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A smallest irreducible lattice in the product of trees

DAVID JANZEN

DANIEL T WISE

We produce a nonpositively curved square complex X containing exactly four squares.
Its universal cover zX Š T4 �T4 is isomorphic to the product of two 4–valent trees.
The group �1X is a lattice in Aut. zX / but �1X is not virtually a nontrivial product
of free groups. There is no such example with fewer than four squares. The main
ingredient in our analysis is that zX contains an “anti-torus” which is a certain
aperiodically tiled plane.
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Definition 1 (Complete square complex) A square complex X is a 2–complex whose
2–cells are squares in the sense that their attaching maps are combinatorial paths of
length 4. The link of a vertex v 2 X 0 is a graph whose vertices correspond to ends
of 1–cells incident with v and whose edges correspond to corners of 2–cells incident
with v . Thus Link.v/ corresponds to an �–sphere about v in X . A square complex is
nonpositively curved if no link contains an embedded cycle of length � 3. A complete
bipartite graph K.m; n/ is a graph whose vertices can be partitioned into disjoint
nonempty sets A and B where jAj Dm and jBj D n and such that .a; b/ is an edge
of K.m; n/ if and only if a 2A and b 2 B . A square complex is a complete square
complex (CSC), if Link.v/ is a complete bipartite graph for each v 2X 0 .

Complete square complexes are nonpositively curved because simplicial bipartite graphs
contain no cycles of length < 4. The direct product of two graphs is a CSC and more
generally, any complex with a cover isomorphic to a product of two graphs is a CSC. A
square complex is a CSC if and only if its universal cover is a direct product of two trees
[9, Theorem 3.8]. In [9], the second author showed how to produce a CSC that does not
have finite covers isomorphic to the product of two graphs. The CSC produced there
was then used to construct examples of compact nonpositively curved square complexes
whose fundamental groups are not residually finite in [9] and to construct nonpositively
curved square complexes containing aperiodic flats not approximable by periodic
flats in [7]. The fundamental ingredient in these examples of CSCs is the existence
of an “anti-torus” (see Definition 13). Such an anti-torus was also used by Hsu and
Wise [2] to construct an example of a CSC whose fundamental group has infinitely many
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isomorphism types of fixed subgroups of automorphisms. The relationship between the
arithmetic of quaternions and anti-tori in certain PGL.2;Qp/�PGL.2;Qq/ lattices was
explored by Rattaggi [5; 6]. For instance, Rattaggi proves that anti-tori in irreducible
lattices he studies correspond with noncommuting quaternions. A deep investigation of
lattices in products of trees was conducted by Burger and Mozes [1], where the authors
construct infinite simple lattices that are finitely presented and torsion-free.

Graphs of spaces provide a natural but limited source of examples of nonpositively
curved square complexes. A graph of spaces Y is obtained from an underlying
graph �Y by associating a vertex space Yv to each vertex and edge space Ye to each
edge of �Y . For each edge e of �Y with initial and terminal vertices �.e/ and �.e/,
there are attaching maps ��eW Ye! Y�.e/ and �CeW Ye! Y�.e/ . One constructs the
space Y by attaching edge spaces to adjacent vertex spaces using these attaching maps.
More precisely, we first form the disjoint union fYv;Ye� Œ�1; 1� W v 2Vertices.�Y /; e 2

Edges.�Y /g. We then form the quotient induced by f.y;C1/ � �Ce.y/ W y 2 Yeg

and f.y;�1/ � ��e.y/ W y 2 Yeg. When each vertex and edge space is a graph and
the attaching maps are combinatorial maps, then Y is a square complex. Moreover,
when the attaching maps are locally injective then Y is a nonpositively curved square
complex, and when the attaching maps are covering maps then Y is a CSC.

We now define a square complex X with only four squares that is a smallest example
of a square complex whose universal cover is a direct product of two trees but which
does not have a finite cover isomorphic to the product of two graphs. It follows that
�1X is isometric to F2 �F2 but not commensurable with it.

Example 2 We define X to be the complex obtained from the four squares in Figure 1
glued together as indicated by the labellings of their edges. Note that X is a complete
square complex with a unique vertex.

Figure 1: The four squares above are labelled to indicate how they are glued
together to obtain the complex X . The single and double vertical edges are
denoted a and b respectively, while the single and double horizontal edges
are denoted x and y respectively.
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Most of the results obtained here will follow from the fact that the universal cover zX
contains a certain type of aperiodic flat plane called an anti-torus. With this anti-torus
as the main ingredient, we will prove the following:

Theorem 3 The action of �1X on zX is an example of an irreducible lattice in a
product of trees and no smaller example exists.

We recall the following definitions:

Definition 4 Let T1;T2 be locally finite trees. A reducible lattice, � , in T1�T2 is a
subgroup of Aut.T1/�Aut.T2/ such that � is commensurable with �1 ��2 , where
�i is a lattice in Aut.Ti/. If a lattice is not reducible then it is irreducible. Note that
for CSCs, reducibility is equivalent to the existence of a finite cover which is a product
of graphs.

Example 5 There are classical examples of irreducible lattices in semisimple Lie
groups of rank � 2. For example, in the non-Archimedean case there is a beautiful
construction of irreducible lattices in the product PGL.2;Qp/�PGL.2;Qq/ for distinct
primes p; q � 1 (mod 4) by Mozes in [3] where many other interesting properties
about these lattices are proved. Generalizations to the cases where p; q are not neces-
sarily congruent to 1 modulo 4 are found in [4]. Note that the Bruhat–Tits building
associated to PGL.2;Qp/ is a regular tree of degree pC1 on which PGL.2;Qp/ acts
by automorphisms.

Definition 6 A subgroup H of G is separable if it is the intersection of finite index
subgroups of G . Note that G is residually finite precisely when f1Gg is separable.

The second author showed [8] that a compact CSC is a virtual product of graphs if
and only if each of the vertex and edge groups in its virtual vertical and horizontal
decompositions are separable. Since our example X is not a virtual product of graphs,
if we let V D VX denote the vertical 1–skeleton of X as defined below then we reach
the following conclusion:

Theorem 7 �1V is not a separable subgroup of �1X .

This gives a very small example of a nonseparable quasiconvex subgroup of a CAT(0)
group. As an application of the above theorems, we are able to produce a CSC with
only eight squares whose fundamental group is not residually finite. To do this, we
“double” X along V .
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Definition 8 Let xX be an isomorphic copy of X and xV an isomorphic copy of V

inside xX . Then the double of X along V is the complex D D .X [ xX=V D xV /.

It is easy to verify that D is itself a CSC with eight squares. Following the argument
in [9], doubling a group along a nonseparable subgroup yields a group which is not
residually finite. This shows:

Theorem 9 �1D is not residually finite.

We do not know the answer to the following question:

Question 10 Is �1X residually finite?

Note that irreducible lattices given in Example 5 are residually finite.

1 VH–complexes, decompositions and subdividing

Definition 11 A square complex, Y , is a VH–complex if the 1–cells of Y can be
partitioned into two classes, V and H , such that the attaching map of each square in
Y alternates between edges of V and H . If the attaching map of each square of Y

preserves the orientation on the edges of V (resp. H ) then Y is said to be vertically
directed (resp. horizontally directed). We define VX D V [X 0 to be the vertical
1–skeleton of X and HX DH [X 0 to be the horizontal 1–skeleton.

The complex X is not horizontally directed because the second square from the left
in Figure 1 does not preserve the horizontal orientation. We can however pass to
a horizontally directed double cover of X . This covering space corresponds to the
homomorphism �1X ! Z2 sending the horizontal generators of �1X to 1 and the
vertical generators to 0. The eight squares of this cover, yX , are shown in Figure 2.

Note that yX has two 0–cells and that it has two 1–cells for each label. For example,
in the case of the horizontal edges, for each label we have one 1–cell oriented from
the black 0–cell to the white 0–cell and another from the white 0–cell to the black
0–cell. In Figure 3 we have relabeled these 1–cells, a darker label given to the 1–cells
oriented from the white 0–cell to the black 0–cell and a lighter label given to the 1–cell
oriented from the black 0–cell to the white 0–cell. In Figure 3 we have also reoriented
the 1–skeleton of yX , so that we are able to see that yX is horizontally directed. The
squares in the bottom row of Figure 3 have been flipped by a reflection as this helps to
reveal the structure of yX as a graph of spaces which we describe next. This structure
will become the focal point of our analysis below.
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Figure 2: These eight squares are obtained as a horizontally directed double
cover of the original complex X .

Figure 3: These eight squares reveal the structure of yX as a graph of spaces.

The complement of the vertical 1–skeleton, V yX , of yX is the cartesian product of an
open 1–cell with the graph . Attaching this space to V yX on the left and right sides
as indicated in Figure 4 we recover the complex yX . Note that the labeled edges in
Figure 4 correspond to the vertical edge labels in Figure 3.

2 The anti-torus in X

Definition 12 (Periodic flat) A flat ƒ in a space zY is an isometrically embedded
copy of Euclidean space En , for n > 1. Let G act on Y by isometries. Then ƒ is
periodic if Stab.ƒ/ contains a Zn subgroup acting properly and cocompactly on ƒ.
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Figure 4: The graphs on the left and right, denoted L and R respectively,
indicate the edge space structure of yX as an amalgamated product.

Otherwise, ƒ is aperiodic. When zY is the universal cover of Y and GD�1Y then the
above condition for a plane to be periodic is equivalent to requiring that the map ƒ# Y

factor through a torus. In other words, when ƒ is periodic, we have ƒ! T ! Y

where T is a flat torus and ƒ! T is a covering map so T Dƒ=Zn .

As we are working with square complexes, the natural setting will be flat planes
appearing in the universal cover zY with the natural action �1Y Õ zY .

Definition 13 (Anti-torus) Suppose Y is a CSC with a VH–structure and y 2Y 0 . Let
sh and sv denote closed loops in Y based at y in the horizontal and vertical directions
respectively. Then �sh � �sv is a planar subspace of zY . If this plane is aperiodic then�sh � �sv is called an anti-torus.

Our goal is now to show that the universal cover of the complex X , defined above,
contains an anti-torus. This anti-torus is partly illustrated in Figure 5.

We begin with some notation.

For the spaces L and R in Figure 4, we will identify the single and double arrows
with their images in X . Thus, the single grey arrows in L and single brown arrows
in R are both denoted a, and similarly double grey and brown arrows are denoted b .
The graph isomorphism which translates L to R will be denoted by � W L!R. This
isomorphism takes the upper left vertex of L to the upper left vertex of R and so on.
Note that the white and black vertices of L and R in Figure 4 correspond respectively
to the white vertex and black vertex of yX in Figure 3. Given a path � in the vertical
generators a; b of �1X , we create a new path �i in a; b by lifting � to a path in L
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Figure 5: The convex hull of the vertical axis periodically labelled .ab/1

and the horizontal axis periodically labelled .xy/1 uniquely determines a
plane … in the universal cover zX . The plane is tiled by squares of X as
indicated by the small region of the northeast quadrant which has been tiled
above. … is an anti-torus as described below.

based at the vertex i (for some i D 0; 1; 2; 3) and translating this path to R via � . We
denote this composition by �i , so �i D �i.�/: For example �3.a

2ba�1/D aba�2 and
�0.a

2ba�1/D ba2b .

There is a covering space automorphism  of L that sends the vertex i to the vertex
.i C 2/ mod 4. For the labelled edges in L, define xej D  .ej / for j D 1; 2; 3; 4.
Similarly if � is a path in L, let x� D  .�/. If � is based at 0 then x� is based at 2.
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Let �1.L; i/ denote the fundamental group of L based at the vertex i , for each
i D 0; 1; 2; 3: Then � … �1.L; 0/ means that � is not a loop based at the vertex
0. Let #b.�/ be the exponent sum of b ’s occurring in the word � . For example
#b.b

�3a2b5/D 2. We then have the following lemma from which we can deduce that
zX contains an anti-torus.

Lemma 14 Let � be a path, based at 0, in the vertical generators a; b of �1X such
that � has even length. If � … �1.L; 0/ and #b.�/ is odd, then �0.�

2/ … �1.L; 1/ and
#b.�0.�

2// is also odd.

Proof Since � has even length and � … �1.L; 0/, we know that � ends at 2. Thus,
�2 D � � x� and it follows that �2 2 �1.L; 0/. Therefore, for each j , the path �2

traverses ej exactly the same number of times as it traverses Sej .

In particular, if the number of times �2 traverses e1 and Se3 are k1 and k2 respectively
then the edges e1; e3; Se1; Se3 are traversed 2.k1C k2/ times by �2 . This means that
#b.�

2/D 2.k1C k2/: But #b.�
2/D 2#b.�/ and #b.�/ is odd by hypothesis. Hence

k1C k2 is odd. Note that this is exactly what is required for �0.�
2/ … �1.L; 1/.

As �2 2 �1.L; 0/, it traverses the pair e4; Se4 an even number of times. Combined
with the facts that k1C k2 is odd and that � has even length, this implies that the
remaining edges e2; e3; Se1; Se2 are traversed an odd number of times which means that
#b.�0.�

2// is odd.

Remark 15 We note that � D a2 … �1.L; 0/ is a word of even length, but �0.�
2/D

bab�1a2�1.L; 1/. Thus Lemma 14 fails without the added condition on the exponent
sum of the b ’s.

Remark 16 While we have given the argument for � based at the vertex 0, equivalent
arguments also hold when � is based at any of the other vertices. We thus have
the following general statement: Let � have even length. For any i D 0; 1; 2; 3 if
� … �1.L; i/ and #b.�/ is odd, then �i.�

2/ … �1.L; i ˙ 1/ and #b.�i.�
2// is also

odd.

We can now establish the goal of this section.

Proposition 17 The plane … is an anti-torus.

Proof Let Wk.m/ denote the length k positive horizontal path in … beginning at
the endpoint of the vertical ab path with m letters. For positive horizontal words, one
shows by induction on k that Wk.m/DWk.mC 2kC1/. This implies that the first k

Algebraic & Geometric Topology, Volume 9 (2009)



A smallest irreducible lattice in the product of trees 2199

letters of WkC1.m/ and WkC1.mC 2kC2/ are equal so it suffices to show that their
last letters are distinct. Now the vertical word connecting the endpoints of Wk.m/ and
Wk.mC 2kC1/ is of length 2kC1 satisfying the conditions of Remark 16. Hence by
Remark 16, we have that WkC1.m/¤WkC1.mC2kC2/. Consequently, by induction,
… cannot be periodic.

Lemma 18 For a square complex Y , if zY contains an anti-torus then Y is irreducible.

Proof Suppose yX was a degree d finite cover of X isomorphic to a product of two
graphs. The vertical/horizontal structure of X is preserved passing to the cover yX , so
.ab/d and .xy/d represent immersed closed paths in yX with vertical and horizontal
orientations respectively. This yields an immersion of the flat torus T D .ab/d �.xy/d

into yX . But this determines an embedding of the periodic flat plane zT into zX . This
contradicts the uniqueness of the aperiodic flat plane … with axes .ab/1 and .xy/1

as constructed earlier.

Corollary 19 The complex X has no finite cover isomorphic to a product of two
graphs.

We have thus shown that �1X is not commensurable with F2 �F2 even though the
two groups are isometric since they have isomorphic unlabelled Cayley graphs.

The action of �1X on yX gives an example of an irreducible lattice, ie, the action is
discrete and cocompact and it is not virtually a product of lattices (in the horizontal
and vertical directions). In the next section we will show that no smaller example
exists. It seems likely however that the example X is not the unique example of an
irreducible lattice with four squares. Our computations suggest that the example in
Figure 6 with four squares also contains an anti-torus. Note that this example does
not have a consistent global VH–orientation. If the black single and double arrows are
labeled a and b respectively and the grey single and double arrows are labeled by c

and d , then we guess that the periodically labeled axes .ad/1 and .bc/1 determine
an anti-torus in the example of Figure 6.

3 No irreducibles with fewer than 4 squares

Consider a CSC, Y , with at least one square and at most three squares. We may
suppose that Y has no free faces since free faces may be collapsed yielding a smaller
CSC without free faces. Indeed, if Y does have free faces then the universal cover
zY is the product of two “leafy trees”. Collapsing the leaves of these trees, we obtain
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Figure 6: Another four square example which may contain an anti-torus.

a leafless core for each tree and the product of these leafless trees is stabilized under
the action of �1Y . Hence, collapsing the free faces of Y yields a complex, xY , whose
universal cover is still a the product of two trees but now xY is a CSC without free
faces. It is easy to see that Y is a virtual product if and only if xY is.

Note that the assumption that there are no free faces is equivalent to assuming that
there is no 0–cell, v , such that Link.v/ŠK.1; n/.

By a counting argument, we prove that if Y has no free faces, then the link of each
0–cell of Y is of the form K.2; n/ for some n. Suppose that Y has three squares.
If Y has a single 0–cell then the link of that 0–cell is isomorphic to K.m; n/ where
mnD 12, since three squares have 12 corners which contribute 12 edges to the link.
Each 1–cell of Y contributes two vertices to the link so mCn is even. Thus K.1; 12/

and K.3; 4/ are excluded as possibilities, and so the link is isomorphic to K.2; 6/.
Note that K.1; 12/ is also excluded because there are no free faces. Similarly, if Y

has two 0–cells v1 and v2 , then there are two possibilities: Link.v1/ŠK.2; 2/ and
Link.v2/ŠK.2; 4/ or Link.v1/ŠK.2; 3/ and Link.v2/ŠK.2; 3/. If Y has three
0–cells v1; v2 and v3 then we must have Link.vi/ŠK.2; 2/ for each i D 1; 2; 3. If Y

has four or more 0–cells then at least one 0–cell has a link of the form K.1; n/ which
was excluded above. The cases where Y has two squares or one square are analogous.

Since the link of every 0–cell of Y is isomorphic to K.2; n/, we have that zY Š T �R.
If this were not the case and zY Š T1 � T2 with Ti © R then for some p1 2 T1

and p2 2 T2 we would have valence.p1/ � 3 and valence.p2/ � 3. But then in the
product T1 �T2 we would have Link.p1;p2/ŠK.valence.p1/; valence.p2// which
is impossible.

As �1Y acts freely and properly on zY Š T �R, we obtain that �1Y is virtually
Z�Fn . Indeed, either zY ŠR�R in which case Y is a Klein bottle or torus and hence
easily a virtual product of graphs, or zY Š R�T with T © R in which case Y is a
graph of free groups with cyclic edge groups since the action of �1Y preserves each
factor. Again, Y is easily a virtual product as in [9].
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We have thus shown that every CSC with � 3 squares is virtually a product of graphs
and hence every lattice is reducible. Reasoning along the same lines as above, one can
also show that every connected CSC with 5 or 7 squares is a virtual product of graphs.
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