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Lagrangian concordance of Legendrian knots

BAPTISTE CHANTRAINE

In this article, we define the notion of a Lagrangian concordance between two
Legendrian knots analogous to smooth concordance in the Legendrian context. We
show that Legendrian isotopic Legendrian knots are Lagrangian concordant. The
focus is primarily on the algebraic aspects of the problem. We study the behavior
of the classical invariants (namely the Thurston–Bennequin number and the rotation
number) under this relation, and provide some examples of nontrivial Legendrian
knots bounding Lagrangian surfaces in D4 .

57R17; 57M50

1 Introduction

A contact structure � on a 3–manifold Y is a completely non-integrable 2–plane
field (ie it is locally defined as the kernel of a 1–form ˛ such that ˛ ^ d˛ 6D 0).
Throughout this paper Y will be oriented and the contact structure will be assumed
to be transversally orientable and positive. Transversally orientable means that the
1–form ˛ can be globally defined and the positivity condition means that ˛^ d˛ > 0

(note that this is really a condition on the contact structure and not on the 1–form
defining it).

The completely non-integrable condition implies that any surface embedded in Y

cannot be tangent to � . However many one-dimensional submanifolds tangent to �
exist. Such submanifolds are called Legendrian. A Legendrian knot in .Y; �/ is a map
 W S1 ,! Y such that for all s 2 S1;Ts .S

1/� � (this is equivalent to  �˛D 0). We
usually denote by K the image of  and call the image a Legendrian knot also. Two
Legendrian knots are Legendrian isotopic if there is a (smooth) isotopy I between
them such that I.�; t/ is a Legendrian knot for all t .

The symplectisation of a contact manifold .Y; �/ is the manifold .R � Y; d.ev˛//.
Most of the contact geometry of Y can reformulated in terms of the equivariant (or
invariant) symplectic geometry of R�Y .

The goal of this paper is to define relations on the set of Legendrian knots, namely
Lagrangian cobordism and Lagrangian concordance, and to study their properties.
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Definition 1.1 Let † be a compact orientable surface with two points p� and pC

removed. Let .u�; s/ 2 .�1;�T /�S1 and .uC; s/ 2 .T;C1/�S1 be cylindrical
coordinates around p� and pC respectively. Let � and C be Legendrian knots in
Y . Then:

(1) � is Lagrangian cobordant to C (written � �† C ) if there exists a
Lagrangian embedding

LW † ,!R�Y

such that:
� L.u�; s/D .u�; �.s//

� L.uC; s/D .uC; C.s//

(2) � is Lagrangian concordant to C if � �† C and † is a cylinder (we will
denote this particular case by � � C ).

In this paper we will mostly be concerned with Lagrangian concordance.

Our first result is the following Theorem.

Theorem 1.1 Let K� and KC be two Legendrian knots in Y and let I W S1� Œ0; 1�!

Y be a Legendrian isotopy between K� and KC . Then there exists a Lagrangian
cylinder C such that K� �C KC .

In other words, the Lagrangian concordance relation descends to the Legendrian isotopy
classes of Legendrian knots. Theorem 1.1 will be proved in Section 3.2.

The next theorem gives the relationship between the classical invariants of two Legen-
drian knots which are Lagrangian cobordant.

Theorem 1.2 If � �† C then:

r.�; ŒS �/D r.C; ŒS [†�/

tb.C/� tb.�/D��.†/

Where tb refers to the Thurston–Bennequin number and r to the rotation number.

We give a proof of Theorem 1.2 in Section 4.1.

Combining Theorem 1.2 and a Bennequin type inequality we prove, in Section 4.2, the
following theorem:
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Theorem 1.3 Let † be an oriented Lagrangian submanifold of a Stein surface such
that @† is a Legendrian submanifold K of @X . Then the following holds:

r.K; Œ†�/D 0

tb.K/D 2g.†/� 1D TB.L.K//
Furthermore, if X 'D4 with its standard Stein structure, then

g.†/D gs.L.K//;

where L.K/ is the smooth isotopy type of K , TB.L.K// is the maximal Thurston–
Bennequin number of Legendrian representatives of L.K/ and gs.L.K// is the 4–ball
genus of L.K/.

This result is the principal topological motivation for our definitions. It provides a
criterion to compute the 4–ball genus of some knots. In Section 5.1 we provide a large
class of examples where Theorem 1.3 applies.

We then conclude in Section 5.2 with some remarks and potential applications.

Addendum

Since the appearance of the first version of this paper, new developments are in prepara-
tion. Using a forthcoming result of Ekholm, Honda and Kálmán [7] we can show that
there exists concordances which do not come from Legendrian isotopy. For instance,
using their proof of the existence of a Lagrangian cobordism realizing the 1–smoothing
of crossing in the Lagrangian projection, one can easily see that the 946 knot in the
Rolfsen table admits a Legendrian representative, with maximal Thurston–Bennequin
invariant, which is the boundary of a Lagrangian disk. Hence the trivial Legendrian
knot K0 is Lagrangian concordant to this one.

In a forthcoming note we will show that this concordance is not reversible, meaning
that this knot cannot be concordant to K0 . Thus Lagrangian concordance is indeed not
a symmetric relation.
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2 Preliminaries

In this section we collect once and for all the basic facts of contact and symplectic
geometry we apply through the paper. We first consider some generalities about the
symplectisation of a contact manifold and its Hamiltonian diffeomorphism group
(Section 2.1). Then in Section 2.2 we give the facts about Legendrian knots which
will be needed later. We also give several ways to interpret the Thurston–Bennequin
number and the rotation number in our context.

But we first fix the notation we will use through the paper.

� The letter s will always refer to a parameter in S1 DR=2�Z.

� We assume that our cylinders are parametrized by f.u; s/ j u 2R; s 2R=2�Zg.

� The letter v denotes the parametrization of R in the symplectisation R�Y .

� The Reeb vector field of a contact form is the unique vector field R˛ satisfying
˛.R˛/D 1 and d˛.R˛; �/D 0.

� Since � is a symplectic vector bundle (with the form d˛ ), it admits a compatible
almost-complex structure (we always denote by J ). It extends to T .R�Y / by
setting

J
@

@v
DR˛:

� A symplectic bundle with a compatible almost complex structure is naturally
equipped with a Euclidian (respectively Hermitian) metric given by g.V;W /D

!.JV;W /. Under this context, we assume that all trivializations are orthonormal
(respectively Hermitian).

� We let h� � � iC D spanC.� � � / be the complex span of the given vectors and
h� � � i D spanR.� � � / the real span.

� We consider that .1; i; j ; k/ is the real basis of the quaternionic line H .

� The standard contact structure �0 on S3 D @D4 � C2.' H/ will be the one
defined by the complex tangencies �0;p D TpS3\ i.TpS3/. However, in order
to simplify the notation, we will sometimes use �0;p D TpS3\ j .TpS3/. We
will refer the first description as the i –convex contact structure and the second as
the j –convex one. These two contact structures are obviously contactomorphic
by a linear transformation in R4 .

� In the i –convex sphere, we usually denote by K0 the trivial Legendrian knot
given by 0.s/ D .cos s; 0; sin s; 0/. Its analogue in the j –convex sphere is
0.s/D .cos s; sin s; 0; 0/.
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2.1 Symplectisation

In this section we study some particular examples of Hamiltonian diffeomorphisms of
the symplectisation of a contact manifolds. Proposition 2.2 will be the main tool to
prove Theorem 1.1.

Let .Y; �/ be a manifold together with an hyperplane distribution � . Let X D f.p; �/ j

ker�D �pg�T �Y be the annihilator of this distribution minus the 0–section. Consider
the Liouville form � of T �Y defined as �.p;�/.V /D �p.��.V //. If we also denote
its restriction to X by � then we have the following obvious proposition.

Proposition 2.1 � is a contact structure if and only if .X; d�/ is a symplectic mani-
fold.

Under these hypothesis .X; d�/ is called the symplectisation of .Y; �/. This definition
coincides with the previous one. Indeed a contact form is nothing but a section of X

as an R�–bundle over Y and hence gives an isomorphism of .X; d�/ with .R� �
Y; d.w˛//. The positive connected component is then identified with .R�Y; d.ev˛//.

We denote by Symp.X; !/ the set of symplectomorphisms of .X; !/ and Ham.X; !/
the set of Hamiltonian diffeomorphisms. Also, we denote by Cont.Y; �/ the set contacto-
morphisms of .Y; �/. We denote the formal Lie algebra of those groups by S.X; !/ (the
time-dependent symplectic vector fields), H.X; !/ (the time-dependent Hamiltonian
vector fields) and C.Y; �/ (the time-dependent contact vector fields) respectively. More
precisely:

S.X; !/D fWt 2 �.TX / j LWt
! D 0g

H.X; !/D fWt 2 �.TX / j !.Wt ; �/D dHtg

and C.Y; �/D fVt 2 �.T Y / j LVt
˛ DR˛.˛.Vt //˛g

The choice of a contact form for a contact structure � on Y yields an isomorphism
between the algebra of time-dependent functions H W Y �R=Z!R and contact vector
fields by the following correspondence

˛.Vt /DH.�; t/(1)

dHt D dHt .R˛/˛�Vt �d˛(2)

where � denotes the inner product �W �.T Y /˝�2.Y / 7! �1.Y /. Those two equa-
tions uniquely determine a time-dependent contact vector field given a function H

and reciprocally a time-dependent contact vector field defines a contact Hamiltonian
function by the first equation.
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Recall that any diffeomorphism f of Y induces a symplectomorphism F of T �Y by
the formula F.p; �/D .f .p/; .f �1/�.�//. Moreover f is a contactomorphism if and
only F.X /DX . This implies that we have a natural homomorphism

i W Cont.Y; �/ ! Symp.X; !/
f ! F jX

which induces a homomorphism

i�W C.Y; �/!S.X; !/

(if Y is non-compact this homomorphism is still defined using local flow). With those
notations we have the following:

Proposition 2.2 im.i�/� H.X; !/ and thus

i W Cont.Y; �/! Ham.X; !/

ie the lift of a contactomorphism of Y to a symplectomorphism of the symplectisation
X is a Hamiltonian diffeomorphism.

Proof The symplectomorphism defined above is actually exact:

F�.�/.p;�/.W /D �.f .p/;.f �1/��/.F�.W //

D .f �1/��f .p/.�� ıF�.W //

D �p.f
�1
� ıf� ı��.W //D �p.��.W //

D �.p;�/.W /

For a one parameter family of contactomorphisms ft generated by a time-dependent
vector field Vt this gives

F�t .�/D �:(3)

If one sets eVt0p D
d
dt
jtDt0

Ft .p/ and differentiates Equation (3) with respect to t we
get

0D LeVt
� D d.�.eVt //C eVt �d�

) eVt �! D�d.�.eVt //

which proves that eVt is Hamiltonian.
By construction eVt D i�.Vt /.
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Hence we have the following commutative diagram

C.Y; �/exp

��

i� // H.X; !/exp

��
Cont.Y; �/ i // Ham.X; !/

(where we restrict exp to its domain of definition).

If one writes the contact vector field V as a sum HR˛CW where W 2 � (thus H is
the contact Hamiltonian function) then the Hamiltonian function generating the lifts
of the contactomorphism is given by �.V / and thus by the function et �H . A simple
computation then gives that the Hamiltonian vector field is given by

�dHt .R˛/
@

@t
CVt :

2.2 Legendrian knots

We discuss here the facts that will be needed later about Legendrian knots.

By a Legendrian isotopy from 0 to 1 we mean a smooth isotopy

I W S1
� Œ0; 1�! .Y; �/

such that

� for all t0 2 Œ0; 1�, I.�; t0/W S
1! .Y; �/ is a Legendrian knot.

� I.s; i/D i.s/; i D 0; 1.

It is well known (see Geiges [11, Theorem 2.41] for a proof) that a Legendrian isotopy
can be realized by an ambient contact isotopy, ie there exists a smooth family of
compactly supported contactomorphisms ft such that I.s; t0/D ft0

.0.s//. So any
Legendrian isotopy is realized as the evolution of the original knot along a contact
flow, the “Lie algebra” of Legendrian isotopies is then the contact vector fields along a
Legendrian knot (note here that this is not the case for Lagrangian isotopy where we
need to consider conformally symplectic fields).

To a null-homologous Legendrian knot one can associate three classical invariants:

� the smooth type of the knot

� its Thurston–Bennequin invariant

� its rotation number
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Since in the proofs of the results in the present paper we use several different descriptions
of these invariants, we describe them here.

The Thurston–Bennequin invariant To define this invariant we need an orientation
of the knot; the resulting invariant will not depend on this choice. We assume that K

is oriented by its parametrization  . We denote by � its unit positive tangent vector.

The Thurston–Bennequin invariant tbK is the homotopy class of the trivialization of
the tubular neighborhood of K given as follows: first take a vector field V along K

inside � transverse to � so that .�;V / gives the positive orientation of � and take
a vector field along K transverse to contact structure giving the positive transverse
orientation (for instance we can take tbK D .J.�/;R˛/).

If K is null-homologous we can choose a Seifert surface S for K . The surface S gives
an orthogonal trivialization of N .K/ and the difference between this one and tb is thus
an element of �1.SO.2//D Z. We can therefore assign to tb an integer (independent
of S ) which we denote by tb.K/. The number tb.K/ is therefore computed as the
intersection number between a small push off of K along R˛ and S .

Note also that .K; tbK / is a framed submanifold of Y of codimension 2. Via the
Thom–Pontryagin construction, it corresponds to a map hW Y ! S2 . Recall that this
map is defined as follows: a framing identifies a neighborhood of K with S1 �D2 .
The map from Y to S2 'D2 [ f�g projects S1 �D2 to D2 and sends everything
else to �. The choice of S gives a (framed) cobordism S0 from K to the trivial knot
(with a framing � obtained by extending the trivialization tbK to S0 ), so there is a
map h0 homotopic to h which factors through the fundamental map ŒY �W Y ! S3 .

Yh0
ŒY � //

��

S3

~~
S2

Consequently the homotopy type of h0 is characterized by a homotopy class of maps
from S3 ! S2 . Recall that the free homotopy group ŒS3;S2� is isomorphic to Z
(generated by the Hopf fibration), therefore h0 is characterized by this integer and we
claim the following:

Proposition 2.3 Let n 2 Z be the integer associated to tbK and ŒS � as above then
tb.K/D�n.

Proof We first notice that in the case of the trivial Legendrian knot K0 D fz2 D 0g

in S3 D f.z1; z2/ 2C2 'H j jz1j
2Cjz2j

2 D 1g with the j –convex contact structure,
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then tbK0
is ..iei� ; 0/; .jei� ; 0// which is the trivialization induced by the Hopf map.

In this particular case tb.K0/D�1 (by a direct computation or by Section 4.2). So
the proposition is verified in that case.

Consider now the general case where tb.K/D n. Choose a cobordism from K to K0

(K0 in a standard Darboux chart). Since tb.K/D n, the extension of the trivialization
to the cobordism gives a trivialization on K0 which is �n times the one given by tbK0

.
The Thom–Pontryagin map is thus �n times the Thom–Pontryagin map associated to
tb.K0/, which completes the proof.

Corollary 2.1 The Thurston–Bennequin number of a null-homologous Legendrian
knot in Y is completely determined by the Thom map associated to the trivialization
given by tb.K/.

Remark 2.2 If K happens to be non null-homologous we still can associate to
a framing an integer which is well defined modulo twice the divisibility of ŒK� 2
H1.Y /=torH 1.Y /. Proposition 2.3 holds also in that case.

The rotation number This number depends both on the orientation of K and on the
homology class of a Seifert surface S . The rotation number is the relative Euler class
of �jS with respect to � , r.K; ŒS �/D e.�jS ; �/ 2H 2.S; @S/. The Euler class can, in
fact, be replaced by the first Chern class since d˛j� is a symplectic form on � .

The relative Chern class can be computed as follows: consider the trivial complex line
bundle D2 �C!D2 and use the trivialization of the complex line bundle �jK given
by �.s/D @

@s
to construct a complex line bundle � 0 over S 0 WD S [D2 (identifying

� along K with 1 2 C along S1 D @D2 ). We set c1.�jS ; �/ D c1.�
0/ using the

isomorphism H 2.S; @S/'H 2.S 0/' Z.

The rotation number can be computed noticing that �jS is a complex line bundle
over S which has the homotopy type of a wedge of circles, hence �jS is trivializable
over S . Denote such an Hermitian trivialization by � W �jS ' S �C (let say given
by sections V and JV ). Then � jK is a trivialization of � along K (notice that
since K represents a product of commutators in �1.S;x0/ and since �1.U.1/; Id/ is
Abelian, the homotopy type of this trivialization does not depend on � ). With respect
to this trivialization, � becomes a loop in U.1/ and the homotopy type of this loop in
�1.U.1/; Id/' Z is exactly the rotation number.

Example Consider S3 D @D4 with its i –convex structure and KW Œ0; 2��! S3 a
Legendrian knot. We have

�.z1;z2/ D h�z2

@

@z1

C z1

@

@z2

iC:
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Hence �0 is already trivialized over S3 . So we can choose � to be this trivialization
restricted to S . It follows that

�.s/D ei�.s/.�z2

@

@z1

C z1

@

@z2

/

and therefore

r.K0/D
1

2�

Z
S1

d�:

There is a third way to compute the rotation number in terms of symplectic geometry.
Consider in the symplectisation of Y the trivial cylinder C DR�K . At any point of
X DR�Y the (symplectic) tangent space splits as

TpX D h�pi˚ h
@

@v
;R˛i:

This splitting is complex as well as symplectic as it can easily be checked. So we may
also trivialize TX jS using � . Consider K as a loop on the Lagrangian cylinder C so
that one can interprets, via our trivialization, the loop TK.s/C as a loop of Lagrangian
planes l.s/ in C2 . One can consequently associate to this loop its Maslov index
�.K;S/ D Œl.s/� 2 �1.ƒ.2/;ƒ0/ ' H 1.ƒ.2// ' Z, where we denote by ƒ.2/ the
set of Lagrangian planes in C2 . Again, note that this number does not depend on �
because K represents a product of commutator in �1.S;x0/.

A good discussion on the Maslov index can be found in Viterbo [20, Section 1]. We
discuss here the definition of the Maslov index in our particular case.

Let x D .1; 0/ and y D .0; 1/ in C2 be the image of v and @
@t

by the trivialization � ,
since the loop of Lagrangian planes is given by

TK.s/C D he
i�.s/v.s/;

@

@t
i

we have l.s/D hei�.s/ �x;yi.

Denote by ƒ0 the Lagrangian plane in C2 given by hx;yC iyi (the image under the
trivialization of hV; @

@t
CR˛i). The Maslov index of the loop is then, by definition

(see [20]), the intersection of l.s/ with the Maslov cycle

fƒ 2C2
�Lagrangian jƒ\ƒ0 6D f0gg:

These intersections arise when �.s/D 0 mod� and then the intersection form is given
by

Q.s/.x1;x2/D tan �.s/ �x2
1 Cx2

2 :
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Hence intersections are positive when � 0.s/ > 0 and negative when � 0.s/ < 0 (note
that the transversality condition is achieved assuming � 0.s/ 6D 0 at intersection points).
So we obtain the formula

�.l/D 2

Z
S1

d�

which implies �.l/D 2r.K;S/, so that

�.K;S/D 2r.K; ŒS �/:

3 Lagrangian concordance and its relation to Legendrian iso-
topy

3.1 Definition of Lagrangian concordance

Let Y be a smooth oriented 3–manifold, � a positive contact structure and .X; !/Š
.R�Y; d.ev˛// be the symplectisation of Y . We recall here the definition given in
introduction.

Definition 1.1 Let † be a compact orientable surface with two points p� and pC

removed. Let .u�; s/ 2 .�1;�T /�S1 and .uC; s/ 2 .T;C1/�S1 be cylindrical
coordinates around p� and pC respectively. Let � and C be Legendrian knots in
Y . Then:

(1) � is Lagrangian cobordant to C (written � �† C ) if there exists a
Lagrangian embedding

LW † ,!R�Y

such that:
� L.u�; s/D .u�; �.s//

� L.uC; s/D .uC; C.s//

(2) � is Lagrangian concordant to C if � �† C and † is a cylinder (we will
denote this particular case by � � C ).

The previous definition is motivated by the following: any R–invariant Lagrangian
submanifold of Y projects to a Legendrian submanifold of Y , and any Legendrian sub-
manifold lifts to an R–invariant Lagrangian submanifold. In particular any Legendrian
submanifold is Lagrangian concordant to itself.

However, for the theory of Lagrangian concordance to be more intimately related to
Legendrian knot theory, we want a relation up to Legendrian isotopy rather than a
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R�M

�

C C

�T T

�

Figure 1: A Lagrangian concordance.

relation on the Legendrian submanifolds themselves. For this we have to prove that
any Legendrian isotopy in the contact manifold Y gives rise to a Lagrangian cylinder
in the symplectisation X . The proof of this fact is the main goal of this section. But
first some remarks about the differences between the Lagrangian concordance and the
topological (smooth) concordance are in order.

Remark 3.1 In the case of a smooth concordance, the condition of symmetry needed to
obtain an equivalence relation is automatic. One simply needs to reverse the u parameter
in the embedding defining the concordance. In our case, the diffeomorphism �W X!X

sending .x; v/ to .x;�v/ is not a symplectomorphism, since ��.d.ev˛//D d.e�v˛/

and � sends parts of big volume to parts of small volume. Therefore it is not automatic
that K� is Lagrangian concordant to KC implies that KC is Lagrangian concordant
to K� . This is actually not true as mentioned in the Addendum in Introduction.

Remark 3.2 On the symplectisation X , the vector field @
@v

expands the symplectic
form ! , so that any translation of a Lagrangian submanifold along this vector field
will remain Lagrangian. This allows us to prove that � is transitive. This relation thus
resembles a partial order on set of the isotopy classes of Legendrian submanifolds.
Whether or not it is a real partial order is not clear yet and seems to be out of reach since
one must prove that � � C and C � � implies that C and � are Legendrian
isotopic.

Remark 3.3 One might be concerned by the resemblances between our relation and
the one given by Arnol 0d in [1] and [2]. We briefly recall his definition and emphasize
on the differences between this one and ours.
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Arnol 0d defined some relations on Lagrangian immersions and Legendrian submanifolds
which he called Lagrange and Legendre cobordism. For a manifold M , these relations
study exact Lagrangian immersions in T �.M � Œ0; 1�/ (or more generally in T �B

with B with non-empty boundary) which coincide on the reduced slices at 0 and 1

with some prescribed exact Lagrangian submanifolds in T �M , and respectively some
Legendrian immersion in Y �T �Œ0; 1� where Y is a contact manifold. Those relations
were symmetric and reflexive, and he defined with them some groups which were later
algebraically characterized and computed by Audin in [3]. A variation of those were
studied by Ferrand in [10] which was also characterized using a result of Fuchs and
Tabachnikov.

Despite their resemblances with the one we propose here, those relations are disjoint
from ours. For instance the embedding condition is important in our definition and
the symplectic manifold where Lagrangians are studied is different. Even in the
case where Y is the 1–Jet space of a 1–dimensional manifold M so that there is a
symplectomorphism between a compact part of the symplectisation of J 1.M / and
T �.M � Œ0; 1�/; this identification necessitates a rescaling of the cotangent fibers by
the parameter t 2 Œ0; 1�. This rescaling is a manifestation of the non-symmetry of the
relation and send trivial cylinders in our context to cylinders with different geometrical
meaning in the context of [1] and [2].

3.2 Proof of Theorem 1.1

This subsection is devoted to the proof of Theorem 1.1 which asserts that the notions of
Lagrangian concordance and cobordism are well defined on the set of isotopy classes of
Legendrian submanifolds. The main difficulty is the fact that the graph of a Legendrian
isotopy is not a Lagrangian cylinder in general. Conversely, a Lagrangian cylinder
which is the graph of a (smooth) isotopy may not be the graph of a Legendrian isotopy.

Proof of Theorem 1.1 Let ft be the compactly supported one parameter family
of contactomorphisms which realize the isotopy. Denote by H the Hamiltonian on
X 'R�Y whose flow realizes the lifts of ft as in Section 2.1.

Now define a new function H 0W R�Y � Œ0; 1�!R such that:

� H 0.v;p; t/DH.p; v; t/ for v > T

� H 0.v;p; t/D 0 for v < �T

Denote by �t its Hamiltonian flow.
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Then �1.R�KC/ coincides with R�KC near C1 and R�K� near �1. Since
R�K� is Lagrangian and �1 is a Hamiltonian diffeomorphism, it follows that �1.R�
K�/ is a concordance between K� and KC .

One might worry about the fact that we consider a vector field on a non-compact
manifold and hence the flow might not be defined, but in this case outside of a compact
set the vector field coincides with one which admits a flow (by its very construction)
then so does our new vector field.

Remark 3.4 This proof appears to be really simple once Proposition 2.2 is proved.
Furthermore we have lots of freedom on the value of the function H 0 , for example we
could choose H 0.v;p; t/D �T .t/ �H.v;p; t/ where �T is 0 on .�1;�T / and 1 on
.T;C1/, increasing on Œ�T;T � and with small higher order derivatives. For large T

this gives, from the point of view of the author, the best concordance for keeping track
of the information from the original isotopy. One might be able to compute holomorphic
curves with boundary on those cylinders with a conveniently chosen almost complex
structure. The naive one, ��

1
.J / for R–invariant J , is however not admissible for

Legendrian contact homology purpose since it is, in general, not admissible at infinity.

4 Properties

In this section we discuss the algebraic properties of the Lagrangian concordance. We
then discuss the case of Lagrangian surfaces in some fillings with Legendrian boundary
and deduce a criterion to compute in some case the slice genus of knots.

4.1 Behavior of the classical invariants under Lagrangian cobordisms

The aim of this section is to prove Theorem 1.2.

Proof of Theorem 1.2 For the invariance of the rotation number just note that �

and C are homologous on †. Since † is a Lagrangian surface, the loops l�.s/ and
lC.s/ of Section 2.2 are homologous in H 1.ƒ.2//. Hence we have that �.�;S/D
�.C;S [ Œ†�/. The discussion of Section 2.2 therefore implies the first part of the
theorem.

For the behavior of the Thurston–Bennequin number, recall that multiplication by J

will send tangent vectors to a Lagrangian surface to normal ones. On † take the vector
field rf (for the !–compatible metric) where f is the height function shown in
Figure 2. It has ��.†/ zeros of index �1 and coincides with @

@ui (ui D uC or u� )
around the punctures. Hence any nowhere vanishing vector field V extending @

@uC
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around the first puncture will have winding number �.†/ with respect to @
@u�

around
the second one.

Since, by definition, around the puncture @
@ui is sent by dL to @

@v
and since J @

@v

is R˛ we have that .JV 0;W / (where V 0 is the image of V under dL and W is a
positive orthogonal to JV 0 in N.†/) is then a framed cobordism from .K�;� tbK�/

to .KC; �/ where � differs from � tbKC by �.†/ twists.

f

rf

Figure 2: Height function on † .

As a corollary, one concludes:

Corollary 4.1 If � � C with cylinder C then:

r.�; ŒS �/D r.C; ŒS [C �/

tb.�/D tb.C/

Remark 4.2 An examination of Gromov–Lees theorem (Lees [16], Eliashberg and
Mishachev [8, Theorem 16.3.2]) in this context together with the discussion of Section
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2.2 gives that the rotation number is the only obstruction to the existence of immersed
Lagrangian surfaces in the symplectisation between two Legendrian knots. The behavior
of the Thurston–Bennequin invariant is a manifestation of the embedding condition.

Remark 4.3 Theorem 1.2 implies that, unlike in the smooth case, the study of the
general cobordism relation is interesting. It will be further investigated by Ekholm,
Honda and Kálmán in [7].

4.2 Lagrangian surfaces in Stein filling

The question of Lagrangian concordance naturally leads to the question of whether or
not a Legendrian knot bounds a Lagrangian surface in a symplectic filling.

Let us first study the trivial example which will be relevant later.

consider in D4 �C2 'H the disk D2 D fz1 D 0g, which is a holomorphic disk for
the standard Kähler structure (namely multiplication by i ). If we change the Kähler
structure by an orthogonal one (eg multiplication by j ), this disk turns out to be a
Lagrangian one. Now consider K0 D @D

2 � S3 , it is a trivial knot in the 3–sphere
(actually this is a fiber of the Hopf fibration) which turns out to be Legendrian for the
j –convex contact structure �0 . We will argue below that for this knot

r.K/D 0 and tb.K/D�1D TB.L0/

where L0 is the smooth isotopy class of the trivial knot and TB.L/ denote the maximal
Thurston–Bennequin number among the Legendrian representatives of a knot type L.

Going back to the general case, through the discussion X will be a Stein surface with
boundary Y endowed with the contact structure � induced by complex tangencies
(which is well-known to be tight) and L will be the smooth isotopy class of a knot.

Suppose that there is an oriented Lagrangian surface LW † ,!X whose boundary is a
Legendrian knot K 2 L. Then Lisca and Matić’s adjunction inequality ([17], and [19]
for X DD4 ) gives:

tb.K/Cjr.K; Œ†�/j � ��.†/D 2g.†/� 1

Note that tb.K/ and r.K; Œ†�/ are numbers associated to † as in Section 2.2.

We can use Gompf’s surgery description [12] to produce a new Stein manifold diffeo-
morphic to

X.K/ WDX.K; tb.K/� 1/DX tD2
�D2=ff .S1

�D2/�N .K/g

where f is the surgery map associated to the framing tb.K/� 1.
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The Kähler structure on X.K/ is the one induced by X and D2 �D2 as a subset of
R2˚ iR2 . Now D2 � f0g is a Lagrangian disk which we use to cap off † so that
we get a closed Lagrangian surface †0 inside X.K/ (notice that it is smooth since
the Maslov indices of K on † and on D2 are equal to zero, see [15, Lemma 2]). Its
self-intersection is consequently:

†0 �†0 D 2g.†0/� 2D 2g.†/� 2

However the surgery description also tells us that:

†0 �†0 D tb.K/� 1

Combining these formulas and Lisca–Matić’s formula we therefore get

2g.†/� 1D tb.K/� 2g.S/� 1� jr.K; ŒS �/j

where S is any surface in the same homology class as †.

Therefore we get that g.†/ is minimal in its homology class, tb.K/D 2g.†/� 1 and
r.†/D 0 which proves Theorem 1.3.

Intuitively, one can therefore think of Legendrian knots bounding orientable Lagrangian
surfaces as being maximal for the Thurston–Bennequin invariant and, above all, for the
partial ordering given by Lagrangian concordances.

Remark 4.4 One knows lots of knots yielding examples where Lisca–Matić’s in-
equality is not sharp (eg negative torus knots, connected sum of torus knots, etc).
Consequently, by the previous proposition, such knots cannot bound orientable La-
grangian surfaces in D4 .

Remark 4.5 Note that knots K such that the trivial knot K0 is Lagrangian cobordant
to K are exactly those which bound a Lagrangian surface in D4 since we can patch
the Lagrangian disk described at the beginning of the section.

5 Applications and Remarks

In this final section we provide some examples of Lagrangian surfaces bounding
Legendrian knots. Those examples lead to some canonical Legendrian representatives
of algebraic knots with maximal Thurston–Bennequin number. In the second part of the
section, we make a few more remarks about Lagrangian concordances of Legendrian
knots, work to be done in the future by the author.
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5.1 Algebraic Legendrian knots

Let P W C2!C be an irreducible polynomial such that P .0; 0/D 0 and 0 is a critical
value of P with .0; 0/ as isolated critical point. The intersection

K D P�1.0/\S3
� ;

for small � , is a knot (since P is irreducible). Knots arising this way are called
algebraic.

The manifold S3
� �K may be given the structure of a fibration over S1 via Milnor’s

construction

f .z1; z2/D
P .z1; z2/

jP .z1; z2/j

and the same holds for D4
� �P�1.0/. The fiber of the first fibration is called the Milnor

fiber of the singularity and is a Seifert surface for K . One way to formulate the local
Thom conjecture is to say that this Seifert surface is genus minimizing in D4 . Notice
that the genus of the fiber of f is given as the genus of P�1.ı/\D4

� for any regular
value ı of P (see Milnor [18, Theorem 5.11]). The aim of this section is to show that
we can find a canonical Legendrian representative of an algebraic knot together with a
Lagrangian surface bounded by it.

On C2'H we will consider the Kähler structure given by multiplication by j (instead
of i ) giving the j –convex structure on S3 . Consider ı close to 0 a regular value of P

and P jS3
�

for any � sufficiently small. Since the structure induced by j is orthogonal to
the one induced by i and †DP�1.ı/\D4

� is an i –complex curve, † is a Lagrangian
surface for the symplectic structure we have chosen. However the knot †\S3

� will
never be Legendrian for the contact structure induced by the j –complex tangencies
(except for the trivial polynomial, giving K0 ). However we have a little more freedom
on the contact structure we might choose then. Any Liouville vector field V transverse
to S3

� will give a contact form ˛V D i�.V �!/ whose kernel will be a contact structure
isotopic to �0 and for which .D4

� ; !0/ will be a Stein filling. So we are done if we
can find such a vector field making K Legendrian.

By Cartan’s formula, Liouville vector fields are dual to primitives of !0 and since
there is a “canonical” primitive to !0 (given by @

@r
) we have that Liouville vector

fields are dual to exact forms. We denote by Vf the dual to the exact form df (so
!.Vf ;W /D �.W /C df .W /). We seek then a function f such that:

(1) !0.Vf ; P /D 0

(2) g.Vf ;
@
@r
/ > 0
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Let  be a parametrization of K . For 1 we deduce �. P /C df . P /D 0. And so

f . .s0//D�

Z s0

0

�. P .s//ds:

This is a well defined function on K since � is closed on † and K is null-homologous
on †.

We now need to see that we can extend this function to D4 with the only restriction
given by 2. This restriction read as:

�.R˛/C df .R˛/ > 0

Thus to take such an extension we just need to verify that if r.t/ is a trajectory of the
Reeb flow starting and finishing on K we have that

R
�. Pr.t//dt >f .r.0//�f .r.t1//DR r.t1/

0 �. P .s//ds . Hence we have to see that:Z
r

� >

Z
 0
�

Where  0 parametrizes a piece of K between r.0/ and r.t1/.

However note that the Reeb flow is given by j –complex lines L in H (and so real
lines for the complex structure i ) and that P�1.0/\L, if not only f0g, have to be
diffeomorphic to cone over the intersection points K \L (because the singularity
P�1.0/ has the smooth type of the cone over K , see [18, Theorem 2.10]). So the arc
on K starting at r.0/ and ending at r.t1/ bounds a piece of disk on † and the arc r.t/

bounds a piece of disk on L and those two disks meet at this cone to form a piecewise
smooth disk D (see Figure 3). Since one piece of D is symplectic and the other one is

 0 P�1.0/

r

L

Figure 3: Cone over a Reeb chord.
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Lagrangian we have:

0<

Z
D

! D

Z
r

� �

Z
 0
�

Taking ı small enough does not change this property.

We have then proved that Kı is Legendrian for a contact structure isotopic to the
standard one which admits a symplectic filling and a Lagrangian surface bounding it.
Using Theorem 1.3, we have therefore proved:

Theorem 5.1 Let K1 be an algebraic knot with Milnor fiber †DP�1.ı/\D4 . Then:

(i) There exists a contact structure on the sphere fillable by .D4; !0/ such that its
intersection with † is a Legendrian representative K of L.K1/.

(ii) The Legendrian representative K satisfies:
� TB.L.K//D tb.K/D 2gs.K1/� 1

� r.K; †/D 0

(iii) The 4–ball genus gs.K1/ of K1 is g.†/.

Remark 5.1 Since the contact structure in Theorem 5.1 is isotopic to the standard one,
one can actually see a Legendrian representative of L.K1/ directly inside .S3; �0/

with a Lagrangian surface in D4 whose boundary is this representative.

Remark 5.2 The computation of TB.L/ in (ii) is a classical result of Bennequin,
see [4]. Part (iii) is known as the local Thom conjecture proved by Kronheimer and
Mrowka in [14] as we have shown that the Milnor fiber is genus minimizing among all
surfaces in D4 bounded by K .

5.2 Concluding Remarks

Recall that a topological knot type is Legendrian simple if the Legendrian isotopy
classes are classified by the Thurston–Bennequin and rotation number. From Section
4.1 and Section 3 we conclude the following corollary.

Corollary 5.3 If L is a Legendrian simple knot type, then any two Legendrian repre-
sentatives of L are Lagrangian concordant iff they are Legendrian isotopic.

There is also an obvious relation between Lagrangian concordance and Legendrian
contact homology. Following Bourgeois [5] we see that a Lagrangian cylinder between
two Legendrian knots could be used to define a map between the algebras CH.KC/

and CH.K�/ (see Ekholm, Etnyre and Sullivan [6]). We, however, will not give a
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more detailed description of this map for two reasons. First, we have not computed
this map for a nontrivial cylinder yet. Moreover Tamás Kálmán already gave, in [13], a
combinatorial map in contact homology for Legendrian isotopies. So before enlarging
our current article, we plan to do two things: give a nontrivial example of such a map,
and hopefully be able to compare this map with the one of [13] when the cylinder is
constructed as in Section 3.

From the result of Section 4.1 we know that on an immersed Lagrangian cylinder be-
tween two Legendrian knots, the difference between the Thurston–Bennequin numbers
is an obstruction to suppress the double points of the immersion. Suppose that an
immersed Lagrangian cylinder is obtained from an embedded cylinder (not Lagrangian).
Then the double points of this immersion arise in pairs with opposite signs. To double
points of this kind one can associate another algebraic invariant: the Maslov index of
the pair �.x;y/. We expect this number to be related to the difference of the Thurston–
Bennequin numbers. In the case where we actually have an embedded Lagrangian
cylinder between two Legendrian knots and perturb it to obtain an immersion with
two transverse double points, then the Maslov index of this pair of points is equal
to 1 (compare Lalonde [15]). We therefore wish to formulate the following “vague”
conjecture:

Conjecture 5.4 Let C be an immersed Lagrangian cylinder obtained by a deformation
of a smooth concordance between two Legendrian knots, and let fxi ;yig; i 2 f1 � � � kg

be cancelable pairs of double points together with ui 2 �2.xi ;yi/ some Whitney disks
(these exist by the hypothesis that the pairs are cancelable). Then

†k
iD1.�.xi ;yi ;ui/� 1/D tb.KC/� tb.K�/:

We finish the paper by proving one last result concerning the behavior of Lagrangian
concordance under stabilization. We recall that the stabilization SC or S� of any
Legendrian knot K can be defined (see Etnyre and Honda [9]) by the operation
which consists of exchanging an arc  of K (in its standard neighborhood) in the
way described by Figure 4. Now suppose that we have a Lagrangian concordance
C between K0 and K1 and fix a neighborhood N of C symplectomorphic to the
symplectisation of the standard neighborhood of K0 . Then replacing R� by the band
R � S .C;�/. / gives a Lagrangian concordance S .C;�/.C / between the stabilized
knots. Hence:

Proposition 5.1 If C be a Lagrangian concordance from K� to KC then, S .C;�/.C /

is a concordance between S .C;�/.K�/ and S .C;�/.KC/:
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SC

S�

SC. /

S�. /

Figure 4: Front projection of the stabilization of a Legendrian knot.
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