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Symplectic surgeries and normal surface singularities

DAVID T GAY

ANDRÁS I STIPSICZ

We show that every negative definite configuration of symplectic surfaces in a sym-
plectic 4–manifold has a strongly symplectically convex neighborhood. We use
this to show that if a negative definite configuration satisfies an additional negativity
condition at each surface in the configuration and if the complex singularity with
resolution diffeomorphic to a neighborhood of the configuration has a smoothing,
then the configuration can be symplectically replaced by the smoothing of the singu-
larity. This generalizes the symplectic rational blowdown procedure used in recent
constructions of small exotic 4–manifolds.

57R17; 14E15, 14J17

1 Introduction

Most of the recent examples in smooth 4–manifold topology have been constructed using
the following “cut-and-paste” scheme: Suppose that the smooth closed 4–manifold X

is decomposed along the embedded 3–manifold Y as

X DX1[Y X2

where X1;X2 are codimension–0 submanifolds of X with @X1 D �@X2 D Y ¤ ∅.
Suppose furthermore that Z1 is a smooth 4–manifold with boundary @Z1 diffeomorphic
to Y D @X1 . Then a new 4–manifold

Z DZ1[Y X2

can be constructed by cutting int.X1/ out of X and gluing Z1 back in. The topological
type of Z might also depend on the gluing diffeomorphism 'W @Z1 ! Y , but for
simplicity we will suppress this dependence in the notation. For example, if X1 is
a tubular neighborhood of a torus of self-intersection 0 and Z1 D D2 � T 2 then
appropriate choices of ' give (generalized) logarithmic transformations and Luttinger
surgeries.

The most important topological invariants of a closed smooth 4–manifold are the
fundamental group �1 , the Euler characteristic � and the signature � . In fact, in
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the simply connected case � and � essentially determine the smooth 4–manifold up
to homeomorphism by Freedman [7]. The change of � and � can be very easily
determined in a cut-and-paste operation, since these quantities are additive, while the
fundamental group can be computed using the Seifert–Van Kampen theorem. The
determination of the smooth structure is, however, much more complicated. The most
sensitive smooth invariant, the Seiberg–Witten function

SWZ W H
2.ZIZ/! Z;

is very hard to compute in general, and although a TQFT–type theory (the monopole
Floer homology; see Kronheimer and Mrowka [10]) has been developed to compute the
Seiberg–Witten invariants of the result of a cut-and-paste construction, such computa-
tions are extremely challenging in practice. Partial knowledge of SWZ is provided by
Taubes’ famous theorem [19], stating that SWZ .c1.Z; !// is ˙1 provided ! 2�2.Z/

is a symplectic form on Z (and bC
2
.Z/ > 1). Therefore we are particularly interested

in cut-and-paste constructions which can be performed within the symplectic category.

In this paper we will consider the following special case of the above cut-and-paste
construction: Suppose that C D C1 [ � � � [ Cn � .X; !/ is a collection of closed
symplectic 2–dimensional submanifolds of the closed symplectic 4–manifold .X; !/,
intersecting each other !–orthogonally according to the plumbing graph � . Recall that
each vertex v of the plumbing graph � corresponds to a surface, hence is decorated
by two integers, the genus gv and the homological square (or self-intersection) sv
of the surface, and two vertices are connected by m � 0 edges if and only if the
corresponding surfaces intersect each other transversely in m (positive) points. We
will denote the number of edges emanating from a vertex v by dv . Let X1 be a
tubular neighborhood �C of the configuration C D C1[ � � � [Cn . Assume that � is
connected, negative definite (ie the corresponding intersection form is negative definite),
and consider a normal surface singularity .S� ; 0/ with resolution graph � . (It is a
result of algebraic geometry by Grauert [9] that such .S� ; 0/ exists for every connected,
negative definite � , although the analytic structure on .S� ; 0/ might not be uniquely
determined by � .) Suppose finally that Z1 is the Milnor fiber of a smoothing of the
singularity .S� ; 0/. Depending on .S� ; 0/, such smoothing may or may not exist. For
example, if .S� ; 0/ is a hypersurface singularity (given by a single equation), or more
generally it is a complete intersection (cf Section 2), then such smoothing always exists.
The main result of this paper is:

Theorem 1.1 Suppose that � is a connected, negative definite plumbing graph for
which either

(1) �sv � 2.dvCgv/ holds for every vertex v of � , or
(2) � is a tree and has gv D 0 and �sv � dv � 0 for all vertices.

Algebraic & Geometric Topology, Volume 9 (2009)



Symplectic surgeries and normal surface singularities 2205

Suppose furthermore that C DC1[� � �[Cn� .X; !/ is a collection of closed symplectic
2–dimensional submanifolds of the closed symplectic 4–manifold .X; !/, intersecting
each other !–orthogonally according to � . Let .S� ; 0/ denote a singularity with
resolution graph � and Z1 the Milnor fiber of a smoothing of .S� ; 0/. If X1 �X is a
closed tubular neighborhood of C in X , then the 4–manifold

Z DZ1[Y .X � int.X1//

(with a suitable, naturally chosen gluing diffeomorphism ' specified later) admits a
symplectic structure !Z , which can be assumed to agree with the given symplectic
structure ! on X � int.X1/.

One way of interpreting this result is the following: Consider the singular 4–manifold
X sing we get by collapsing C to a point. If the singularity of X sing is diffeomorphic
to a holomorphic model admitting a smoothing, and � satisfies one of the additional
hypotheses given in the theorem, then this smoothing can always be “globalized” in
the symplectic category. Notice that we do not require the singular point to have a
holomorphic model in X sing as in McCarthy and Wolfson [14] (where the analytic
structure near the singular point is also assumed to be modeled by the holomorphic
situation) – we just require the existence of a diffeomorphism. For “globalizing” local
deformations in the holomorphic category in a similar context, see Lee and Park [12].

According to Caubel, Némethi and Popescu-Pampu [2], the link Y D @Z1 of the
singularity .S� ; 0/ given by the (negative definite) plumbing graph � admits a unique
(up to contactomorphism) Milnor fillable contact structure �M , for which Z1 (with
its Stein structure originating from the deformation) provides a Stein filling. In fact,
our proof will not use the fact that Z1 is a smoothing of .S� ; 0/. Instead, we will
rely on the fact that Z1 admits a symplectic structure � such that .Z1; �/ is a strong
symplectic filling of .Y; �M /. For this reason the chosen analytic structure on .S� ; 0/
is not relevant.

For the convenience of the reader, below we summarize the strategy we will use in the
proof of Theorem 1.1. First we will show that the union C � .X; !/ of the symplectic
surfaces (of arbitrary genera, intersecting each other !–orthogonally and according to
the connected, negative definite graph � ) in the symplectic 4–manifold .X; !/ admits
a compact !–convex neighborhood UC . This will be achieved by producing a model
symplectic 4–manifold .X� ; !�/ containing a configuration C� of symplectic surfaces
(intersecting each other !� –orthogonally and according to � ), with the same areas
and genera as the surfaces in C and with a neighborhood system of !� –convex neigh-
borhoods of C� , such that any neighborhood �C� of C� contains an element of this
!� –convex neighborhood system. Then a Moser type argument shows that any small
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enough neighborhood �C� �X� is symplectomorphic to a neighborhood �C of C in
.X; !/, and hence �C contains an !–convex neighborhood UC . In the construction
of .X� ; !�/ we will use simple models for the surfaces which are symbolized by the
vertices of the plumbing graph � (similarly to the approach we applied for the central
vertex of a starshaped graph in our paper [8]) and will apply a toric construction for the
edges of � (similarly to the construction along the legs in [8]). Since this construction
might be of independent interest, we state it as:

Theorem 1.2 If C D C1 [ � � � [Cn � .X; !/ is a collection of symplectic surfaces
in a symplectic 4–manifold .X; !/ intersecting each other !–orthogonally according
to the connected, negative definite plumbing graph � and �C � X is an open set
containing C , then C admits an !–convex neighborhood UC � �C � .X; !/. In
particular, the complement X�int UC is a strong concave filling of its contact boundary.

Remark 1.3 Using Grauert’s result [9] it is not hard to show that C admits a neigh-
borhood which is a weak symplectic filling of an appropriate contact structure on
its boundary. (A weak filling is one where the symplectic structure is positive on
the contact planes on the boundary, as opposed to a strong filling, where the contact
structure is induced by a Liouville vector field transverse to the boundary.) Therefore
the complement of this neighborhood is a weak concave filling, and although in some
cases weak convex fillings can be deformed to be strong (see Eliashberg [4]), no similar
result for concave fillings is known. Weak fillings, however, are not suitable for the
gluing constructions we will apply later, since in the weak case the contact structures do
not determine the behavior of the symplectic forms near the boundaries. In the strong
case, the Liouville vector fields allow us to glue symplectic forms when the contact
forms agree. Hence we verify the existence of an !–convex neighborhood, providing
the desired strong concave filling of the boundary of the appropriate neighborhood.
Notice also that in this first step the further assumptions on the plumbing graph �
(listed in (1) and (2) of Theorem 1.1) are not necessary.

After finding the !–convex neighborhood UC � .X; !/ we would like to compare
the induced contact structure �C on @UC to the Milnor fillable contact structure �M
on @Z1 (given as the 2–plane field of complex tangencies on the link). To this end
we describe an open book decomposition of �C and (using a result of [2]) relate it to
an open book decomposition of the Milnor fillable contact structure �M . A natural
open book decomposition compatible with �C will be given only under the additional
hypothesis that �sv � dv � 0 for each vertex v of � , and the relation to some open
book decomposition compatible with �M will be established in the two cases listed
by Theorem 1.1. It is natural to conjecture, however, that these further technical
assumptions are unnecessary, hence we state:

Algebraic & Geometric Topology, Volume 9 (2009)



Symplectic surgeries and normal surface singularities 2207

Conjecture 1.4 The contact structures �C and �M are contactomorphic for any neg-
ative definite plumbing graph � , consequently the symplectic structure !Z on the
4–manifold Z of Theorem 1.1 exists for any connected, negative definite plumbing
graph � .

The paper is organized as follows: In Section 2 we recall some basics of normal surface
singularities. Section 3 is devoted to the description of the !–convex neighborhoods
of the configuration C � .X; !/ and hence the proof of Theorem 1.2. In Section 4,
under the additional assumption �sv � dv � 0 mentioned above, we describe an open
book decomposition of .UC ; �C / compatible with the contact structure induced on the
boundary of the !–convex neighborhood, while in Section 5 we prove Theorem 1.1.

Acknowledgements The second author was partially supported by EU Marie Curie
TOK project BudAlgGeo and by OTKA T67928. Both authors wish to acknowledge
support by ZA-15/2006 Bilateral Project (South African NRF Grant number 62124).
The second author also would like to thank András Némethi and Sándor Kovács for
helpful discussions. We would like to thank the referee for many useful comments.

2 Generalities on normal surface singularities

For the sake of completeness, in this section we collect some of the basic results
regarding normal surface singularities. For general reference see Laufer [11], Looijenga
and Wahl [13], Némethi [15] and Wahl [20].

A complex germ .V; 0/ is an equivalence class of subsets of Cn , where two subsets are
equivalent if they agree on some open neighborhood of 0. A germ f W .Cn; 0/! .C; 0/
of a holomorphic function is an equivalence class of holomorphic functions from .Cn; 0/

to .C; 0/, where two functions are equivalent if they agree on some open neighborhood
of 0 2Cn . Note that the “inverse image of 0” under a germ of a holomorphic function
is naturally a complex germ. Also note that all derivatives of a holomorphic germ are
well defined at 0. The complex germ .V; 0/ is a surface singularity if there are germs
of holomorphic functions fi W .Cn; 0/! .C; 0/ (i D 1; : : : ;m) such that

(2-1) .V; 0/D fx 2Cn
j fi.x/D 0 i D 1; : : : ;mg;

and the rank r.x/ of the matrix�
@fi

@zj
.x/

�
iD1;:::;mI jD1;:::;n

is equal to n� 2 for generic points x of V . If r.x/ D n� 2 for all x 2 V � 0 and
r.0/ < n� 2 then the singularity is called isolated. .V; 0/ is normal if any bounded
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holomorphic function f W V �f0g !C extends to a holomorphic function on V . A
normal surface singularity is necessarily isolated. The singularity .V; 0/ is a complete
intersection if mD n� 2 in (2-1), and it is a hypersurface singularity if nD 3 and
mD 1.

The link L of the normal surface singularity .V; 0/ is defined as the intersection of V

and a sphere S2n�1
� D fx 2Cn j jjxjj D �g. The 3–manifold L is independent of the

embedding of V into Cn , and (provided it is small enough) independent of � .

A resolution of a singularity .V; 0/ is a smooth complex surface zV together with a
proper holomorphic map � W zV ! V such that � restricted to ��1.V � f0g/ is an
isomorphism, that is, a diffeomorphism which is holomorphic in both directions. The
resolution is good if ��1.0/ is a normal crossing divisor, that is, in a decomposition
of ��1.0/DE DE1[ � � � [Ek into irreducible components all curves are smooth,
intersect each other transversely and there is no triple intersection. Such a resolution
always exists, but it is not unique. A resolution is called minimal if it does not contain
any rational curve with self-intersection .�1/. The minimal resolution is unique, but
might not be good (in the above sense). The resolution can be assumed to be Kähler,
in such a way that � is a biholomorphism away from 0 2 V . A good resolution can be
described by its dual graph, where each irreducible component of E is symbolized
by a vertex, each vertex is decorated by the genus and the self-intersection of the
corresponding component, and two vertices are connected if the corresponding curves
intersect each other. Notice that since the curves Ei are assumed to be smooth, the
resulting graph contains no edge with coinciding endpoints. It is easy to see that the
plumbing 3–manifold defined by the dual graph of a resolution is diffeomorphic to the
link of the singularity at hand.

A resolution graph of a normal surface singularity is always negative definite, and
according to a deep theorem of Grauert [9], any negative definite plumbing graph
appears as the graph of a resolution of an appropriate (and not necessarily unique)
normal surface singularity. Notice that the link L of the singularity .V; 0/ admits a
contact structure by considering the complex tangents along L. According to [2] this
contact structure is unique up to contactomorphism. It is called the Milnor fillable
contact structure on L. By a famous result of Bogomolov [1] the complex structure
on a resolution zV can be deformed to a (possible blow-up of a) Stein filling, hence
Milnor fillable contact structures are necessarily Stein fillable.

A smoothing of .V; 0/ consists of a germ of a complex 3–fold .V; 0/ together with a
(germ of a) proper flat analytic map f W .V; 0/! .�; 0/ (where .�; 0/ is the germ of
an open disk in C ) and an isomorphism i W .f �1.0/; 0/! .V; 0/ such that V� f0g

is nonsingular and f jV�f0g is a submersion. By the Ehresman fibration theorem it
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follows then that over ��f0g the map f is a fiber bundle whose fibers are smooth
2–dimensional Stein manifolds. The typical (nonsingular) fiber is called the Milnor
fiber of the smoothing. Notice that its boundary is equal to the link of the singularity,
and the contact structure induced on it by the complex tangencies is isotopic to the
Milnor fillable contact structure of the link. Such smoothing does not necessarily exist
for a given singularity; if it does, the Milnor fiber provides a further Stein filling of the
Milnor fillable contact structure of the link of the singularity.

3 Construction of !–convex neighborhoods

The aim of this section is to prove Theorem 1.2. We will always assume that the
graph � does not admit an edge from a vertex back to itself; in other words, the
symplectic surfaces Ci � .X; !/ are assumed to be embedded. The general case
involving immersed surfaces can always be reduced to this situation by blow-ups.

By applying the following result (which is an application of Moser’s method), the
construction of the appropriate neighborhood relies on constructing model symplectic
structures on the plumbing 4–manifold X� determined by � . We start with recalling
the Moser-type result.

Theorem 3.1 (Moser, cf also [8; 17]) Suppose that !1 and !2 are symplectic forms
on a 4–manifold M containing a configuration of smooth surfaces C D C1[ � � � [Cn

which are both !1 – and !2 –symplectic, with intersections which are both !1 – and !2 –
orthogonal. Then C admits symplectomorphic neighborhoods .U1; !1/ and .U2; !2/

(via a symplectomorphism which is the identity on C ) if and only if
R

Ci
!1 D

R
Ci
!2

for all i D 1; : : : ; n.

The rest of the section is occupied by the construction of the model neighborhoods.
Let � be a finite graph with vertex set f1; 2; : : : ; ng, with each vertex v labelled with
a self-intersection sv 2 Z, an area av 2 RC and a genus gv � 0. (As always, RC

denotes .0;1/.) Let aD .a1; : : : ; an/
T 2 .RC/n . Assume that � has no edges from

a vertex back to itself. Let Q be the associated n�n intersection matrix for � , so that
Qii D si and Qij is the number of edges from vertex i to vertex j . (Notice that the
off-diagonals of Q are therefore all nonnegative.) The result we will prove will be
slightly more general than needed because we will assume a condition more general
than that Q is negative definite.

In [8] we defined a neighborhood 5–tuple as a 5–tuple .X; !;C; f;V / such that
.X; !/ is a symplectic 4–manifold, C is a collection of symplectic surfaces in X

intersecting !–orthogonally, f W X ! Œ0;1/ is a smooth function with no critical
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values in .0;1/ and with f �1.0/D C , and V is a Liouville vector field on X �C

with df .V / > 0. From this it easily follows that, for small t > 0, f �1Œ0; t � is an
!–convex tubular neighborhood of C .

Proposition 3.2 If there exists a vector z 2 .RC/n with �QzD 1
2�

a then there exists
a neighborhood 5–tuple .X; !; f;C;V / such that C is a configuration of symplectic
surfaces C1 [ � � � [Cn intersecting !–orthogonally according to the graph � , with
Ci �Ci D si ,

R
Ci
! D ai and genus.Ci/D gi .

Before giving the proof we give a quick survey of the necessary facts about toric
moment maps on symplectic 4–manifolds. These results are all standard except that
here we suppress the importance of the torus action and focus instead on how the
geometry of the moment map image determines the smooth and symplectic topology
of the total space; from a 4–manifold topologist’s point of view a useful exposition can
be found in [18]. Suppose that �W X ! R2 is a toric moment map on a symplectic
4–manifold .X; !/ with connected fibers and with @X D∅.

(1) Associated to � we have coordinates .p1; q1;p2; q2/ on X , with pi 2 R and
qi 2R=2�Z, such that �.p1; q1;p2; q2/D .p1;p2/ and !D dp1^dq1Cdp2^dq2 .

(2) The image �.X / � R2 has polygonal boundary with edges of rational slope.
Where two edges with primitive integral tangent vectors .a; b/T and .c; d/T (oriented
by @�.X /) meet at a vertex, we have the “Delzant condition”:

det
�

a c

b d

�
D 1:

(3) The fibers over interior points of �.X / are tori (with coordinates .q1; q2/). The
fiber above a point in the interior of an edge of @�.X / with primitive integral tangent
vector .a; b/T is a circle with coordinate aq1C bq2 , so that the .�b; a/–circles in
a nearby .q1; q2/–torus bound disks. The fiber above a vertex of @�.X / is a single
point.

(4) Any other symplectic 4–manifold .X 0; !0/ with toric moment map �0W X 0!R2

with connected fibers and with �0.X 0/D �.X / is symplectomorphic to .X; !/ via a
fiber-preserving symplectomorphism. Furthermore, the closure of any 2–dimensional
submanifold B of R2 that has a rational slope polygonal boundary satisfying the
Delzant conditions occurs as the image of a toric moment map on some symplectic
4–manifold (with connected fibers).

(5) Given any matrix A 2GL.2;Z/, there exists a toric moment map �AW .X; !/!

R2 such that �A.X / D A�.X / and such that the coordinates .p0
1
; q0

1
;p0

2
; q0

2
/ asso-

ciated to �A are related to the coordinates .p1; q1;p2; q2/ associated to � via the
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following transformation:�
p0

1

p0
2

�
DA

�
p1

p2

�
;

�
q0

1

q0
2

�
DA�T

�
q1

q2

�
:

(Here A�T D .A�1/T .)

(6) The vector field x@xCy@y radiating out from the origin in R2 lifts to a Liouville
vector field V D p1@p1

Cp2@p2
on X ���1.@�.X //. Given some A 2 GL.2;Z/,

the change of coordinates discussed in the preceding point transforms V to V 0 D

p0
1
@p0

1
Cp0

2
@p0

2
.

(7) Looking at a very specific case, if RD .x0;x1/� Œy0;y1/ is an open subset of
B D �.X / (hence .x0;x1/� fy0g � @B ), then the set ��1.R/ is diffeomorphic to
.x0;x1/ � S1 �D2

� , where D2
� is an open disk in R2 of radius � D

p
2.y1�y0/

centered at the origin. Furthermore, !j��1.R/ D dt ^ d˛ C rdr ^ d� , where t 2

.x0;x1/, ˛ 2 R=2�Z and .r; �/ are standard polar coordinates on D2
� , and with

these coordinates, �.t; ˛; r; �/D .t; 1
2
r2Cy0/, ie p1 D t , q1 D ˛ , p2 D

1
2
r2Cy0 ,

q2D � . Then ��1.@R/D��1..x0;x1/�fy0g/ is a cylinder .x0;x1/�S1�f0g with
symplectic area 2�.x1�x0/. The Liouville vector field p1@p1

Cp2@p2
then becomes

V D t@t C .
1
2
r Cy0=r/@r . (Note that V is clearly undefined at r D 0 except in the

special case that y0 D 0.)

Proof of Proposition 3.2 Fix a vector zD .z1; : : : ; zn/
T 2 .RC/n with �QzD 1

2�
a.

For each vertex v and for each edge e meeting v , choose an integer sv;e such thatP
sv;e D sv , where this sum and other similar sums below are taken over all edges

meeting the given vertex v . Also, for each vertex v and each edge e meeting v , letting
w be the vertex at the other end of e , let xv;eD�sv;ezv�zw . Note that, for each v we
have

P
xv;eD .�Qz/vD 1

2�
av > 0. Choose a small positive constant � , small enough

so that for each v we have
P
.xv;e � �/ > 0. Also choose small positive constants ı

and  satisfying a constraint to be stated shortly.

Consider the first quadrant P D Œ0;1/2 � R2 and let gW P ! Œ0;1/ be a smooth
function satisfying the following properties (see Figure 1):

(1) 0 is the only critical value of g .

(2) g�1.0/D @P .

(3) If y �x �  then g.x;y/D x .

(4) If y �x � � then g.x;y/D y .

(5) For all x;y we have g.x;y/D g.y;x/.
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(6) In the region � � y � x �  , the level sets g�1.t/, for t > 0, are smooth
curves symmetric about the line y D x , with slope changing monotonically as a
function of y �x from 0 to 1.

y

x





y �x > 

y �x < �

Figure 1: Contour plot of g

The constants ı and  should satisfy the following constraint: For each vertex v and
for each edge e incident to v , the line passing through .0; �/ with tangent vector
.1;�sv;e/ should intersect g�1.ı/ in the region y � x >  . By symmetry we will
also have that the line passing through .�; 0/ with tangent vector .�sv;e; 1/ intersects
g�1.ı/ in the region y �x < � . Note that if sv;e < 0, this constraint is simply the
constraint that  < � .

For each edge e we now construct a neighborhood 5–tuple .Xe; !e; fe;Ce;Ve/ as
follows (see Figure 2): Consider the two vertices at the ends of e and arbitrarily
label one v and the other v0 . Let ge.x;y/ D g.x � zv;y � zv0/, a function from
P C .zv; zv0/ to Œ0;1/. Let Re be the open subset of g�1

e Œ0; ı/ between the line
passing through .zv; zv0 C 2�/ with tangent vector .1;�sv;e/ and the line passing
through .zv C 2�; zv0/ with tangent vector .�sv0;e; 1/. Let .Xe; !e/ be the unique
connected symplectic 4–manifold with toric moment map �eW Xe ! R2 such that
�e.Xe/DRe . Let Ce D �

�1
e .@Re/, fe D ge ı�e and let Ve be the Liouville vector

field obtained by lifting the radial vector field emanating from the origin in R2 , as in
item (6) in the discussion of toric geometry above. Note that dfe.Ve/ > 0 because
dge.x@x C y@y/ > 0, which is true because zv > 0 and zv0 > 0. (Topologically, Ce

is just a union of two disks meeting transversely at one point and Xe is a 4–ball
neighborhood of Ce .)

Also let Re;v be the open subset of Re between the parallel lines passing through
.zv; zv0 C �/ and .zv; zv0 C 2�/ with tangent vector .1;�sv;e/, and let Re;v0 be the open
subset of Re between the parallel lines passing through .zvC �; zv0/ and .zvC 2�; zv0/
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.zv; zv0/

.zv; zv0 C �/

.zv; zv0 C 2�/

.zvC �; zv0/ .zvC 2�; zv0/

Re;v

Re;v0

y

x

g�1
e .ı/

Figure 2: The moment map image Re of .Xe; !e/; in this example sv;e D 0

and sv0;e D�1 .

with tangent vector.�sv0;e; 1/. By the constraints on ı and  , these are both parallelo-
grams, open on three sides.

Now we introduce two reparametrizations of this neighborhood 5–tuple, one for each
of the vertices v and v0 , using matrices Av;Av0 2GL.2;Z/ as in item (5) preceding
this proof. These matrices are

Av D

�
�sv;e �1

1 0

�
; Av0 D

�
�1 �sv0;e
0 1

�
:

The reader should at this point verify that Av transforms Re;v into the region

.xv;e � 2�;xv;e � �/� Œzv; zvC ı/

and that Av0 transforms Re;v0 into the region

.xv0;e � 2�;xv0;e � �/� Œzv0 ; zv0 C ı/:

Referring to item (7) in the toric discussion preceding this proof, we see that on
��1

e .Re;v/ and on ��1
e .Re;v0/ we can write everything down in particularly nice local

coordinates as follows: On ��1
e .Re;v/ we have:
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� ��1
e .Re;v/Š .xv;e�2�;xv;e� �/�S1�D2p

2ı
with corresponding coordinates

.t; ˛; r; �/.

� In these coordinates, !e D dt ^ d˛C rdr ^ d� .

� Ce \�
�1
e .Re;v/D .xv;e � 2�;xv;e � �/�S1 � f0g.

� fe D
1
2
r2 .

� Ve D t@t C .
1
2
r C zv=r/@r .

On ��1
e .Re;v0/ we have exactly the same formulae but with each occurrence of v

replaced with v0 .

Now we will construct neighborhood 5–tuples associated to the vertices so that they
can be glued to the neighborhoods constructed above using the explicit coordinates
that we have just seen in the preceding paragraph. Lemma 2.4 from [8] tells us that
for each vertex v we can find a compact surface †v of genus gv with a symplectic
form ˇv and Liouville vector field Wv (ˇv and Wv both defined on all of †v ) such
that †v has one boundary component @e;v†v for each edge e incident with v and
such that there exists a collar neighborhood Ne;v of each @e;v†v parametrized as
.xv;e � 2�;xv;e � ���S1 on which ˇv D dt ^ d˛ and Wv D t@t . (Here we use the
constraint we imposed on � , namely that, for each vertex v we have

P
.xv;e� �/ > 0.)

Note that
R
†v
ˇvD 2�

P
.xv;e��/. Then our neighborhood 5–tuple for the vertex v is�

Xv D .†v � @†v/�D2p
2ı
;

!v D ˇvC rdr ^ d�;

Cv D†v � @†v;

fv D
1

2
r2;

Vv DWvC

�
1

2
r C

zv

r

�
@r

�
:

These neighborhoods can then be glued to the neighborhoods for the edges as follows:
For each edge e with incident vertices v and v0 , glue the end .Ne;v �@e;v†v/�D2p

2ı

of Xv to the end ��1
e .Re;v/ of Xe by identifying the .t; ˛; r; �/ coordinates, and

similarly glue .Ne;v0 � @e;v0†
0
v/ �D2p

2ı
to ��1

e .Re;v0/. The result is the 5–tuple
.X; !;C; f;V /.

We now verify that the areas and self-intersections of the surfaces in C are correct. For
the areas, note that the closed surface Cv �X is the union of .†v � @†v/� 0 in Xv
with the various disks ��1

e .@vRe/�Xe , where @vRe is one of the two edges making
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up @Re . The area of .†v�@†v/�0 is 2�
P
.xv;e��/, the area of each disk is 2�.2�/

and the area of each overlapping cylinder is 2�� , so the total area is 2�
P

xv;e D av .
For the self-intersections, note that the boundary of a tubular neighborhood of Cv is
a 3–manifold homeomorphic to †v �S1 with the boundary components Dehn filled
with solid tori. Looking at how the matrices Av (or Av0 ) transform the regions Re ,
and following the argument at the end of the proof of [8, Proposition 2.3], we see that
the .1; sv;e/ curves in each @v;e†v �S1 are filled in by disks. So this 3–manifold is
the S1 –bundle over Cv of Euler class

P
sv;e D sv .

In order to apply Proposition 3.2 in the proof of Theorem 3.1 we need to show that the
symmetric matrix Q defined by the graph � of the symplectic surfaces C1[� � �[Cn�

.X; !/ satisfies the property that the equation

�QzD
1

2�
a

admits a solution zD .z1; : : : ; zn/ 2 .RC/n for any given a 2 .RC/n . The basis of our
argument is the following simple linear algebra observation:

Lemma 3.3 Suppose that the bilinear form .x;y/ is given by the negative definite
symmetric matrix Q with only nonnegative off-diagonals in the basis fEig. If for a
vector x the inequalities .x;Ei/� 0 (i D 1; : : : ; n) are all satisfied, then all coordinates
of x are nonnegative.

Proof Let us expand x in the basis fEig and denote the resulting n–tuple by x as
well. Suppose that x D x1 � x2 where xi has only nonnegative entries for i D 1; 2,
and the supports of x1 and x2 are disjoint. Take Ei from the support of x2 . Then by
the assumption

.x;Ei/D .x1;Ei/� .x2;Ei/� 0

implying that .x1;Ei/� .x2;Ei/. Summing for all basis vectors Ei in the support of
x2 and multiplying the inequalities with the positive coefficients they have in x2 we
get

.x1;x2/� .x2;x2/:

Since the supports of x1 and x2 is disjoint (and the off-diagonals in Q are all non-
negative, that is, .Ei ;Ej /� 0 once i ¤ j ), we have that .x1;x2/� 0. On the other
hand, Q is negative definite, so .x2;x2/� 0. This implies that .x2;x2/D 0, which
by definiteness implies that x2 D 0, hence x D x1 , verifying the lemma.

Corollary 3.4 For any a 2 .RC/n the vector �Q�1a is in .RC/n .
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Proof Suppose that a is in .RC/n and consider bD �Q�1a. Then �aDQb is a
vector with only nonpositive coordinates, that is, .b;Ei/� 0 for all i . The application
of Lemma 3.3 then finishes the proof.

Proof of Theorem 1.2 By the above corollary and Proposition 3.2, there exists a
neighborhood 5–tuple .X� ; !� ; f� ;C� ;V�/ for the given plumbing graph � (deco-
rated with ai D

R
Ci
! ). By basic results in differential topology, there exists an open

neighborhood U of C in X which is diffeomorphic to f �1
�
.t/ for some small t >0, via

a diffeomorphism sending C to C� . By Theorem 3.1, we can make this diffeomorphism
into a symplectomorphism, after possibly taking a smaller neighborhood of C and
a smaller value for t . Since in the neighborhood 5–tuple every neighborhood of C�
contains an !� –convex neighborhood, its image under the symplectomorphism provides
UC � .X; !/.

4 Open book decompositions on @UC

Suppose that for every vertex v of the plumbing graph � with self-intersection (homo-
logical square) sv and valency dv the additional hypothesis

�sv � dv � 0

holds. In this section we describe an open book decomposition on @UC compatible
with the contact structure induced on it as an !–convex neighborhood of C . We
begin with a lemma about “open book decompositions” (OBDs) on 3–manifolds with
boundary. By an OBD on a 3–manifold M with @M ¤ ∅ we mean a pair .B; �/,
where B � M � @M is a link and � W M �B ! S1 is a fibration which behaves
as open books usually behave near B and which restricts to @M to give an honest
fibration of @M over S1 . When the pages are oriented, this induces an orientation
on B as the boundary of a page.

Lemma 4.1 Consider M D Œ0; 1��S1 �S1 with coordinates t 2 Œ0; 1�, ˛ 2 S1 and
ˇ 2 S1 . Given a nonnegative integer m there exists an OBD .B; �/ on M such that
the following conditions hold:

(1) �jf0g�S1�S1 D ˇ .

(2) �jf1g�S1�S1 D ˇCm˛ .

(3) The pages ��1.�/ are transverse to @ˇ .

(4) The binding B is tangent to @ˇ .
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(5) B has m components B1; : : : ;Bm , which we can take to be Bi D f1=2g �

f.2� i/=mg �S1 .

(6) When the pages are oriented so that @ˇ is positively transverse then B1; : : : ;Bm

are oriented in the positive @ˇ direction.

Proof If mD 0 we use the map � D ˇ on all of M and have B D∅. Otherwise the
proof follows directly from the following observation which we leave to the reader to
verify (with the aid of Figure 3): Consider P D Œ0; 1�� Œ0; 1��S1 with coordinates
.x;y; �/. There is an OBD .BP ; �P / on P with BP D f1=2g�f1=2g�S1 , such that
f jf0g�Œ0;1��S1 D � , f jŒ0;1��f0g�S1 D � , f jŒ0;1��f1g�S1 D � and f jf1g�Œ0;1��S1 D

� C 2�y . When the pages are oriented so that @� is positively transverse then BP is
oriented in the positive @� direction. Given this observation, the lemma can be proved

x

y

�

BP

Figure 3: Building block for OBDs. The shaded surface indicates a page.

by stacking m of the above models side-by-side (in the y direction). Some trivial
smoothing is required, of course.

Recall that a plumbed 3–manifold M DM� constructed according to a plumbing
graph � decomposes along a collection of tori fTeg, indexed by the edges of � , into
codimension-0 pieces fMvg, indexed by the vertices of � . Each Mv fibers overs a
compact surface †v with each boundary component @v;eMv of Mv fibering over a
corresponding boundary component @v;e†v of †v . On each torus Te there are thus two
fibrations over S1 , coming from the vertices at the two ends of e . We say that an OBD
on M is horizontal if the pages are transverse to the fibers on each Mv and transverse
to both types of fibers on each Te and if the binding components are disjoint from the
Te ’s and are fibers of the fibration of the corresponding Mv ’s. (Note that this definition
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depends on identifying M as a plumbed 3–manifold and specifying the fibrations on
each Mv .) In addition, we can orient the binding components as boundary components
of a page, with the page oriented so as to intersect fibers positively; we require this
orientation to point in the positive fiber direction. (For more about horizontal OBDs,
see Etgü and Ozbagci [5].)

Now we refer to the notation of Proposition 3.2 and its proof. For any small enough
t > 0, M D f �1.t/ is a plumbed 3–manifold. We may take the separating tori fTeg

to be Te D�
�1
e .g�1

e .t/\L/, where L is the line .y�zv0/� .x�zv/D 0 in Re . Let
�C D ker.{V !jM / be the contact structure induced on M by the Liouville vector field
V and the symplectic structure ! .

Proposition 4.2 Suppose that the plumbing graph � satisfies the additional hypothesis
that pvD�sv�dv is nonnegative for every vertex v of � . Then there exists a horizontal
OBD on M supporting � with pv binding components in each fibered piece Mv . This
OBD is independent of the areas a1; : : : ; an of the symplectic surfaces C1; : : : ;Cn , and
therefore the various contact structures induced by the different symplectic structures
for different a 2 .RC/n are all isotopic (and will be denoted by �C ).

Proof Referring to the proof of Proposition 3.2, we see that M is built by gluing the
f �1
v .t/’s to the f �1

e .t/’s. Recall that f �1
v .t/D .†v � @†v/�S1

� , where S1
� is the

circle of radius �D
p

2t . Each f �1
e .t/ is a submanifold of Xe which has toric coor-

dinates .p1; q1;p2; q2/. The OBD we construct will be the S1
� coordinate function �

on each f �1
v .t/ and the function q1C q2 on each f �1

e .t/. We will put in binding
components in the .xv;e � 2�;xv;e � �/�S1 �S1

� overlaps where the gluing happens,
in order to “interpolate” from � to q1C q2 . In order to do this, we must transform the
function q1Cq2 into the .t; ˛; �/ coordinates on each .xv;e � 2�;xv;e � �/�S1�S1

�

and .xv0;e � 2�;xv0;e � �/�S1 �S1
� , using the transformations given by the matrices

Av and Av0 . We see that the change of coordinates associated with Av at the end Re;v ,
transforms q1C q2 into the function .�sv;e � 1/˛C � and that the change associated
with Av0 transforms q1C q2 into .�sv0;e � 1/˛C � . Thus using Lemma 4.1, we see
that for each vertex v incident to an edge e , if we have nonnegative integers pv;e with
pv;e D�sv;e � 1 we can interpolate from q1C q2 to � by introducing pv;e binding
components. By suitably partitioning the pv ’s into pv;e ’s we construct the desired
OBD.

It remains to verify that this OBD is horizontal and supports � . The OBD is clearly
horizontal on each f �1

v .t/ and on the overlap regions where the binding components
are put in. On each f �1

e .t/, we need to see how the fiber directions @� coming from
each vertex incident to e transform via the inverses of the transformations associated to

Algebraic & Geometric Topology, Volume 9 (2009)



Symplectic surgeries and normal surface singularities 2219

Av and Av0 . This check is straightforward and we see that, at the v end, @� becomes
@q1

and at the v0 end, @� becomes @q2
. Both of these are transverse to the pages, ie

the fibers of q1C q2 .

Lastly, we need to verify that the Reeb vector field for a contact form for �C is transverse
to the pages of this OBD and tangent to the bindings. However, this is clear because,
on f �1

v .t/ the Reeb vector field for the contact form induced by the Liouville vector
field is a positive multiple of @� , and on f �1

e .t/ the Reeb vector field for the contact
form induced by the Liouville vector field is a positive multiple of b1@q1

C b2@q2

where dge D b1dxC b2dy , and b1; b2 > 0 by construction of ge . Notice that in this
construction there was no dependence on the areas a.

5 The proof of Theorem 1.1

In order to apply the gluing scheme of symplectic 4–manifolds along hypersurfaces
of contact type (as it is given in [6]) we have to verify that the contact structure �C
(given by the toric picture) and the Milnor fillable contact structure �M (on the link
of the singularity) are contactomorphic. Recall that in the previous section we saw
that for a plumbing graph � with �sv � dv � 0 for every vertex v the toric approach
produces isotopic contact structures for any input vector a 2 .RC/n . In fact, in this
case we have a detailed description of the binding of a compatible horizontal open
book decomposition: it consists of pv D�sv � dv fibers in each fibered piece of the
plumbed 3–manifold.

In the case of negative definite starshaped plumbing trees of spheres with three legs the
above identification of contact structures relied on the classification of tight contact struc-
tures on the corresponding small Seifert fibered 3–manifolds [8]. Such classification is
not available in general. Although we strongly believe that the two contact structures
�C and �M are contactomorphic in general (which would lead to the verification of
Conjecture 1.4), we could prove it only under strong restrictions on the plumbing
graph � , giving the proof of Theorem 1.1.

Recall that each vertex v of the plumbing graph � is decorated by two integers: gv � 0

denotes the genus of the surface †v corresponding to the vertex v , while sv is the
Euler number of the normal disk bundle of †v in the plumbing 4–manifold X� (or
alternatively the self-intersection of the homology class Œ†v �). Since � is negative
definite, we have that sv < 0. As before, let dv denote the valency of the vertex v , that
is, the number of edges emanating from v . We will always assume from now on that
�sv � dv � 0 holds for every vertex v .
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The two contact structures �C and �M will be compared through open book decompo-
sitions compatible with them. The open book decompositions compatible with these
contact structures, in turn, will be compared through their bindings, in the light of the
following results.

Theorem 5.1 (Caubel–Némethi–Popescu-Pampu [2, Proposition 4.6]) Suppose that
� is a connected, negative definite plumbing graph, with associated plumbed mani-
fold M� . Suppose that two horizontal open book decompositions of M� have isotopic
bindings, such that each fibered component of M� contains at least one binding
component. Then the two horizontal open book decompositions are isotopic.

Theorem 5.2 (Stallings, cf Caubel–Popescu-Pampu [3, Proposition 2.2]) Suppose
that the 3–manifold M is a rational homology 3–sphere, that is, b1.M /D 0. Then two
open book decompositions of M with isotopic bindings are isotopic.

With these results at hand, we turn to the identification of the contact structures �C and
�M – at least under the additional hypotheses spelled out by Theorem 1.1.

Proposition 5.3 Suppose that � is a connected, negative definite plumbing graph for
which either

(1) �sv � 2.dvCgv/ holds for every vertex v of � , or

(2) � is a tree and has gv D 0 and �sv � dv � 0 for all vertices.

Then the contact structure �C provided by Proposition 4.2 is contactomorphic to the
Milnor fillable contact structure �M .

Proof Suppose first that �sv � 2.dvCgv/ holds for every vertex v . Since gv; dv � 0,
this inequality implies, in particular, that pv D�sv � dv > 0 for all v 2 � . Therefore
by Proposition 4.2 the contact structure �C is compatible with a horizontal open
book decomposition having pv > 0 binding components in each fibered piece Mv of
M DM� .

Next we would like to find an open book decomposition on M which is compatible
with �M . In doing so, we would like to appeal to [2, Theorem 4.1]. Notice that by
choosing D D

P
j Ej (ie, all mj D 1) the required inequality of the quoted theorem

(in the notation of [2]) transforms to .2ECK†/ �EiC2� 0, which, in our convention
translates to svC2.dvCgv/� 0. Since this is exactly the relation among sv; dv and gv
we hypothesized, [2, Theorem 4.1] can be applied. This argument therefore provides
a function f , and through it (by [2, Theorem 3.9]) an open book decomposition
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of M compatible with the Milnor fillable contact structure �M . According to [2,
Example 4.5] this open book decomposition is horizontal and (again, in the notation
of [2]) has ni D �D �Ei binding components in each fibered piece of M . Since
D D

P
j Ej , we conclude that D � Ei D E2

i C
P

j¤i Ej � Ei , which quantity in
our convention (with v being the i –th vertex of � ) is equal to sv C dv D �pv . In
conclusion, we found a horizontal open book decomposition compatible with �M which
has the same binding as the horizontal open book decomposition (compatible with �C )
provided by Proposition 4.2. Since pv > 0 for all v 2 � , by Theorem 5.1 therefore the
two open book decompositions are isotopic, hence the contact structures �C and �M
are contactomorphic.

Assume now that � is a plumbing tree of spheres, satisfying �sv � dv � 0 for all
vertices v 2 � . In this case the function f of [2, Theorem 4.1] can be found directly:
since � can be constructed by blowing up a point of C2 (ie, the graph � is sandwich
in the sense of [16]), the pullback of the function vanishing in the blown-up point
provides f corresponding to D D

P
j Ej as before. Notice that the corresponding

open book decomposition has pv D �sv � dv D �D �Ev binding components in
each fibered piece, just as the open book decomposition found in Proposition 4.2 (and
compatible with �C does).

It follows from the assumption on � that M DM� is a rational homology 3–sphere,
hence Theorem 5.2 implies that the open book decomposition corresponding to the
above f and the one provided by Proposition 4.2 are isotopic. Therefore we get that
the contact structures �C and �M are contactomorphic, concluding the proof of the
proposition. (Notice that since we allowed �sv � dv D 0, we cannot appeal to [2,
Theorem 4.6] anymore.)

With the identification of the appropriate contact structures we are now ready to turn to
the proof of Theorem 1.1.

Proof of Theorem 1.1 According to Proposition 5.3, under the assumptions of Theo-
rem 1.1 the strong filling Z1 of the Milnor fillable contact link .Y; �M / and the strong
concave filling X �X1 of .Y; �C / have contactomorphic contact structures on their
boundaries, hence the gluing construction described in [6] applies (for a suitably chosen
contactomorphism 'W @.X �X1/! @.�Z1/), providing a symplectic structure on
Z DZ1[Y .X �X1/. This concludes the proof of the main theorem.
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