pt.
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The map †k is a homomorphism when the structure sets are equipped with the abelian
groups structure from [12, Chapter 18]. To see this notice that

L2dC1.˛k/DE.�/[S.�/ C

where E.�/ is the total space of the normal disk-bundle of L2d�1.˛1/ in L2dC1.˛k/,
S.�/ is the associated sphere-bundle and C is the complement (it is the total space of
a disk-bundle over L1.˛k/). Then there is a commutative diagram

Ss.L2d�1.˛1//

†k

��

�!

((QQQQQQQQQQQQQ

Ss.L2dC1.˛k// Š
// Ss.E.�/;S.�//

The map in the bottom row is obtained using [13, Theorem 12.1]. It follows from
the calculation Ss

@
.C /D 0 that it is an isomorphism. The map �! is the transfer map

obtained via pullback. This coincides with the algebraic surgery transfer map from [12,
Chapter 21].3

4 The �–invariant

We review the definition of the �–invariant for odd-dimensional manifolds and some of
its properties from Atiyah and Singer [1] and Wall [13]. It will provide us with a map
from the short exact sequence (3-12) to a certain short exact sequence coming from
representation theory of G . Studying this map will enable us to solve the extension
problem we are left with in the next section.

4.1 Definitions

Let G be a compact Lie group acting smoothly on a smooth manifold Y 2d . The middle
intersection form becomes a nondegenerate .�1/d –symmetric bilinear form on which
G acts. As explained earlier, such a form yields an element in the representation ring
R.G/ which we denote by G–sign.Y /. The discussion in Section 3 also tells us that
we have G–sign.Y / 2R.�1/d .G/ which in terms of characters means that we obtain
a real (purely imaginary) character, which will be denoted as

G–sign.�;Y /W g 2G 7! G–sign.g;Y / 2C:

3We thank A Ranicki for informing us about the last claim.
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The (cohomological version of the) Atiyah–Singer G–index theorem [1, Theorem
(6.12)] tells us that if Y is closed then for all g 2G

(4-1) G–sign.g;Y /DL.g;Y / 2C;

where L.g;Y / is an expression obtained by evaluating certain cohomological classes
on the fundamental classes of the g–fixed point submanifolds Y g of Y . In particular
if the action is free then G–sign.g;Y / D 0 if g ¤ 1. This means that G–sign.Y /
is a multiple of the regular representation. This theorem was generalized by Wall to
topological semifree actions on topological manifolds, which is the case we will need
in this paper [13, Chapter 14B]. The assumption that Y is closed is essential here,
and motivates the definition of the �–invariant. In fact, Atiyah and Singer provide
two definitions. For the first one also needs the result of Conner and Floyd [2] that
for an odd-dimensional manifold X with a finite fundamental group there always
exists a k 2N and a manifold with boundary .Y; @Y / such that �1.Y /Š �1.X / and
@Y D k �X .

Definition 4.1 [1, Remark after Corollary 7.5] Let X 2d�1 be a closed manifold with
�1.X /ŠG a finite group. Define

(4-2) �.X /D
1

k
� G–sign. zY / 2QR.�1/d .G/=hregi

for some k 2N and .Y; @Y / such that �1.Y /Š �1.X / and @Y D k �X . The symbol
hregi denotes the ideal generated by the regular representation.

By the Atiyah–Singer G –index theorem [1, Theorem (6.12)] is � well defined.

Definition 4.2 Let G be a compact Lie group acting freely on a manifold zX 2d�1 .
Suppose in addition that there is a manifold with boundary .Y; @Y / on which G acts
(not necessarily freely) and such that @Y D zX . Define

�G. zX /W g 2G 7! G–sign.g;Y /�L.g;Y / 2C:

In this definition we think about the �–invariant as about a function G X f1g ! C .
When both definitions apply (that means when G is a finite group), then they coincide,
that means �.X /D �G. zX /.

For finite G<S1 we will use special notation following [13, Proof of Proposition 14E.6
on page 222]. By yG is denoted the Pontrjagin dual of G , the group HomZ.G;S

1/.
Recall that for a finite cyclic G the representation ring R.G/ can be canonically
identified with the group ring Z yG . Then we also have QR.G/ D Q ˝ R.G/ D

Q yG . Dividing out the regular representation corresponds to dividing out the norm
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element, denoted by Z , hence R.G/=hregi DR yG D Z yG=hZi and QR.G/=hregi D
QR yG DQ yG=hZi. Choosing a generator yG D h�i gives the identifications QR yG D

QŒ��=h1C�C � � �C�N�1i where N is the order of G . In order to save space we
also use the following notation IhKi D h1C�C � � �C�N�1i.

Recall that R.G/ contains two eigenspaces R.G/˙ with respect to the conjugation
action. In terms of the above identification of R.G/ and R yG with the polynomial rings
we have identifications:

R yG
�
D
˝
�k
��N�k

j k D 1; : : : ; .N=2/� 1
˛

D
˚
p 2 ZŒ��=IhKi jp.�N�1/D�p.�/

	
;

R yG
C
D
˝
�k
C�N�k

j k D 0; : : : ; .N=2/� 1
˛

D
˚
p 2 ZŒ��=IhKi jp.�N�1/D p.�/ and p.�1/� 0 mod 2

	
:

4.2 Properties

The �–invariant is an h–cobordism invariant [1, Corollary 7.5]. For X 2d�1 with
�1.X /ŠG it defines a function of Ss.X / by sending aD ŒhW M �!X � to z�.a/D
�.M /� �.X /. If we put on Ss.X / the abelian group structure from [12, Chapter 18]
it is not clear whether z� is a homomorphism in general.4 Still the following property
holds always.

Proposition 4.3 For X 2d�1 with �1.X /ŠG there is a commutative diagram

Ls
2d
.G/

@ //

G–sign
��

Ss.X /

z�
��

4 �R
.�1/d

C .G/ // QR
.�1/d

C .G/=hregi:

Moreover, for z 2Ls
2d
.G/ and x 2 Ss.X / we have

z�.xC @z/D z�.x/C z�.@z/:

Proof See Petrie [10, Theorem 2.3]. It essentially follows from definitions. We also
use the identification of the geometrically given action of Ls

2d
.G/ on Ss.X / with the

action coming from the abelian group structure on Ss.X / of [12, Chapter 18].

Remark 4.4 The map z� also obviously factors through the map Ss.X /! Sh.X / of
Remark 3.5.

4We will see below that it is a homomorphism when X DL2d�1.˛/ .
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When X DL2d�1.˛k/, it follows from the above diagram, the exactness of the surgery
exact sequence, the Atiyah–Singer G –index theorem and the calculation of the groups
Ls

2d
.G/ that the action of zLs

2k
.G/ on Ss.L2k�1/ is free. In fact we have:

Proposition 4.5 There is the following commutative diagram of abelian groups and
homomorphisms with exact rows

0 // zLs
2d
.G/

@ //

Š G–sign
��

Ss.L2d�1.˛//
� //

z�
��

�N .L2d�1.˛// //

Œz��
��

0

0 // 4 �R
.�1/d

yG

// QR
.�1/d

yG

// QR
.�1/d

yG
=4 �R

.�1/d

yG

// 0

where Œz�� is the homomorphism induced by z� .

All the statements follow from the previous discussion except the claim that z� and Œz��
are homomorphisms. This will be proved in this section, first for ˛1 , then for ˛k , and
finally for general ˛ . To this end we need some way to calculate the �–invariant for
fake lens spaces. The formulas we obtain will give us first a good understanding of the
map Œz��. Using certain naturality properties we will obtain also the claim about z� .

Recall the join L �L0 of the lens spaces L and L0 from Section 3.3. We have [13,
Chapter 14A]

(4-3) �.L�L0/D �.L/ � �.L0/:

For L1.˛k/ we have [13, Proof of Theorem 14C.4]

(4-4) �.L1.˛k//D fk 2QR�yG

where fk is defined as follows.

Definition 4.6 For odd k 2N we set

fk WD
1C�k

1��k
and f 0k WD

1��C�2� � � � ��k�2C�k�1

1C�C�2C � � �C�k�2C�k�1
:

We abbreviate f WD f1 .

Lemma 4.7 Let G D ZN with N D 2K . For odd k 2N we have

fk 2QR�yG ; fk D f �f
0

k ; f 0k 2R yG :
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Proof Notice that 1��k is invertible in QR yG because

.1��k/�1
D�

1

N
.1C 2 ��k

C 3 ��2k
C � � �CN ��.N�1/k/ 2QR yG :

Therefore fk 2QR yG and the identity

1C��k

1���k
D�

1C�k

1��k
D�fk

implies fk 2QR�yG . An easy calculation shows fk D f � f
0

k
. That f 0

k
2R yG follows

from the fact that 1C�C�2C � � �C�k�1 is invertible in R yG . The inverse is given
by 1C�kC�2kC� � �C�.r�1/k where r denotes a natural number such that r �k�1

is a multiple of N D 2K .

Also a formula of Wall which calculates the �–invariant for fake complex projective
spaces will be useful. Let a D ŒhW Q �! CPd�1� be an element of Ss.CPd�1/

and let zhW zQ �! S2d�1 be the associated map of S1 –manifolds. Denote z�S1.a/ WD

z�S1. zQ/� z�S1.S2d�1/ defining a function of Ss.CPd�1/.

Theorem 4.8 [13, Theorem 14C.4] Let a D ŒhW Q ! CPd�1� be an element in
Ss.CPd�1/. Then for t 2 S1

z�S1.t; a/D
X

1�i�bd=2c�1

8 � s4i.�.a// � .f
d�2i
�f d�2i�2/ 2C;

where f D .1C t/=.1� t/.

Among other things this also shows that z�S1 is a homomorphism of Ss.CPd�1/.
Coming back to lens spaces recall that there is an S1 –bundle (better L1.˛1/–bundle)
pW L2d�1.˛1/ �!CPd�1 . Via pullback it induces a commutative diagram

(4-5)

0 // Ss.CPd�1/

p!

��

� // N .CPd�1/

p!

��

// L2.d�1/.1/

zLs
2d
.G/ // Ss.L2d�1.˛1//

� // N .L2d�1.˛1//
// Ls

2d�1
.G/ :

With the abelian group structure of [12, Chapter 18] the maps p! are homomorphisms
by the identification of geometric and algebraic transfers. Another way of thinking
about p! is that it is given by passing to the subgroup G < S1 . Since the �–invariant
is natural for passing to subgroups we obtain:
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Corollary 4.9 [13, Theorem 14E.8] Let a 2 Ss.L2d�1.˛1// such that a D p!.b/

for some b 2 Ss.CPd�1/. Then

z�.a/D
X

1�i�bd=2c�1

8 � s4i.�.b// � .f
d�2i
�f d�2i�2/ 2QR yG

.�1/d ;

where f D .1C�/=.1��/.

The map p!W N .CPd�1/ �!N .L2d�1.˛1// is surjective, since we have

(4-6) p!.s4i�2/D t4i�2 p!.s4i/D t4i :

By (4-5), the composition Ss.CPd�1/!N .CPd�1/!N .L2d�1.˛1// maps into�N .L2d�1.˛1//. If the map Ss.CPd�1/! �N .L2d�1.˛1// were surjective we could
use Corollary 4.9 to give a formula for the function Œz��. This is the case when d D 2e .
In the case d D 2eC 1 all the summands but the ZN .t4e/ from �N .L2d�1.˛1// are
hit from S.CPd�1/. We need the following:

Lemma 4.10 Let d D 2eC1 and let a 2 S.L2d�1.˛1// be such that a 7! t.�.a//D
.0; : : : ; 1/ 2N .L2d�1.˛1//, ie t.�.a//4i D 0 for i � e� 1 and t.�.a//4e D 1. Then

z�.a/D 8f C z 2 QR�yG

for some z 2 4 �R�yG .

Proof We will use the suspension map †1 from Section 3.3. Our assumptions mean
that t.�.a// is not in the image of the composition S.CPd�1/! N .CPd�1/!

N .L2d�1.˛1//. However, diagram (3-14) tells us that t.�.†1.a/// is in the image of
S.CP .dC1/�1/!N .CP .dC1/�1/!N .L2.dC1/�1.˛1// and hence we have

f � z�.a/Cy D 8 � 1 � .f 2
� 1/ 2 QRCyG

for some y 2 4 �RCyG . We obtain the desired identity by the following calculation. Let
y� 2QŒ�� and yy 2 4 �ZŒ�� be representatives for z�.a/ and y . Then

.1C�/.1��/y�C .1��/2 yy � 8 � .4�/ mod IhKi

.1C�/.1��/y�C .1��/2.yyC 8/� 8 � .1C�/2 mod IhKi

.1C�/.1��/y�C .1��/2.yyC 8/D 8 � .1C�/2Cg.�/.1C�C � � �C�N�1/

for some g.�/ 2 QŒ��. Hence yyC 8 D .1C �/w.�/ for some w.�/ 2 QŒ��. Since
.yyC8/2 4 �ZŒ��, we obtain w.�/2 4 �ZŒ��. Further write g.�/D 2rC.1C�/g0.�/D

r.1��/C .1C�/.r Cg0.�// for r 2Q, g0.�/ 2QŒ��. We have

.1��/y�C .1��/2w.�/D 8 � .1C�/Cg.�/.1C�2
C � � ��N�2/ 2QŒ��
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and further modulo IhKi

.1��/y�C .1��/2w.�/� 8 � .1C�/C r.1��/.1C�2
C � � ��N�2/

y�C .1��/w.�/� 8 �f C r.1C�2
C � � ��N�2/:

Now .1 � �/w.�/ D .2 � .1 C �//w.�/ D 2w.�/ � .yy C 8/. Further 2w.�/ D

wC.�/Cw�.�/, where w˙.�/ WD w.�/˙w.��1/ 2 4 �ZŒ��=IhKi. Hence

z�.a/� 8 �f Cw�.�/D .yyC 8/�wC.�/C r.1C�2
C � � �C�N�2/

in QŒ��=IhKi, while the left hand side of the equation lies in the .�1/–eigenspace
and the right-hand side lies in the .C1/–eigenspace and hence both are equal to 0. It
follows that

z�.a/D 8 �f �w�.�/:

Putting z D�w�.�/ yields the desired formula.

Lemma 4.11 Let d D 2e C 1, a 2 S.L2d�1.˛1// and let zt4i 2 Z be such that
Œzt4i �D t4i.�.a// in ZN . Then

z�.a/D 8 � zt4e �f C
X

1�i�bd=2c�1

8 � zt4i � .f
d�2i
�f d�2i�2/C z 2 QR�yG

for some z 2 4 �R�yG .

Proof Proof is by a straightforward modification of the proof of Lemma 4.10.

Proposition 4.12 For the map Œz��W �N .L2d�1.˛1// �!QR yG
.�1/d =4 �R yG

.�1/d and
an element t D .t2i/i 2 �N .L2d�1.˛1// we have that

for d D 2e; Œz��.t/D

e�1X
iD1

8 � t4i �f
d�2i�2

� .f 2
� 1/

for d D 2eC 1; Œz��.t/D

e�1X
iD1

8 � t4i �f
d�2i�2

� .f 2
� 1/C 8 � t4e �f:

Remark 4.13 Strictly speaking, here and at some places below, we should replace the
elements t4i 2 ZN by lifts zt4i 2 Z, similarly as in Lemma 4.11. On the other hand,
since we are passing to the quotient by 4 �R yG

.�1/d , the formulas become independent
of the choice of the lifts. Therefore, in the interest of keeping the discussion simple,
we take the liberty of thinking about t4i as an element in Z.
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Proof of Proposition 4.12 It is enough to find for each t 2 �N .L2d�1.˛1// some
a2Ss.L2d�1.˛1// with t.�.a//D t and for which we can calculate z�.a/2QR yG

.�1/d .
If d D 2e then by discussion after Corollary 4.9 there is for each normal cobordism
class a fake lens space which fibers over a fake complex projective space and hence
the formula from Corollary 4.9 gives the desired formula. If d D 2eC1 then the same
reasoning applied to Lemma 4.11 gives the desired formula.

Corollary 4.14 The function z�W Ss.L2d�1.˛1//�!QR yG
.�1/d is a homomorphism.

Proof It is enough to show that for every t , t 0 2 �N .L2d�1.˛1// there exist elements
(not necessarily unique) a, a0 in Ss.L2d�1.˛1// such that t.�.a//D t , t.�.a0//D t 0

and z�.aCa0/D z�.a/Cz�.a0/. If this holds, then for any x;x0 2Ss.L2d�1.˛1// choose
a and a0 as above corresponding to the classes t.�.x//, t.�.y// 2 N .L2d�1.˛1//.
Then x D aC @.b/ and x0 D a0C @.b0/ for some b , b0 2 @ zLs

2d
.G/ and

z�.xCx0/D z�.aC @bC a0C @b0/D z�.aC a0/C z�.@bC @b0/

D z�.a/C z�.a0/C z�.@b/C z�.@b0/D z�.x/C z�.x0/:

When d D 2e we can associate to a given t 2N .L2d�1.˛1// an a 2 Ss.L2d�1.˛1//

coming from the S.CPd�1/, that is a D p!.b/ where b 2 S.CPd�1/ such that
p!.�.b//D t . When t , t 0 2 N .L2d�1.˛1//, then z�.aC a0/ D z�.p!.b/Cp!.b0// D

z�.p!.bCb0//D res.z�S1.bCb0//D res.z�S1.b/Cz�S1.b0//D res.z�S1.b//Cres.z�S1.b0//

D z�.a/C z�.a0/. Here res denotes the map on the representation rings induced by the
inclusion G < S1 .

When d D 2eC 1 and t 2 N .L2d�1.˛1// we can do the same unless t4e ¤ 0. In
that case there is no fake lens space in the normal cobordism class of t which fibers
over a fake complex projective space and we have to use a different argument. It
follows from the formula in Proposition 4.12 that for a; a0 2 Ss.L2d�1.˛1// we have
z�.aC a0/ D z�.a/C z�.a0/C z for some z 2 4 �R yG

� . Our task is to show z D 0 for
any choice of a, a0 . We use the fact that † is a homomorphism and that we have
already proved the claim for d D 2eC2. That implies z�.†.aCa0//D z�.†aC†a0//D

z�.†a/Cz�.†a0/Df � z�.a/Cf � z�.a0/. On the other hand z�.†.aCa0//Df � z�.aCa0/D

f � z�.a/C f � z�.a0/C f � z . Hence it is enough to show that for any z 2 4 �R yG
�

such that f � z D 0 in QR yG
C we have z D 0 in 4 �R yG

� . This is proved below in
Lemma 5.7.

Now we proceed to the case of ˛k where k 2N is odd.

Algebraic & Geometric Topology, Volume 9 (2009)



On fake lens spaces with fundamental group of order a power of 2 1857

Proposition 4.15 For the map Œz��W �N .L2d�1.˛k// �!QR yG
.�1/d =4 �R yG

.�1/d and
an element t D .t2i/i 2 �N .L2d�1.˛k// we have that

for d D 2e; Œz��.t/D

e�1X
iD1

8 � t4i �f
0

k �f
d�2i�2

� .f 2
� 1/;

for d D 2eC 1; Œz��.t/D

e�1X
iD1

8 � t4i �f
0

k �f
d�2i�2

� .f 2
� 1/C 8 � t4e �f

0
k �f:

Proof We will use the calculation for ˛1 and the homeomorphisms

L2dC1.˛k/ŠL2d�1.˛1/�L1.˛k/ and L2dC1.˛k/ŠL2d�1.˛k/�L1.˛1/:

For d D 2e recall the diagram:

(4-7)

QR yG
�

�fk

��

Ss.L4e�3.˛1//
z�oo

†k

��

� // // �N .L4e�3.˛1//

QR yG
C Ss.L4e�1.˛k//

z�oo � // // �N .L4e�1.˛k//

resŠ

OO

Let t 2 �N .L4e�1.˛k//. Choose x 2 Ss.L4e�3.˛1// such that t.�.x//D t D res.t/.
Then we have t.�.†kx//D t and Œz��.�.†kx//D Œz�.x/ �fk � can be calculated using
the formulas from the case k D 1.

For d D 2eC 1 recall the diagram:

(4-8)

QR yG
�

�f

��

Ss.L4eC1.˛k//
z�oo

†1

��

� // // �N .L4eC1.˛k//

QR yG
C Ss.L4eC3.˛k//

z�oo � // // �N .L4eC3.˛k//

resŠ

OO

Let t 2 �N .L4eC1.˛k//. Choose x 2 Ss.L4eC1.˛1// such that t.�.x//D t . Then we
have t.�.†1x//D t and z�.†1x/D z�.x/ �f . We obtain the equation

f � z�.x/Cy D

e�1X
iD1

8 � t4i �f
0

k �f
dC1�2i�2

� .f 2
� 1/C 8 � t4e �f

0
k � .f

2
� 1/ 2QR yG

C

for some y 2 4 �R yG
C using the formulas from the case d D 2eC 2 which we have

already dealt with. Now a modification of the argument from the proof of Lemma 4.10
can be used to obtain the formula for Œz��.�.x//.
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Corollary 4.16 The function z�W Ss.L2d�1.˛k//�!QR yG
.�1/d is a homomorphism.

Proof Just as in the case ˛1 it is enough to find in each normal cobordism class an
element such that the addition works for these representatives. In the case d D 2e we
can choose in each normal cobordism class an element coming from Ss.L4e�3.˛1//.
In the case d D 2eC 1 there is again a problem with the summand ZN .t4e/ which
can be resolved by the same reasoning as in the case ˛1 .

Corollary 4.17 The function z�W Ss.L2d�1.˛// �!QR yG
.�1/d is a homomorphism.

Proof From Corollary 2.4 we have that for some k 2N there is a homotopy equiva-
lence f W L2d�1.˛/!L2d�1.˛k/. It induces a homomorphism f�W Ss.L2d�1.˛//!

Ss.L2d�1.˛k//. We will show that z�D z�ıf� . This implies that z� is a homomorphism
of Ss.L2d�1.˛// since it is equal to a composition of homomorphisms.

We use the observation from Remark 4.4 and the composition formula of [11, Theorem
2.3]. Let hW L! L2d�1.˛/ represent an element a 2 Ss.L2d�1.˛// and note that
the homotopy equivalence f represents an element in Sh.L2d�1.˛k//, call it b . The
composition h ı f represents another element in Sh.L2d�1.˛k//, call it c . The
formula of [11, Theorem 2.3] says f�aD b� c . Now clearly

z�.f�a/D z�.b/� z�.c/

D �.L/� �.L2d�1.˛k//� �.L
2d�1.˛//C �.L2d�1.˛k//D z�.a/:

This finishes the proof.

5 Calculations

We want to prove Theorem 1.2 by investigating the short exact sequence (3-12) using the
relation to a short exact sequence from representation theory of G via the �–invariant
as described in Proposition 4.5.

Notice that for any fake lens space L2d�1.˛/ there exists k 2 N and a homotopy
equivalence hW L2d�1.˛/! L2d�1.˛k/ (see Corollary 2.4). It induces an isomor-
phism h�W Ss.L2d�1.˛//! Ss.L2d�1.˛k//. Hence it suffices to consider the case
˛ D ˛k .

Theorem 1.2 is obtained when we put together statements of Theorems 5.1, 5.2 and
5.3.
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Theorem 5.1 Let xT WD ker
�
Œz��W �N .L2d�1.˛k//�!QR yG

.�1/d =4 �R yG
.�1/d

�
. Then

we have
Ss.L2d�1.˛k//Š x†˚ xT

where x† WD z�.Ss.L2d�1.˛k/// is a free abelian group of rank N=2�1 if d D 2eC1

and of rank N=2 if d D 2e .

Proof Recall the commutative diagram of Proposition 4.5. Since z� is a homomor-
phism, we have that x† is a subgroup of QR yG

.�1/d , which as an abelian group is a
direct sum of N=2�1 copies of Q if d D 2eC1 and of N=2 copies of Q if d D 2e .
It contains a subgroup z�.@ zLs

2d
.G// which is a free abelian group of the same rank

as the theorem claims for x† in the respective cases. The claim about the rank of x†
follows.

Now replace in the diagram of Proposition 4.5 the middle and the third term of the
lower sequence by the image of z� and by the image of Œz�� respectively. Then the right
hand square becomes a pullback square. It follows that xT is isomorphic to the kernel
of the map z�W Ss.L2d�1.˛k// �! x†. We obtain a short exact sequence of abelian
groups

0 �! xT
�
�! Ss.L2d�1.˛k//

z�
�! x† �! 0

where x† is a free abelian group and hence the sequence splits.

So our goal is to understand the subgroup xT of �N .L2d�1.˛k//, which is a group
isomorphic to the direct sum TN .d/˚T2.d/ of an N –torsion group TN .d/ and a
2–torsion group T2.d/

TN .d/D

cM
iD1

ZN D

cM
iD1

ZN .t4i/ T2.d/D

cM
iD1

Z2 D

cM
iD1

Z2.t4iC2/

where c D b.d � 1/=2c.

Theorem 5.2 We have
T2.d/� xT :

Proof By Proposition 4.15 the formula for Œz�� only depends on t4i .

We will denote xTN .d/ WD xT \TN .d/ which implies xT D xTN .d/˚T2.d/.

Theorem 5.3 We have

xTN .d/D

cM
iD1

Z2minfK;2ig

where c D b.d � 1/=2c.
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In view of Proposition 4.15 it is convenient to make the following reformulation. If
d D 2e then the group TN .d/ can be identified with the underlying abelian group
ZN Œx�.d/ of the truncated polynomial ring in the variable x :

TN .d/
Š
�! ZN Œx�.d/ WD

˚
q.x/ 2 ZN Œx�

ˇ̌
deg.q/� c � 1

	
t D .t4i/

c
iD1 7! qt .x/D

c�1X
iD0

t4.iC1/ �x
c�i�1:

(5-1)

The map Œz�� becomes

(5-2) q 7! 8 �f 0k � .f
2
� 1/ � q.f 2/:

If d D 2eC 1 then the group TN .d/ can be identified with the underlying abelian
group ZN Œx�.d/ of the truncated polynomial ring in the variable x as follows:

TN .d/
Š
�! ZN Œx�.d/ WD

˚
q.x/ 2 ZN Œx�

ˇ̌
deg.q/� c � 1

	
t D .t4i/

c
iD1 7! qt .x/D

c�1X
iD1

t4i �x
c�i�1.x� 1/C t4c

D

c�1X
iD1

.t4.iC1/� t4i/x
c�i�1

C t4xc�1

(5-3)

The map Œz�� then becomes

(5-4) q 7! 8 �fk � q.f
2/:

Further it is convenient to work with the underlying abelian group of

ZŒx�.d/ WD
˚
q.x/ 2 ZŒx�

ˇ̌
deg.q/� c � 1

	
;

use the formulas (5-2), (5-4) to define a map Œy��W ZŒx�.d/ �!QR yG
.�1/d and study

the preimage of 4 �R yG
.�1/d . So the task becomes to find

Ak
K .2e/ WD

˚
q 2 ZŒx�

ˇ̌
deg.q/� c � 1; 8 �f 0k � .f

2
�1/ � q.f 2/ 2 4 �ZŒ��=IhKi

	
;

Ak
K .2eC 1/ WD

˚
q 2 ZŒx�

ˇ̌
deg.q/� c � 1; 8 �fk � q.f

2/ 2 4 �ZŒ��=IhKi
	
:

Here we have replaced 4 �R yG
˙ by the bigger ring 4 �ZŒ��=IhKi. This is legal since

when the expressions in question are in 4 � ZŒ��=IhKi then they always fulfill the
additional conditions to be elements of 4 �R yG

˙ . We will show that Ak
K
.d/DBK .d/

where BK .d/ is a subgroup of polynomials described in terms of certain polynomials
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r˙n .x/ of degree n for all n 2N . These are the best polynomial of degree n in a sense
that

8 �f 0k � .f
2
� 1/ � rCn .f

2/ 2 4 �ZŒ��=Ih2nC 2i

8 �fk � r
�
n .f

2/ 2 4 �ZŒ��=Ih2nC 2i

and for all polynomials q 2 ZŒx� of degree n with leading coefficient 1 we have

8 �f 0k � .f
2
� 1/ � q.f 2/ … 4 �ZŒ��=Ih2nC 3i

8 �fk � q.f
2/ … 4 �ZŒ��=Ih2nC 3i:

BK .2e/ WD

(
c�1X
nD0

an � 2
maxfK�2n�2;0g

� rCn
ˇ̌
an 2 Z

)
;We define

BK .2eC 1/ WD

(
c�1X
nD0

an � 2
maxfK�2n�2;0g

� r�n
ˇ̌
an 2 Z

)
:

Theorem 5.4
Ak

K .d/D BK .d/

Proof of Theorem 5.3 It follows from Theorem 5.4 and the definition of BK .d/

that Ak
K
.d/ is a free abelian subgroup of ZŒx�.d/ with a basis given by polynomials

2maxfK�2n�2;0g � r˙n . Under the homomorphism ZŒx�.d/! ZN Œx�.d/ the subgroup
Ak

K
.d/ is mapped onto a subgroup isomorphic to a direct sum as claimed by the

theorem.

Scheme of the proof of Theorem 5.4 The proof requires a formidable amount of
machinery and special constructions. For better orientation we offer the following
scheme. The proof is divided into five subsections:

� Section 5.1: wl –technology

� Section 5.2: cK –technology

� Section 5.3: Inductive properties

� Section 5.4: Good polynomials

� Section 5.5: The equality Ak
K
.d/D BK .d/

The first three subsections are preparatory, they contain the description of the tools we
later need. The fourth subsection contains the definition of the polynomials r�n and
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proof of their properties. The last subsection contains the proof of the theorem, using
the tools and results of the previous subsections.

For more motivation we offer the following informal discussion of main ideas. Recall
that for K D 1 the desired equation is known by [13, Chapter 14D]. Further we
obviously have Ak

K
.d/�Ak

K�1
.d/. More interestingly, one can show that q 2Ak

K
.d/

implies 2 � q 2 Ak
KC1

.d/ (Corollary 5.17). On the other hand these polynomials do
not exhaust Ak

KC1
.d/ and so the task becomes to find polynomials with the leading

coefficient 1 in Ak
KC1

.d/. However, ad-hoc calculations for low K > 1 reveal no easy
pattern for finding such polynomials.

Therefore a systematic approach is needed. At the end we proceed by induction with
respect to K , but it turns out that for the start it is helpful to develop tools which are
independent of the inductive approach. The first idea is that the ring QŒ��=IhKi splits
by the Chinese remainder theorem into a product of cyclotomic fields QŒ��=h1C�2l

i

for 0 � l � K � 1. Unfortunately, the subring 4 � ZŒ��=IhKi does not split into
subrings of these fields. Nevertheless, the valuation in the cyclotomic field with respect
to the prime ideal .1� �/ gives us useful information. We use these valuations to
define functions wl on QŒ��=IhKi (Definition 5.8). The functions wl are effectively
calculable (Lemma 5.9) and we give criteria for deciding whether a g 2QŒ��=IhKi
is in 4 �ZŒ��=IhKi or not using wl (Theorem 5.11). But there is a problem, we do
not obtain a necessary and sufficient condition since the criteria do not apply to all
g 2QŒ��=IhKi.

Further improvement is obtained by considering the concept of a “failure” of an element
g 2QŒ��=IhKi to be in 4 �ZŒ��=IhKi. This is the least natural number cK .g/ such
that g �.1��/cK .g/ 2 4 �ZŒ��=IhKi if it exists, otherwise cK .g/D1. It is introduced
in Section 5.2. Its usefulness stems from the fact that we know how the failure cK

behaves for the sum of two elements in 2 �ZŒ��=IhKi. This gives us a way to find
better polynomials than those found purely by the wl –technology. On the other hand
it can also be used to show that certain linear combinations of polynomials do not lie
in 4 �ZŒ��=IhKi.

In Section 5.3 we prove Lemma 5.16 which enables induction with respect to K . Also
the behavior of cK when K is varied is understood (Corollary 5.17).

The wl and the cK –technology are used in finding the polynomials r�n and showing
their properties. This is done using a quite complicated inductive argument in Section
5.4. In the first reading this may be skipped, since what is actually essential for the
proof are the properties of the polynomials r�n which are summarized in Corollary
5.27.
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In Section 5.5 the desired equality is shown. We start with the case d D 2eC 1, then
the proof of the case d D 2e is short and proceeds by a reduction to the previous case.
The inclusion BK .2eC 1/�Ak

K
.2eC 1/ follows directly from the properties of the

polynomials r�n . On the other hand, these properties together with the cK –technology
are used in proving the inclusion Ak

K
.2eC 1/� BK .2eC 1/, using an inductive ar-

gument with respect to K . Since there are inclusions Ak
K
.2eC 1/�Ak

K�1
.2eC 1/

and BK .2eC 1/� BK�1.2eC 1/ this boils down to showing that certain elements in
BK�1.2eC1/ cannot be inside AK .2eC1/. Elements in BK�1.2eC1/ are given as
linear combinations of polynomials 2maxfK�2n�3;0g � r�n , for which we can calculate
the failures cK . As indicated above the cK –technology can now be used to show that
linear combinations which are not in BK .2eC 1/ have nonzero failure cK and hence
cannot be inside Ak

K
.2eC 1/.

We would still like to give more motivation for Section 5.4 which we suggest is read
after the last Section 5.5. As indicated, our global strategy is to construct polynomials
in ZŒx�.d/ for d D 2e C 1 which are good in a sense that they have the leading
coefficient 1 and they yield elements in 4 �ZŒ��=IhKi for a large K in comparison
with the other polynomials of the same degree with leading coefficient 1. This is
what we do in Section 5.4 step-by-step. First we construct auxiliary polynomials pk

(Definition 5.18), which are used to define “good” polynomials qn (Definition 5.21).
These are in turn used to define “the best” polynomials r�n (Definition 5.26). This last
definition is inductive, the crucial inductive step is described in Proposition 5.24. It uses
a combination of the wl –technology and the cK –technology, whereas the definition
of polynomials pk and qn only uses the wl –technology. The “goodness” properties
are summarized in Corollary 5.20 (pk ), in Proposition 5.22 (qn ) and in Corollary 5.27
(r�n ).

Remark 5.5 The reader may wonder that we are not using geometric constructions
from Section 4 to obtain more interesting structure in the calculations. For example
one could hope that varying K and using the geometric transfers might be helpful. But
this only yields the easy observation Ak

K
.d/ � Ak

K�1
.d/. Also the suspension map

of Section 3.3 was useful in obtaining formulas for the map Œz��, but is not used in the
calculation. In fact here the situation is reversed, in the follow-up paper [5] we use the
calculations from the present paper to understand the suspension map.

5.1 wl –technology

For given g 2QR yG we want to decide whether g 2 4 �R yG or not using the homomor-
phisms prl W QR yG ŠQŒ��=IhKi� QŒ��=h1C �2l

i for 0 � l �K � 1. Obviously,
g 2 4 �R yG implies prl.g/ 2 4 �ZŒ��=h1C�2l

i. Of more interest is the other direction.
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By the Chinese remainder theorem g is uniquely determined by the elements prl.g/

(0� l �K� 1). More precisely, we have:

Lemma 5.6 Let g 2QR yG . Then

g D

K�1X
lD0

2l�K
�gl � .1��/ �

Y
0�r�K�1

r¤l

.1C�2r

/

for any elements gl 2QR yG satisfying prl.gl/D prl.g/.

If prl.g/ 2 22CK�l � ZŒ��=h1C �2l

i we can choose gl 2 22CK�l �R yG satisfying
prl.gl/D prl.g/ and the lemma above shows g 2 4 �R yG . Motivated by this observation
we want to analyze whether prl.g/ lies in 2m �ZŒ��=h1C�2l

i for some integer m. For
this purpose we will introduce wl –functions which are generalizations of the p–adic
valuation for p D 2.

Before we do so, we give the proof of Lemma 5.6 and consider an application (Lemma
5.7).

Proof of Lemma 5.6 We have QR yG Š QŒ��=IhKi where IhKi was defined as
IhKi WD h1C�C� � �C�2K�1i. Notice that 1C�C� � �C�2K�1D

QK�1
mD0.1C�

2m

/.
Since the factors 1C�2m

are mutually coprime in the principal ideal domain QŒ��, it
suffices to check the desired equality under the epimorphism prm for 0�m�K� 1.
In QŒ��=h1C�2m

i we obtain

prm

 
K�1X
lD0

2l�K
�gl � .1��/ �

Y
0�r�K�1

r¤l

.1C�2r

/

!

D

K�1X
lD0

2l�K
� prm.g/ � .1��/ �

Y
0�r�K�1

r¤l

.1C�2r

/

D 2m�K
� prm.g/ � .1��/ �

Y
0�r�K�1

r¤m

.1C�2r

/

D 2m�K
� prm.g/ � .1��/ � .1C�C � � �C�

2m�1/ �

K�1Y
rDmC1

.1C .�1/2
r�m

/

D 2m�K
� prm.g/ � .1��

2m

/ � 2K�1�m
D prm.g/:
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As a warm-up in learning how to work with Lemma 5.6 we prove the following lemma
needed in the proof of Corollary 4.14.

Lemma 5.7 Let z 2QR yG
� . If f � z D 0 in QR yG

C then z D 0.

Proof It follows from Lemma 5.6 that it is sufficient to show prl.z/ D 0 for all
0 � l � K � 1. We have prl.f / � prl.z/ D prl.f � z/ D 0. Notice that prl.f / is
invertible for l � 1 since

.1C�/�1
D

1

2
� .1��C�2

��3
C � � � ��2l�1/ 2QŒ��=h1C�2l

i:

This implies prl.z/D 0 for l � 1. Further recall that we can write z 2QR yG
� as

z D

N=2�1X
rD1

ar � .�
r
��N�r /

with ar 2Q. Since �r ��N�r is a multiple of 1C�, we conclude pr0.z/D 0.

Now we proceed with the definition of the wl –functions.

Definition 5.8 Let �2lC1s 2 C be a primitive 2lC1 –th root of unity. Consider the
ring of algebraic integers ZŒ�2lC1s� in the cyclotomic field Q.�2lC1s/. The ideal
P WD .1� �2lC1s/ in ZŒ�2lC1s� is a prime ideal satisfying P2l

D .2/. Let �P be the
(exponential) valuation with respect to this prime ideal P . Then the wl –function of an
element g 2QR yG is given by

wl.g/D
1

2l
� �P

�
˛.prl.g//

�
2

1

2l
Z[f1g

where ˛W QŒ��=h1C�2l

i !Q.�2lC1s/ is the isomorphism induced by � 7! �2lC1s .

Roughly speaking, wl counts how many factors of 2 are contained in prl.g/. The
properties of the valuation �P imply the following calculation rules for the wl –function.

Lemma 5.9 Let g1;g2 2QR yG and l � 0.

(1) wl.g1 �g2/D wl.g1/Cwl.g2/.

(2) If wl.g1/¤ wl.g2/ then wl.g1Cg2/Dminfwl.g1/; wl.g2/g.

(3) If wl.g1/D wl.g2/ then wl.g1Cg2/ > wl.g1/D wl.g2/.
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Example 5.10 The reader is invited to calculate the wl for the following examples.

(1) If q 2Q �QR yG then wl.q/ coincides with the p–adic valuation for p D 2.
In particular, wl.2

a/D a.

(2) wl.f /D

(
1 when l D 0;

0 when l � 1

(3) wl.f ˙ 1/D 1� 2�l

(4) wl.f
2� 1/D 2� 21�l

(5) wl.f
2C 1/D

8̂<̂
:

0 when l D 0;

1 when l D 1;

1 when l � 2

(6) wl.f
0

k
/D 0

Hints. (2): For l D 0 use f � 0 mod 1C�. For l � 1 use f � .1��/D 1C� and
1C�D 2�.1��/. (3): Use .1��/.f C1/D 2 and .1��/.f �1/D 2�. (4): Use (3).
(5): For l D 1 use f 2C 1� 0 mod 1C �2 . For l ¤ 1 use f 2C 1D .f 2 � 1/C 2

and (4). (6): Use f 0
k

, f 0
k
�1
2R yG and the fact wl.g/� 0 when g 2R yG .

We now come back to the initial question of this subsection: For a given g 2QR yG we
want to decide whether g lies in 4 �R yG or not. The following theorem can answer this
question in many cases.

Theorem 5.11 Let g 2 QR yG . Suppose that prl.g/ 2 4 � ZŒ��=h1 C �2l

i for all
0� l �K� 1.

(1) If wl.g/� 2CK� l � 2�l for all 0� l �K� 1 then g 2 4 �R yG .

(2) If there exist h 2R yG and 0� l 0 �K� 1 such that

wl.g/Cwl.h/� 2CK� l � 2�l for all l 2 f0; 1; : : : ;K� 1g� fl 0g;

wl 0.g/Cwl 0.h/ < 2CK� l 0� 2�l 0 ;

then g … 4 �R yG .

Proof (1) The assumption wl.g/�2CK�l�2�l implies wl..1��/�g/�2CK�l .
Hence, for all 0� l �K� 1 there exist zl 2 ZŒ�� such that

prl..1��/ �g/D 22CK�l
� zl.�/ 2QŒ��=h1C�2l

i:
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Using Lemma 5.6 we conclude

.1��/ �g D

K�1X
lD0

2l�K
�
�
22CK�l

� zl.�/
�
� .1��/ �

Y
0�r�K�1

r¤l

.1C�2r

/ in QR yG

g D 4 �

K�1X
lD0

�zl.�/ �
Y

0�r�K�1

r¤l

.1C�2r

/ 2 4 �R yG :and hence

(2) We give a proof by contradiction. Assume that g 2 4 �R yG and define

a WDmin
˚
m 2 Z

ˇ̌
mCwl 0.g/Cwl 0.h/� 2CK� l 0� 2�l 0

	
:

Notice that a� 1. We have

wl..1��/ � 2
a
�g � h/� 3CK� l for all l 2 f0; 1; : : : ;K� 1g� fl 0g

wl 0..1��/ � 2
a
�g � h/� 2CK� l 0:

We conclude that there exist zl 2 2 � ZŒ�� for all l 2 f0; 1; : : : ;K � 1g � fl 0g and
zl 0 2 ZŒ�� satisfying

prl..1��/ � 2
a
�g � h/D 22CK�l

� zl.�/ 2QŒ��=h1C�2l

i:

Lemma 5.6 implies

.1��/ � 2a
�g � hD

K�1X
lD0

2l�K
� 22CK�l

� zl.�/ � .1��/ �
Y

0�r�K�1

r¤l

.1C�2r

/

2a
�g � hD

K�1X
lD0

4 � zl.�/ �
Y

0�r�K�1

r¤l

.1C�2r

/ in QR yG :and hence

Since g �h2 4�R yG there exists y 2ZŒ�� such that g �h and 4�y coincide in QŒ��=IhKi.
We get

2a
�y.�/D

K�1X
lD0

zl.�/ �
Y

0�r�K�1

r¤l

.1C�2r

/ in QŒ��=IhKi:

Hence there exists q 2QŒ�� with

2a
�y.�/D

K�1X
lD0

zl.�/ �
Y

0�r�K�1

r¤l

.1C�2r

/C q.�/ � .1C�C � � �C�N�1/:
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The equation above implies q.�/ � .1C�C � � �C�N�1/ 2 ZŒ�� and hence q 2 ZŒ��.
Under the epimorphism ZŒ��� Z2Œ�� this equation becomes

0D

K�1X
lD0

zl.�/ �
Y

0�r�K�1

r¤l

.1C�2r

/Cxq.�/ � .1C�C � � �C�N�1/

D zl 0.�/ �
Y

0�r�K�1

r¤l 0

.1C�2r

/Cxq.�/ �

K�1Y
rD0

.1C�2r

/:

Hence zl 0.�/ D �xq.�/ � .1 C �
2l 0

/ D �xq.�/ � .1 C �/2
l 0

in Z2Œ��. This implies
wl 0.zl 0/� 1. We finally get

.a� 1/Cwl 0.g/Cwl 0.h/D wl 0..1��/ � 2
a
�g � h/� 1� 2�l 0

D wl 0.2
2CK�l 0

� z0l.�//� 1� 2�l 0

D wl 0.z
0
l.�//C 1CK� l 0� 2�l 0

� 2CK� l 0� 2�l 0

which contradicts the minimality of a.

5.2 cK –technology

In this subsection we introduce the cK –functions which measure the “failure” of a
polynomial g 2QR yG to be in 4 �R yG and we show their two interesting properties.

Definition 5.12 Let G D Z2K . Define the function cK W QR yG �!N0[f1g by

cK .g/ WDmin
˚
c 2N0

ˇ̌
g.�/ � .1��/c 2 4 �ZŒ��=IhKi

	
:

If the set on the right hand side is empty then we set cK .g/ WD1.

Lemma 5.13 Let g 2 2 �R�yG where G D Z2K . Then

cK .g/ 2 f0g[ f1; 3; 5; : : : ; 2
K
� 1g:

Proof The element g 2 2 �R�yG can be written as

g.�/D 2 �

2K�1X
kD1

ak � .�
k
���k/
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with ak 2 Z. We set

xg.�/ WD

2K�1X
kD1

ak � .�
k
���k/ 2 Z2Œ��=IhKi:

Now suppose that cK .g/¤ 0 ie xg ¤ 0. Since

�k
���k

D .����1/ �
�
�1�k

C�3�k
C � � �C�k�3

C�k�1
�
;

any element y 2 Z2Œ��=IhKi of the shape y.�/ D
Pm

kD1 ck � .�
k � ��k/ can be

written as

y.�/D .����1/ �
�
c00C

m�1X
kD1

c0k � .�
k
���k/

�
:

Now, we transform xg in this way and repeat the transformation as long as the occurring
c0

0
is zero. We finally get

xg.�/D .����1/n �
�
1C

2K�1�nX
kD1

bk � .�
k
���k/

�
:

We want to prove cK .g/D c WD 2K � 2n� 1. Notice that we have in Z2Œ��

1C�C � � �C�2K�1
D

K�1Y
rD1

.1C�2r

/D

K�1Y
rD1

.1��/2
r

D .1��/2
K�1

.����1/n D
�
��1
� .1��/2

�n
D ��n

� .1��/2n:

Therefore, we calculate in Z2Œ��=IhKi

.����1/n � .1��/c D ��n
� .1��/2

K�1
D 0:

This implies xg.�/ � .1��/c D 0 in Z2Œ��=IhKi and hence

g.�/ � .1��/c 2 4 �ZŒ��=IhKi:

It remains to show
g.�/ � .1��/c�1

… 4 �ZŒ��=IhKi:

We prove this by contradiction. Suppose g.�/ � .1� �/c�1 2 4 �ZŒ��=IhKi which
implies xg.�/ � .1��/c�1 D 0 in Z2Œ��=IhKi. This means that there exists q 2 Z2Œ��

with

.����1/n �

 
1C

2K�1�nX
kD1

bk �.�
k
���k/

!
�.1��/c�1

D q.�/ �.1C�C� � �C�2K�1/:
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We conclude in Z2Œ��

��n
� .1��/2n

�
�
1C

2K�1�nX
kD1

bk � .�
k
���k/

�
� .1��/c�1

D q.�/ � .1��/2
K�1

��n
�
�
1C

2K�1�nX
kD1

bk � .�
k
���k/

�
D q.�/ � .1��/:and hence

This implies the desired contradiction

1D 1�n
�

 
1C

2K�1�nX
kD1

bk � .1
k
� 1�k/

!
D q.1/ � .1� 1/D 0 in Z2:

Lemma 5.14 Let gi 2 2 �ZŒ��=IhKi for i D 1; 2 such that cK .g1/ D cK .g2/ > 0.
Then we have

cK

�
g1Cg2

�
< cK .g1/D cK .g2/:

Proof We set c WD cK .g1/D cK .g2/. Since 2 � gi.�/ � .1��/
c�1 2 4 �ZŒ��=IhKi,

there exist polynomials hi 2ZŒ�� (i D 1; 2) such that 2 �gi.�/ �.1��/
c�1 and 4 �hi.�/

coincide modulo IhKi. We can require that deg.hi/� 2K � 2. Let hi be the image
of hi under the epimorphism ZŒ��� Z2Œ��. Notice that 1C�C� � �C�2K�1 divides
hi.�/ � .1��/ in Z2Œ�� because of gi.�/ � .1��/

c 2 4 �ZŒ��=IhKi. In Z2Œ�� we have

1C�C � � �C�2K�1
D

K�1Y
rD0

.1C�2r

/D

K�1Y
rD0

.1C�/2
r

D .1C�/2
K�1:

Therefore, .1C�/2
K�2 divides hi.�/. Since gi.�/�.1��/

c�1…4�ZŒ��=IhKi, we have
hi.�/¤ 0. We conclude from deg.hi/� deg.hi/� 2K �2 that hi.�/D .1C�/

2K�2 .
Therefore,

h1.�/C h2.�/D 2 � .1C�/2
K�2
D 0 in Z2Œ��:

This implies h1.�/C h2.�/ 2 2 �ZŒ��. In QŒ��=IhKi we finally conclude�
g1.�/Cg2.�/

�
� .1��/c�1

D 2 �
�
h1.�/C h2.�/

�
2 4 �ZŒ��=IhKi:

Lemma 5.15 Let gi 2 2 �ZŒ��=IhKi for i D 1; 2 such that cK .g1/ > cK .g2/. Then

cK

�
g1Cg2

�
D cK .g1/ > cK .g2/:

Proof Obviously, we have

cK

�
g1Cg2

�
�max

˚
cK .g1/; cK .g2/

	
D cK .g1/:

Algebraic & Geometric Topology, Volume 9 (2009)



On fake lens spaces with fundamental group of order a power of 2 1871

The inequality cK .g1Cg2/� cK .g1/ can be concluded from

cK .g1/D cK

�
.g1Cg2/�g2

�
�max

˚
cK .g1Cg2/; cK .g2/

	
:

5.3 Inductive properties

Lemma 5.16 Let g 2QŒ��=IhKC 1i such that prK .g/ 2 4 �ZŒ��=h1C�2K

i. Then

g 2 4 �ZŒ��=IhKi ” 2g 2 4 �ZŒ��=IhKC 1i:

Proof Assume first g 2 4 �ZŒ��=IhKi. Let h 2ZŒ�� be such that 4h and g coincide
in QŒ��=h1C�2K

i and let k 2ZŒ�� such that 4k and g coincide in QŒ��=IhKi. Then
we obtain in QŒ��=IhKC 1i the equation

2 �g.�/D 4 � .1C�2K

/ � k.�/C 4 � .1��2K

/ � h.�/:

which shows 2g 2 4 �ZŒ��=IhKC 1i.

Now assume 2g 2 4 � ZŒ��=IhK C 1i. We want to show g 2 4 � ZŒ��=IhKi. Let
h 2ZŒ�� be again such that 4h and g coincide in QŒ��=h1C�2K

i and let k 2ZŒ�� be
such that 4k and 2g (resp. 2k and g ) coincide in QŒ��=IhKC1i. Then 2 �k.�/ and
k.�/ � .1C�2K

/C2 �h.�/ � .1��2K

/ coincide in QŒ��=IhKi and in QŒ��=h1C�2K

i

and hence also in QŒ��=IhKC 1i. Therefore there exists an r 2QŒ�� with

2 � k.�/D k.�/ � .1C�2K

/C 2 � h.�/ � .1��2K

/C r.�/ � .1C�C � � �C�2KC1�1/:

We conclude r 2 ZŒ��. Under the epimorphism ZŒ��� Z2Œ�� we get

0D xk.�/ � .1C�2K

/Cxr.�/ � .1C�C � � �C�2KC1�1/

0D xk.�/Cxr.�/ � .1C�C � � �C�2K�1/:and hence

We set s.�/ WD k.�/C r.�/ � .1C�C� � �C�2K�1/ 2ZŒ��. The vanishing of s under
the epimorphism ZŒ�� � Z2Œ�� implies the existence of t 2 ZŒ�� with 2t D s . We
conclude in QŒ��=IhKi

g D 2k D 2s D 4t:

This shows g 2 4 �ZŒ��=IhKi.

Corollary 5.17 Let g 2QŒ��=IhKC1i such that prK .g/2 4 �ZŒ��=h1C�2K

i. Then
we have

cKC1.2g/D cK .g/:
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5.4 Good polynomials

In this subsection we define polynomials r�n which are the “best” polynomials in the
sense they are polynomials with leading coefficient 1 yielding elements in 4�ZŒ��=IhKi
for a large K in comparison with the other polynomials of the same degree with leading
coefficient 1. The path to the definition might be seen as a ‘brute force’ approach, on
the other hand it is a systematic approach as we will try to convey shortly. In order to
understand the overall strategy of the proof of Theorem 5.4 it might be better to skip this
subsection in the first reading, except Proposition 5.24, which describes the properties
of the polynomials r�n and which is all that is needed for the proof of Theorem 5.4 in
the next subsection.

The method in this subsection is to combine the wl –technology, the cK –technology
and the induction technology. In the first part we define auxiliary polynomials pk

(Definition 5.18) which are used to define polynomials denoted qn (Definition 5.21).
These polynomials are defined so that they have obviously large wl –functions (see
Corollary 5.20 and Lemma 5.23). In view of the cK –technology and the induction
procedure it is important to understand all those properties of the polynomials qn

which are listed in Proposition 5.22. The next idea is to use the cK –technology, the
induction procedure and the known properties of the polynomials qn to see whether
there are better polynomials than qn . Such a systematic analysis is done in Proposition
5.24. Using it we obtain the best polynomials r�n (Definition 5.26) and their properties
(Corollary 5.27).

Polynomials pk Notice that the for any q.x/ 2QŒx� we get

w0.8 �f
0

k �f � q.f
2//D1

since w0.f /D1 because of (1C�/ jf . Further notice that for p1.x/ WD xC 1 we
have

(5-5) p1.f
2/D f 2

C 1D 2 �
1C�2

.1��/2
:

Hence .1C �2/ jp1.f
2/ in QŒ��=IhKi and w1.8 � f

0
k
� f � p1.f

2// D1. Further
observe that

(5-6)
.f 2C 1/2

4 �f 2
D
.1C�2/2

.1��2/2
:

Motivated by that we make the following:
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Definition 5.18 Let p1.x/ WD xC 1 2 ZŒx�. For k 2N define inductively

(5-7) pkC1.x/ WD pk

�
.xC 1/2

4x

�
� .4x/2

k�1

2 ZŒx�:

Notice that pk.x/ is a polynomial in ZŒx� of degree 2k�1 .

Theorem 5.19 We have

pk.f
2/D 22k�1

�
1C�2k

.1��/2
k 2QŒ��=IhKi for k 2N:

Proof It suffices to prove the equality

pk.f
2/D 22k�1

�
1C�2k

.1��/2
k

in the field of rational functions Q.�/. The proof now goes by induction with respect
to k 2N . The case k D 1 is proved by the identity (5-5). Now the induction step. Let
˛W Q.�/ �!Q.�/ be the homomorphism given by � 7! �2 . We calculate:

pkC1.f
2/D pk

�
.f 2C 1/2

4 �f 2

�
�
�
4f 2

�2k�1

D pk

��
1C�2

1��2

�2�
� 22k

�f 2k

by (5-6)

D pk

�
.˛.f //2

�
� 22k

�f 2k

D ˛
�
pk.f

2/
�
� 22k

�f 2k

D
1C .�2/2

k

.1��2/2
k � 2

2k�1
� 22k

�
.1C�/2

k

.1��/2
k

D
1C�2kC1

.1��/2
k
� .1C�/2

k � 2
2kC1�1

�
.1C�/2

k

.1��/2
k

D 22kC1�1
�

1C�2kC1

.1��/2
kC1

Corollary 5.20 We have

(1) wl.pk.f
2//D1 when l D k ,

(2) wl.pk.f
2//D 2k � 1 when l > k .
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Proof The first item is immediate from the formula of the previous theorem. For
the second item note that 1C�2k

� .1��/2
k

mod 2. It follows that wl.1C�
2k

/D

wl..1��/
2k

/ for l > k and hence

wl

�
1C�2k

.1��/2
k

�
D 0 for l > k:

Finally use the formula of the previous theorem and the product formula for wl .

Polynomials qn Now we are ready to introduce the polynomials qn which will be
good in the already mentioned sense. The idea is that we get good polynomials when
we multiply the polynomials pk from the previous definition.

Definition 5.21 Let n� 0. Define a.n/; b.n/� 0 as the integers satisfying

nC 1D 2a.n/
C b.n/ with 0� b.n/� 2a.n/

� 1:

qn.x/ WD

a.n/Y
rD1

pr .x/ � .x� 1/b.n/:Define

Proposition 5.22 Let n� 0, k � 1 and m 2 f1; 2g. We have

8 �f 0k �f
m
� qn.f

2/ 2 4 �ZŒ��=Ih2nC 1i;

8 �f 0k �f
m
� qn.f

2/ 2 4 �ZŒ��=Ih2nC 2i” b.n/D 0:

Moreover, we have

c2nC2

�
8 �f 0k �f

m
� qn.f

2/
�
Dmax

˚
2b.n/� 1; 0

	
;

c2nC3

�
8 �f 0k �f

m
� qn.f

2/
�
D 2nC 1;

c2nC2Cs

�
8 �f 0k �f

m
� qn.f

2/
�
� 2nC 1C 2a.n/.2s

� 2/ for all s � 1:

We use the wl –technology for which we need:

Lemma 5.23 Let n� 0, k � 1 and m 2 f1; 2g. We have

wl.8 �f
0

k �f
m
� qn.f

2//D

(
1 l � a.n/;

2nC 3� a.n/� b.n/

2l�1 l � a.n/C 1:

Proof Use the formulas from Lemma 5.9, Example 5.10 and Corollary 5.20.
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Proof of Proposition 5.22 The desired results are obtained using the criteria from
Theorem 5.11.

wl

�
8 �f 0k �f

m
� qn.f

2/
�
� .2C 2nC 1� l � 2�l/

D

(
1 l � a.n/;

l � a.n/� 2b.n/�1

2l � 0 l � a.n/C 1

implies 8 �f 0k �f
m
� qn.f

2/ 2 4 �ZŒ��=Ih2nC 1i:

For b.n/ > 0 we have

wl

�
8 �f 0k �f

m
� qn.f

2/ � .1��/2b.n/�2
�
� .2C 2nC 2� l � 2�l/

D

8̂<̂
:
1 l � a.n/;

�
1

2a.n/C1 < 0 l D a.n/C 1;

l � .a.n/C 1/� 1
2l � 0 l � a.n/C 2;

and wl

�
8 �f 0k �f

m
� qn.f

2/ � .1��/2b.n/�1
�
� .2C 2nC 2� l � 2�l/

D

(
1 l � a.n/;

l � .a.n/C 1/� 0 l � a.n/C 1;

which implies c2nC2

�
8 �f 0k �f

m
� qn.f

2/
�
D 2b.n/� 1:

For b.n/D 0 we have

wl

�
8 �f 0k �f

m
� qn.f

2/
�
� .2C 2nC 2� l � 2�l/

D

(
1 l � a.n/;

l � .a.n/C 1/C 1
2l � 0 l � a.n/C 1;

which implies 8 �f 0k �f
m
� qn.f

2/ 2 4 �ZŒ��=Ih2nC 2i:

From wl

�
8 �f 0k �f

m
� qn.f

2/ � .1��/2n
�
� .2C 2nC 3� l � 2�l/

D

8̂<̂
:
1 l � a.n/;

�
1

2a.n/C1 < 0 l D a.n/C 1;

l � .a.n/C 2/C 2a.n/C1�1
2l � 0 l � a.n/C 2;

we conclude c2nC3

�
8 �f 0k �f

m
� qn.f

2/
�
� 2nC 1:

It remains to show

c2nC2Cs

�
8 �f 0k �f

m
� qn.f

2/
�
� 2nC 1C 2a.n/.2s

� 2/ for all s � 1:
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wl

�
8 �f 0k �f

m
� qn.f

2/ � .1��/2nC1C2a.n/.2s�2/
�
� .2C 2nC 2C s� l � 2�l/

D

(
1 l � a.n/;

l � a.n/� s� 1C 2a.n/Cs�l l � a.n/C 1:

We set z WD a.n/C s� l and have to show 2z � zC 1 for all z 2Z. This is obviously
true for z � �1. The statement for z � 0 follows by induction.

Polynomials zqn Notice that the polynomials qn have slightly better properties when
b.n/ D 0. This suggests that there might exist better polynomials than qn when
b.n/> 0. This turns out to be true, there exist polynomials r�n of degree n with leading
coefficient 1 such that

8 �f 0k �f
m
� r�n .f

2/ 2 4 �ZŒ��=Ih2nC 2i:

Their construction needs some preparation. They are obtained inductively. The crucial
inductive step is based on the following proposition. The idea is motivated by the
properties of qn when b.n/ D 0 and is based on the following observation: If we
assume for a given n2N with b.n/> 0 the existence of polynomials zql for l �bn

2
c�1

which are slightly better than ql then we are able to conclude the existence of a zqn

which is also better than qn .

Proposition 5.24 Let n� 0, k � 1 and m 2 f1; 2g. Let zql 2ZŒ�� be polynomials for
0� l � bn

2
c� 1 such that

8 �f 0k �f
m
� zql.f

2/ 2 4 �ZŒ��=Ih2l C 2i;(5-8)

c2lC3

�
8 �f 0k �f

m
� zql.f

2/
�
D 2l C 1;(5-9)

c2lC2Cs

�
8 �f 0k �f

m
� zql.f

2/
�
� 2l C 1C 2a.l/.2s

� 2/(5-10)

for all 0� l � bn
2
c� 1, s � 1. Then there exist unique al 2 f0; 1g for 0� l � bn

2
c� 1

such that

zqn WD qnC

bn
2
c�1X

lD0

al � 2
2.n�l/�1

� zql

satisfies

(5-11) 8 �f 0k �f
m
� zqn.f

2/ 2 4 �ZŒ��=Ih2nC 2i:

Moreover, we have

c2nC3

�
8 �f 0k �f

m
� zqn.f

2/
�
D 2nC 1;(5-12)

c2nC2Cs

�
8 �f 0k �f

m
� zqn.f

2/
�
� 2nC 1C 2a.n/.2s

� 2/ for all s � 1:(5-13)
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Remark 5.25 We note that the statement (5-11) is proved using only the assumptions
(5-8) and (5-9). The proof of the statement (5-12) on the other hand uses the assumptions
(5-8), (5-9) and (5-10) for s D 2. Since we are using induction we need to prove the
statement (5-13) for s D 2, but the proof of that uses (5-10) for s D 3 and so on. This
is the reason we need to prove the statements (5-13) for all s � 1.

Proof of Proposition 5.24 The proof proceeds in 3 steps.

(A) (Proof of (5-11), existence) From Proposition 5.22 we know that b.n/ D 0

implies
8 �f 0k �f

m
� qn.f

2/ 2 4 �ZŒ��=Ih2nC 2i;

so we can set al WD 0 for 0� l � bn
2
c� 1 if b.n/D 0.

In the case b.n/ > 0 we have

8 �f 0k �f
m
� qn.f

2/ � .1��/2b.n/�1
2 4 �ZŒ��=Ih2nC 2i:

Let c � 0 be the smallest number such that there exist coefficients al satisfying

(5-14) 8�f 0k �f
m
�

 
qn.f

2/C

bn
2
c�1X

lD0

al �2
2.n�l/�1

�zql.f
2/

!
�.1��/c 24�ZŒ��=Ih2nC2i:

We have to show c D 0. We will give a proof by contradiction and assume that c > 0.
We already know that

c � 2b.n/� 1� b.n/C 2a.n/
� 2D n� 1:

Let .al/ be a choice of coefficients with the property (5-14). We set

g1.�/ WD 8 �f 0k �f
m
� qn.f

2/C 8 �f 0k �f
m
�

bn
2
c�1X

lD0

al � 2
2.n�l/�1

� zql.f
2/:

Notice that g1.�/ 2 2 �ZŒ��=Ih2nC 2i because all summands lie in this ring (use
Lemma 5.16 and (5-8) for the summands indexed by l ). From Lemma 5.13 we conclude
that c is odd. We set l 0 WD c�1

2
� b

n
2
c� 1. Define

g2.�/ WD 8 �f 0k �f
m
� .�1/al 0 � 22.n�l 0/�1

� zql 0.f
2/:

Using Lemma 5.16 and (5-8) for l 0 we get g2.�/2 2 �ZŒ��=Ih2nC2i. Using Corollary
5.17 and (5-9) for l 0 we see c2nC2.g2/D c . Now, we can use Lemma 5.14 and get�

g1.�/Cg2.�/
�
� .1��/c�1

2 4 �ZŒ��=IhKi:
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But this means that

8 �f 0k �f
m
�

 
qn.f

2/C

bn
2
c�1X

lD0

a0l �2
2.n�l/�1

� zql.f
2/

!
� .1��/c�1

2 4 �ZŒ��=Ih2nC2i

where the coefficients .a0
l
/ are given by

a0l WD

(
al l ¤ l 0;

al 0 C .�1/al 0 l D l 0:

This is a contradiction to the minimality of c .

(B) (Proof of (5-11), uniqueness) Our next aim is to show the uniqueness of the
coefficients. We will give a proof by contradiction. Assume that there exist two different
choices of coefficients .al/, .a0l/ such that the corresponding zqn , zq0n satisfy

8 �f 0k �f
m
� zqn.f

2/; 8 �f 0k �f
m
� zq0n.f

2/ 2 4 �ZŒ��=Ih2nC 2i:

We set bl WD al � a0
l
2 f�1; 0; 1g and conclude

(5-15) 8 �f 0k �f
m
�

 bn
2
c�1X

lD0

bl � 2
2.n�l/�1

� zql.f
2/

!
2 4 �ZŒ��=Ih2nC 2i:

Let yl be the largest element with byl ¤ 0. Using Corollary 5.17 and (5-9), we conclude

c2nC2

�
8 �f 0k �f

m
� 22.n�l/�1

� zql.f
2/
�
D 2l C 1:

Lemma 5.15 implies

c2nC2

 
8 �f 0k �f

m
�

 bn
2
c�1X

lD0

bl � 2
2.n�l/�1

� zql.f
2/

!!
D 2yl C 1:

This is a contradiction to (5-15).

(C) (Proofs of (5-12) and (5-13)) It remains to prove

c2nC3

�
8 �f 0k �f

m
� zqn.f

2/
�
D 2nC 1;

c2nC2Cs

�
8 �f 0k �f

m
� zqn.f

2/
�
� 2nC 1C 2a.n/.2s

� 2/ for all s � 1:

Using Corollary 5.17 and (5-10) for any l < n and for any s0 � 1 we obtain

c2nC1Cs0
�
8 �f 0k �f

m
� 22.n�l/�1

� zql.f
2/
�
� 2l C 1C 2a.l/.2s0

� 2/:
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If l � bn
2
c� 1 and s0 � 2, we set s WD s0� 1 and conclude

c2nC2Cs

�
8 �f 0k �f

m
� 22.n�l/�1

� zql.f
2/
�
� 2nC 1C 2a.n/.2s

� 2/

because

2l C 1C 2a.l/.2sC1
� 2/� 2.n

2
� 1/C 1C 2a.n/�1.2sC1

� 2/

D 2nC 1C 2a.n/.2s
� 2/� b.n/ � 2nC 1C 2a.n/.2s

� 2/:

If s0 D 2 we obtain even better

c2nC3

�
8 �f 0k �f

m
� 22.n�l/�1

� zql.f
2/
�
� 2n

because

2l C 1C 2a.l/.22
� 2/� 2.n

2
� 1/C 1C 2a.n/

D 2n� b.n/� 2n:

Therefore, it suffices to show

c2nC3

�
8 �f 0k �f

m
� qn.f

2/
�
D 2nC 1;

c2nC2Cs

�
8 �f 0k �f

m
� qn.f

2/
�
� 2nC 1C 2a.n/.2s

� 2/ for all s � 1:

But this was proved in Proposition 5.22.

Notice that the assumptions in Proposition 5.24 are trivially fulfilled if nD 0; 1.

Definition 5.26 We define r�n 2 ZŒ�� as the polynomials zqn we obtain successively
from Proposition 5.24 starting with nD 0 and proceeding with nD 1; 2; 3; : : :.

For example, r�
0
D q0 , r�

1
D q1 , r�

2
D q2C 23 � q0 , r�

3
D q3 , r�

4
D q4C 27 � q0 .

Corollary 5.27 The polynomial r�n is of degree n 2N with leading coefficient 1 and
satisfies

8 �f 0k �f
m
� r�n .f

2/ 2 4 �ZŒ��=Ih2nC 2i;

c2nC3

�
8 �f 0k �f

m
� r�n .f

2/
�
D 2nC 1:

5.5 The equality Ak
K.d/D BK.d/

Are the polynomials r�n best possible? Or does there exist a polynomial q of degree n

with leading coefficient 1 such that 8 �fk �q.f
2/ 2ZŒ��=Ih2nC3i? In this subsection
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we will see that any polynomial q of degree n with the property 8 � fk � q.f
2/ 2

ZŒ��=Ih2nC 3i is of the shape
nX

lD0

al � 2
maxf2.n�l/C1;0g

� r�l

with al 2 Z. Hence such a polynomial can not have 1 as leading coefficient.

We first prove Ak
K
.d/D BK .d/ for d D 2eC 1. Recall that

Ak
K .2eC 1/ WD

˚
q 2 ZŒx�

ˇ̌
deg.q/� e� 1; 8 �fk � q.f

2/ 2 4 �ZŒ��=IhKi
	
;

BK .2eC 1/ WD

(
e�1X
nD0

an � 2
maxfK�2n�2;0g

� r�n

ˇ̌̌
an 2 Z

)
:

We want to consider a slightly more general situation and prove A
k;m
K

.2eC 1/ D

BK .2eC 1/ where A
k;m
K

.2eC 1/ is defined as follows.

Definition 5.28 Let K; k � 1, e � 2, m 2 f1; 2g. Define

A
k;m
K

.2eC 1/ WD
˚
q 2 ZŒx�

ˇ̌
deg.q/� e� 1; 8 �f 0k �f

m
� q.f 2/ 2 4 �ZŒ��=IhKi

	
:

Notice that A
k;1
K
.2eC 1/DAk

K
.2eC 1/.

Theorem 5.29 Let K; k � 1, e � 2, m 2 f1; 2g. Then A
k;m
K

.2eC 1/DBK .2eC 1/.
In particular,

Ak
K .2eC 1/D BK .2eC 1/:

Remark 5.30 We proceed by induction with respect to K . The main ingredients
in the proof are Corollary 5.27, Lemma 5.16, resp. Corollary 5.17 and Lemma 5.15.
The more interesting part is the inclusion A

k;m
K

.2eC 1/ � BK .2eC 1/ where this
time the cK –technology is used as a tool to show that certain linear combinations of
polynomials cannot be in 4 �ZŒ��=IhKi.

Proof of Theorem 5.29 Since 8 �f 0
k
�f m � r�n .f

2/ 2 4 �ZŒ��=Ih2nC2i, Lemma 5.16
implies

8 �f 0k �f
m
� 2maxfK�2n�2;0g

� r�n .f
2/ 2 4 �ZŒ��=IhKi:

This proves A
k;m
K

.2eC 1/� BK .2eC 1/.

It remains to show A
k;m
K

.2eC 1/� BK .2eC 1/. We will give a proof by induction
with respect to K . For the basis case K D 1 we get

A
k;m
1
.2eC 1/D

˚
q 2 ZŒx�

ˇ̌
deg.q/� e� 1

	
D B1.2eC 1/:
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Inductive step: We assume that A
k;m
K�1

.2eC 1/�BK�1.2eC 1/ (K � 2) and have to
prove A

k;m
K

.2eC 1/� BK .2eC 1/. Let q 2A
k;m
K

.2eC 1/. Since

A
k;m
K

.2eC 1/�A
k;m
K�1

.2eC 1/� BK�1.2eC 1/;

we can write q as qD
Pe�1

nD0 an � 2
maxfK�2n�3;0g � r�n with an 2Z. The polynomial q

lies in BK .2eC 1/ if an is even for all n with 2nC 2�K� 1. We set

M WD
˚
0� n� e� 1

ˇ̌
2nC 2�K� 1; an is odd

	
:

It remains to show M D∅. We will give a proof by contradiction and assume M ¤∅.
Since q 2A

k;m
K

.2eC 1/ andX
n…M

an � 2
maxfK�2n�3;0g

� r�n C
X

n2M

.an� 1/ � 2maxfK�2n�3;0g
� r�n

2 BK .2eC 1/�A
k;m
K

.2eC 1/;

we have
X

n2M

2K�2n�3
� r�n 2A

k;m
K

.2eC 1/:

This implies

(5-16)
X

n2M

8 �f 0k �f
m
� 2K�2n�3

� r�n .f
2/ � .1��/2�max.M /

2 4 �ZŒ��=IhKi:

On the other hand, we conclude from Corollary 5.27 and Corollary 5.17 that

cK

�
8 �f 0k �f

m
� 2K�2n�3

� r�n .f
2/
�
D 2nC 1

for all n 2M . Lemma 5.15 implies

cK

 X
n2M

8 �f 0k �f
m
� 2K�2n�3

� r�n .f
2/

!
D 2 �max.M /C 1:

But this is a contradiction to (5-16).

We now come to the case d D 2e .

Definition 5.31 Define ˇW ZŒx�! ZŒx� by

ˇ.q/.x/ WD
x � q.x/� q.1/

x� 1

rCn WD ˇ.r
�
n / for n� 0:and set
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Notice that ˇ is an isomorphism of Z–modules and preserves the degree of the
polynomial. The inverse is given by

ˇ�1.q/.x/D
.x� 1/ � q.x/C q.0/

x
:

rCn is a polynomial of degree n with leading coefficient 1.

Theorem 5.32 Let K; k � 1, e � 3. Then

Ak
K .2e/D BK .2e/:

Proof Recall that

Ak
K .2e/ WD

˚
q 2 ZŒx�

ˇ̌
deg.q/� e� 2; 8 �f 0k � .f

2
� 1/ � q.f 2/ 2 4 �ZŒ��=IhKi

	
;

BK .2e/ WD

(
e�2X
nD0

an � 2
maxfK�2n�2;0g

� rCn

ˇ̌̌
an 2 Z

)
:

For q 2 ZŒx� with deg.q/� e� 2 we conclude

q 2Ak
K .2e/” 8 �f 0k � .f

2
�1/ � q.f 2/ 2 4 �ZŒ��=IhKi

” 8 �f 0k �
�
.f 2
�1/ � q.f 2/Cq.0/

�
2 4 �ZŒ��=IhKi .sincef 0k 2R yG/

” 8 �f 0k �f
2
�ˇ�1.q/.f 2/ 2 4 �ZŒ��=IhKi

” ˇ�1.q/ 2A
k;2
K
.2e� 1/

” ˇ�1.q/ 2 BK .2e� 1/ .see Theorem 5.29/

” q 2 BK .2e/:

This completes the proof.
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