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A new characterization of Conrad’s property for group
orderings, with applications

ANDRÉS NAVAS

CRISTÓBAL RIVAS

APPENDIX BY ADAM CLAY

We provide a pure algebraic version of the first-named author’s dynamical characteri-
zation of the Conrad property for group orderings. This approach allows dealing with
general group actions on totally ordered spaces. As an application, we give a new and
somehow constructive proof of a theorem first established by Linnell: an orderable
group having infinitely many orderings has uncountably many. This proof is achieved
by extending to uncountable orderable groups a result about orderings which may be
approximated by their conjugates. This last result is illustrated by an example of an
exotic ordering on the free group given by the third author in the Appendix.

06F15, 20F60; 57S25

1 Introduction

In recent years, relevant progress has been made in the theory of (left) orderable
groups. This has been achieved mainly by means of the use of a recently introduced
mathematical object, namely the space of group orderings (see for instance Clay [2],
Linnell [9], Morris [11], Navas [13] and Sikora [14]). This space may be endowed
with a natural topology (roughly, two orderings are close if they coincide over large
finite sets), and the study of this topological structure should reveal some algebraic
features of the underlying group. In [13] it was realized that, for this study, the classical
Conrad property for group orderings becomes relevant. Bringing ideas and techniques
from the theory of codimension-one foliations, the ‘dynamical’ insight of this property
was revealed. Unfortunately, many proofs of [13] are difficult to read for people with
a pure algebraic view of orderable groups. More importantly, some of the results
therein do not cover the case of uncountable groups. Indeed, the dynamical analysis of
group orderings is done via the so-called ‘dynamical realization’ of orderable groups as
groups of homeomorphisms of the line, which is not available for general uncountable
orderable groups.
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Motivated by this, we develop here an algebraic counterpart of (part of) the analysis of
[13]. We begin by giving a new characterization of the Conrad property that is purely
algebraic, although it has a dynamical flavor (see Theorem 2.4). This leads naturally to
the notion of Conradian actions on totally ordered spaces. A relevant example concerns
the action of an ordered group on the space of cosets with respect to a convex subgroup.
In this setting, we define the notion of Conradian extension (see Example 2.11), and
we generalize Conrad’s classical theorem on the ‘level’ structure of groups admitting
Conradian orderings (see Theorem 2.14, Corollary 2.15).

A relevant concept introduced in [13] is the Conradian soul, which corresponds to
the maximal subgroup of an ordered group that is convex and restricted to which the
ordering is Conradian. In [13], a more geometrical view of this notion was given in the
case of countable groups. Here we provide an analogous algebraic description which
applies to general (possibly uncountable) ordered groups (see Theorem 3.1).

The Conradian soul was introduced as a main tool for dealing with the problem of
approximating a group ordering by its conjugates. For instance, it was shown in [13]
that if the Conradian soul of an ordering on a non-trivial countable group is trivial, then
this ordering is an accumulation point of its set of conjugates. The extension of this
result to uncountable orderable groups appears here as Theorem 3.7. We point out that
an independent proof using completely different ideas was given by Adam Clay in [2].

Based on the work of Linnell [9], it was shown in [13] that if an ordering on a group
is isolated in the corresponding space of orderings, then its Conradian soul is ‘almost
trivial’, in the sense that it has only finitely many orderings. It is then natural to deal
with ordered groups .�;�/ for which the Conradian soul C�.�/ is non-trivial but has
only finitely many orderings. If � is not Conradian, then to each of the orderings on
C�.�/ corresponds an ordering on � (roughly, the new orderings on � are obtained
by changing the original one on C�.�/ but preserving the set of elements bigger than
the identity outside). As it was proved in [13], at least one of these orderings on � is
an accumulation point of its set of conjugates provided that � is countable. Here we
extend this result to the case of uncountable groups (see Corollary 3.10).

The property of being approximated by its conjugates does not hold for all of the finitely
many orderings on � obtained by the preceding construction. A remarkable example
illustrating this fact, namely the Dubrovina–Dubrovin ordering �DD on braid groups
Bn [7], was extensively studied from this point of view in [13]. In the Appendix, Adam
Clay provides a different kind of example, namely an ‘exotic’ ordering �

C
on the free

group F2 . As it is the case of �DD , the Conradian soul of �
C

is isomorphic to Z,
and �

C
is not an accumulation point of the set of its conjugates. (This answers by the

negative a question suggested in [13, Remark 4.11].) The main difference between
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�DD and �
C

lies on the fact that �DD is an isolated point of the (uncountable)
space of orderings of Bn , while �

C
is non-isolated in the (also uncountable) space

of orderings of F2 . (Actually, the space of orderings of F2 is homeomorphic to the
Cantor set; see McCleary [10] and [13].)

As a final application of our methods, we give a new proof of a theorem first established
by Linnell for countable groups [9]: if a group has infinitely many orderings, then it
has uncountably many. Linnell’s proof uses an argument from General Topology for
reducing the general case to that of Conradian orderings for which prior arguments
by Zenkov [15] apply. To deal with the non Conradian case, we use our machinery
on Conradian souls. Note that this was already done in [13] for countable groups:
Theorem 4.1 here corresponds to the extension to the case of uncountable groups.

Acknowledgements
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2 Crossings and Conradian orderings

2.1 An equivalent for Conrad’s property

Let � be an ordering on a group � , that is, a total order relation which is invariant
by left multiplication. Recall that � is said to be Conradian if for all f � 1 and all
g � 1 (for short, for all positive elements f;g ) there exists n2NDf1; 2; : : :g such that
fgn � g . (See however Remark 2.5.) A subgroup �0 of � is �–Conradian if the
restriction of � to it is a Conradian ordering.

A crossing for the ordered group .�;�/ is a 5–tuple .f;g;u; v; w/ of elements in �
such that

� u� w � v ,

� gnu� v and f nv � u for every n 2N ,

� there exist M;N in N so that f N v � w � gM u.

Remark 2.1 It follows from the third condition that neither f nor g can be equal to
the identity.
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Remark 2.2 If .f;g;u; v; w/ is a crossing, then the inequalities f nv�u and gnu�v

actually hold for every integer n. Indeed, we necessarily have f v � v , since in the
other case we would have v � w � f N v � f N�1v � � � � � f v � v; which is absurd.
Therefore, for n> 0,

f �nv � f n�1v � � � � � f �1v � v � u:

The inequality g�nu� v for n> 0 may be checked similarly.

Remark 2.3 The reason of the use of different type of letter for the elements f;g
and u; v; w will become clear in Section 2.2. Somehow, u; v; w should be thought of
as ‘reference points’ instead of genuine group elements (see Figure 1).
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Figure 1: A crossing

The next result is the natural analogue of [13, Propositions 3.16 and 3.19] in our setting.

Theorem 2.4 The ordering � is Conradian if and only if .�;�/ admits no crossing.

Proof Suppose that � is not Conradian, and let f;g be positive elements so that
fgn � g for every n 2N . We claim that .f;g;u; v; w/ is a crossing for .�;�/ for
the choices uD 1, v D f �1g and w D g2 . Indeed:

� From fg2 � g one obtains g2 � f �1g , and since g � 1, this gives 1� g2 �

f �1g; that is, u� w � v .
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� From fgn � g one gets gn � f �1g , that is, gnu � v (for every n 2 N ); on
the other hand, since both f;g are positive, we have f n�1g � 1, and thus
f n.f �1g/� 1, that is, f nv � u (for every n 2N ).

� The relation f .f �1g/D g � g2 may be read as f N v � w for N D 1; on the
other hand, the relation g2 � g3 is w � gM u for M D 3.

Conversely, assume that .f;g;u; v; w/ is a crossing for .�;�/ so that f N v � w �

gM u (with M;N in N ). We will prove that � is not Conradian by showing that, for
hD gMf N and xhD gM , both elements w�1hw and w�1xhw are positive, but

.w�1hw/.w�1xhw/n � w�1xhw for all n 2N:

To show this, first note that gw � w . Indeed, if not then we would have

w � gN u� gNw � gN�1w � � � � � gw � w;

which is absurd. Clearly, the inequality gw � w implies

gMw � gM�1w � � � � � gw � w;

and hence

(1) w�1xhw D w�1gMw � 1:

Moreover,

hw D gMf Nw � gMf Nf N v D gMf 2N v � gM u� w:

and hence

(2) w�1hw � 1:

Now note that, for every n 2N ,

hxhnw D hgMnw � hgMngM uD hgMnCM u� hv D gMf N v � gMw D xhw:

After multiplying by the left by w�1 , the last inequality becomes

.w�1hw/.w�1xhw/n D w�1hxhnw � w�1xhw;

as we wanted to check. Together with (1) and (2), this shows that � is not Conradian.

Remark 2.5 A relevant fact that will be not used in this work is that, for every
Conradian group ordering �, one actually has fg2 � g for all positive elements
f;g (that is, one can take ‘nD2’ in the original definition). The proof given in [13,
Proposition 3.7] uses the fact that, if f;g are positive elements for which fg2 � g ,
then letting h D fg one has f hn � h for all n 2 N . This is illustrated by Figure
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2. Notice that, as shown below, in this situation .f; fg; 1; fg;g/ is a crossing for
M DN D 2...

.....................
....................

.....................
........................

.....................
.....................

.....................
....................

........................
......................

.......................
....................

.....................
......................

........................
......................

..................
...............

..............
............

.............
.............

.............
..............

..............
...............

................
................

.................
..................

....................
.....................

.......................
..........................

..............................
.....................................

........................................................
........................

..............................................................................................................
...............................................................

..............................................
....................................

...............................
...........................

........................
.....................

....................
..................

.................
................

...............
..............
.............
.............
............
...........
...........
...........
..........
..........
..........
.........
.........
.....

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

1 g2

� �

�fg2

f

fg

fg

g

fg

g

�

�

�

� �

f

g

Figure 2: The ‘nD2’ condition

Remark 2.6 The second condition in the definition of crossing may seem difficult
to handle. A more ‘robust’ property is that of reinforced crossing, which is a 5–tuple
.f;g;u; v; w/ of elements in an ordered group .�;�/ such that
� u� w � v ,
� f u� u and gv � v ,
� there exist M;N in N so that f N v � w � gM u.

One easily checks that a reinforced crossing is a crossing. Conversely, if .f;g;u; v; w/
is a crossing, then .f N gM ;gMf N ; f Nw;gMw;w/ is a reinforced crossing (here,
M;N in N are such that f N v � w � gM u). Indeed, from the properties of crossing
one gets f N gM .gMw/ � f N v � w and gMf N .f Nw/ � gM u � w . Moreover,
f N gM .f Nw/� f N gM u� f Nw and gMf N .gMw/� gMf N v � gMw .

Remark 2.7 Replacing f (resp. g ) by f N (resp. gM ) in the original definition,
one readily checks that the condition of existence of a reinforced crossing is equivalent
to the existence of a 5–tuple of group elements .f;g;u; v; w/ so that

u� f u� f v � w � gu� gv � v:
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Figure 3: A reinforced crossing

With no doubt, this chain of inequalities should be easier to handle than the three
conditions in Remark 2.6.

Remark 2.8 The dynamical characterization of Conrad’s property may serve as in-
spiration for introducing other relevant properties for group orderings. (Compare
[13, Question 3.22].) For instance, one can say that a 6–tuple .f;g;u; v; w1; w2/ of
elements in an ordered group .�;�/ is a (reinforced) double crossing if (see Figure 4)

� u� w1 � w2 � v ,

� f u� u and f v � v ,

� gu� w1 , gv � w2 , and f w2 � w1 .

Finding a simpler algebraic counterpart of the property of not having a double crossing
for an ordering seems to be an interesting problem.

2.2 An extension to group actions on ordered spaces

Let � be a group acting by order-preserving bijections on a totally ordered space
.�;�/. A crossing for the action of � on � is a 5–tuple .f;g;u; v; w/, where f;g
belong to � and u; v; w are in �, such that

� u<w < v ,

� gnu< v and f nv > u for every n 2N ,

� there exist M;N in N so that f N v < w < gM u.
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Figure 4: A (reinforced) double crossing

Example 2.9 The real line carries a natural total order, and thus our definition applies
to groups acting on it by orientation preserving homeomorphisms. The notion of
crossing for this case is exactly the same as that of elements in transversal position in
[13, Definition 3.24].

Example 2.10 If � is endowed with an ordering �, one may take .�;�/D .�;�/
as a totally ordered set. The action of � by left translations on it preserves the order:
a crossing for this action corresponds to a crossing for .�;�/, in the terminology of
Section 2.1. Note that this example generalizes the preceding one for countable groups,
since every countable ordered group may be canonically (up to semiconjugacy) realized
as a group of orientation preserving homeomorphisms of the real line [13, Section 2.1].

For another relevant example recall that, given ordered group .�;�/, a subset S is
�–convex if for every f1�f2 in S , every f 2� satisfying f1 � f � f2 belongs to
S . When S is a subgroup, this is equivalent to that for all positive xf 2S , every f 2�
such that 1� f � xf belongs to S .

Example 2.11 Let .�;�/ be an ordered group, and let �0 be a �–convex subgroup.
The space of left cosets �D�=�0 carries a natural total order �, namely f �0 < g�0

if f h1 � gh2 for some h1; h2 in �0 (the reader will easily check that this definition is
independent of the choice of h1 and h2 in �0 ). The action of � by left translations on
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� preserves this order. (Note that taking �0 as being the trivial subgroup, this example
reduces to the preceding one.) Whenever this action has no crossings, we will say that
� is a Conradian extension of �0 .

Remark 2.12 Let .�;�/ be an ordered group, and let �0 be a �–convex subgroup.
Given any ordering �� on �0 , the extension of �� by � is the ordering �� on � for
which 1 �� f if and only if either f 2 �0 and 1 �� f , or f 62 �0 and 1 � f . The
reader can easily check that �0 is still a ��–convex subgroup of � . Moreover, � is a
�–Conradian extension of �0 if and only if it is a ��–Conradian extension of it.

For a general order-preserving action of a group � on a totally ordered space .�;�/,
the action of an element f 2� is said to be cofinal if for all x < y in � there exists
n2Z such that f n.x/ > y . Note that if the action of f is not cofinal, then there exist
x < y in � such that f n.x/ < y for every integer n.

Proposition 2.13 Let � be a group acting by order-preserving bijections on a totally
ordered space .�;�/. If the action of � on � has no crossings, then the set of elements
whose action is not cofinal forms a normal subgroup of � .

Proof Let us denote the set of elements whose action is not cofinal by �0 . This set is
normal. Indeed, given g 2 �0 , let x < y in � be such that gn.x/ < y for all n. For
each h 2 � we have gnh�1.h.x// < y , and hence .hgh�1/n.h.x// < h.y/ (for all
n2Z). Since h.x/ < h.y/, this shows that hgh�1 belongs to �0 .

It follows immediately from the definition that �0 is stable under inversion, that is,
g�1 belongs to �0 for all g2�0 . The fact that �0 is stable by multiplication is more
subtle. For the proof, given x 2� and g 2 �0 , we will denote by Ig.x/ the convex
closure of the set fgn.x/W n 2 Zg, that is, the set formed by the y 2 � for which
there exists m; n in Z so that gm.x/ � y � gn.x/. Note that Ig.x/ D Ig.x

0/ for
all x0 2 Ig.x/; moreover, Ig�1.x/ D Ig.x/ for all g2�0 and all x2�; finally, if
g.x/D x , then Ig.x/D fxg. We claim that if Ig.x/ and If .y/ are non-disjoint for
some x;y in � and f;g in �0 , then one of them contains the other. Indeed, assume
that there exist non-disjoint sets If .y/ and Ig.x/, none of which contains the other.
Without loss of generality, we may assume that Ig.x/ contains points to the left of
If .y/ (if this is not the case, just interchange the roles of f and g ). Changing f
and/or g by their inverses if necessary, we may assume that g.x/ > x and f .y/ < y ,
and hence g.x0/ > x0 for all x0 2 Ig.x/, and f .y0/ < y0 for all y0 2 Iy.f /. Take
u 2 Ig.x/nIf .y/, w 2 Ig.x/\If .y/, and v 2 If .y/nIg.x/. Then one easily checks
that .f;g;u; v; w/ is a crossing, which is a contradiction.

Algebraic & Geometric Topology, Volume 9 (2009)
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Let now g; h be elements in �0 , and let x1 < y1 and x2 < y2 be points in � such that
gn.x1/<y1 and hn.x2/<y2 for all n2Z. Put xDminfx1;x2g and yDmaxfy1;y2g.
Then gn.x/ < y and hn.x/ < y for all n 2 Z; in particular, y does not belong to
neither Ig.x/ nor Ih.x/. Since x belongs to both sets, we have either Ig.x/� Ih.x/

or Ih.x/� Ig.x/. Both cases being analogous, let us consider only the first one. Then
for all x0 2 Ig.x/ we have Ih.x

0/� Ig.x
0/D Ig.x/. In particular, h˙1.x0/ belongs

to Ig.x/ for all x0 2 Ig.x/. Since the same holds for g˙1.x0/, this easily implies that
.gh/n.x/ 2 Ig.x/ for all n 2 Z. As a consequence, .gh/n.x/ < y for all n 2 Z, thus
showing that gh belongs to �0 .

Recall that for an ordered group .�;�/, a convex jump is a pair .G;H / of distinct �–
convex subgroups such that H is contained in G , and there is no �–convex subgroup
between them. The previously developed ideas lead naturally to the following result,
which may be viewed as an extension of Conrad’s theorem on the structure of convex
subgroups for Conradian orderings [3, Theorem 4.1]. However, our proof follows
ideas which are rather different from those of Conrad, and is much inspired from [12,
Exercise 2.2.46].

Theorem 2.14 Let .�;�/ be an ordered group, and let .G;H / be a convex jump
in � . Suppose that G is a Conradian extension of H . Then H is normal in G , and
the ordering induced by � on the quotient G=H is Archimedean (and hence order
isomorphic to a subgroup of .R;C/, due to Hölder’s theorem; see Botto Mura and
Rhemtulla [1], Kopytov and Medvedev [8] and [12]).

Proof Let us consider the action of G on the space of cosets G=H . Each element
in H fixes the coset H , and hence its action is not cofinal. By Proposition 2.13, if
we show that the action of each element in G nH is cofinal, then this will give the
normality of H in G .

Now given f 2 G nH , let Gf be the smallest convex subgroup of G containing
H and f . We claim that Gf coincides with the set Sf D fg 2 G W f m � g �

f n for some m; n in Zg: Indeed, Sf is clearly a convex subset of G containing H

and contained in Gf . Thus, for showing that Gf D Sf , we need to show that Sf is a
subgroup. For this, first note that, in the notation of the proof of Proposition 2.13, the
conditions g 2 Sf and Ig.H / � If .H / are equivalent. Therefore, for each g 2 Sf
we have Ig�1.H /D Ig.H /� If .H /, and thus g�12 Sf . Moreover, if xg is another
element in Sf , then xggH 2 xg.If .H // D If .H /, and thus Ixgg.H / � If .H /. This
means that xgg belongs to Sf , thus concluding the proof that Sf and Gf coincide.

Each f 2G nH leads to a convex subgroup Gf D Sf strictly containing H . Since
.G;H / is a convex jump, we necessarily have Sf DG . Given g1 � g2 in G , choose
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m1; n2 in Z for which f m1 � g1 and g2 � f
n2 . Then we have f n2�m1g1 �

f n2�m1f m1 D f n2 � g2 , and hence f n2�m1.g1H /� g2H . This easily implies that
the action of f is cofinal.

We have then showed that H is normal in G . The left invariant total order on the
space of cosets G=H is therefore a group ordering. Moreover, given f;g in G , with
f 62H , the previous argument shows that there exists n2Z such that f n � g , and thus
f nH � gH . This is nothing but the Archimedean property for the induced ordering
on G=H .

Corollary 2.15 Under the hypothesis of Theorem 2.14, up to multiplication by a
positive real number, there exists a unique nontrivial group homomorphism � WG!R
such that ker.�/DH and �.g/>0 for every positive element g 2G nH .

3 On the approximation of a group ordering by its conju-
gates

3.1 Describing the Conradian soul via crossings

The Conradian soul C�.�/ of an ordered group .�;�/ corresponds to the (unique)
subgroup which is �–convex, �–Conradian, and which is maximal among subgroups
verifying these two properties simultaneously. This notion was introduced in [13],
where a dynamical counterpart in the case of countable groups was given. To give an
analogous characterization in the general case, we consider the set SC formed by the
elements h�1 such that h � w for every crossing .f;g;u; v; w/ satisfying 1 � u.
Analogously, we let S� be the set formed by the elements h� 1 such that w � h for
every crossing .f;g;u; v; w/ satisfying v � 1. Finally, we let

S D f1g[SC[S�:

A priori, it is not clear that the set S has a nice structure (for instance, it is not at all
evident that it is actually a subgroup). However, this is largely shown by the theorem
below.

Theorem 3.1 The Conradian soul of .�;�/ coincides with the set S above.

Before passing to the proof, we give four general lemmas on crossings for group
orderings (note that the first three lemmas still apply to crossings for actions on totally
ordered spaces). The first one allows us replacing the ‘comparison’ element w by its
‘images’ under positive iterates of either f or g .
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Lemma 3.2 If .f;g;u; v; w/ is a crossing, then .f;g;u;v;gnw/ and .f;g;u;v;f nw/

are also crossings for every n2N .

Proof We will only consider the first 5–tuple (the case of the second one is analogous).
Recalling that gw�w , for every n2N we have u�w�gnw ; moreover, v�gMCnuD

gngM u � gnw . Hence, u � gnw � v . On the other hand, f N v � w � gnw , while
from gM u� w we get gMCnu� gnw .

Our second lemma allows replacing the ‘limiting’ elements u and v by more appropriate
ones.

Lemma 3.3 Let .f;g;u; v; w/ be a crossing. If f u � u (resp. f u � u) then
.f;g; f nu; v; w/ (resp. .f;g; f �nu; v; w/) is also a crossing for every n> 0. Analo-
gously, if gv � v (resp. gv � v ), then .f;g;u;gnv;w/ (resp. .f;g;u;g�nv;w/) is
also a crossing for every n> 0.

Proof Let us only consider the first 5–tuple (the case of the second one is analogous).
Suppose that f u � u (the case f u � u may be treated similarly). Then f nu � u,
which gives gMf nu� gM u� w . To show that f nu� w , assume by contradiction
that f nu� w . Then f nu� f N v , which gives u� f N�nv , which is absurd.

The third lemma relies on the dynamical insight of the crossing condition.

Lemma 3.4 If .f;g;u; v; w/ is a crossing, then .hf h�1; hgh�1; hu; hv; hw/ is also
a crossing for every h 2 � .

Proof The three conditions to be checked are nothing but the three conditions in the
definition of crossing multiplied by h by the left.

A direct application of the lemma above shows that, if .f;g;u; v; w/ is a crossing, then
the 5–tuples .f; f ngf �n; f nu; f nv; f nw/ and .gnfg�n;g;gnu;gnv;gnw/ are also
crossings for every n 2N . This combined with Lemma 3.3 may be used to show the
following.

Lemma 3.5 If .f;g;u; v; w/ is a crossing and 1�h1�h2 are elements in � such that
h12S and h2 62S , then there exists a crossing . zf ; zg; zu; zv; zw/ such that h1�zu�zv�h2 .
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Proof Since 1� h2 62 S , there must be a crossing .f;g;u; v; w/ such that 1� u�

w � h2 . Let N 2N be such that f N v � w . Denote by .f; xg; xu; xv; xw/ the crossing
.f; f N gf �N ; f N u; f N v; f Nw/. Note that xv D f N v � w � h2 . We claim that
h1 � xw D f

Nw . Indeed, if f N u� u then f nu� 1, and by the definition of S we
must have h1 � xw . If f N u � u, then we must have f u � u, so by Lemma 3.3 we
know that .f; xg;u; xv; xw/ is also a crossing, which allows still concluding that h1 � xw .

Now for the crossing .f; xg; xu; xv; xw/ there exists M 2N such that xw � xgM xu. Let us
consider the crossing .xgMf xg�M ; xg; xgM xu; xgM xv; xgM xw/. If xgM xv � xv then xgM xv �

h2 , and we are done. If not, then it must be the case that xgxv � xv . By Lemma 3.3,
.xgMf xg�M ; xg; xgM xu; xgM xv; xw/ is still a crossing, and since xv � h2 , this concludes
the proof.

Proof of Theorem 3.1 The proof is divided into several steps.

Claim 0 The set S is convex.

This follows directly from the definition of S .

Claim 1 If h belongs to S , then h�1 also belongs to S .

Assume that h 2 S is positive and h�1 does not belong to S . Then there exists a
crossing .f;g;u; v; w/ so that h�1 � w � v � 1.

We first note that, if h�1 � u, then after conjugating by h as in Lemma 3.4, we get
a contradiction because .hgh�1; hf h�1; hu; hv; hw/ is a crossing with 1 � hu and
hw � hv � h. To reduce the case h�1 � u to this one, we first use Lemma 3.4
and we consider the crossing .gMfg�M ;g;gM u;gM v;gMw/. Since h�1 � w �

gM u� gMw � gM v , if gM v � v then we are done. If not, Lemma 3.3 shows that
.gMfg�M ;g;gM u;gM v;w/ is also a crossing, which still allows concluding.

In the case where h 2 S is negative (that is, its inverse is positive) we proceed similarly
but we conjugate by f N instead of gM . Alternatively, since 1 2 S and 1� h�1 , if
we suppose that h�1 62 S then Lemma 3.5 provides us with a crossing .f;g;u; v; w/
such that 1� u� w � v � h�1 , which gives a contradiction after conjugating by h.

Claim 2 If h and xh belong to S , then hxh also belongs to S .

First we show that for every positive elements in S , their product still belongs to S .
(Note that, by Claim 1, the same will be true for products of negative elements in
S .) Indeed, suppose that h; xh are positive elements, with h 2 S but hxh 62 S . Then,
by Lemma 3.5 we may produce a crossing .f;g;u; v; w/ such that h � u � v � hxh.
After conjugating by h�1 we obtain the crossing .h�1f h; h�1gh; h�1u; h�1v; h�1w/

satisfying 1� h�1u� h�1w � xh, which shows that xh 62 S .
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Now, if h � 1 � xh then h � hxh. Hence, if hxh is negative then the convexity of S

gives hxh 2 S . If hxh is positive, then xh�1h�1 is negative, and since xh�1 � xh�1h�1 ,
the convexity gives again that xh�1h�1 , and hence hxh, belongs to S . The remaining
case xh� 1� h may be treated similarly.

Claim 3 The subgroup S is Conradian.

In order to apply Theorem 2.4, we need to show that there are no crossings in S .
Suppose by contradiction that .f;g;u; v; w/ is a crossing such that f;g;u; v; w all
belong to S . If 1�w then, by Lemma 3.4, we have that .gnfg�n;g;gnu;gnv;gnw/

is a crossing. Taking n D M so that gM u � w , this gives a contradiction to the
definition of S because 1�w � gM u� gMw � gM v 2 S . The case w � 1 may be
treated in an analogous way by conjugating by powers of f instead of g .

Claim 4 The subgroup S is maximal among �–convex, �–Conradian subgroups.

Indeed, if C is a subgroup strictly containing S , then there is a positive h in C nS .
By Lemma 3.5, there exists a crossing .f;g;u; v; w/ such that 1 � u � w � v � h.
If C is convex, then u; v; w belong to C . To conclude that C is not Conradian, it
suffices to show that f and g belong to C .

Since 1� u, we have either 1� g � gu� v or 1� g�1 � g�1u� v . In both cases,
the convexity of C implies that g belongs to C . On the other hand, if f is positive
then from f N � f N v � w we get f 2 C , whereas in the case of a negative f the
inequality 1� u gives 1� f �1 � f �1u� v , which still shows that f 2 C .

3.2 Approximation of group orderings: the role of the Conradian soul

For a (left) orderable group � , we denote by LO.�/ the set of all orderings on � .
This space carries the topology having as a subbasis the family of sets UfDf�W f � 1g,
where f ¤1. Endowed with this topology, LO.�/ is called the space of (left) orderings
of the group � .

Remark 3.6 As shown in [12], a simple application of Tychonov’s theorem shows
that LO.�/ is always compact. Moreover, the ‘nD2’ property from Remark 2.5
implies that the subset of Conradian orderings is closed therein (and hence compact). A
more dynamical argument for showing this consists in noticing that the condition that
.f;g;u; v; w/ is a reinforced crossing for prescribed M;N is clearly open in LO.�/
(see Remark 2.6).

The positive cone of an ordering � in LO.�/ is the set P of its positive elements.
Because of the left invariance, P completely determines �. The conjugate of � by
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h 2 � is the ordering �h having positive cone hPh�1 . In other words, g �h 1 holds
if and only if hgh�1 � 1. We will say that � may be approximated by its conjugates
if it is an accumulation point of its set of conjugates.

Theorem 3.7 If the Conradian soul of an (infinite) ordered group .�;�/ is trivial,
then � may be approximated by its conjugates.

Proof Let f1 � f2 � � � � � fk be finitely many positive elements in � . We need to
show that there exists a conjugate of � which is different from � but for which all
the fi ’s are still positive. Since 12C�.�/ and f1 62 C�.�/, Theorem 3.1 and Lemma
3.5 imply that there is a crossing .f;g;u; v; w/ such that 1� u� v � f1 . Let M;N

in N be such that f N v � w � gM u. We claim that 1 �v�1 fi and 1 �w�1 fi for
1 � i � k , but gMf N �v�1 1 and gMf N �w�1 1. Indeed, since 1 � v � fi , we
have v � fi � fiv , thus 1 � v�1fiv . By definition, this means that fi �v�1 1. The
inequality fi �w�1 1 is proved similarly. Now note that gMf N v � gMw � v , and
so gMf N �v�1 1. Finally, from gMf Nw � gM u� w we get gMf N �w�1 1.

Now the preceding relations imply that the fi ’s are still positive for both �v�1 and
�w�1 , but at least one of these orderings is different from �. This concludes the
proof.

Based on the work of Linnell [9], it is shown in [13, Proposition 4.1] that no Conradian
ordering is an isolated point of the space of orderings of a group having infinitely many
orderings. Together with Theorem 3.7, this shows the next proposition by means of the
convex extension procedure (see Remark 2.12).

Proposition 3.8 Let � be an orderable group. If � is an isolated point of LO.�/,
then its Conradian soul is non-trivial and has only finitely many orderings.

As a consequence of a nice theorem of Tararin, the number of orderings on an orderable
group having only finitely many orderings is a power of 2; moreover, all of these
orderings are necessarily Conradian (see Kopytov and Medvedev [8] and [12]). By
the preceding proposition, if � is an isolated point in the space of orderings LO.�/,
then its Conradian soul admits 2n different orderings for some n � 1, all of them
Conradian. Let f�1;�2; : : : ;�2ng be these orderings, where �1 is the restriction of
� to its Conradian soul. Since C�.�/ is �–convex, each �j induces an ordering
�j on � , namely the convex extension of �j by �. (Note that �1 coincides with
�.) All the orderings �j share the same Conradian soul [13, Lemma 3.37]. Assume
throughout that � is not Conradian.
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Theorem 3.9 With the notation above, at least one of the orderings �j is an accumu-
lation point of the set of conjugates of �.

Corollary 3.10 At least one of the orderings �j is approximated by its conjugates.

Proof Asumming Theorem 3.9, we have �k2acc.orb.�1// for some k 2 f1; : : : ; 2ng,
where orb.�1/ stands for the orbit of �1 under the conjugacy action of � , and
acc.orb.�1// denotes the set of its accumulation points. Theorem 3.9 applied to this
�k instead of � shows the existence of k 0 2 f1; : : : ; 2ng so that �k02 acc.orb.�k//,
and hence �k02 acc.orb.�1//. If k 0 equals either 1 or k then we are done; if not, we
continue arguing in this way... In at most 2n steps we will find an index j such that
�j2 acc.orb.�j //.

Theorem 3.9 will follow from the next proposition.

Proposition 3.11 Given an arbitrary finite family G of �–positive elements in � , there
exists h 2 � and 1� xh 62C�.�/ such that 1� h�1f h 62C�.�/ for all f 2 G nC�.�/,
but 1� h�1xhh 62 C�.�/.

Proof of Theorem 3.9 from Proposition 3.11 Let us consider the directed set formed
by the finite sets G of �–positive elements. For each such a G , let hG and xhG be the
elements in � provided by Proposition 3.11. After passing to subnets of .hG/ and
.xhG/ if necessary, we may assume that the restrictions of �h�1

G
to C�.�/ all coincide

with a single �j . Now the properties of hG and xhG imply

� f �j 1 and f .�j /h�1
G

1 for all f 2 G nC�.�/,

� xhG � 1, but xhG.�j /h�1
G
� 1.

This clearly shows the Theorem.

For the proof of Proposition 3.11 we will use three general lemmas.

Lemma 3.12 For every 1 � c 62 C�.�/ there is a crossing .f;g;u; v; w/ such that
u; v; w do not belong to C�.�/ and 1� u� w � v � c .

Proof By Theorem 3.1 and Lemma 3.5, for every 1 � s 2 C�.�/ there exists a
crossing .f;g;u; v; w/ such that s � u � w � v � c . Clearly, v does not belong to
C�.�/. The element w is also outside C�.�/, since in the other case the element
a D w2 would satisfy w � a 2 C�.�/, which is absurd. Taking M > 0 so that
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gM u� w , this gives gM u 62 C�.�/, gMw 62 C�.�/, and gM v 62 C�.�/. Consider
the crossing .gMfg�M ;g;gM u;gM v;gMw/. If gM v � v , then we are done. If
not, then gv � v , and Lemma 3.3 ensures that .gMfg�M ;g;gM u; v;gMw/ is also
a crossing, which still allows concluding.

Lemma 3.13 Given 1 � c 62 C�.�/ there exists 1 � a 62 C�.�/ (with a � c ) such
that, for all 1� b � a and all xc � c , one has 1� b�1xcb 62 C�.�/.

Proof Let us consider the crossing .f;g;u; v; w/ such that 1� u�w � v � c and
such that u; v; w do not belong to C�.�/. We affirm that the lemma holds for aD u

(actually, it holds for aD w , but the proof is slightly more complicated). Indeed, if
1 � b � u, then from b � u � v � xc we get 1 � b�1u � b�1v � b�1xc , and thus
the crossing .b�1f b; b�1gb; b�1u; b�1v; b�1w/ shows that b�1xc 62 C�.�/. Since
1 � b , we conclude that 1 � b�1xc � b�1xcb , and the convexity of S implies that
b�1xcb 62 C�.�/.

Lemma 3.14 For every g 2 � the set gC�.�/ is convex. Moreover, for every
crossing .f;g;u; v; w/ one has uC�.�/ < wC�.�/ < vC�.�/, in the sense that
uh1 � wh2 � vh3 for all h1; h2; h3 in C�.�/ (see Example 2.11).

Proof The verification of the convexity of gC�.�/ is straightforward. Now suppose
that uh1 � wh2 for some h1; h2 in C�.�/. Then since u � w , the convexity of
both left classes uC�.�/ and wC�.�/ gives the equality between them. In particular,
there exists h 2 C�.�/ such that uhD w . Note that such an h must be positive, so
that 1 � h D u�1w . But since .u�1f u;u�1gu; 1;u�1v;u�1w/ is a crossing, this
contradicts the definition of C�.�/. Showing that wC�.�/� vC�.�/ is similar.

Proof of Proposition 3.11 Let us label the elements of GDff1; : : : ; fr g so that
f1 � � � � � fr , and let k be such that fk�1 2 C�.�/ but fk 62 C�.�/. Recall that,
by Lemma 3.13, there exists 1� a 62 C�.�/ such that, for every 1� b � a, one has
1 � b�1fkCj b 62 C�.�/ for all j � 0. We fix a crossing .f;g;u; v; w/ such that
1 � u � v � a and u 62 C�.�/. Note that the conjugacy by w�1 gives the crossing
.w�1f w;w�1gw;w�1u; w�1v; 1/.

Case 1 One has w�1v � a.

In this case, the proposition holds for hD w�1v and xhD w�1gMC1f Nw . To show
this, first note than neither w�1gw nor w�1f w belong to C�.�/. Indeed, this follows
from the convexity of C�.�/ and the inequalities w�1g�Mw � w�1u 62 C�.�/

and w�1f �Nw � w�1v 62 C�.�/. We also have 1 � w�1gMf Nw , and hence
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1�w�1gw �w�1gMC1f Nw , which shows that xh 62C�.�/. On the other hand, the
inequality w�1gMC1f Nw.w�1v/� w�1v reads as h�1xhh� 1.

Finally, Lemma 3.2 applied to the crossing .w�1f w;w�1gw;w�1u; w�1v; 1/ shows
that .w�1f w;w�1gw;w�1u; w�1v;w�1gMCnf Nw/ is a crossing for every n >

0. For n � M we have w�1gMC1f Nw.w�1v/ � w�1gMCnf Nw , and since
w�1gMCnf Nw � w�1v , Lemma 3.14 easily implies that

w�1gMC1f Nw.w�1v/C�.�/� w
�1vC�.�/;

that is, h�1xhh 62 C�.�/.

Case 2 One has a� w�1v , but w�1gmw � a for all m> 0.

We claim that, in this case, the proposition holds for hD a and xhD w�1gMC1f Nw .
This may be checked in the very same way as in Case 1 by noticing that, if a�w�1v

but w�1gmw � a for all m> 0, then .w�1f w;w�1gw;w�1u; a; 1/ is a crossing.

Case 3 One has a � w�1v and w�1gmw � a for some m > 0. (Note that the first
condition follows from the second one.)

We claim that, in this case, the proposition holds for h D a and xh D w 62 C�.�/.
Indeed, we have gmw � ha (and w � ha), and since gmw � v � a, we have wa� a,
which means that h�1xhh� 1. Finally, from Lemmas 3.2 and 3.14 we get waC�.�/�

gmwC�.�/� vC�.�/� aC�.�/. This implies that a�1waC�.�/� C�.�/, which
means that h�1xhh 62 C�.�/.

4 Finitely many or uncountably many group orderings

The goal of this final short section is to use the previously developed ideas to show the
following result.

Theorem 4.1 If the space of orderings of an orderable group is infinite, then it is
uncountable.

Proof Let us fix an ordering � on an orderable group � . We need to analize two
different cases.

Case 1 The Conradian soul of C�.�/ is non-trivial and has infinitely many orderings.

This case was settled in [13, Proposition 4.1] using ideas going back to Zenkov [15]
and Tararin (see Kopytov and Medvedev [8]).

Case 2 The Conradian soul of C�.�/ has only finitely many orderings.
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If � is Conradian, then � DC�.�/ has finitely many orderings. If not, then Theorems
3.7 and 3.9 imply that there exists an ordering �� on � which is an accumulation
point of its conjugates. The closure in LO.�/ of the set of conjugates of �� is then a
compact set without isolated points. By a well-known fact in General Topology, such a
set must be uncountable. Therefore, � admits uncountably many orderings.

Appendix A An exotic ordering of F2

We construct an ordering of F2 which is not an accumulation point of its conjugates
in LO.F2/ and whose Conradian soul is isomorphic to Z. This ordering is realized
as the restriction of the Dubrovina–Dubrovin ordering of B3 to an appropriate free
subgroup of B3 .

We begin by defining the Dehornoy ordering of the braid groups (also known as the
‘standard’ ordering), whose positive cone we shall denote PD (see Dehornoy [5] and
Dehornoy–Dynnikov–Rolfsen–Wiest [6]). Recall that for each integer n� 2, the Artin
braid group Bn is the group generated by �1; �2; : : : ; �n�1 , subject to the relations

�i�j D �j�i if ji � j j> 1; �i�j�i D �j�i�j if ji � j j D 1:

Definition A.1 Let w be a word in the generators �i ; � � � ; �n�1 (so no �j occurs
for j < i ). Then w is said to be: i –positive if the generator �i occurs in w with
only positive exponents, i –negative if �i occurs with only negative exponents, and
i –neutral if �i does not occur in w .

We then define the positive cone of the Dehornoy ordering as

Definition A.2 The positive cone PD � Bn of the Dehornoy ordering is the set

PD D fˇ 2 Bn W ˇ is i –positive for some i � n� 1g:

An extremely important property of this ordering is that the conjugate ˇ�kˇ
�1 is

always i –positive for some i , for every generator �k in Bn and any braid ˇ 2 Bn .
This property is referred to as the subword property [6].

There is also a second ordering of interest, discovered by the authors of [7], whose
positive cone we shall denote by PDD . Denote by Pi � Bn the set of all i –positive
braids. Note that the set of all i –negative braids is simply P�1

i .

Definition A.3 The positive cone PDD � Bn is the set

PDD D P1[P�1
2 [ � � � [P

.�1/n

n�1
:
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As is well-known, the subgroup of B3 generated by the elements �2
1
; �2

2
is isomorphic

to F2 , the free group on two generators (see also Crisp and Paris [4]). Thus we may
consider F2 to be the subgroup of B3 generated by �2

1
and �2

2
, and define a positive

cone P in F2 by P D PDD \ F2 . Note that any element of F2 must always be
represented by a braid word having even total exponent, and that the ordering �

C
of

F2 asssociated to the positive cone P is simply the restriction of the PDD ordering to
the subgroup h�2

1
; �2

2
i.

Proposition A.4 The ordering �
C

is not an accumulation point of its conjugates in
LO.F2/. Specifically, no conjugates of �

C
distinct from �

C
lie inside the open set

U��2
2
� LO.F2/.

Proof Let ˇ 2 F2 �B3 be given, and consider the positive cone ˇPˇ�1 . To prove
the claim, it suffices to show that ��2

2
2 ˇPˇ�1 implies ˇPˇ�1 D P .

First, observe that conjugation of P by any even power of �2 does not change P : this
follows from the fact that ��2

2
is the least positive element in the associated ordering

�
C

of F2 . Indeed, for any element g 2 P , we have ��2
2
�

C
g , so that �2

2
g �

C
1,

and hence �2
2

g��2
2
�

C
1, that is, �2

2
g��2

2
2 P .

Now with ��2
2
2 ˇPˇ�1 , in particular we must have ˇ�1��2

2
ˇ 2P . Since P consists

of those elements of F2 that are either 1–positive or 2–negative, by the subword
property, we know that ˇ�1��2

2
ˇ is not 1–positive, and so must be 2–negative.

Therefore ˇ�1��2
2
ˇD �k

2
for some k < 0, and in fact, by considering total exponents

we see that ˇ�1��2
2
ˇ D ��2

2
.

Recall that we are working in F2�B3 , so ˇ cannot commute with ��2
2

unless ˇ itself
is an even power of �2 (the power must be even since ˇ 2 F2 D h�

2
1
; �2

2
i). Therefore

��2
2
2 ˇPˇ�1 implies ˇ D �2k

2
, so that ˇPˇ�1 D P .

Next, we show that the only non-trivial convex subgroup in the ordering �
C

of F2

defined by P is h��2
2
i, the infinite cyclic group generated by the least positive element

��2
2

. In particular, this shows that the Conradian soul of the ordering �
C

of F2 is
isomorphic to Z.

Theorem A.5 Suppose that S is a subgroup of F2 that is convex in the ordering �
C

.
If S properly contains h��2

2
i, then S D F2 .

Proof Let S be a convex subgroup properly containing h��2
2
i. As the containment

is proper, S must contain a 1–positive braid ˇ . Suppose that ˇ is represented by
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the 1–positive braid word �k
2
�1w where k 2 Z, and w is a 1–positive, 1–neutral or

empty braid word. Left multiplying by an appropriate power of �2
2

, we may produce a
new 1–positive braid ˇ0 D �2l

2
ˇ in S that is represented by a 1–positive braid word

of the form �k0

2
�1w , where k 0 D 2l C k > 0. Note that ˇ0 2 S , since both ˇ and �2

2

lie in S .

Consider the braid represented by the word ��2
1
�k0

2
�1w . For any m, we have

��1
1
�m

2
�1 D �2�

m
1
��1

2
, so that we compute

��2
1 �k0

2 �1w D �
�1
1 �2�

k0

1 �
�1
2 w D ��1

1 �2�1�
k0�1
1 ��1

2 w D �2�1�
�1
2 �k0�1

1 ��1
2 w;

and since k 0 > 0 and w is a 1–positive, 1–neutral or empty word, we see that
��2

1
�k0

2
�1w represents a 1–positive braid. Therefore, in the ordering �

C
of F2 , we

have
1�

C
��2

1 �k0

2 �1w) �2
1 �C

�k0

2 �1w D ˇ
0:

Since 1�
C
�2

1
and ˇ0 2 S , we conclude that �2

1
2 S . But then S contains both �2

2

and �2
1

, the generators of F2 , so that S D F2 .

Remark A.6 From the work of McCleary [10] and from [13], it is known that the
ordering �

C
is not an isolated point in LO.F2/, but no method of constructing a se-

quence converging to �
C

is given therein. Given an ordering � in LO.F2/, the known
methods for constructing a sequence converging to � involve either approximation
using the conjugates of �, or approximation by modifying the ordering on the convex
jumps in the Conradian soul of �. The results of this Appendix show that neither of
these methods is sufficient for constructing a sequence of orderings converging to �

C
.
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