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Homotopy nilpotent groups

GEORG BIEDERMANN

WILLIAM G DWYER

We study the connection between the Goodwillie tower of the identity and the lower
central series of the loop group on connected spaces. We define homotopy n–nilpotent
groups as homotopy algebras over certain simplicial algebraic theories. This notion
interpolates between infinite loop spaces and loop spaces, but backwards. We study
the relation to ordinary nilpotent groups. We prove that n–excisive functors of the
form �F factor over the category of homotopy n–nilpotent groups.

55P47, 55U35; 18C10, 55P35

1 Introduction

This article arose from the question of what the Goodwillie tower of the identity has to
do with the lower central series of Kan’s loop group of a connected space. We express
the relation with the help of simplicial algebraic theories. We expect the reader to be
familiar with the basic notions of homotopical algebra and Goodwillie’s calculus of
homotopy functors. We will give a short introduction to simplicial algebraic theories
and their homotopy algebras in Sections 2 and 3.

We are working simplicially, so for us “space” always means “simplicial set”.

Let us introduce some notation valid for the rest of the article. Let S� be the category
of pointed simplicial sets. Further let F denote the category of S�–functors from finite
pointed simplicial sets Sfin

� to S� . A homotopy functor in F is a functor that preserves
weak equivalences.

For a homotopy functor F in F Goodwillie [20] constructs a tower of functors

F ! � � � ! PnF ! Pn�1F ! � � � ! P1F ! P0F D F.�/;

where the n–th stage is the universal n–excisive homotopy functor under F . Here,
n–excision is a higher version of excision; a 1–excisive functor is a homotopy functor
with a Mayer–Vietoris sequence. For F D id, the Goodwillie tower converges on
simply connected spaces to the identity; see Goodwillie [19]. On a connected space K ,
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34 Georg Biedermann and William G Dwyer

however, it converges to the Bousfield–Kan completion proved in [3] by Arone and
Kankaanrinta:

holim
n

Pn.id/.K/' Z1K

We have P1.id/ ' �1†1 , the stable homotopy functor. So the Goodwillie tower
interpolates between stable and unstable homotopy. The map K ! Pn.id/.K/ is
roughly .nC 1/k –connected, if K is k –connected.

Let S0 be the category of reduced simplicial sets, ie simplicial sets with exactly one
0–simplex. By a result of Dwyer and Kan [15], Kan’s loop group functor G is part of
a Quillen equivalence between S0 and simplicial groups. The homotopy category of
S0 and of path-connected topological spaces are equivalent.

For a reduced simplicial set K , let GK=�nGK denote the n–th stage of the lower
central series of GK taken degreewise as defined in Definition 6.1. This was studied
by Curtis [12] who proved that for simply connected spaces the connectivity of the map

GK!GK=�nC1GK

increases logarithmically with n. The tower fGK=�nC1GKgn�1 associated to the
filtration converges to the identity on simply connected spaces. As noted by Kan,

�s�1.GK=�2GK/ŠHsK for all s � 1:

So the lower central series interpolates between singular homology and unstable homo-
topy. In a similar way to the Goodwillie tower of id, this tower converges to the identity
on simply connected spaces and to the Bousfield–Kan completion on connected spaces.

It is not difficult to check that there is a canonical map up to homotopy

:::

��

:::

��
Pn.id/.K/

��

// B
�
GK=�nC1GK

�
DW �nK

��
Pn�1.id/.K/

��

// B
�
GK=�nGK

�
DW �n�1K

��
:::

:::

from the Goodwillie tower of the identity of K to the classifying space of the lower
central series of the loop group of K , obtained from the universal property (up to
homotopy) of the first tower. It is well-known to the experts that this map induces an
isomorphism on �1 . We prove this statement in Theorem 8.1 and phrase it in terms
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Homotopy nilpotent groups 35

of algebraic theories. In fact, the left hand side (looped once) gives rise to certain
simplicial algebraic theories that we call Gn (Definition 5.2). Applying �0 to this
simplicial category gives us the ordinary theory of n–nilpotent groups. The k –ary
operations of these theories can be obtained by looping the above towers and evaluating
them on a k –fold wedge of circles (Corollary 5.7).

Algebraic theories were introduced by Lawvere [27] to obtain categorical descriptions
of algebraic structures like groups, rings, Lie algebras, etc. An algebraic theory is a
category T having the natural numbers k � 0 as objects such that k is the product in
T of k copies of 1. The maps from k to 1 are to be thought of as the k –ary operations
of T . They can be canonically identified with the free objects on k generators. Algebras
over T are product preserving functors from T to sets.

For purposes in homotopy theory we need to consider simplicial algebraic theories
where T –algebras have values in simplicial sets. These were first considered by
Reedy [30] and more recently by Schwede [31] and Badzioch [5]. It is convenient for
us to study pointed versions where algebras are functors from T to pointed simplicial
sets and the category T itself will be enriched over S� . If the theory has only one
constant – as in our case – there is no loss in generality. We also need a weaker notion
of algebra: homotopy T –algebras were introduced by Badzioch [5]. They are functors
from T to S� that commute with products up to homotopy.

We define a homotopy n–nilpotent group to be a homotopy Gn –algebra. In other
words, these are spaces that admit k –ary operations parametrized by �Pn.id/

�W
k S1

�
.

Homotopy n–nilpotent groups have not been considered before – only the two extreme
cases are classical: Loop spaces and infinite loop spaces can be described as homotopy
algebras over our theories G1 and G1 ; see Theorem 5.8 and Theorem 5.13. The free
objects on k generators of these simplicial theories are given by

�

� k_
iD1

S1

�
'�†

_
k

S0 and �P1.id/
� k_

iD1

S1

�
'�1†1

_
k

S0:

Thus, the new notion interpolates between loop spaces and infinite loop space, but
“backwards”.

We obtain morphisms of theories

G1! � � � ! Gn! Gn�1! � � �

induced by the maps in the Goodwillie tower and functors

UnW SGn
� ! SG1

� :
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The functor Un induces on homotopy categories of the respective Badzioch model
structures the forgetful functor from homotopy n–nilpotent groups to loop spaces. It
has a left adjoint

ˆnW SG1
� ! SGn

� :

It is easy to check that .ˆn;Un/ form a Quillen pair for the Badzioch model structures
on each side, and hence their derived functors .Lˆn;RUn/ form an adjoint pair of
functors on the respective homotopy categories. Left adjoints to forgetful functors are
often called free functors. For a connected space X we have �X ' X� .1C/ where
X� W G1 ! S� is a homotopy 1–algebra. In that sense the object Lˆn.X� / is the
free homotopy n–nilpotent group generated by �X . Our next result, Theorem 5.16,
exhibits the Goodwillie tower of the identity �Pn.id/.X / as the homotopy left Kan
extension along ˆn :

�Pn.id/.X /' .LˆnX� /.1C/:
So the free homotopy n–nilpotent group generated by �X is �Pn.id/.X /. Equiva-
lently, Theorem 5.16 states that the free homotopy n–nilpotent group generated by a
pointed space K is given by �Pn.id/.†K/. This generalizes and interpolates between
the fact that �†K is the free loop space and �1†1K is the free infinite loop space
over K . If the reader prefers the analogy with the lower central series, then the case
n D 1 corresponds to the abelianization of a group and �1†1K is the homotopy
1–nilpotent quotient of �†K . Then for n� 1 the term �Pn.id/.†K/ can be seen as
a homotopy version of the quotients in the lower central series.

Corollary 9.3 gives a large source of examples: a space is a homotopy n–nilpotent
group if it is the value of a looped n–excisive functor. In work in progress [8] we prove
that every homotopy n–nilpotent group arises in this way. An application, Corollary
9.4, is that the category of looped n–excisive functors is naturally enriched in homotopy
n–nilpotent groups. This generalizes the fact that the homotopy category of infinite
loop spaces is enriched over abelian groups.

In Example 9.8 we give an easy example of homotopy n–nilpotent group: every
connected space whose homotopy groups vanish except between dimensions k C 1

and .nC 1/k for some k � 1 is canonically a homotopy n–nilpotent group. We
finish with an application, Example 9.10, of the chain rule on Goodwillie’s calculus of
homotopy functors proved by Arone and Ching in [1] that states that homotopy functors,
whose derivatives vanish outside a certain range, factor over the category of homotopy
n–nilpotent spaces. This generalizes and simplifies the proof of the corresponding
statement for nD 1 by Arone, Dwyer and Lesh in [2].
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The results in this article are not necessarily deep. This article is meant to formulate
the definitions and set the ground for further study of homotopy n–nilpotent spaces.
We hope to convince the reader that this subject deserves further attention.

Acknowledgments We would like to thank André Joyal and Gerald Gaudens for
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was a postdoctoral fellow at the University of Western Ontario, London, Ontario. The
paper was finished while the first author was a guest at the Max-Planck-Institut für
Mathematik in Bonn and Assistant Professor at the Universidad de los Andes, Bogotá,
Colombia.

2 Algebraic theories

Algebraic theories were introduced by Lawvere [27] in order to describe algebraic
structures, like eg groups or rings, in terms of universal operations. He found that
these universal operations are encoded by the homomorphisms between the finitely
generated free objects of the respective algebraic structure. Thus the typical example
of an algebraic theory is given by the subcategory of some algebraic category formed
by the finitely generated free objects. Any object of the algebraic category in question
determines and is determined by a functor from this subcategory to sets. Since we
prefer to deal with covariant functors we consider the opposite of the subcategory of
finitely generated free objects, and since we will deal only with pointed objects we
describe here only pointed algebraic theories.

Definition 2.1 For a category C we will refer to its set of morphisms by C. ; /.

Definition 2.2 Let � be the opposite of the category of finite pointed sets. The
category � has all products and every object is isomorphic to an object of the form

kC D f1; : : : ; kg[ fCg:

Here C acts as the base point. For every 1� s � k we have maps ik
s W k

C! 1C given
by the inclusion of the pointed set 1C to kC where the non basepoint of 1C maps to
s 2 kC . These maps induce an isomorphism

kY
sD1

ik
s W k

C
Š

kY
sD1

1C:
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Definition 2.3 A pointed algebraic theory is a category T having the same set of
objects as � together with a functor � ! T , which is the identity on objects and
preserves products. Morphisms of algebraic theories are product preserving functors
under � .

The category T is usually given as a full subcategory of some other category (see
Remark 2.9), so the morphisms in T are often left understood. We will often confuse
the objects kC 2 Ob.�/D Ob.T / with their images under such a full inclusion. If we
want to emphasize a particular theory T , we will denote the object kC by T .kC/.

Definition 2.4 A strict T –algebra is a functor X� W T ! Sets that preserves products
strictly. This means that the map

kY
sD1

X� .ik
s /W X� .kC/!

�
X� .1C/

�k
is an isomorphism of pointed sets. The category of pointed T –algebras is denoted by
AlgT;� and forms a full subcategory of the category SetsT

� of all functors from T to
pointed sets.

Definition 2.5 The k –ary operations of an algebraic theory T are the elements of
the set T .kC; 1C/. The constants of T are the 0–ary operations, ie the elements of
the set

A0 D T .0C; 1C/:

A theory with one constant is an algebraic theory such that A0 Š �.

Remark 2.6 Let T be an algebraic theory. Then the forgetful functor uW Sets�!Sets
induces a functor

u�W SetsT
� ! SetsT :

This restricts to a functor
u�W AlgT;�! AlgT ;

where AlgT is the category of unpointed T –algebras.

Lemma 2.7 If T is an algebraic theory with one constant, the functor

u�W AlgT;�! AlgT

is an isomorphism of categories.
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Proof Given an unpointed T –algebra X , we can always supply it with a canonical
basepoint

� ŠX.0C/!X.1C/;

induced by the unique constant 0C! 1C in T . We obtain an inverse functor for u� .

Definition 2.8 The evaluation functor

Ev1C W AlgT
� ! Sets�;X� 7! Ev1C X� DX� .1C/

has a left adjoint denoted by

FrT W Sets�! AlgT;�

which is called the free T –algebra functor.

Remark 2.9 One easily checks that in AlgT;� there is a canonical isomorphism

FrT .k
C/Š T .kC; /:

Hence there is an equivalence of categories between T and the opposite category of
the full subcategory of AlgT;� given by the finitely generated free T –algebras.

Remark 2.10 To illustrate the ideas we describe here very briefly the example of the
algebraic theory of groups. Let Gr be the category of groups. We let Nil1 be the
theory of groups.

According to Remark 2.9 the object kC of the theory Nil1 of groups can be identified
with

Nil1.kC/D Fk ;

the free group on k letters. Morphisms are given by the set

Nil1.kC; `C/Š Gr.F`;Fk/Š .Fk/
`:

One easily checks that composition

Nil1.`C;mC/�Nil1.kC; `C/! Nil1.kC;mC/

translates to substitution .F`/m�.Fk/
`! .Fk/

m , where we take ` words w1; : : : ; w`
in Fk and substitute them for the generators of F` .

Now suppose that G is a group. We can define a functor G� W Nil1! Sets by setting

kC 7!Gk ;
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and for every element in .w1; : : : ; wk/ 2 .Fk/
` Š Nil1.kC; `C/ we define a group

homomorphism Gk !G` given by

.g1; : : : ;gk/ 7! .h1; : : : ; h`/;

where hj for 1� j � ` is the element in G obtained by substituting gi for the i –th
generator of Fk in the word wi for 1� i � k . It is straightforward to check that this
is indeed a product-preserving functor, hence a Nil1–algebra.

Conversely, given an Nil1–algebra G� we obtain a group structure on the set G� .1C/DW
G . A multiplication map

G �G ŠG� .2C/!G� .1C/ŠG

is induced by the element

f1 f2 2 F2 Š Nil1.2C; 1C/:

Here we denote by f1; : : : ; fk the generators of the free group Fk . This multiplication
is associative because of the identity

. f1 f2/ f3 D f1 . f2 f3/ 2 F3 Š Nil1.3C; 1C/:

The set G is pointed and one easily checks that this basepoint e is the neutral element
with respect to the multiplication. The inverse . /�1W G ! G is induced by the
element f �1

1
2F1 . Substituting f �1

1
for f2 we obtain the identity f1f

�1
1
D e which

proves the inverse as defined is indeed an inverse.

Both construction are mutually inverse and give an equivalence between the category Gr
of groups and the category of Nil1–algebras. In turn, this illustrates the isomorphism
of the opposite of the full subcategory of Gr given by the finitely generated free groups
and the theory Nil1 .

An example of an ordinary algebraic theory that has more than one constant, is the
theory of commutative rings with unit. The free object on k generators is given
by ZŒx1; : : : ;xk �, the polynomial ring in k generators. The constants are given by
A0 Š Z.

3 Simplicial algebraic theories

We denote the category of pointed simplicial sets by S� .

Definition 3.1 A pointed simplicial algebraic theory is an algebraic theory enriched
as a category over S� . We will immediately drop all adjectives and simply speak of a
theory henceforth.
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Definition 3.2 Let T be a theory. A pointed strict simplicial T –algebra is an S�–
functor from T to S� that preserves products in the sense of Definition 2.4. Again, we
will simply speak of a T –algebra from now on. The category of T –algebras will be
denoted by AlgT;� .

Since we want to do homotopy theory we relax the conditions on T –algebras.

Definition 3.3 Let T be a theory. A homotopy T –algebra X� is an S�–functor from
T to S� that preserves products up to weak equivalence, ie the map

kY
sD1

X� .ik
s /W X� .kC/!

�
X� .1C/

�k
is a weak equivalence for all k � 1.

The category ST
� can be equipped with a model structure where the objectwise fibrant

homotopy T –algebras are exactly the fibrant objects. This model structure was first
constructed by Badzioch in [5] and is a localization of the projective model structure
on ST

� .

Definition 3.4 Badzioch in [5] called this model structure the homotopy algebra model
structure. We will call it the Badzioch model structure and denote the category ST

�

together with this model structure by .ST
� /Badz .

It is shown in [5] that there is a Quillen equivalence between strict T –algebras with
objectwise weak equivalences and fibrations and homotopy T –algebras. This result
tells us that – independently of the theory T – any homotopy T –algebra can be
rigidified.

Theorem 3.5 (Badzioch) Let F W S ! T be a morphism of simplicial theories. If F

is a weak equivalence of simplicial categories then pulling back along F is the right
adjoint of a Quillen equivalence between the associated Badzioch model categories.

Proof In [16, Theorem 2.1] it is shown that F�W ST
� ! SS

� is the right adjoint of a
Quillen equivalence between the projective model structures. The Badzioch model
structures are left Bousfield localizations. This process preserves Quillen equivalences
by [22, Theorem 3.3.20].

Remark 3.6 As in the set-valued case the evaluation functor

Ev1C W AlgT;�! S� ; X� 7! Ev1C X� DX� .1C/
Algebraic & Geometric Topology, Volume 10 (2010)
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has an S�–enriched left adjoint denoted by

FrT W S�! AlgT;�

which is called the free T –algebra functor. One easily checks that .FrT ;EvT / form a
Quillen pair for the Badzioch model structure and that there is a canonical isomorphism

FrT .k
C/Š T .kC; /:

4 The n–excisive model structure

Definition 4.1 We denote by F the category of S�–enriched functors from finite
pointed simplicial sets Sfin

� to pointed simplicial sets S� .

The category F is enriched, tensored and cotensored over S� where both tensor and
cotensor are given objectwise. It carries a projective model structure where weak
equivalences and fibrations are given objectwise.

For an introduction to Goodwillie’s calculus of homotopy functors and in particular for
the notion of n–excisive homotopy functor we refer to Goodwillie [20] and Kuhn [26].

In Biedermann, Chorny and Röndigs [7] and Dwyer [14] the projective model structure
on F was localized to obtain the n–excisive model structure where the fibrant objects
are exactly the n–excisive homotopy functors. A map X� ! Y� is an n–excisive weak
equivalence if and only if it induces an objectwise weak equivalence

PnX� ! PnY� :
Here PnX� denotes the n–th stage in the Goodwillie tower of the functor X� h which is
the functor X� pre- and postcomposed with an objectwise fibrant replacement functor
in S� . However it is more convenient for us to consider the injective model structure
on F constructed by Joyal [25] and Jardine [23] where cofibrations are given by all
inclusions. This model structure is also proper and simplicial with the advantage that
all objects are cofibrant. The same techniques as in [7] apply to arrive at an n–excisive
model structure on F with the same equivalences and where a map X� ! Y� is an
n–excisive fibration if and only if it is an injective fibration such that the square

X� //

��

PnX�
��

Y� // PnY�
is an objectwise homotopy pullback square. We have:
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Theorem 4.2 The injective n–excisive model structure on F is a cofibrantly generated
proper simplicial model structure. All objects are cofibrant.

Corollary 4.3 Let Y� be an injectively fibrant n–excisive homotopy functor. Then for
every X� in F we have a natural weak equivalence

F.PnX� ;Y� /' F.X� ;Y� /:
5 Homotopy n–nilpotent groups

We will now describe the simplicial theory of homotopy n–nilpotent groups.

Definition 5.1 In the category F let . /inj be a fibrant replacement functor with
respect to the injective model structure.

Definition 5.2 We define a full subcategory Gn of the category F , which has for each
natural number k � 0 exactly one object given by

Gn.k
C/D

kY
iD1

�
�
Pn.id/

�inj
:

We also define for nD1 the category G1 with objects given by

G1.kC/D
kY

iD1

�.id/inj:

We employ the convention that the empty product is the final object �, and so we have
for all 1� n�1 and 0� k <1:

Gn.k
C/Š

kY
iD1

Gn.1
C/:

We let InW Gn! F be the inclusion functor.

To obtain the status of a theory, Gn has to live under � . So we define a functor
nW � ! Gn on objects simply by kC 7! Gn.k

C/. The space Gn.k
C/ is the space

of pointed maps from kC to Gn.1
C/. A morphism f opW `C ! kC in � , which is

represented by a map f W kC! `C of pointed sets, then induces a map

Gn.`
C/! Gn.k

C/

by pulling back along f .
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Remark 5.3 As a full subcategory of F the category Gn for 1� n�1 is enriched
over S� . The category Gn constitutes a simplicial theory as discussed in Section 3.
Therefore we can consider Gn –algebras and homotopy Gn –algebras. Objectwise fibrant
homotopy Gn –algebras are the fibrant objects in .SGn

� /Badz .

Definition 5.4 We call a homotopy Gn –algebra a homotopy n–nilpotent group. If the
context allows, we commit the common abuse of language and refer to the underlying
space X� .1C/ (or one canonically weakly equivalent to it) for some homotopy Gn –
algebra X� as a homotopy n–nilpotent group.

For n D 1 this corresponds to the common abuse of language to refer to an infinite
loop space by its underlying space without making the infinite loop space structure
explicit. Obviously, a space might not have any infinite loop space structure, and if it
has one it might have more than one. Similarly for homotopy n–nilpotent groups.

Lemma 5.5 For all n� 1 and k; `� 0 we have canonical weak equivalences

Gn.k
C; `C/'

Y
`

�Pn.id/

 
k_

iD1

S1

!

Proof Recall that F from Definition 4.1 is endowed with the injective n–excisive
model structure where all objects are cofibrant. We compute:

Gn.k
C; `C/Š F

�Y
k

�
�
Pn.id/

�inj
;
Y
`

�
�
Pn.id/

�inj
�

' F
�
�.id/k ; �

�
Pn.id/

�inj�`
Š F

�
mapS�

�_
k

S1;

�
; �
�
Pn.id/

�inj
�`

Š

�
�
�
Pn.id/

�inj
�_

k

S1

��`

'

�
�Pn.id/

�_
k

S1

��`
The weak equivalence in step 2 comes from Corollary 4.3. We also use the enriched
Yoneda lemma and the fact that Pn commutes with �.

Remark 5.6 By Lemma 5.5 the theory Gn has only one constant. So by Lemma 2.7
we can work in the pointed setting without losing information.
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Corollary 5.7 The k –ary operations of the theory Gn of homotopy n–nilpotent groups
is given by evaluating the free Gn –algebra on k generators at 1C :

Ev1C
�
FrGn

.kC/
�
Š�Pn.id/

� k_
iD1

S1

�

Proof The free algebra Ak on k generators in any simplicial theory T can be obtained
by the following formula:

Ak Š T .kC; 1C/ŠAlgT;�

�
FrT .1

C/;FrT .k
C/
�
Š FrT .k

C/.1C/Š Ev1C
�
FrT .k

C/
�
:

Now the statement follows from Lemma 5.5.

If Fk is the free group on k generators then we have the following canonical weak
equivalences:

(1) G1.kC; 1C/'�
_
k

S1
'�BFk ' Fk

It follows that the theory G1 is weakly equivalent as a simplicial category to the
discrete theory of groups.

Theorem 5.8 The category .SG1
� /Badz is Quillen equivalent to the category of simpli-

cial groups. In particular, the homotopy category of homotopy 1–nilpotent groups is
equivalent to the homotopy category of loop spaces.

Proof This follows readily from the equivalences (1) and Theorem 3.5.

In [6] Badzioch, Chung and Voronov define a theory Tn such that its homotopy algebras
are exactly n–fold loop spaces.

Definition 5.9 Set Tn.k
C/ D

W
k Sn and take as morphisms the derived mapping

space

Tn.k
C; `C/Dmapder

S�

�_
`

Sn;
_
k

Sn

�
:

So Tn is the opposite of the full subcategory of S� given by the finite wedges of
n–spheres. The suspension functor induces a morphism tnW Tn! TnC1 of simplicial
theories:

Tn.k
C; `C/D

�
�n

_
k

Sn

�`
!

�
�nC1

_
k

SnC1

�`
Š TnC1.k

C; `C/:
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Theorem 5.10 [6, Theorem 1.1] A pointed space X is an n–fold loop space if and
only if there exists a homotopy Tn –algebra X� with X� .1C/'X .

Definition 5.11 We obtain a morphism of theories #nW Tn! G1 induced by the maps

Tn.k
C; `C/D

�
�n

_
k

Sn

�`
!

�
colim

s
�nCs

_
k

SnCs

�`
' G1.k

C; `C/

together with the equation #nC1tn D #n .

Remark 5.12 The theory G1 is canonically weakly equivalent to the colimit of the
sequence

� � � // Tn
tn // TnC1

tnC1 // � � �

in the category of simplicial categories (with fixed set of objects) and hence in the
category of simplicial theories.

Theorem 5.13 A pointed space X is an infinite loop space if and only if there exists
a homotopy G1 –algebra X� with X� .1C/'X . The homotopy category of homotopy
1–nilpotent groups is equivalent to the homotopy category of infinite loop spaces.

Proof Recall Theorem 5.10. By Theorem 3.5 and Remark 5.12 a space X is an
infinite loop space if and only if the associated functor

X� W �! S�; kC 7!X k

extends via the maps tn to a product-preserving functor from Tn for all n � 0. The
existence of the morphism #n shows that X� is a homotopy G1 –algebra if and only if
X� restricts to a homotopy Tn –algebra for each n� 0. The equivalence of homotopy
categories now also follows.

Definition 5.14 For 1� n�1 the maps id! Pn.id/ induce morphisms of theories

G1! Gn

that by pulling back along them induce forgetful functors

UnW SGn
� ! SG1

� :

Denote by RUn its right derived functor. These forgetful functors possess left adjoints

ˆnW SG1
� ! SGn

� :

LˆnW SG1
� ! SGn

�We let
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be the enriched homotopy left Kan extension, which is obtained by precomposing ˆn

with a projective cofibrant replacement functor on SG1
� . It is the left derived functor

of ˆn .

Remark 5.15 (1) One can easily prove that the pair .ˆn;Un/ forms a Quillen pair
for the Badzioch model structures on both sides.

(2) Note that LˆnX� depends only on the homotopy 1–nilpotent group structure
even when X� has a homotopy m–nilpotent group structure for some m � 1. For
1� n�m�1 there exist left adjoint functors

ˆm
n W S

Gm
� ! SGn

�

that we will consider in future work. It is not true that LˆnRUmX� is equivalent to
Lˆm

n X� .

(3) Note that:
FrGn
ŠˆnFrG1

The object FrG1.k
C/Š G1.kC; / is projectively cofibrant. So Corollary 5.7 says:

LˆnFrG1.k
C/'ˆnFrG1.k

C/'�Pn.id/†.kC/'�Pn.id/
�_

k

S1

�
The next result, Theorem 5.16, can be interpreted as a generalization of this fact.

Theorem 5.16 For any space K in S� we have a natural weak equivalence

LˆnFrG1K '�Pn.id/.†K/:

Equivalently, let X� be a homotopy G1–algebra with X� .1C/'�X for some reduced
simplicial set X . Then there is a natural weak equivalence

.LˆnX� /.1C/'�Pn.id/.X /:

Proof By observing that FrG1.K/ D �†K and setting X D †K the first claim
translates into the second one.

In the case X D
W

k S1 the associated homotopy G1–algebra X� is given by

X� .`C/Š
�
�
_
k

S1

�`
' G1.kC; `C/;

Gn.k
C; 1C/'�Pn.id/

�_
k

S1

�
:while
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Representable functors are projectively cofibrant and (homotopy) left Kan extension
preserves representable functors. So we have an equivalence:

LˆnG1.kC; /' Gn.k
C; /

This proves the case X D
W

k S1 . Now we observe that every reduced finite simplicial
set X is weakly equivalent to the realization of a bisimplicial set X� , which consists
degreewise of a finite wedge of copies of the circle S1 : for k � 0 let Xk be the set of
k –simplices of X , and consider Xk as a discrete simplicial set. Set Yk DXkC1 ^S1

and recall X0 D �. Then we have canonical equivalences:

X ' jk 7!Xk j ' jk 7! Yk j

Here j j denotes the realization of a bisimplicial set. The statement now follows from
Theorem A.2 applied with F D�Pn.id/ and �D q D 1.

6 The lower central series of the loop group

Definition 6.1 Let G be a group. For subgroups H and K of G let ŒH;K� denote
the normal subgroup generated by elements of the form h�1k�1hk where h 2H and
k 2K . The lower central filtration for G is defined in the following inductive way:
Let

�1G DG and �nC1G D ŒG; �nG�:

We obtain a filtration of G by normal subgroups with an associated tower:

G=�2G G=�3Goo G=�4Goo � � �oo

G=ŒG;G� �2G=�3G

OO

�3G=�4G

OO

This is the lower central series of G . A group G is called n–nilpotent if �nC1G D 0.

Definition 6.2 For an abelian group A let

Lie�AD
M
n�1

Lien A

be the free graded Lie algebra on A.

Remark 6.3 The Poincaré–Birkhoff–Witt theorem [32, I.4.3] says that there is a
natural isomorphism of abelian groups

Lien.G=ŒG;G�/Š �nG=�nC1G
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for every free group G . In fact, this group is free abelian on generators given by a Hall
basis of basic commutators of weight n over the generators of G [21].

Remember that S0 denotes the category of reduced simplicial sets and sGr the category
of simplicial groups. Let GW S0! sGr be Kan’s loop group functor. We can apply the
functors from the lower central series degreewise.

Definition 6.4 Let �nW S0! S� be the functor given by

�nX D B .GX=�nC1GX / :

The functor x�nW S0! S� will be given by

x�nX D B .�nGX=�nC1GX / :

Remark 6.5 The loop group is a free simplicial group. It follows from a theorem by
Dold [13] that both functors �n and x�n preserve weak equivalences. Moreover with
Remark 6.3 we have a formula:

x�nX ' BLien.zZX /

Here zZX D ZX=Z� is the reduced free simplicial abelian group on X .

Remark 6.6 It is proved by Curtis [12] that for a simply connected space X the map

X ' BGX ! B.GX=�nGX /D �n�1X

is flog2 ng–connected where fag is the least integer � a. If X is merely connected, the
tower f�n.X /gn2N converges to the Bousfield–Kan completion Z1.X /. Compare
Remark 7.1 about the Goodwillie tower of the identity.

For n D 1 we have x�1X D B zZX . This functor is linear, because we have for all
s � 0:

�sB zZX Š zHsX

Here zH�X is the reduced singular homology of the reduced space X . More generally,
there is the following lemma.

Lemma 6.7 The functor x�n is n–excisive.

Proof Consider for free abelian groups A1; : : : ;AnC1 the cubical diagram

P .nC 1/! FrAb; S 7!
M

i2nC1�S

Ai ;
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where the maps are induced by collapsing summands. The .nC 1/–st cross effect of
the functor LienW FrAb! Ab vanishes because the associated complex

k 7!
M
jS jDk

Lien

� M
i2nC1�S

Ai

�
DWLk :

is exact. It follows that the composition

x�nX D BLien

�
zZX

�
is n–excisive.

Remark 6.8 It is not true though that the functor x�n is n–homogeneous. By Curtis’
result Remark 6.6 the tower f�ngn�0 converges to the identity on simply connected
spaces. This shows that the layers of the tower have to contribute something to the
linear part given by reduced homology zH� in order to make it up to the first derivative
of the identity given by stable homotopy �st

� .

Corollary 6.9 The functor �n is n–excisive.

Proof There is a homotopy fiber sequence

�n
! �n�1

! Bx�n

of functors. By induction the statement follows from Lemma 6.7.

7 The Goodwillie tower of the identity

We need to gather some remarks on the Goodwillie tower of the identity.

Remark 7.1 The identity functor is 1–analytic [19], which shows that its Goodwillie
tower converges on simply connected spaces to the identity. However, on connected
spaces X it converges to the Bousfield–Kan completion of X :

(2) holim
n

Pn.id/.X /' Z1X

This is proved on the last page of Arone and Kankaanrinta [3].

Definition 7.2 Let Dn.id/
�W

k S1
�

be the homotopy fiber of the map

Pn.id/
�_

k

S1

�
! Pn�1.id/

�_
k

S1

�
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in the Goodwillie tower. Then Dn.id/
�W

k S1
�
D�1En for the following spectrum�

@n.id/^
�_

k

S1

�^n�
h†n

DWEn;

where @n.id/ is the n–th derivative of the identity.

Lemma 7.3 The rational homology of En is concentrated in degree 1.

Proof There is a Serre spectral sequence:

Hi

�
†n;HQj

�
@n.id/^

�_
k

S1

�^n��
H)HQiCj .En/

The homology of †n with coefficients in a rational vector space vanishes for i > 0

and gives the formula:

HQ�En ŠHQ�
�
@n.id/

�
˝QŒ†n�HQ�

��_
k

S1

�^n�
:

The homology of
�W

k S1
�^n is concentrated in degree n. By the work of Johnson [24]

and Arone and Mahowald [4] we know that the spectrum @n.id/ is nonequivariantly
equivalent to

W
.n�1/! S1�n and so has homology concentrated in degree 1� n. So

1� nC nD 1, and the statement follows.

Lemma 7.4 The group �1Pn.id/
�W

k S1
�

is nilpotent of degree n.

Proof We can settle the case nD 1 right away:

�0�P1.id/
�_

k

S1

�
Š �1

�
�1†1

_
k

S1

�
Š Zk

Š Fk=�2Fk

In particular, this group is nilpotent of degree 1. We proceed by induction on n. From
the Goodwillie tower we have for each n� 1 the following exact sequence of groups:

�1Dn.id/
�_

k

S1

�
! �1Pn.id/

�_
k

S1

�
! �1Pn�1.id/

�_
k

S1

�

! �0Dn.id/
�_

k

S1

�
Š 0

(3)
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The last group vanishes because of Lemma 7.3. By Goodwillie’s results [20] the spaces
Dn.id/

�W
k S1

�
are infinite loop spaces and the map in the Goodwillie tower is a

principal fibration, ie there is a homotopy pullback square

Pn.id/
�W

k S1
�

//

��

�

��
Pn�1.id/

�W
k S1

�
// BDn.id/

�W
k S1

�
where BDn.id/

�W
k S1

�
is a delooping of Dn.id/

�W
k S1

�
and therefore simply con-

nected. Let

Kn D im
�
�1Dn.id/

�_
k

S1

�
! �1Pn.id/

�_
k

S1

��
:

Then the short exact sequence

0!Kn! �1Pn.id/
�_

k

S1

�
! �1Pn�1.id/

�_
k

S1

�
! 0(4)

is a central extension. It follows inductively that the group �1Pn.id/
�W

k S1
�

is
nilpotent of degree n.

Lemma 7.5 The groups �sPn.id/
�W

k S1
�

are finite for s � 2.

Proof These groups are finitely generated. So it is enough to prove that the groups
�sPn.id/

�W
k S1

�
are torsion above degree s D 1. We will prove this by induction

along the Goodwillie tower where the case nD 0 is obvious, because the space is con-
tractible. Next we know by Lemma 7.3 that the rational homology of Dn.id/

�W
k S1

�
is

concentrated in degree 1. Since Dn.id/
�W

k S1
�

is an infinite loop space, a form of the
Hurewicz theorem [33, Theorem 9.6.20] tells us that also the groups �sDn.id/

�W
k S1

�
are torsion for s > 1. The result now follows from the long exact homotopy sequence
of the Goodwillie tower.

Corollary 7.6 There is an isomorphism of groups:

�1 holim
n

Pn.id/
�_

k

S1

�
Š lim

n
�1Pn.id/

�_
k

S1

�
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Proof There is the Milnor exact sequence:

0! lim
n

1�2Pn.id/
�_

k

S1

�
! �1 holim

n
Pn.id/

�_
k

S1

�

! lim
n
�1Pn.id/

�_
k

S1

�
! 0

By Lemma 7.5 the lim1 –term vanishes.

The following conjecture is related to the vanishing of lim1 �2Pn.id/
�W

k S1
�
.

Conjecture 7.7 (Arone–Mahowald–Kuhn) For each prime p the map

�sPpn.id/.S1/.p/! �sPpn�1.id/.S1/.p/

is null for s � 2.

8 Relation to ordinary nilpotent groups

Now we can describe the relation of Gn to the set-valued theory of ordinary n–nilpotent
groups Niln , whose k –ary operations are given by the free n–nilpotent group on k

generators:
Niln.kC; 1C/D Fk=�nC1Fk

Here Fk is the free group on k generators. We can exhibit this theory by applying �0

to the theory of homotopy n–nilpotent groups. First observe that for the case nD1

the statement

�0G1.kC; 1C/D �1

�_
k

S1

�
Š Fk Š Nil1.kC; 1C/

follows from the Seifert–Van Kampen theorem. This isomorphism has an analogue for
finite n. There is a map

Fk Š �1

�_
k

S1

�
! �1Pn.id/

�_
k

S1

�
Š �0Gn.k

C; 1C/

induced by the natural transformation id! Pn.id/, which factors through

˛nW Fk=�nC1Fk ! �1Pn.id/
�_

k

S1

�
;

because the target is n–nilpotent by Lemma 7.4.
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Theorem 8.1 We have an isomorphism of groups:

˛nW Niln.kC; 1C/D Fk=�nC1Fk
Š // �1Pn.id/

�_
k

S1

�
Š �0Gn.k

C; 1C/

This induces an isomorphism of categories Niln Š �0Gn .

Proof We show first that ˛n is injective by constructing a left inverse ˇn . According
to Corollary 6.9 the functor �n is n–excisive. So there is a natural transformation
Pn.id/! �n under the identity functor. If we evaluate this diagram on

W
k S1 and

apply �1 Š �0G , we obtain a map bn making the following diagram commutative:

Fk

nC1 //

Š

��

Fk=�nC1Fk

Šfn

��

˛ntt
�1Pn.id/

�W
k S1

�
bn **

�0G
�W

k S1
�

//

66

�0

�
G
�W

k S1
�
=�nC1G

�W
k S1

��
Let ˇn D f

�1
n bn . It follows that ˇn˛nnC1 D nC1 . Since nC1 is the universal map

into an n–nilpotent group, we have ˇn˛n D id.

But the map ˛n is also surjective. Let Qn be the quotient of ˛n , ie the pointed set of
left cosets. We obtain a short exact sequence of towers:

:::

��

:::

��

:::

��
0 // Fk=�nC1Fk

˛nC1 //

��

�1Pn

�W
k S1

�
//

��

Qn
//

��

0

0 // Fk=�nFk

˛n //

��

�1Pn�1

�W
k S1

�
//

��

Qn�1
//

��

0

:::
:::

:::
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From (3) it follows that the vertical maps are surjective for n� 1. So all lim1 –terms
vanish. In the limit we obtain a short exact sequence:

0! lim
n

Fk=�nC1Fk ! lim
n
�1Pn.id/

�_
k

S1

�
! lim

n
Qn! 0

We can combine the weak equivalence (2) with the isomorphism from Corollary 7.6
to conclude that limn Qn Š �. In turn we have Qn D � for all n� 1, since all tower
maps are surjective. So each ˛n is an isomorphism.

9 Values of n–excisive functors

We will prove that functors of the form �F with F n–excisive naturally take values
in the category of homotopy n–nilpotent groups. We take this as a justification of the
usefulness of the notion of homotopy n–nilpotent groups.

We need to compose functors. But two functors F and G in F cannot be composed
directly. However, we can extend the functor F W Sfin

� ! S� to a functor S�! S� by
enriched left Kan extension. By abuse of language we will denote this functor again
by F . Then the composition F ıG is well-defined.

Observe that the functor ıGW F ! F commutes with finite limits. And there is a
functor

Pn. ıG/W F ! F ;F 7! Pn.F ıG/;

which also commutes with finite limits. The map F ! PnF induces a map

(5) Pn.F ıG/! Pn

�
.PnF / ıG

�
under F ıG .

Lemma 9.1 The map (5) is an objectwise weak equivalence.

This is proved directly by Michael Ching in [10, Proposition 6.1(1)]. It is also a
consequence of the chain rule (6) which is now a theorem by Arone and Ching [1].

For the next theorem we point out that the language of simplicial algebraic theories and
(homotopy) algebras over them makes sense in any cartesian closed symmetric monoidal
S�–model category. The category F of S�–functors from Sfin

� to S� equipped with
the categorical product as the monoidal structure is such an example.

Theorem 9.2 Let F be a functor of the form F D�G with an n–excisive functor G

in F . Then F is a homotopy Gn –algebra in F .
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Proof A homotopy Gn –algebra in F is an S�–functor Gn! F preserving products
up to weak equivalence. Given F as above we define the object function of a functor
F� W Gn! F by

kC 7! Fk
D F� .kC/:

To see that this actually yields an S�–enriched functor we observe that this is the object
function of the following composition of functors: First we take the full inclusion
functor InW Gn! F

kC 7! In.k
C/D

Y
k

�Pn.id/:

Then we precompose with G :Y
k

�Pn.id/ 7!
Y
k

�Pn.id/ ıG

Finally we apply PnW F ! F :Y
k

�Pn.id/ ıG 7! Pn

��Y
k

�Pn.id/
�
ıG

�
Note that the inclusion In as well as the functors ıG and Pn commute with products
up to weak equivalence, and the latter two functors commute both up to homotopy
with �. We compute using Lemma 9.1:

Pn

��Y
k

�Pn.id/
�
ıG

�
'

Y
k

�Pn

�
Pn.id/ ıG

�
'

Y
k

�Pn.G/' Fk

This shows at the same time that the object function of F� is part of an S�–functor
Gn! F and that this functor preserves products up to weak equivalence. Hence F� is
indeed a homotopy Gn –algebra in F .

Corollary 9.3 Let F be a functor of the form F D�G with an n–excisive functor G

in F . Then for any K in Sfin
� the space F.K/ is a homotopy n–nilpotent group.

Proof For any space K the evaluation functor EvK W F ! S� preserves products. So
the statement is a corollary of Theorem 9.2.

Work in progress [8] by the two authors shows that the converse of Corollary 9.3 is true:
one can associate to any homotopy n–nilpotent group X� an n–excisive functor F

such that F.S0/' Ev1CX� .

The following statement is also a formal consequence of Theorem 9.2.
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Corollary 9.4 Let G be a functor of the form GD�H with an n–excisive functor H

in F . Let F be an arbitrary functor in F . Then F.F;G/ is a homotopy n–nilpotent
group naturally in F and G .

Corollary 9.4 says that the full subcategory of F of functors of the form �F with
F being n–excisive is enriched over homotopy n–nilpotent groups. In particular, by
Theorem 8.1 we obtain the following statement.

Corollary 9.5 The full subcategory of the homotopy category of F given by functors
of the form �F with F n–excisive is enriched over n–nilpotent groups.

This generalizes the fact that in the case nD 1 the stable homotopy category is enriched
over abelian groups.

We would like to finish with two more examples. In work in progress [8] we are going
to study closer classifying spaces of homotopy n–nilpotent groups. This point of view
is more convenient in the following examples.

Definition 9.6 A space is called a homotopy n–nilpotent space if it is given as the
delooping or classifying space of a homotopy n–nilpotent group.

Remark 9.7 One can easily see that a homotopy n–nilpotent space is exactly a
homotopy algebra over the simplicial theory Pn given by

Pn.k
C/ WD

Y
k

Pn.id/inj
� F :

A proof will appear in [8].

Example 9.8 Let X be a pointed connected space whose homotopy groups �sX

vanish unless kC 1 � s � .nC 1/k for some n; k � 1. In the case nD 1 it follows
from the classical Blakers–Massey theorem that X ' Post2k �

1†1X . Here Posts X

denotes the s–th Postnikov section of X which preserves infinite loop spaces. Hence X

is an infinite loop spaces. For general n it follows from the generalized Blakers–Massey
theorem due to Ellis and Steiner [17] or Goodwillie [19, Theorem 2.3], that

X ' Post.nC1/k Pn.id/.X /:

By Corollary 9.3 the space Pn.id/X has a structure as homotopy n–nilpotent space.
Postnikov sections of homotopy n–nilpotent groups remain homotopy n–nilpotent
groups. This can be proved eg by observing that the Moore model for Postnikov
sections [18, VI.3.4.] commutes with products on the nose. It follows, that X can be
given the structure of a homotopy n–nilpotent space. Its loop space �X is canonically
a homotopy n–nilpotent group.
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For the next example we rely on the chain rule in Goodwillie’s calculus of homotopy
functors. Let @j F denote the j –th derivative of F at � and note that all the derivatives
@�F together form a symmetric sequence in spectra. It is known by Ching [11] that
the derivatives of the identity @� id form an operad. In [1] Arone and Ching prove that
the derivatives of any homotopy functor F in F form a left and right module over
@� id and that the canonical map

(6) @�.G ıF /' @�G ı@� id @
�F

is a weak equivalence. The circle product on the right side is induced by the composition
product of symmetric sequences. For a different approach in the spectrum-valued case
we refer to Ching [10]. A simple application is the following statement.

Corollary 9.9 Let n; k � 1. Let G!H be an n–excisive equivalence in F and F

be a functor with @j F ' � for j � k . Then the induced map

G ıF !H ıF

is an .nkC nC k/–excisive equivalence.

Example 9.10 Let F be a functor in F with @j F '� unless kC1� j � nkCnCk

for some n; k � 1. Then F factors through the category of homotopy n–nilpotent
spaces.

As in the proof of Theorem 9.2 we will use homotopy Pn –algebras in F . We note that
the s–th Goodwillie section PsL of a functor L in F remains a homotopy Pn –algebra
if L itself was one, because Ps commutes with finite homotopy limits in F by [20,
1.7.]. The map id!Pn.id/ is an n–excisive equivalence. Precomposing with F yields
an equivalence

F ! PnkCnCkF ! PnkCnCk

�
Pn.id/ ıF

�
by Corollary 9.9. By the proof of Corollary 9.3 the functor Pn.id/ ıF is a homotopy
Pn –algebra, and so is F . In particular F takes values in homotopy n–nilpotent spaces.
By looping the setup we return to homotopy n–nilpotent groups.

The case nD 1 of the previous example was proved in [2, Theorem 4.2].

Appendix A An auxiliary lemma about realizations

Let us quickly review some notions introduced by Goodwillie in [19, Definition 4.1].
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Definition A.1 A functor F in F is said to satisfy condition En.c; �/ if there exist
constants c and � both in Z and � � �1 such that for every strongly homotopy
cocartesian .n C 1/–cube C whose maps C.∅/ ! C.fsg/ are ks –connected with
ks � � the induced map

F
�
C.∅/

�
! holim

S2P0.nC1/
F
�
C.S/

�
is .�cC†ks/–connected. A functor is stably n–excisive if it satisfies En.c; �/ for
some c and � . A functor is �–analytic if there exists a constant q 2 Z such that F

satisfies condition En.n�� q; �C 1/ for all n� 1.

The first author learned the next statement from explanations of the second author
and from the unpublished version [28] of Andrew Mauer-Oats’ thesis. The published
version is [29].

Theorem A.2 Let F be a reduced finitary �–analytic functor from spaces to spaces.
If X� is a simplicial object in k –connected spaces with k � max.�;�q/ then the
canonical map

jFX�j
'
! F jX�j

is a weak equivalence.

A sketch of the proof goes as follows: First one observes that homogeneous functors
with connective coefficient spectrum commute with realizations. Then the theorem
follows by induction up the Goodwillie tower. All along one checks that the connectivity
estimates allow one to apply theorem [9, B.4] that gives sufficient conditions for the
realization functor to commute with pullbacks.
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