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Nerves and classifying spaces for bicategories

PILAR CARRASCO

ANTONIO M CEGARRA

ANTONIO R GARZÓN

This paper explores the relationship amongst the various simplicial and pseudosim-
plicial objects characteristically associated to any bicategory C . It proves the fact
that the geometric realizations of all of these possible candidate “nerves of C ” are
homotopy equivalent. Any one of these realizations could therefore be taken as the
classifying space BC of the bicategory. Its other major result proves a direct extension
of Thomason’s “Homotopy Colimit Theorem” to bicategories: When the homotopy
colimit construction is carried out on a diagram of spaces obtained by applying the
classifying space functor to a diagram of bicategories, the resulting space has the
homotopy type of a certain bicategory, called the “Grothendieck construction on the
diagram”. Our results provide coherence for all reasonable extensions to bicategories
of Quillen’s definition of the “classifying space” of a category as the geometric
realization of the category’s Grothendieck nerve, and they are applied to monoidal
(tensor) categories through the elemental “delooping” construction.

18D05; 55U40

1 Introduction and summary

Higher-dimensional categories provide a suitable setting for the treatment of an extensive
list of subjects with recognized mathematical interest. The construction of nerves
and classifying spaces of higher categorical structures, and bicategories in particular,
discovers ways to transport categorical coherence to homotopical coherence and it
has shown its relevance as a tool in algebraic topology, algebraic geometry, algebraic
K–theory, string theory, conformal field theory and in the study of geometric structures
on low-dimensional manifolds.

This paper explores the relationship amongst the various simplicial and pseudosimplicial
objects that have been (or might reasonably be) functorially and characteristically
associated to any bicategory C . It outlines and proves in detail the far from obvious
fact that the geometric realizations of all of these possible candidate “nerves of C ” are
homotopy equivalent. Any one of these realizations could therefore be taken as the
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classifying space BC of the bicategory. Since this result quite reasonably extends, to
bicategories, Quillen’s definition [35] of the “classifying space” of a category such
as BNC , the geometric realization of the category’s Grothendieck nerve, and given
that monoidal (tensor) categories may be identified with bicategories having a single
object, the paper may quite possibly be of special interest to K–theorists as well as to
researchers interested in homotopy theory of higher categorical structures. Moreover,
the other nonelementary result of the paper gives and nontrivially proves a direct
extension of Thomason’s “Homotopy Colimit Theorem” [43] to bicategories: When
the homotopy colimit construction is carried out on a diagram of spaces obtained by
applying the classifying space functor to a diagram of bicategories, the resulting space
has the homotopy type of a certain bicategory called the “Grothendieck construction on
the diagram”. Notice that, even in the case where the diagram is of monoidal categories
and monoidal functors, the Grothendieck construction on it turns out to be a genuine
bicategory. Hence, the reader interested in the study of classifying spaces of monoidal
categories can find in the above fact a good reason to also be interested in the study of
classifying spaces of bicategories.

There is a miscellaneous collection of ten different “nerves” for a bicategory C discussed
in the paper, each with a particular functorial property. All these nerves occur in a
commutative diagram

(A)

NC

��
�O
�O
�O

{{ {;
{;
{;
{;
{;

###c
#c
#c
#c
#c

�C �uCoo S Coo // xruC // xrC

�C

OO

�uCoo

OO

ruC

OO

// rC;

OO

in which the arrows written as ! denote simplicial maps (those in the bottom row) or
simplicial functors (all the others), whereas those written as  are pseudosimplicial
functors.

In the diagram, NCW �op Cat is the pseudosimplicial category whose category of
p–simplices is

NCp D

G
.x0;:::;xp/2ObCpC1

C.x1;x0/� C.x2;x1/� � � � � C.xp;xp�1/;

where C.x;y/ denotes the hom-category of the bicategory C at a pair of objects
.x;y/. The face and degeneracy functors are defined in the standard way by using
the horizontal composition and the identity morphisms of the bicategory, and the
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natural isomorphisms didj Š dj�1di , etc, being given from the associativity and unit
constraints of the bicategory. Therefore, when a category C is considered as a discrete
bicategory, that is, where the deformations (2–cells) are all identities, then NC D NC ,
the usual Grothendieck’s nerve of the category. This Cat–valued “pseudosimplicial
nerve” of a bicategory is explained in some detail in Section 3 of the paper, and
its realization is taken as the “classifying space” BC of the bicategory. Since the
horizontal composition involved is in general neither strictly associative nor unitary,
NC is not a simplicial category. Consequently, we are, unfortunately, forced to deal
with defining the geometric realization of what is not simplicial but only “simplicial up
to isomorphisms”. Indeed, as we review in the preliminary Section 2, this has been
done by Segal, Street and Thomason using some of Grothendieck’s methods, but the
process is quite indirect and the CW–complex BC thus obtained has little apparent
intuitive connection with the cells of the original bicategory C .

However, the rest of the nerves in the diagram above do not have these simplicial
defects caused by the lack of associativity or unitary properties of the horizontal
composition in the bicategory. To refer briefly to some of them here, say that, for
example, �uCW �op ! Set and ruCW �op ! Set are the nerves of the bicategory
introduced by Street in [41] and Duskin in [15]. These are genuine single simplicial
sets, termed here the “unitary geometric nerves” of the bicategory. As observed by
Duskin (see also Gurski [23], for an interesting new approach), both �uC and ruC
completely encode all the structure of the bicategory and, furthermore, there is a
pleasing geometrical description of their simplices: a p–simplex of �uC (resp. of
ruC ) is geometrically represented by a diagram in C with the shape of the 2–skeleton
of an oriented affine standard p–simplex, whose faces are triangles

+ yFi;j ;k

Fj
Fi;j

}}
Fi Fk

Fj ;k
aa

Fi;k

oo
* yFi;j ;k

Fj
resp. Fi;j

}}
Fi Fk

Fj ;k
aa

Fi;k

oo

with objects (0–cells) Fi placed on the vertices, 0 � i � p , morphisms (1–cells)
Fi;j W Fj ! Fi on the edges, 0 � i < j � p , and yFi;j ;k W Fi;j ıFj ;k ) Fi;k (resp.
yFi;j ;k W Fi;k ) Fi;j ıFj ;k ) deformations (2–cells) in C , for 0� i < j < k � p .

The other two simplicial sets in the diagram, �CW �op ! Set and rCW �op ! Set,
here termed “geometric nerves” of C , are respective nonnormalized versions of the
above unitary ones by Street and Duskin. And the remaining five “nerves” in the
diagram associate to every bicategory C simplicial objects in Cat: Those called its
“unitary categorical geometric nerves”, which are those denoted by �uC and xruC , its
“categorical geometric nerves”, denoted by �C and xrC , and its “Segal nerve”, written
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as SC , respectively. As we will prove, all these are “special” simplicial categories, in
the sense that the Segal projection maps on them induce homotopy equivalences on
classifying spaces [37; 43]. Furthermore, the latter, SC , is a weak 2–category in the
sense of Tamsamani [42] and Simpson [38], that is, the Segal projection maps on it are
surjective equivalences of categories as observed by Lack and Paoli in [29] (where SC
is called the “2–nerve of C ”, but this may be confusing terminology since, for example,
the unitary geometric nerve �uC of a 2–category C is also called the “2–nerve of C”
in Worytkiewicz et al [46]).

Our first major result with this work states and proves that:

Theorem 6.1 For any bicategory C , all the continuous maps in the diagram

BC

��zz $$
B�C B�uCoo BSCoo // BxruC // BxrC

B�C

OO

B�uCoo

OO

BruC

OO

// BrC;

OO

induced by (A) on classifying spaces, are homotopy equivalences.

Many properties of the classifying space construction for bicategories, C 7! BC , may
be easier to establish depending on the nerve used for realizations. For example, in
what is our second main result, we deal with the homotopy theory of diagrams of
bicategories and homomorphisms CW I op! Bicat. Following Grothendieck [21], we
show the existence of a “bicategorical Grothendieck construction”

R
IC; that suitably

assembles all bicategories Ci , i 2 Ob I , and whose classifying space B
R

IC can be
thought as the homotopy colimit of the diagram of spaces i 7! BCi , as we prove by
using geometric nerves for realizing classifying spaces of bicategories. More precisely,
we prove the following:

Theorem 7.3 Suppose a category I is given. For every functor CW I op!Bicat, there
exists a natural weak homotopy equivalence of simplicial sets

�W hocolimI�C �!�
R

IC;

where �CW I op! Simpl:Set is the diagram of simplicial sets obtained by composing
C with the geometric nerve of bicategories functor.
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We should stress that, regarding any category as a discrete bicategory, the above weak
equivalence � for diagrams of categories CW I op!Cat just gives the weak equivalence
shown by Thomason in his well-known Homotopy Colimit Theorem [43]. However, our
proof that � is a weak homotopy equivalence follows different lines than Thomason’s.

The plan of this paper is, briefly, as follows. After this introductory Section 1, the
paper is organized in six sections. Section 2 aims to make this paper as self-contained
as possible; hence, at the same time as we fix notation and terminology, we also
review some necessary aspects and results from the background of simplicial sets,
homotopy theory of categories and bicategories. However, the material in Section 2
is quite standard, so the expert reader may skip most of it. In Section 3, we use
Jardine’s supercoherence theorem [25] to introduce the pseudosimplicial nerve NC
of a bicategory and then Thomason’s theory on lax-diagrams of categories define its
classifying space BC . Sections 4 and 5 are dedicated to describing the remaining
nerves of a bicategory discussed in the paper as well as the simplicial maps, functors
or pseudofunctors that connect to each other. In Section 6, we include our main result
on the homotopy invariance of all the different nerves of a bicategory, and the final
Section 7 mainly contains our homotopy colimit theorem for diagrams of bicategories.

Acknowledgements This work was partially supported by DGI of Spain and FEDER
(Project: MTM2007-65431); Consejerı́a de Innovacion de J. de Andalucı́a (P06-
FQM-1889); MEC de España, “Ingenio Mathematica(i-Math)” No. CSD2006-00032
(consolider-Ingenio 2010).

2 Preliminaries

In this preliminary section we review, without any claim to originality, some standard
constructions and well-known basic facts mainly concerning nerves and classifying
spaces of (small) categories. In Section 2.4, we fix some terminology and notational
conventions on bicategories that for some readers may be idiosyncratic.

2.1 Some facts concerning simplicial sets

Hereafter, we shall regard each ordered set Œn� D f0; 1; : : : ; ng as the category with
exactly one arrow j ! i if i � j . Then, a nondecreasing map Œn�! Œm� is the same
as a functor, so that we see �, the simplicial category of finite ordinal numbers, as a
full subcategory of Cat, the category (actually the 2–category) of small categories.

The category of simplicial sets, that is, the category of functors S W �op! Set, where
Set is the category of sets, is denoted by Simpl:Set. The simplicial standard n–simplex
�Œn�D Hom�op.�; Œn�/ is the obvious representable functor, as usual.
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Recall that the category � is generated by the injections d i W Œn�1�! Œn� (cofaces), 0�

i�n, which omit the i –th element and the surjections si W ŒnC1�! Œn� (codegeneracies),
0 � i � n, which repeat the i –th element, subjet to the well-known cosimplicial
identities: dj d i D d idj�1 if i < j , etc. Thus, in order to define a simplicial object
in a category E , say S W �op! E , it suffices to give the objects (of n–simplices) Sn ,
n� 0, together with morphisms

di D .d
i/� D S.d i/W Sn! Sn�1; 0� i � n .the face operators/;

si D .s
i/� D S.si/W Sn! SnC1; 0� i � n .the degeneracy operators/;

satisfying the well-known basic simplicial identities: didj D dj�1di if i < j , etc.
A simplicial morphism f W S ! S 0 is just a natural transformation from S to S 0 ; it
then consists of a family ffnW Sn ! S 0n; n � 0g of arrows in E that commute with
the face and degeneracy operators. If f;gW S ! S 0 are simplicial morphisms, then a
simplicial homotopy H W f ) g is a system fHmW Sn! S 0

nC1
; 0�m� ng of arrows

in E that satisfies the set of homotopy identities described, for example, in May [31,
Definition 5.1].

Segal’s geometric realization [36] of a simplicial (compactly generated topological)
space S W �op!Top is denoted by BS . This construction is functorial and any simpli-
cial homotopy H W f ) g , between simplicial space maps f;gW S ! S 0 , determines
a homotopy BH W Bf ) Bg [32, Corollary 11.10]. For instance, by regarding a set as
a discrete space, the (Milnor’s) geometric realization of a simplicial set S W �op! Set
is BS . If f;gW S ! S 0 are simplicial maps, between simplicial sets, then a simplicial
homotopy H W f ) g amounts to the same thing [31, Proposition 6.2] as a simplicial
map H W S ��Œ1�! S 0 making this diagram commutative:

S ��Œ0�

1�d1

��

Š S
f

��
S ��Œ1�

H // S 0:

S ��Œ0�

1�d0

OO

Š S

g

@@

A weak homotopy equivalence of simplicial sets is a simplicial map whose geomet-
ric realization is a homotopy equivalence or, equivalently, induces isomorphisms in
homotopy groups.
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A bisimplicial set is a functor S W �op ��op! Set. This amounts to a family of sets
fSp;qI p; q � 0g together with horizontal and vertical face and degeneracy operators

SpC1;q Sp;q

sh
ioo

dh
i // Sp�1;q; Sp;qC1 Sp;q

sv
joo

dv
j // Sp;q�1;

with 0 � i � p and 0 � j � q respectively, such that, for all p and q , both Sp;�

and S�;q are simplicial sets and the horizontal operators commute with the vertical
ones. Note that, on the one hand, any bisimplicial set S provides two simplicial
objects in the category of simplicial sets: the horizontal one ShW Œp� 7! Sp;� and the
vertical one SvW Œq� 7!S�;q . Then, by taking realization, S gives rise to two simplicial
spaces BShW Œp� 7! BSp;� and BSvW Œq� 7! BS�;q , respectively. On the other hand, by
composing with the diagonal functor diagW �op!�op��op , the bisimplicial set S also
provides another simplicial set diagS W Œn� 7!Sn;n , whose face and degeneracy operators
are given in terms of those of S by the formulas diDdh

i dvi and siD sh
i svi , respectively.

It is known (eg [35, Lemma in page 86]) that there are natural homeomorphisms

(1) BBSh
Š BdiagS Š BBSv:

It is a relevant fact that, if f W S! S 0 is a bisimplicial map such that the induced maps
fp;�W Sp;�! S 0p;� (resp. f�;qW S�;q! S 0�;q ) are weak homotopy equivalences for all
p (resp. q ), then so is the map diagf W diagS ! diagS 0 (see Bousfield and Kan [4,
Chapter XII, 4.2 and 4.3] or Goerss and Jardine [19, IV, Proposition 1.7], for example).

We shall also use the bar construction on a bisimplicial set SW S , also called its codiag-
onal or total complex. Let us recall that the functor

SW W Bisimpl:Set! Simpl:Set

is the right Kan extension along the ordinal sum functor ���! �, .Œp�; Œq�/ 7!
ŒpC 1C q�. For any given bisimplicial set S , SW S can be described as follows [1,
Section III]: the set of p–simplices of SW S is�

.t0;p : : : ; tp;0/ 2

pY
mD0

Sm;p�m

ˇ̌̌
dv0 tm;p�m D dh

mC1tmC1;p�m�1; 0�m< p

�
and, for 0� i � p , the faces and degeneracies of a p–simplex are given by

di.t0;p : : : ; tp;0/D .d
v
i t0;p; : : : ; d

v
i ti�1;p�iC1; d

h
i tiC1;p�i�1; : : : ; d

h
i tp;0/;

si.t0;p : : : ; tp;0/D .s
v
i t0;p; : : : ; s

v
0 ti;p�i ; s

h
i ti;p�i ; : : : ; s

h
i tp;0/:

For any bisimplicial set S , there is a natural weak homotopy equivalence [13; 14]

(2) ˆW diag S ! SW S;
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which carries a p–simplex tp;p 2 diag S to

ˆtp;p D
�
.dh

1 /
ptp;p; .d

h
2 /

p�1dv0 tp;p; : : : ; .d
h
mC1/

p�m.dv0 /
mtp;p; : : : ; .d

v
0 /

ptp;p

�
:

2.2 The classifying space of a small category

In Quillen’s development of K–theory, the higher K–groups are defined as the homo-
topy groups of a topological classifying space, BC , functorially associated to a small
category C , the geometric realization of its so-called nerve (see Grothendieck [21]).
This nerve is a simplicial set encoding the structure of the category in terms of its
faces and degeneracies, and it can be easily described by means of two isomorphic
constructions:

On one hand, the nerve of a category C can be defined as the simplicial set

(3) NCW �op
�! Set;

whose set of p–simplices

(4)
NCp D

G
.x0;:::;xp/2ObCpC1

C.x1;x0/� C.x2;x1/� � � � � C.xp;xp�1/;

NC0 D Ob C;

consists of length p sequences of composable morphisms in C

x0 x1
u1oo � � �

u2oo xp
upoo :

The face and degeneracy operators are defined by the well-known formulas:

(5)
di.u1; : : : ;up/D

8<:
.u2; : : : ;up/ if i D 0;

.u1; : : : ;ui uiC1; : : : ;up/ if 0< i < p;

.u1; : : : ;up�1/ if i D p;

si.u1; : : : ;up/D .u1; : : : ;ui ; 1xi
;uiC1; : : : ;up/:

On the other hand, let

(6)
�CW �op �! Set;

Œp� 7! Func.Œp�; C/;

be the simplicial set whose p simplices are the functors F W Œp�! C or, equivalently,
tuples of arrows in C

F D . Fj
Fi;j // Fi /0�i�j�p

such that Fi;j Fj ;k D Fik , for i � j � k and Fi;i D 1Fi .
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As there is quite an obvious simplicial isomorphism

(7)
�C Š NC;

F 7! . F0 F1
F0;1oo � � �

F1;2oo Fp
Fp�1;poo /

both simplicial sets �C and NC are usually identified, and hereafter we will also do
so. However, note that �C has a more pleasing geometric interpretation than NC ,
since a p–simplex of �C can be thought of as the 1–skeleton of an oriented standard
p–simplex with objects Fi of C placed on the vertices and arrows Fi;j W Fj ! Fi

placed on the edges for 0� i < j � p , and the requirement that every triangle

Fj Fi;j

""
Fk

Fi;k

//

Fj ;k <<

Fi

be commutative.

For instance, note that NŒn�Š�Œn� is the simplicial standard n–simplex, and BŒn�D�n

is the standard n–dimensional affine simplex. When a monoid (or group) M is
regarded as a category with only one object, then BM is its classifying space in the
traditional sense. Therefore, many weak homotopy types thus occur, since every path-
connected space has the weak homotopy type of the classifying space of a monoid [16,
Theorem 3.5]. Moreover, any CW–complex is homotopy equivalent to the classifying
space of a small category, as Quillen showed [35]: The category of simplices

R
�S ,

of a simplicial set S , has as objects pairs .p;x/ where p � 0 and x is a p–simplex
of S ; and arrow ˛W .p;x/! .q;y/ is an arrow ˛W Œp�! Œq� in � with the property
x D ˛�y . Then there exists a homotopy equivalence jS j ' B

R
�S between the

geometric realization of S and the classifying space of
R
�S (this result is, in fact,

a very particular case of the homotopy colimit theorem of Thomason [43]). If X

is any CW–complex and we take S D SX , the total singular complex of X , then
X ' jSX j ' B

R
�SX .

The nerve construction on categories gives a fully faithful functor, embedding the
category Cat into the category of simplicial sets. Moreover, this functor obviously
commutes with products and, as pointed out by Segal [36, Proposition 2.1], these facts
imply that, for any two functors F;GW C!D , the functor nerve defines a bijection

Nat. transformations.F;G/Š Simpl. homotopies.�F; �G/;

between the set of natural transformations ˛W F )G and the set of simplicial homo-
topies between the induced simplicial maps on the nerves: Interpret ˛ as a functor
˛W C � Œ1�! D . Hence, what ˛ induces is a simplicial map �˛W �C ��Œ1�!�D ,
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that is, a simplicial homotopy. As a consequence, functors related by some natural
transformation go to homotopic cellular maps on classifying spaces. In particular, if
a functor F W C!D has a left or right adjoint, the induced map BF W BC! BD is a
homotopy equivalence.

2.3 The classifying space of a diagram of categories

In [36], Segal extended Milnor’s geometric realization process to simplicial (compactly
generated topological) spaces and provided, for instance, the notion of classifying
spaces for simplicial categories CW �op!Cat: By replacing each category Cp , p � 0,
by its classifying space BCp , one obtains a simplicial space, whose Segal realization is,
by definition, the classifying space BC of the simplicial category C , that is,

(8) BC D B.Œp� 7! BCp/:

But note, as an instance of the homeomorphisms (1), that there is a natural homeomor-
phism

(9) BC Š Bdiag�C

with the geometric realization of the simplicial set diagonal of the bisimplicial set
obtained by composing CW �op! Cat with the nerve functor �W Cat! Simpl:Set,
that is,

�CW �op ��op �! Set

.Œp�; Œq�/ 7�! Func.Œq�; Cp/:

Segal’s construction above, for simplicial categories, is actually a particular case of
the more general notion of classifying space for arbitrary diagrams of categories: If
CW I op! Cat is a functor, where I is any category, then its classifying space

(10) BC D B hocolimI�C;

is given through the homotopy colimit construction by Bousfield and Kan [4, Sec-
tion XII], of the diagram of simplicial sets �CW I op! Simpl:Set, obtained by com-
posing C with the nerve functor. That is, the simplicial set

(11)
hocolimI�CW �op �! Set:

Œp� 7!
F

Œp�
�
!I

Func.Œp�; C�0/

Since, for any simplicial category CW �op! Cat, there is a natural weak homotopy
equivalence of simplicial sets [4, XII, 4.3],

(12) hocolim��C Ï
�! diag�C;
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then both constructions (8) and (10) for the classifying space BC of a simplicial
category C coincide up to a natural homotopy equivalence.

2.4 Some bicategorical conventions

We employ the standard nomenclature concerning bicategories and refer to Bénabou [3],
Duskin [15], Gordon, Power and Street [20], Gurski [22] or Street [41] for the back-
ground. For the sake of clarity, we state the following:

A small bicategory, C , provides us with the following data: (i) a set Ob C of objects
(or 0–cells) of C ; (ii) for each ordered pair of objects .y;x/ of C , a category C.y;x/
whose objects uW y! x are called morphisms (or 1–cells) of C with source y and
target x , and whose arrows ˛W u) u0 are called deformations (or 2–cells) of C and
are usually depicted as

y

u
$$

u0

::+˛ x :

The composition of deformations in each category C.y;x/ is called the vertical com-
position and will be denoted by ˇ �˛ ; (iii) for every triplet .z;y;x/ of objects of C , a
functor C.y;x/� C.z;y/ ı!C.z;x/,

x +˛ y

u0

ee

u
yy

+˛0 z

v0

ee

v
yy ı

7! x +˛ı˛0 z

u0ıv0

ee

uıv
yy

;

called horizontal composition; (iv) for every object x of C , a distinguished morphism
1x W x! x , called the identity of x ; (v) invertible deformations

au;v;wW u ı .v ıw/
Ï

) .u ı v/ ıw;

called the associativity constraints, which are natural in .u; v; w/ 2 C.y;x/�C.z;y/�
C.t; z/; and (vi) invertible deformations

luW 1x ıu
Ï

) u and ruW u ı 1y

Ï

) u;

called identity constraints, which are natural in u 2 C.y;x/. These constraints are
required to be coherent, in the sense that the following pentagons are commutative

(13)

u1 ı .u2 ı .u3 ıu4//
a +3

1ıa
��

.u1 ıu2/ ı .u3 ıu4/
a +3 ..u1 ıu2/ ıu3/ ıu4

u1 ı ..u2 ıu3/ ıu4/
a +3 .u1 ı .u2 ıu3// ıu4 ;

aı1

KS
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and the following triangles are commutative:

(14)

u ı .1y ı v/
a +3

1ı l  (

.u ı 1y/ ı v

rı1v~
u ı v :

In any bicategory, for any object x , the equality

(15) l1x
D r1x

holds, and, for any two morphisms vW z! y and uW y! x , the two triangles below
commute.

(16)

u ı .v ı 1z/
a +3

1ı r �'

.u ı v/ ı 1z

r
w�

u ı v

1x ı .u ı v/
a +3

l �'

.1x ıu/ ı v

lı1w�
u ı v

A bicategory in which all the constraints are identities is a 2–category, that is, just a
category enriched in the category Cat of small categories. As each category C can be
considered as a 2–category in which all deformations are identities, that is, in which
each category C.x;y/ is discrete, several times throughout the paper categories are
considered as special bicategories.

If B , C are bicategories, then a lax functor F D .F; yF /W B C consists of: (i) a map-
ping F W ObB ! Ob C ; (ii) for each ordered pair of objects .y;x/ of B , a functor
F W B.y;x/ ! C.Fy;Fx/; (iii) deformations yFu;vW Fu ı Fv ) F.u ı v/ that are
natural in .u; v/ 2 B.y;x/�B.z;y/; and (iv) for each object x of B , a deformation
yFx W 1Fx)F1x . All these data are subject to the coherence commutativity conditions:

Fu ı .Fv ıFw/
1ı yF +3

a

��

Fu ıF.v ıw/
yF +3 F.u ı .v ıw//

Fa

��
.Fu ıFv/ ıFw

yFı1 +3 F.u ı v/ ıFw
yF +3 F..u ı v/ ıw/

Fu ı 1Fy
r +3

1ı yF

��

Fu

Fu ıF1y
yF +3 F.u ı 1y/;

Fr

KS 1Fx ıFu
l +3

yFı1

��

Fu

F1x ıFu
yF +3 F.1x ıu/:

F l

KS
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Replacing the structure deformations above with yFu;vW F.u ı v/ ) Fu ı Fv and
yFx W F.1x/) 1Fx , we have the notion of oplax functor F W B C .

A lax functor is termed a pseudo functor or a homomorphism whenever all the structure
constraints yFu;vW Fu ıFv) F.u ı v/ and yFx W 1Fx) F.1x/ are invertible. When
these deformations are all identities, then F is called a 2–functor and is written as
F W B! C . If the unit constraints yFx are all identities, then the lax functor is qualified
as (strictly) unitary or normal.

The composition of lax functors F W A  B and GW B  C will be denoted by
juxtaposition, that is, GF W A C . Recall that its constraints are obtained from those
of F and G by the rule bGF DG yF � yGF ; that is, by the compositions

bGFu;vW GFu ıGFv
yGF u;Fv+3 G.Fu ıFv/

G yFu;v +3 GF.u ı v/ ;

bGFx W 1GFx

yGF x +3 G1Fx
G yFx +3 GF1x :

The composition of lax functors is associative and unitary, so that the category of
bicategories and lax functors is defined. The subcategory of bicategories with homo-
morphisms between them will be denoted by Bicat.

If F;F 0W B C are lax functors, then we follow the convention of [20] in what is
meant by a lax transformation ˛ D .˛; y̨/W F ) F 0 . Thus, ˛ consists of morphisms
˛xW Fx! F 0x , x 2 ObB , and deformations

Fx
˛x
$$

Fy

Fu ::

˛y
##
+y̨u F 0x

F 0y
F 0u

;;

that are natural on morphisms uW y ! x , subject to the usual two commutativity
axioms:

˛x ı .Fu ıFv/
1ı yF +3

a

��

˛x ıF.u ı v/
y̨uıv +3 F 0.u ı v/ ı˛z

.˛x ıFu/ ıFv

y̨uı1
��

.F 0u ıF 0v/ ı˛z

bF 0ı1KS

.F 0u ı˛y/ ıFv
a�1
+3 F 0u ı .˛y ıFv/

1ı y̨v +3 F 0u ı .F 0v ı˛z/

a

KS
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˛x ıF1x

y̨1x +3 F 01x ı˛x

˛x ı 1Fx

1ı yF

KS

r +3 ˛x
l�1

+3 1F 0x ı˛x :

bF 0ı1
KS

Replacing the structure deformation above with y̨uW F 0u ı ˛y) ˛x ıFu, we have
the notion of oplax transformation ˛W F ) F 0 .

2.5 The classifying space of a lax diagram of categories

In nature, actual functors CW I op!Cat are rare, but pseudofunctors are ubiquitous. The
above construction (10), of classifying spaces for diagrams of categories, was extended
to lax diagrams of categories by Thomason [43] using methods by Grothendieck. Recall
that, for any given small category I , a lax diagram of categories means a lax functor

C D .C; yC/W I op Cat;

to the 2–category Cat of small categories, functors, and natural transformations. So C is
a system of data consisting of a category Ci for each object i of I , a functor a�W Ci!Cj

for each arrow aW j ! i of I , a natural transformation yC D yCa;bW b
�a�) .ab/� , for

each two composable arrows bW k! j and aW j! i in I , and a natural transformation
yC D yCi W 1Ci

) 1�i , for each object i of I . These must satisfy the conditions that, for
cW `! k , bW k! j and aW j ! i , the following diagram commutes:

c�b�a�
c� yC
u}

yCa�

!)
c�.ab/�

yC  (

.bc/�a�;

yCu}
.abc/�

and for aW j ! i the compositions

a�
yCa�+3 1�j a�

yC +3 a� and a�
a� yC+3 a�1�i

yC +3 a�

are both the identity transformation on the functor a�W Ci! Cj .

The so-called Grothendieck construction on a lax diagram of categories CW I op Cat,
denoted by

(17)
R

I C;
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is the category whose objects are pairs .x; i/, where i is an object of I and x is
one of Ci ; a morphism .u; a/W .y; j /! .x; i/ in

R
I C is a pair of morphisms where

aW j ! i in I and uW y! a�x in Cj . If .v; b/W .z; k/! .y; j / is another morphism
in
R

I C , then we have the morphisms

z
v // b�y

b�u // b�a�x
yCx // .ab/�x

in Ck , and the composition of .v; b/ with .u; a/ is defined by

.u; a/.v; b/D . yCx � b�u � v; ab/W .z; k/! .x; i/:

The identity morphism of an object .x; i/ is . yCixW x �! 1�i x; 1i/.

Then, the classifying space of the lax diagram CW I op Cat, BC , is defined to be the
classifying space of its Grothendieck construction, that is,

(18) BC D B
R

I C :

Thomason’s homotopy colimit theorem [43, Theorem 1.2] states the following:

Theorem 2.1 Let CW I op ! Cat be a functor. There is a natural weak homotopy
equivalence

(19) �W hocolimI NC �! N
R

I C:

Therefore, both definitions (10) and (18), for the classifying space BC of a diagram of
categories CW I op!Cat, lead to the same space, up to a natural homotopy equivalence.
Furthermore, the construction of BC is consistent with the so-called Street rectification
process, C 7! C0 [39] (see also May [33, Theorem 3.4]), which associates to any lax
diagram of categories CW I op Cat a homotopy equivalent strict diagram C0W I op!

Cat, that is, such that there is a natural homotopy equivalence [43, Lemma 3.2.5]

(20) BC ' BC0:

The Grothendieck construction on lax diagrams CW I op Cat is natural both in I

and C . Recall that, given lax diagrams C;DW I op Cat, a lax morphism (or oplax
transformation)

F D .F; yF /W C D;
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is a system of data consisting of a functor Fi W Ci!Di ; for each object i of I , and a
natural transformation yFaW Fj a�) a�Fi ,

Cj
Fj

""
Ci

Fi
!!

a�
==

+ yFa Dj ;

Di

a�

<<

for each morphism aW j! i in I . These are subject to the conditions that the following
diagrams commute

Fkb�a�
yFba� +3

Fk
yC
��

b�Fj a�
b� yFa +3 b�a�Fi

yDFi

��
Fk.ab/�

yFab +3 .ab/�Fi ;

Fi1
�
i

yF1i

�%
Fi

yDFi +3

Fi
yC

;C

1�i Fi ;

for every pair of composable morphisms bW k ! j and aW j ! i and any object i

in I . Any lax morphism F W C D induces a functor
R

I F W
R

I C!
R

I D , whence a
cellular map

BF W BC! BD;
defined on objects by F�.x; i/D .Fix; i/. For a morphism .u; a/W .y; j /! .x; i/ inR

I C , we have the composable morphisms in Dj

Fj y
Fju
�! Fj a�x

yFax
�! a�Fix;

and F�.u; a/D . yFax �Fj u; a/. A main result by Thomason [43, Corollary 3.3.1] states
the following:

Theorem 2.2 If F W C D is a lax morphism between lax diagrams C;DW I op Cat
such that the induced maps BFi W BCi ! BDi are homotopy equivalences, for all
objects i of I , then the induced map BF W BC! BD is a homotopy equivalence.

3 The pseudosimplicial nerve and the classifying space of a
bicategory

Let C be any given bicategory. When C is strict (ie, a 2–category), then the nerve
construction (3) actually works by giving a simplicial category NCW �op!Cat, whose
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Segal’s classifying space (8), or (9), is usually taken to be the classifying space of the
2–category (see Bullejos and Cegarra [6], Hinich and Schechtman [24], Moerdijk and
Svensson [34], Tillmann [45; 44] or Thomason [43], for examples). For an arbitrary
C , its classifying space is defined in a similar way as for the strict case; however, the
process is more complicated since the horizontal composition in a bicategory is in
general not associative and not unitary (which is crucial for constructing the simplicial
category NC ) but it is only so up to coherent isomorphisms. This “defect” has the effect
of forcing one to deal with the classifying space of a nerve of C , which is not simplicial
but only up to coherent isomorphisms: the (normal) pseudosimplicial category

(21) NCW �op Cat

whose category of p–simplices is

NCp D

G
.x0;:::;xp/2ObCpC1

C.x1;x0/� C.x2;x1/� � � � � C.xp;xp�1/;

where a typical arrow is a string of deformations in C

(22) � D x0 + ˛1 x1

v1

gg

u1

ww
+ ˛2 x2

v2

gg

u2

ww
� � � xn�1 + ˛n xn

vn

gg

un

ww
;

and NC0 D Ob C , as a discrete category.

The face and degeneracy functors are defined in the standard way by the formulas (5),
both for morphisms and deformations, substituting juxtaposition with the symbol ı,
used for the horizontal composition in C . That is, d0.�/ D .˛2; : : : ; ˛n/, d1.�/ D

.˛1 ı˛2; : : : ; ˛n/, and so on.

If aW Œq�! Œp� is any nonidentity map in �, then we write a in the (unique) form
(see May [31], for example) a D d i1 � � � d is sj1 � � � sjt , where 0 � is < � � � < i1 � p ,
0� j1 < � � �< jt � q and qC s D pC t , and the induced functor a�W NpC!NqC is
defined by a�D sjt

� � � sj1
dis
� � � di1

. Note that dj di D didjC1 for i � j , unless i D j

and 1 � i � p� 2, in which case the associativity constraint of C gives a canonical
natural isomorphism

(23) didi Š didiC1:

Similarly, all the equalities d0s0D 1, dpC1sp D 1, disj D sj�1di if i < j and disj D

sj di�1 if i > j C 1, hold, and the unit constraints of C give canonical isomorphisms

(24) disi Š 1; disiC1 Š 1:
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Then it is a fact that this family of natural isomorphisms (23) and (24) uniquely
determines a whole system of natural isomorphisms

(25) b�a� Š .ab/�;

one for each pair of composable maps in �, bW Œn�! Œq� and aW Œq�! Œp�, such that the
assignments a 7! a� , 1Œp� 7! 1NCp

, together with these isomorphisms b�a� Š .ab/� ,
give the data for the pseudosimplicial category (21), NCW �op Cat. This fact can be
easily proven by using Jardine’s supercoherence theorem [25, Corollary 1.6], since the
commutativity of the seventeen diagrams of supercoherence, (1.4.1)–(1.4.17) in [25],
easily follows from the coherence conditions (13), (14), (15) and (16).

Recalling the construction (18) for the classifying spaces of lax diagrams of categories,
we state the following:

Definition 3.1 The classifying space BC , of a bicategory C , is the classifying space
of its pseudosimplicial nerve (21), NCW �op Cat, that is,

(26) BC D B
R
� NC :

Remark 3.2 Let C be a 2–category. Then, its pseudosimplicial nerve (21) is actually
a simplicial category

(27) NCW �op
! Cat;

and there are natural homotopy equivalences

BC
(19)
' jhocolim�NNCj

(12)
' jdiagNNCj

(9)
' BNC;

where NNCW .Œp�; Œq�/ 7!N.NCp/q is the bisimplicial set double nerve of the 2–category
obtained by composing NC with the functor nerve of categories, and BNC is the
classifying space (8) of the simplicial category NC , that is, the Segal realization of the
simplicial space Œp� 7! BNCp .

Remark 3.3 A monoidal (tensor) category MD .M;˝; I; a; l ; r/ [30] can be viewed
as a bicategory

(28) ��1M

with only one object, say �, the objects u of M as morphisms uW � ! � and
the morphisms of M as deformations. Thus, ��1M.�;�/ D M, and it is the
horizontal composition of morphisms and deformations given by the tensor functor
˝WM�M!M. The identity at the object is 1�D I, the unit object of the monoidal
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category, and the associativity, left unit, and right unit constraints for ��1M are just
those of the monoidal category, that is, a , l and r , respectively.

The pseudosimplicial nerve of the bicategory ��1M, as in (21), is exactly the pseu-
dosimplicial category that the monoidal category defines by the reduced bar construction;
that is, the pseudosimplicial category

(29) N��1MW �op Cat; Œp� 7!Mp;

whose category of p–simplices is the p–fold power of the underlying category M,
with faces and degeneracy functors defined by analogy with those of the nerve of a
monoid. Therefore, the classifying space of the monoidal category (see Jardine [25,
Section 3], Hinich and Schechtman [24, Appendix] or Bullejos and Cegarra [7], for
example) is just

B��1M;

the classifying space of the one object bicategory it defines.

The observation, due to Bénabou [3], that monoidal categories are essentially the same
as bicategories with just one object, is known as the delooping principle, and the
bicategory ��1M is called the delooping of the monoidal category [27, 2.10]. The
reason for this terminology is the existence of a natural map

BM!�.B��1M;�/;

where BM is the classifying space of the underlying category M, which is, up to
group completion, a homotopy equivalence (see Jardine [25, Propositions 3.5 and 3.8]
or Bullejos and Cegarra [7, Corollary 4], for example; also, see Remark 6.6 for a proof
therein). Then, the higher K–groups Ki , i > 0, of the monoidal category M are the
.i C 1/–st homotopy groups of its classifying space B��1M (cf [37]). When the
monoidal category has a given symmetry, then B��1M is precisely the space at level 1
of the �–spectrum associated to the symmetric monoidal category (see Thomason [43,
4.2.2] or Jardine [25, 3.12], for example). The most striking instance is MDA, the
strict monoidal category with only one object defined by an abelian group A, where
both compositions and tensor products are given by the addition in A; in this case,
BA is a K.A; 1/–space, and ��1A is a bicategory with only one object and only one
arrow whose classifying space B��1A is a K.A; 2/–space.

Any homomorphism F W B  C , between bicategories, gives rise to a morphism
of supercoherent structures in the sense of Jardine [25], F�W NB ! NC , that, on a

Algebraic & Geometric Topology, Volume 10 (2010)



238 Pilar Carrasco, Antonio M Cegarra and Antonio R Garzón

morphism � as in (22), of the category of p–simplices of NB , acts by

�
� F� // Fx0 +F˛1 Fx1

Fv1

hh

Fu1

vv
+F˛2 Fx2

Fv2

hh

Fu2

vv
Fxp�1 +F˛p Fxp:

Fvp

jj

Fup

uu

The structure natural isomorphisms siF�ŠF�si and diF�ŠF�di are canonically ob-
tained from the invertible structure constraints of the homomorphism, yF W 1Fxi

ŠF1xi

and yF W F.ui/ıF.uiC1/ŠF.uiıuiC1/ (the commutativity of the needed six coherence
diagrams in [25] is clear). Then, F W B C determines a pseudosimplicial functor,
NF W NB NC , and therefore a functor

R
�F W

R
�B!

R
�C and a corresponding map

on the classifying spaces

(30) BF W BB! BC:

Thus, the classifying space construction (26), C! BC , defines a functor from bicat-
egories, with homomorphisms between them, to CW–complexes. However, as we
will see later, any lax, or oplax, functor F W B C , that is, without the requirement
that its structure constraints yF be isomorphisms, also induces a continuous map
BF W BB! BC , well defined up to homotopy equivalence.

4 The simplicial sets geometric nerves of a bicategory

The two isomorphic constructions (3) and (6) to define the nerve, and then the classifying
space, of a category suggest different extensions to bicategories. Looking at (3), we
were led to definition (21), which recovers the more traditional way through which
a classifying space is assigned in the literature to certain kinds of bicategories, such
as 2–categories (see Remark 3.2) or monoidal categories (see Remark 3.3). But the
construction we have taken, in Definition 3.1, for the classifying space of a bicategory
BC runs through the Grothendieck construction on its pseudosimplicial nerve, which
implies that the cells of BC have little apparent intuitive connection with the cells of the
original bicategory and that they do not enjoy any proper geometric meaning. However,
looking at (6), we are led to dealing with another convincing way of associating a space
to any bicategory C : through its unitary geometric nerve as defined by Street in [41]
(see also Duskin [15] and Gurski [23]).

Definition 4.1 The unitary geometric nerve of a bicategory C is the simplicial set

(31)
�uCW �op ! Set;

Œp� 7! NorLaxFunc.Œp�; C/
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whose p–simplices are the normal lax functors F W Œp� C . If aW Œq�! Œp� is any
map in �, that is, a functor, the induced a�W �uCp!�uCq carries F W Œp� C to the
composite FaW Œq� C , of F with a.

This simplicial set �uC encodes the entire bicategorical structure of C , and the following
lemma allows us to show a pleasing geometrical description of its simplices:

Lemma 4.2 Let C be a bicategory. Any system of data which consists of objects
Fi , 0� i � p , morphisms Fi;j W Fj ! Fi , 0 � i < j � p , and deformations
yFi;j ;k W Fi;j ıFj ;k ) Fi;k , 0� i < j < k � p , such that, for 0� i < j < k < `� p ,

the following square of deformations commutes in the category C.F`;Fi/,

Fi;j ı .Fj ;k ıFk;`/
1ı yFj ;k;` +3

a

��

Fi;j ıFj ;`

yFi;j ;`

��
.Fi;j ıFj ;k/ ıFk;`

yFi;j ;kı1 +3 Fi;k ıFk;`

yFi;k;` +3 Fi;`

uniquely extends to a normal lax functor F W Œp� C .

Proof The whole data for F W Œp� C are obtained by putting Fi;i D 1Fi , yFi;i;j D

l W 1Fi ı Fi;j ) Fi;j , yFi;j ;j D rW Fi;j ı 1Fj ) Fi;j , and yFi D 11F i
W 1Fi ) 1Fi .

So defined, F is actually a (normal) lax functor thanks to the commutativity of the
coherence triangles in (14) and (16), and the equality in (15). The uniqueness of F is
clear.

Thus, for a bicategory C , the vertices of its normal geometric nerve �uC are the objects
F0 of C , the 1–simplices are the morphisms

F0 F1
F0;1oo ;

and the 2–simplices are triangles

+ yF0;1;2

F1
F0;1

}}
F0 F2;

F0;2

oo

F1;2

bb
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with yF0;1;2W F0;1 ıF1;2) F0;2 a deformation in C . For p � 3, a p–simplex of �uC
is geometrically represented by a diagram in C with the shape of the 2–skeleton of an
oriented standard p–simplex, whose faces are triangles

+ yFi;j ;k

Fj
Fi;j

}}
Fi Fk

Fj ;k
aa

Fi;k

oo

with objects Fi placed on the vertices, 0� i � p , morphisms Fi;j W Fj ! Fi on the
edges, 0� i<j �p , and yFi;j ;k W Fi;jıFj ;k)Fi;k deformations, for 0� i<j <k�p .
These data are required to satisfy the condition that each tetrahedron

F`
Fi;`

}} Fj ;`

��

Fk;`

!!
Fi Fk

Fj ;k}}

Fi;k
oo

Fj

Fi;j

aa

yFi;j ;k W Fi;j ıFj ;k ) Fi;k

yFi;j ;`W Fi;j ıFj ;`) Fi;`

yFi;k;`W Fi;k ıFk;`) Fi;`

yFj ;k;`W Fj ;k ıFk;`) Fj ;`;

for 0� i < j < k < `� p is commutative in the sense that the following equation on
deformations holds:

F`

��

!!}}

F`

""}}
yFi;k;`

(
Fi

yFi;j ;`

(
Fk

}}

yFj ;k;`
(

D Fi Fk:

}}

oo

Fj

aa

Fj

aa
yFi;j ;k

*

The simplicial set �uC becomes coskeletal in dimensions greater than 3. More precisely,
for p � 3, a p–simplex F W Œp� C of �uC is determined uniquely by its boundary
@F D .d0F; : : : ; dpF /

@�Œp�
@F //

_�

��

�uC;

�Œp�
F

88

and, for p � 4, every possible boundary of a p–simplex, @�Œp�!�uC , is actually
the boundary @F of a p–simplex F .
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For several discussions, it is suitable to handle the (nonnormalized) geometric nerve of
a bicategory C :

Definition 4.3 The geometric nerve of a bicategory C is the simplicial set

(32)
�CW �op ! Set;

Œp� 7! LaxFunc.Œp�; C/;

that is, the simplicial set whose p–simplices are all lax functors F W Œp� C .

Hence, the unitary geometric nerve �uC becomes a simplicial subset of �C . The p–
simplices of the geometric nerve �C are described similarly to those of the normalized
one, but now they include deformations of C

(33) yFi W 1Fi
) Fi;i ; 0� i � p;

with the requirement that the diagrams

(34)

Fi;j ıFj ;j

yFi;j ;j �"

Fi;j ı 1Fj

r

}�

1ı yFjks

Fi;j

Fi;i ıFi;j

yFi;i;j �!

1Fi
ıFi;j

yFiı1ks

l
}�

Fi;j

be commutative.

Note that the geometric nerve construction on bicategories, C 7!�C , is clearly functorial
on lax functors between bicategories, whereas �uC is functorial only on normalized
lax functors between bicategories.

We have used the above lax functors Œp� C to define geometric nerves of bicategories.
However, there is no substantial reason for not considering oplax functors. In fact, we
also have geometric nerves

(35)
rCW �op ! Set;

Œp� 7! OpLaxFunc.Œp�; C/

that is, the simplicial set whose p–simplices are all oplax functors, F W Œp� C , and

(36)
ruCW �op ! Set;

Œp� 7! NorOpLaxFunc.Œp�; C/
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the simplicial subset of rC , whose p–simplices are the normal oplax functors from
Œp� to C .

Remark 4.4 In [15], Duskin gave a characterization of the normal geometric nerve
ruC of a bicategory C in terms of its simplicial structure. The result states that a
simplicial set is isomorphic to the normal geometric nerve of a bicategory if and only
if it satisfies the coskeletal conditions above as well as supporting appropriate sets of
“abstractly invertible” 1– and 2–simplices. For instance, recall that a bigroupoid is a
bicategory C in which every deformation is invertible, that is, all categories C.y;x/
are groupoids, and every morphism uW y! x is a biequivalence, that is, there exist
a morphism u0W x ! y and deformations u ı u0) 1y and 1x ) u0 ı u. Then, the
normal geometric nerve of a bicategory C becomes a Kan complex [33] (fibrant [19]),
that is, every extension problem

ƒk Œn� //
_�

��

ruC

�Œn�

<<

of any .k; n/–horn, ƒk Œn�!ruC , has a solution if and only if the bicategory C is a
bigroupoid. In such a case, the homotopy groups of ruC are

�i.ruC;x/

D

8̂̂<̂
:̂

K0C the set of iso-classes of objects of C for i D 0;

K0C.x;x/ the group of iso-classes of automorphisms in C of x for i D 1;

K1C.x;x/ the abelian group of autodeformations in C of 1x for i D 2;

0 for i � 3:

Furthermore, the normal geometric nerve construction embeds the category of bi-
groupoids, with normal homomorphisms between them, as a full and reflexive subcat-
egory of the category of Kan complexes, whose replete image consists of those Kan
complexes K for which every .k; n/–horn ƒk Œn�!K has a unique filler

ƒk Œn� //
_�

��

K;

�Œn�

9!

==

for all 0 � k � n and n � 3; that is, K is a Kan 2–hypergroupoid in the sense of
Duskin–Glenn (see Glenn [18] and Cegarra, Bullejos and Garzón [10], for example).
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Remark 4.5 The normal geometric nerve of a 2–category (even of an n–category)
was first studied by Street [40]. In Worytkiewicz et al [46], but under the name of “2–
nerve of 2–categories”, the normal geometric nerve construction �u was considered for
proving that the category 2–Cat, of small 2–categories and 2–functors, has a Quillen
model structure such that the functor Ex2�uW 2–Cat! Simpl:Set is a right Quillen
equivalence of model categories, where Ex is the endofunctor in Simpl:Set right
adjoint to the subdivision Sd (see Goerss and Jardine [19], for example). In Bullejos
and Cegarra [6], it was proved that, for any 2–category C , there is a natural homotopy
equivalence BC ' B�uC , and therefore it follows that the correspondence C 7! BC
induces an equivalence between the corresponding homotopy category of 2–categories
and the ordinary homotopy category of CW–complexes. By this correspondence, 2–
groupoids correspond to spaces whose homotopy groups �n are trivial for n> 2 [34],
and from this point of view the use of 2–categories and their classifying spaces in
homotopy theory goes back to Whitehead (1949) and Mac Lane–Whitehead (1950),
since 2–groupoids with only one object (2–groups) are the same as crossed modules.

Remark 4.6 Let M be a monoidal category. The delooping bicategory ��1M
(see Remark 3.3) realizes the classifying space of the monoidal category and, in [7],
it is shown how that realization can be made through the normal geometric nerve
construction. That is, there is a homotopy equivalence B��1M' Bru�

�1M.

This geometric nerve ru�
�1M is a 3–coskeletal reduced (1–vertex) simplicial set,

whose simplices have the following simplified interpretation: the 1–simplices are the
objects F0;1 of M, the 2–simplices are morphisms of M of the form

F0;2

F0;1;2 // F0;1˝F1;2

and the 3–simplices are commutative diagrams in M of the form

F0;3

F0;2;3 +3

F0;1;3

��

F0;2˝F2;3

F0;1;2˝1
+3 .F0;1˝F1;2/˝F2;3

F0;2˝F1;3

1˝F1;2;3 +3 F0;1˝ .F1;2˝F2;3/:

a

KS

Bigroupoids with only one object are delooping bicategories ��1M of categorical
groups [26] (Gr-categories [5]), that is, monoidal groupoids M in which translations
are autoequivalences. Normal geometric nerves of categorical groups are studied in [8;
9; 11].
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5 More Cat–valued nerves of a bicategory

In this section, we shall describe the following commutative diagram with the various
“nerves” of a bicategory C discussed in the paper:

(37)

NC
_�

J

��
�O
�O
�O
�O
�O
Oo

J

�� �?
�?
�?
�?
�?
�?
�?

� o

J

���_
�_
�_
�_
�_
�_
�_

�C �uC? _oo SC? _oo � � // xruC �
� // xrC

�C
� ?

OO

�uC? _oo
� ?

OO

ruC
� ?

OO

� � // rC;
� ?

OO

where NC , in the top row, is the pseudo simplicial nerve (21) of the bicategory, and
�C , �uC , rC and ruC , in the bottom row, are the geometric nerves of the bicategory,
as defined in (32), (31), (35), and (36) respectively. In Definition 5.2 we introduce the
remaining five Cat–valued nerves of bicategories. These associate to every bicategory C
simplicial objects in Cat: Those called its unitary categorical geometric nerves, which
are denoted by �uC and xruC , its categorical geometric nerves, denoted by �C and
xrC , and its Segal nerve, denoted by SC , respectively. As we will prove, each of these
five simplicial categories can be thought of as a “rectification” of the pseudosimplicial
nerve NC (21) of the bicategory, since they model the same homotopy type as BC .
Furthermore, all these simplicial categories are “special” in the sense [37; 43] that the
Segal projection maps on them induce homotopy equivalences on classifying spaces;
moreover, the latter, SC , is a weak 2–category in the sense of Tamsamani [42] and
Simpson [38], that is, the Segal projection maps on it are surjective equivalences of
categories [29] (or see the proof of Theorem 6.4 below). Unitary categorical geometric
nerves for 2–categories were treated in [6] and for monoidal categories in [7]. Segal
nerves of bicategories, also called 2–nerves in [29], enjoy many interesting properties
whose study the cited paper by Lack and Paoli is mainly dedicated to.

Considering a lax functor F W Œp� C as a family of “paths” Fi;j W Fj ! Fi between
objects of the bicategory C , and a lax transformation ˛W F) F 0 as a “free homotopy”
between them, it is natural to consider lax transformations relative to objects (ie, to end
points) as those ˛ that are constantly identities on objects, that is, with ˛i D 1Fi

D 1F 0
i
,

for all 0� i � p . This kind of lax transformations has been considered in [6], and also
in [28; 29; 17] under the name of icons (short for “identity component oplax natural
transformations”).
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Remark 5.1 If M and M0 are monoidal categories, then a monoidal functor F WM!
M0 amounts precisely to a homomorphism between the corresponding delooping bicate-
gories ��1F W ��1M ��1M0 (see Remark 3.3). If F;F 0WM!M0 are monoidal
functors, then a monoidal transformation ˛W F ) F 0 is the same thing as a relative to
objects lax transformation ��1˛W ��1F )��1F 0 . However, note that an arbitrary
lax transformation ˇW ��1F ) ��1F 0 consists of an object x0 of M0 (=ˇ�, the
component at the unique object of ��1M) and morphisms y̌x W x0˝Fx!F 0x˝x0 ,
one for each object x of M, satisfying the usual two conditions (see Section 2).

Definition 5.2 The categorical geometric nerves �C and xrC of a bicategory C are
the simplicial categories

(38)
�CW �op ! Cat

Œp� 7! LaxFunc.Œp�; C/;

whose category of p–simplices is the category of lax functors F W Œp� C , with relative
to objects lax transformations between them as arrows and

(39)
xrC �op ! Cat

Œp� 7! OpLaxFunc.Œp�; C/;

whose category of p–simplices is the category of oplax functors F W Œp� C , with
relative to objects lax transformations between them as arrows, respectively.

The unitary categorical geometric nerves �uC ��C and xruC � xrC are the respective
simplicial subcategories of normal lax functors and normal oplax functors F W Œp� C ,
that is,

(40)
�uCW �op ! Cat

Œp� 7! NorLaxFunc.Œp�; C/;

and

(41)
xruCW �op ! Cat

Œp� 7! NorOpLaxFunc.Œp�; C/:

The Segal nerve SC ��uC is the simplicial subcategory of normal homomorphisms
F W Œp� C , that is,

(42)
SCW �op ! Cat

Œp� 7! NorHom.Œp�; C/;
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Note that, for F;F 0W Œp� C two geometric p–simplices, the existence of morphisms
y̨W F)F 0 in the categorical geometric nerve requires that Fi DF 0i for all 0� i �p ,
and, in such a case, an y̨W F ) F 0 consists of a family of deformations in C

(43) Fj

Fi;j

((

F 0
i;j

66+y̨i;j Fi;

for 0� i � j � p , such that

(44)

Fj
Fi;j

�� F 0
i;jss

Fj
Fi;j

��

+y̨ +y̨ + yF

Fi
+bF 0 Fk

Fj ;k

kk

F 0
j ;k

VV

F 0
i;k

^^ D Fi FkFi;k
oo

F 0
i;k

[[

Fj ;k

ii

+y̨

for 0� i � j � k � p , and, for 0� i � p ,

(45) Fi

1F i

��
Fi;i

//

F 0
i;i

CC

+ yF

+y̨

Fi D Fi

1F i

��

F 0
i;i

CC+bF 0 Fi:

We now complete the description of diagram (37):

Definition 5.3 (i) The simplicial maps �uC ,!�C and ruC ,!rC are inclusions.

(ii) The simplicial functors SC ,!�uC ,!�C and xruC ,! xrC are all inclusions.

(iii) The simplicial functor SC ,! xruC is the full embedding defined by8<: .F;
yF / 7! .F; yF�1/;

.F; yF /
y̨
H) .F 0; bF 0/ 7! .F; yF�1/

y̨
H) .F 0; bF 0�1

/:
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(iv) Each geometric nerve is regarded as a discrete simplicial category (ie, with only
identities) and the simplicial functors

�C ,!�C; �uC ,!�uC; rC ,! xrC; ruC ,! xruC

are all inclusions, as each geometric nerve is the simplicial set of objects of the
corresponding categorical geometric nerve.

(v) The pseudosimplicial functor J W NC SC is defined as follows:

First, note that we have the equalities

(46)
SC0 D Ob C D NC0;

SC1 D
F

x0;x1

C.x1;x0/ D NC1

by identifying a normal homomorphism F W Œ0� C with the object F0 and a normal
homomorphism F W Œ1� C with the arrow F0;1W F1! F0 (see Lemma 4.2). We
then take JnW NCn! SCn to be the identity functor for nD 0; 1.

For each n� 2, let

(47) JnW NCn ,! SCn

be the functor taking an object of

NCn D

G
.x0;:::;xn/2ObCnC1

C.x1;x0/� � � � � C.xn;xn�1/;

say the one given by the string

F0 F1
F0;1oo � � �

F1;2oo Fn
Fn�1;noo

to the normal geometric n–simplex of C

(48) F e
D .F e; yF e/W Œn� C;

which places the objects F ei D Fi at the vertices and the morphism F e
i;iC1

D

Fi;iC1W FiC1 ! Fi at the edges i C 1 ! i . For 0 � i < j < n, the arrows
F e

i;jC1
W FjC1! Fi are then inductively given by

F e
i;jC1 D F e

i;j ıFj ;jC1;

Algebraic & Geometric Topology, Volume 10 (2010)



248 Pilar Carrasco, Antonio M Cegarra and Antonio R Garzón

so that the triangles

Fj

F e
i;j

}}
Fi F.j C 1/;

F e
i;jC1

oo

F e
j ;jC1

dd

commute and the deformations yF e
i;j ;jC1

W F e
i;j ıF e

j ;jC1
) F e

i;jC1
are all taken to be

identities. For 0� i < j < k < n, the 2–cells yF e
i;j ;kC1

W F e
i;j ıF e

j ;kC1
) F e

i;kC1
are

canonically determined by the associativity constraints of C through the commutative
diagrams

F e
i;j ıF e

j ;kC1

yF e
i;j ;kC1 +3 F e

i;kC1

.F e
i;j ıF e

j ;k
/ ıF e

k;kC1

a

KS

yF e
i;j ;k
ı1
+3 F e

i;k
ıF e

k;kC1
:

Thus, for example:

F1

F0;1

��
+1

J2.F0
F0;1

 � F1
F1;2

 � F2/D

F0 F2 ;

F1;2

\\

F0;1ıF1;2

oo

F3

.F0;1ıF1;2/ıF2;3

��

F1;2ıF2;3

��

F2;3

��

J3.F0
F0;1

 � F1
F1;2

 � F2
F2;3

 � F3/D F0 �F2

F1;2

��

F0;1ıF1;2
oo

F1

F0;1

^^
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with the deformations

yF e
0;1;2
D 1W F0;1 ıF1;2) F0;1 ıF1;2

yF e
0;1;3
D a�1W F0;1 ı .F1;2 ıF2;3/) .F0;1 ıF1;2/ ıF2;3

yF e
0;2;3
D 1W .F0;1 ıF1;2/ ıF2;3) .F0;1 ıF1;2/ ıF2;3

yF e
1;2;3
D 1W F1;2 ıF2;3) F1;2 ıF2;3;

and so on.

It is a consequence of the coherence theorem for bicategories that each

Jn.F0

F0;1

 � F1

F1;2

 � � � �
Fn�1;n

 � Fn/D .F
e; yF e/W Œn� C

is in fact a normal geometric n–simplex of C (recall Lemma 4.2). Indeed, since
every deformation yF e

i;j ;k
W F e

i;j ıF e
j ;k
) Fi;k is invertible, it is actually a normal

homomorphism F eW Œn� C .

Further, the functor Jn on an arrow

F0 +˛0;1 F1

G0;1

hh

F0;1

vv
+˛1;2 F2

G1;2

hh

F1;2

vv
� � � F.n� 1/ +˛n�1;n Fn

Gn�1;n

jj

Fn�1;n

tt

in NCn is the arrow in SCn (ie, the relative to objects lax transformation) y̨eW F e)Ge ,
as in (43), inductively given by the deformations

y̨
e
i;jC1 D

(
˛i;iC1 if j D i;

y̨
e
i;j ı j̨ ;jC1 if j > i:

From its construction, it is clear that each JnW NCn! SCn is a faithful and injective on
objects functor. That Jn is full follows from the equalities (44) since every geometric
simplex F W Œn� C in SC is a homomorphism, that is, the deformations yFi;j ;k are all
invertible.

The family of functors JnW NCn ! SCn , together with the natural isomorphisms
Jn�1di Š diJn and Jnsi Š siJn�1 , canonically induced by the associativity and
unit constraints a , l , and r of the bicategory C , becomes a morphism of supercoherent
structures [25], and this defines our pseudosimplicial full embedding J W NC SC .
Actually, J is a pseudo equivalence, as we will show later in the proof of Theorem 6.4.

To end this section, we stress that the construction NC is functorial on homomorphisms
between bicategories C C0 , whereas SC is on normal homomorphisms, �uC and
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�uC are on normal lax functors, �C and �C are on lax functors, ruC and xruC are
on normal oplax functors, and rC and xrC are on all oplax functors.

6 The homotopy invariance theorem

In this section, our goal is to prove the following:

Theorem 6.1 For any bicategory C , all the maps in the diagram

(49)

BC

���� ��
B�C B�uCoo BSCoo // BxruC // BxrC

B�C

OO

B�uCoo

OO

BruC

OO

// BrC;

OO

induced by (37) on classifying spaces, are homotopy equivalences.

By symmetry, we only will attack the problem of proving what concerns the maps in
the middle and on the left of the diagram. The other homotopy equivalences are proven
in a parallel way. The proof falls naturally apart in four theorems as below.

Theorem 6.2 For any bicategory C , both simplicial inclusion functors �C ,!�C and
�uC ,!�uC induce homotopy equivalences on the corresponding classifying spaces,
thus B�C ' B�C and B�uC ' B�uC .

Proof The following argument is for �C ,!�C , and we leave to the reader to check
that all the following constructions below restrict to the subinclusion �uC ,!�uC , by
giving so a corresponding proof for this latter.

Let N�C be the bisimplicial set obtained from the simplicial category �C by composing
with the nerve of categories functor (3). Then, a .p; q/–simplex of N�C is a string

(50) � D .F0 y̨1

(H F1 y̨2

(H � � �
y̨p

(H Fp/
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of p composable arrows in the category �Cq D LaxFunc.Œq�; C/, of lax functors
Œq� C . The vertical face and degeneracy operators in N�C

N�Cp;qC1 N�Cp;q
svmoo

dvm // N�Cp;q�1; 0�m� q;

are induced by those of �C , that is,

dvm� D .dmF0 dmF1
dm y̨

1

ks � � �
dm y̨

2

ks dmFp/;
dm y̨

p

ks

and similarly svm� ; whereas the horizontal ones

N�CpC1;q N�Cp;q
sh

moo
dh

m // N�Cp�1;q; 0�m� p;

are those of N.�Cq/, which are given by the formulas (5).

Since �C is a discrete simplicial category, N�C is a bisimplicial set that is constant
in the horizontal direction. The induced bisimplicial inclusion N�C! N�C is then,
for each p � 0, the composite simplicial map

(51)
�C D N�C0;�

sh
0
,! N�C1;�

sh
0
,! � � �

sh
0
,! N�Cp;�:

F
� // .F

y1
(H F

y1
(H

.p
� � �

y1
(H F /

Taking into account now the homeomorphisms (9), to prove that B�C ! B�C is
a homotopy equivalence, we are going to prove that the induced simplicial map on
diagonals �C ! diagN�C is a weak equivalence. For it, as every pointwise weak
homotopy equivalence bisimplicial map is a diagonal weak homotopy equivalence [19,
IV, Proposition 1.7], it suffices to prove that every each of these simplicial maps (51) is
a weak homotopy equivalence. Actually, we will prove more: Every simplicial map

(52)
sh
0
W N�Cp;� ,! N�CpC1;�;

.F0
y̨1

(H F1
y̨2

(H � � �
y̨p

(H Fp/ 7! .F0
y1
(H F0

y̨1

(H F1
y̨2

(H � � �
y̨p

(H Fp/

embeds the simplicial set N�Cp;� into N�CpC1;� as a simplicial deformation retract.

To do so, since dh
0

sh
0
D 1, it is enough to exhibit a simplicial homotopy

H p
W 1) sh

0dh
0 W N�Cp;�! N�Cp;�;

for each p � 1.
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We first consider the case p D 1. Then, to define H 1 , we begin by constructing a
simplicial homotopy

(53) T W dh
1 ) dh

0 W N�C1;�! N�C0;� D�C;

� � � N�C1;qC1

dv
0 //

dv
qC1

//

dh
0

��

dh
1

��

::: N�C1;q

dh
0

��

dh
1

��

T0

:::

||

Tq

||

� � �

� � � �CqC1

d0 //

dqC1

//
::: �Cq � � �

by the maps TmW N�C1;q !�CqC1 , 0 �m � q , defined as follows: For any arrow
y̨W F1)F0 in the category �Cq D LaxFunc.Œq�; C/, and writing F1j DF0j by Fj

for 0� j � q , then

Tm.y̨/W ŒqC 1� C

is the geometric .qC 1/–simplex of C that places

� at each vertex i , 0� i � qC 1, the object(
Fi if i �m;

F.i � 1/ if i >mI

� at each edge j ! i , 0� i � j � qC 1, the arrow8̂<̂
:

F1
i;j W Fj ! Fi if j �m;

F0
i;j�1
W F.j � 1/! Fi if i �m< j ;

F0
i�1;j�1

W F.j � 1/! F.i � 1/ if m< i I

� at each triangle

j

��
; 0� i � j � k � qC 1;

i koo

ZZ
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the 2–cell in C8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

+ yF 1
i;j ;k

Fj

F 1
i;j

��
Fi Fk ;

F 1
j ;k

]]

F 1
i;k

oo

if k �m;

+ yF 0
i;j ;k�1

Fj

F 1
i;j

+y̨i;j

��

F 0
i;j

rr
Fi F.k � 1/ ;

F 0
j ;k�1

^^

F 0
i;k�1

oo

if j �m< k;

+ yF 0
i;j�1;k�1

F.j � 1/

F 0
i;j�1

��
Fi F.k � 1/ ;

F 0
j�1;k�1

__

F 0
i;k�1

oo

if i �m< j ;

+ yF 0
i�1;j�1;k�1

F.j � 1/

F 0
i�1;j�1

��
F.i � 1/ F.k � 1/ ;

F 0
j�1;k�1

__

F 0
i�1;k�1

oo

if m< i I

and whose unit structure deformations (33) are(
yF1

i W 1Fi) F1
i;i ; if i �m;

yF0
i�1
W 1F.i�1/) F0

i�1;i�1
; if m< i:

Algebraic & Geometric Topology, Volume 10 (2010)



254 Pilar Carrasco, Antonio M Cegarra and Antonio R Garzón

It is straightforward to verify that the above definitions do indeed give the simplicial
homotopy (53) as predicted. Further, note that we have the equalities T0 D s0dh

1
and

Tmsh
0
D sm , for all 0�m� q .

Then, the simplicial homotopy H 1W 1) sh
0
dh

0

� � � N�C1;qC1

dv
0 //

dv
qC1

//

sh
0

dh
0

��

1

��

::: N�C1;q

sh
0

dh
0

��

1

��

H 1
0

:::

��

H 1
q

��

� � �

� � � N�C1;qC1

dv
0 //

dv
qC1

//
::: N�C1;q � � �

is defined by the maps H 1
m , 0�m� q , as above, which apply an arrow y̨W F1) F0

in N�Cq to the arrow

(54) smF1
H 1

m.y̨/+3 Tm.y̨/

in N�CqC1 , given by the family of deformations of C

H 1
m.y̨/i;j D

8̂<̂
:

1W F1
i;j ) F1

i;j if j �m;

˛i;j�1W F
1
i;j�1

) F0
i;j�1

if i �m< j ;

˛i�1;j�1W F
1
i�1;j�1

) F0
i�1;j�1

if i <m;

for 0� i � j � qC 1.

One easily observes that H 1
0
.y̨/D sv

0
.y̨/ and dv

qC1
H 1

q .y̨/D 1F 1 , whence dv
0

H 1
0
D 1

and dv
qC1

H 1
q D sh

0
dh

0
. Checking in full the remaining homotopy simplicial identities

needed for H 1W 1) sh
0
dh

0
to be a simplicial homotopy is again straightforward (though

quite tedious) and we will leave it to the reader.
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Finally, for an arbitrary p � 2, the simplicial homotopy H pW 1) sh
0
dh

0

� � � N�Cp;qC1

dv
0 //

dv
qC1

//

sh
0

dh
0

��

1

��

::: N�Cp;q

sh
0

dh
0

��

1

��

H
p

0

:::

��

H
p
q

��

� � �

� � � N�Cp;qC1

dv
0 //

dv
qC1

//
::: N�Cp;q � � �

is given by the maps H
p
m , 0�m� q , which take a .p; q/–simplex of N�C , say

� D .F0 y̨1

(H F1 y̨2

(H � � �
y̨p

(H Fp/;

to the .p; qC 1/–simplex

H p
m.�/D . Tm.y̨

1/ smF1
H 1

m.y̨
1/

ks smF2 � � �
sm y̨

2

ks smFp
sm y̨

p

ks /;

where H 1
m.y̨

1/ is as in (54). The simplicial identities that make H p a simplicial
homotopy are at this stage much easier to verify. This completes the proof.

The proof of the following theorem involves the “normalization” process.

Theorem 6.3 For any bicategory C , both the simplicial inclusion functor �uC ,!�C
and the simplicial inclusion map �uC ,! �C induce homotopy equivalences on the
corresponding classifying spaces, thus B�uC ' B�C and B�uC ' B�C .

Proof Since we have the commutative square

B�uC // B�C

B�uC

o

OO

// B�C;

o

OO

in which, by Theorem 6.3 above, both vertical maps are homotopy equivalences, it
is sufficient to prove that the simplicial functor �uC ,! �C induces a homotopy
equivalence on classifying spaces.

Algebraic & Geometric Topology, Volume 10 (2010)



256 Pilar Carrasco, Antonio M Cegarra and Antonio R Garzón

We will prove that, for each p � 0, the inclusion functor

�uCp D NorLaxFunc.Œp�; C/ ,! �Cp D LaxFunc.Œp�; C/

has a right adjoint. Then, every induced map B�uCp! B�Cp is a homotopy equiva-
lence and the result follows from Theorem 2.2.

The right adjoint functor .�/uW �Cp!�uCp , which should be called the normalization
functor, works as follows: By Lemma 4.2, every lax functor F D .F; yF /W Œp� C
uniquely determines a normal lax functor F u D .F u; yF u/W Œp� C , such that8̂<̂

:
F ui D Fi for 0� i � p;

F u
i;j D Fi;j for 0� i < j � p;

yF u
i;j ;k
D yFi;j ;k for 0� i < j < k � p:

This normal lax functor F u is indeed the unique one such that the family of deformations
in C ,

y�i;j D

(
1Fi;j
W Fi;j ) Fi;j if i ¤ j ;

yFi W 1Fi) Fi;i if i D j ;
0� i � j � p;

becomes a morphism y�W F u) F in �uCp . Furthermore, any morphism ˛W F )G

in �Cp uniquely determines a morphism ˛uW F u)Gu in �uCp such that the square

F u y�F +3

˛u

��

F

˛

��
Gu y�G +3 G

is commutative, namely,

˛u
i;j D

�
˛i;j if i ¤ j ;

11F i
if i D j:

These mappings F 7! F u , ˛ 7! ˛u , describe the functor .�/uW �Cp!�uCp that is
right adjoint to the inclusion �uCp ,!�Cp , with the identity and y� being the unit and
the counit of the adjunction, respectively.

In the proof of Theorem 6.4 below, our discussion uses the so-called Segal projection
functors (see Segal [37, Definition 1.2]) that, in our simplicial category �uC , are
defined by

(55) Pn D

nY
kD1

d0 � � � dk�2dkC1 � � � dnW �
uCn �! NCn
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for n� 2. That is, each

PnW NorLaxFunc.Œn�; C/!
G

.x0;:::;xn/2ObCnC1

C.x1;x0/� C.x2;x1/� � � � � C.xn;xn�1/;

maps a normal geometric n–simplex of C , F D .F; yF /W Œn� C to the string

PnF D .F0 F1
F0;1oo � � �

F1;2oo Fn
Fn�1;noo /;

and a morphism y̨W F ) F 0 in �uCn to

F0 +y̨0;1 F1

F 0
0;1

hh

F0;1

vv
+y̨1;2 F2

F 0
1;2

hh

F1;2

vv
� � � F.n� 1/ +y̨n�1;n Fn:

F 0
n�1;n

jj

Fn�1;n

tt

Theorem 6.4 For any bicategory C , the pseudosimplicial embeddings J W NC �uC
and J W NC SC induce both homotopy equivalences on the corresponding classifying
spaces; thus, BC ' B�uC and BC ' BSC .

Proof For nD 0; 1, we have equalities

�uC0 D SC0 D Ob C D NC0

�uC1 D SC1 D

G
x0;x1

C.x1;x0/D NC1

by identifying a normal lax functor F W Œ0� C with the object F0, and a normal lax
functor F W Œ1� C with the arrow F0;1W F1! F0, and the functors J0 and J1 are
both identities.

For n� 2, we have the equality PnJnD 1. Moreover, there is a natural transformation
y"W JnPn) 1 defined as follows: If F W Œn� C is any normal lax functor, that is, any
object of the category �uCn , and JnPn.F /D F e as in (48), then y"W F e) F is the
morphism in �uCn given by the family of 2–cells

Fj

F e
i;j

((

Fi;j

66+y"i;j Fi; 0� i � j � n;
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where y"i;i D 11F i
, y"i;iC1 D 1Fi;iC1

, and then inductively defined by pasting the
diagrams

+ yFi;j ;jC1

Fi

D

Fj
F e

i;joo

Fi;j

bb F.j C 1/:

F e
i;jC1

yy Fj ;jC1oo

Fi;jC1

aa
+y"i;j

Since Pny"D 1Pn
and y"Jn D 1Jn

, it follows that PnW �
uCn! NCn is a right adjoint

functor to JnW NCn!�uCn , with the identity and " being the unit and the counit of
the adjunction, respectively.

It follows that every JnW NCn! �uCn , n � 0, induces a homotopy equivalence on
classifying spaces BNCn ! B�uCn whence, by Theorem 2.2, the induced by the
pseudosimplicial functor BJ W BC D BNC! B�uC so is.

Finally we restrict the above constructions to the simplicial subcategory SC � �uC .
Note that, when F W Œn� C is a normal homomorphism, that is, an object of SCn , then
y"W JnPn.F /) F is an isomorphism. It follows that every functor JnW NCn! SCn is
an equivalence of categories, with PnW SCn! NCn being a quasi-inverse for n � 2,
and therefore J W NC  SC is actually a pseudosimplicial equivalence. Hence, the
induced map BJ W BC! BSC is a homotopy equivalence, as claimed.

Since the triangle
NC

J

   `
 `
 `
 `J

}} }=
}=
}=
}=
}=

�uC SCoo

commutes, we deduce the following consequence of the above Theorem 6.4, which
makes the proof for Theorem 6.1 complete:

Theorem 6.5 For any bicategory C , the simplicial inclusion functor SC ,! �uC
induces a homotopy equivalence on classifying spaces; thus, BSC ' B�uC .

We should stress here that it is not true that the simplicial set of objects of Segal’s nerve
SC of a bicategory C , that is, the simplicial set SCW Œp� 7! NorHom.Œp�; C/, represents
the homotopy type of the bicategory, in contrast to what happens with the categorical
geometric nerves.
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Remark 6.6 Let ��1M be the delooping bicategory of a monoidal category MD
.M;˝; I; a; l ; r/ (see Remark 3.3). The simplicial space Œn� 7!B.S��1Mn/ satisfies
the hypothesis of Segal’s Proposition 1.5 in [37], that is, the space BS��1M0 is
contractible (since it is a one point space) and the projection maps

pn D BPnW B.S��1Mn/! .BS��1M1/
n
D BMn

are homotopy equivalences, where BM is the classifying space of the underlying
category M (since every PnW S��1Mn!Mn is an equivalence of categories, as we
observed in the proof of Theorem 6.4 above). Therefore, �.B��1M;�/ is a group
completion of BM.

Note that the same conclusion, with the same discussion as above, can be obtained
by using any of the unitary categorical geometric nerves of the delooping bicategory
��1M, that is, �u��1M or xru�

�1M instead of the Segal nerve for modeling
B��1M.

7 The homotopy colimit theorem for bicategories

Many properties of the classifying space construction for bicategories, C 7! BC , are
easily established by using geometric nerves. For example:

Proposition 7.1 (i) Any lax (resp. oplax) functor between bicategories F W B 
C induces a continuous map BF W BB ! BC , well defined up to homotopy
equivalence.

(ii) If two lax (resp. oplax) functors between bicategories, F;F 0W B C , are re-
lated by a lax or an oplax transformation, F ) F 0 , then the induced maps on
classifying spaces, BF;BF 0W BB! BC , are homotopic.

(iii) If a homomorphism of bicategories has a left or right biadjoint, then the in-
duced map on classifying spaces is a homotopy equivalence. In particular, any
biequivalence of bicategories induces a homotopy equivalence on classifying
spaces.

Proof (i) The geometric nerve construction on bicategories C 7!�C (resp. C 7!rC )
is functorial on lax (resp. oplax) functors between bicategories. Therefore, Theorem
6.1 gives the result.
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(ii) Let F;F 0W B C be lax functors and suppose ˛W F)F 0 is a lax transformation.
There is a lax functor H W B� Œ1� C making the diagram commutative

(56)

B� Œ0�Š B

1�ı0

��

F

$$$d
$d
$d
$d
$d
$d
$d
$d
$d
$d
$d
$d

B� Œ1� H ///o/o/o/o/o/o/o/o/o C;

B� Œ0�Š B

F 0

::
:z
:z
:z
:z
:z
:z
:z
:z
:z
:z
:z
:z

1�ı1

OO

that carries a morphism in B� Œ1� of the form .uW x! y; 1! 0/ W .x; 1/! .y; 0/ to
the composite morphism in C

Fx
˛x
�! F 0x

F 0u
�! F 0y;

and a deformation .�; 11!0/W .uW x!y; 1!0/) .vW x!y; 1!0/ to the composite

F 0� ı 1˛x W F
0u ı˛x) F 0v ı˛x:

For uW x! y and vW y! z two composable morphisms in B , the structure constraint

yH W H.y
v
! z; 1! 0/ ıH.x

u
! y; 1! 1/)H.x

vıu
�! z; 1! 0/

is the deformation obtained by pasting the diagram

Fx

+ y̨

Fu //

˛x

��

Fy
˛y // F 0y

F 0v

��
F 0x

F 0u

::

F 0.vıu/

// F 0z;

+ bF 0

whereas the constraint

yH W H.y
v
! z; 0! 0/ ıH.x

u
! y; 1! 0/)H.x

vıu
�! z; 1! 0/
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is the composite deformation

F 0v ı .F 0v ı˛x/
a +3 .F 0v ıF 0u/ ı˛x

bF 0ı1 +3 F 0.v ıu/ ı˛x:

Applying geometric nerve construction to diagram (56), we get a diagram of simplicial
set maps

�B��Œ0�Š�B

1�ı0

��

F�

&&
�B��Œ1� H� // �C;

�B��Œ0�Š�B

F 0�

88

1�ı1

OO

showing that the simplicial maps F�;F
0
�W �B ! �C are made homotopic by H� ,

whence the result follows by Theorem 6.1.

The proof is similar for the case in which ˛W F)F 0W B C is an oplax transformation,
but with a change in the construction of the lax functor H W B� Œ1� C that makes
diagram (56) commutative: now define H such that

H.x
u
! y; 1! 0/D ˛y ıFuW Fx! F 0y:

The statements in (iii) follow from (i) and (ii).

In this section, we mainly want to show how the use of geometric nerves and Theorem
6.1 can be applied to homotopy theory of diagrams of bicategories CW I op! Bicat,
through a bicategorical Grothendieck constructionR

IC;

which assembles all bicategories Ci as we explain next. Recall that Bicat, here, means
the category of bicategories with homomorphisms.

Definition 7.2 Let CW I op! Bicat be a functor, .aW j ! i/ 7! .a�W Ci! Cj /, where
I is a small category. Then, the Grothendieck construction on C is the bicategory,
denoted by

R
I C , whose objects are pairs .x; i/, where i is an object of I and x

is one of the bicategory Ci . A morphism .u; a/W .y; j / ! .x; i/ in
R

I C is a pair

Algebraic & Geometric Topology, Volume 10 (2010)



262 Pilar Carrasco, Antonio M Cegarra and Antonio R Garzón

of morphisms where aW j ! i in I and uW y ! a�x in Cj . Given two morphisms
.u; a/; .u0; a0/W .y; j /! .x; i/, the existence of a deformation .u; a/) .u0; a0/ requires
that aD a0 , and then, such a deformation

.y; j /

.u;a/

''

.u0;a/

77
+.�;a/ .x; i/

consists of a deformation

y

u
))

u0
55+� a�x

in Cj . Thus, Ob
R

I C D
F

i2Ob I Ob Ci , and the hom-categories of
R

I C areR
I C
�
.y; j /; .x; i/

�
D
F

j
a
!i

Cj .y; a
�x/;

where the disjoint union is over all arrows aW j ! i in I .

For each triplet of objects .z; k/, .y; j / and .x; i/ of
R

I C , the horizontal composition
functor G

j
a
!i

Cj .y; a
�x/�

G
k

b
!j

Ck.z; b
�y/

ı
�!

G
k

c
!i

Ck.z; c
�i/

maps the component at two morphisms aW j! i and bW k!j of I into the component
at the composite abW k! i via the composition

Cj .y; a
�x/� Ck.z; b

�y/
b��1// Ck.b

�y; b�a�x/� Ck.z; b
�y/

ı // Ck.z; b
�a�x/;

that is,

.z; k/

.v;b/

&&

.v0;b/

88
+. ;b/ .y; j /

.u;a/

&&

.u0;a/

88
+.�;a/ .x; i/

� ı // .z; k/

.b�uıv;ab/

''

.b�u0ıv0;ab/

88
+.b��ı ;ab/ .x; i/:

Given any three composable morphisms

.t; `/
.w;c/
�! .z; k/

.v;b/
�! .y; j /

.u;a/
�! .x; i/
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in
R

I C , the structure associativity isomorphism

.u; a/ ı ..v; b/ ı .w; c//Š ..u; a/ ı .v; b// ı .w; c/

is provided by pasting, in the bicategory C` , the diagram

t
c�vıw //

w

��

+a

c�b�y

c�b�u

��+yc�

c�z

c�b�uıc�v

""

c�.b�uıv/

// c�b�a�x;

where a is the associativity isomorphism in C` and yc� is the structure isomorphism of
the homomorphism c�W Ck C` .

The identity morphism for each object .x; i/ in
R

I C is

.1x; 1i/W .x; i/! .x; i/;

and, for each morphism .u; a/W .y; j /! .x; i/, the left unit constraint

.1x; 1i/ ı .u; a/D .a
�1x ıu; a/Š .u; a/

is provided by the left unit constraint of Cj and the unit structure constraint of the
homomorphism a�W Ci Cj by pasting

a�x

a�1x

##

1a�x

..y

+ya�
l +

u

<<

u
// a�x;

whereas the right unit constraint

.u; a/ ı .1y ; 1j /D .u ı 1y ; a/Š .u; a/

is directly given by the right unit constraint rW u ı 1y) u of Cj at u.

We want to remark that the above Grothendieck construction
R

IC is a particular case
of that given by Baković in [2].

The well-known Homotopy Colimit Theorem by Thomason, that is, Theorem 2.1, admits
the following generalization to diagrams of bicategories CW I op! Bicat in Theorem
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7.3, where it is established how the classifying space of the bicategory Grothendieck
construction B

R
I C can be thought of as a homotopy colimit of the spaces BCi that

arise from the initial input data i 7! Ci given by the functor C .

Theorem 7.3 Suppose a category I is given. For every functor CW I op! Bicat there
exists a natural weak homotopy equivalence of simplicial sets

(57) �W hocolimI�C �!�
R

IC;

where �CW I op! Simpl:Set is the diagram of simplicial sets obtained by composing
C with the geometric nerve functor �W Bicat! Simpl:Set.

Proof To show an explicit description of the weak equivalence � in the theorem, we
shall first explicitly describe the simplicial sets hocolimI�C and �

R
I C .

On one hand, the simplicial set hocolimI�C is the diagonal of the bisimplicial set

(58) S D
G

G2�I

�CG0 D

G
GW Œq�!I

LaxFunc.Œp�; CG0/;

whose .p; q/–simplices are pairs
.F;G/

consisting of a functor GW Œq�! I and a lax functor F W Œp� CG0 . If ˛W Œp0�! Œp�

and ˇW Œq0�! Œq� are maps in the simplicial category, then the respective horizontal
and vertical induced maps ˛�h W Sp;q! Sp0;q and ˇ�v W Sp;q! Sp;q0 are defined by(

˛�h.F;G/D .F˛;G/;

ˇ�v .F; �/D .G�
0;ˇ0

F;Gˇ/;

where G�
0;ˇ0

F W Œp�  CGˇ0 is the lax functor obtained by the composition of F

with the homomorphism of bicategories G�
0;ˇ0
W CG0  CGˇ0 attached in diagram

CW I op! Bicat at the morphism G0;ˇ0W Gˇ0!G0 of I . In particular, the horizontal
face maps are given by

dh
i .F;G/D .Fd i ;G/; for 0� i � p;

and the vertical ones by

dvj .F;G/D .F;Gdj /; for 1� j � q;

dv0 .F;G/D .G
�
0;1F;Gd0/:while
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On the other hand, a p–simplex of �
R

I C is a lax functor Œp� 
R

I C , which can be
described as a pair

.F 0;G/;

where GW Œp�! I is a functor, that is, a p–simplex of �I , and F 0W Œp� C is a
G –crossed lax functor (cf [12, Section 4.1]), that is, a family

(59) F 0 D fF 0i;F 0i;j ;
yF 0i;j ;k ;

yF 0ig0�i�j�k�p

in which each F 0i is an object of the bicategory CGi , each F 0i;j W F
0j !G�i;j F 0i is a

morphism in CGj , each yF 0
i;j ;k
W G�

j ;k
F 0i;j ıF 0

j ;k
) F 0

i;k
is a deformation in CGk

+ yF 0
i;j ;k

G�
j ;k

F 0j

G�
j ;k

F 0
i;j

vv
G�

j ;k
G�i;j F 0i DG�

i;k
F 0i F 0k ;

F 0
j ;k

cc

F 0
i;k

oo

and each yF 0i W 1F 0i ) F 0i;i is a deformation in CGi . These data are required to satisfy
that, for 0� i � j � k � `� p , the diagram of deformations

(60)

G�
j ;`

F 0i;j ı .G
�

k;`
F 0

j ;k
ıF 0

k;`
/ a +3

1 ıbF 0j ;k;`
��

.G�
j ;`

F 0i;j ıG�
k;`

F 0
j ;k
/ ıF 0

k;`bG�k;`ı1
��

G�
j ;`

F 0i;j ıF 0
j ;`bF 0i;j ;`

��

G�
k;`
.G�

j ;k
F 0i;j ıF 0

j ;k
/ ıF 0

k;`

G�
k;`
bF 0i;j ;kı1

��
F 0

i;`
G�

k;`
F 0

i;k
ıF 0

k;`bF 0i;k;`ks

commutes in the bicategory CG` , and, for any 0 � i � j � p , both diagrams below
commute in CGj .

(61)

G�i;j F 0i;iıF
0
i;j

yF 0
i;i;j

��

G�i;j 1F 0iıF
0
i;j

G�
i;j
yF 0

i
ı1

ks

F 0i;j 1G�
i;j

F 0iıF
0
i;j

yG�
i;j
ı1

KS

rks

F 0i;jıF
0
j ;j

yF 0
i;j ;j

�$

F 0i;jı1F 0j

1ı yF 0
jks

lz�
F 0i;j

If ˛W Œp0�! Œp� is a map in the simplicial category, then the induced map

˛�W .�
R

IC/p! .�
R

IC/p0
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associates to a p–simplex .F 0;G/, as above, the p0–simplex

˛�.F 0;G/D .F 0˛;G˛/;

in which F 0˛ D fF 0˛i ;F 0˛i;˛j ;
yF 0˛i ; j̨ ;˛k

; yF 0˛ig0�i�j�k�p0 .

The simplicial map (57)

�W hocolimI�C �!�
R

IC

is then given on a p–simplex .F;G/ of hocolimI�C by

�.F;G/D .F 0;G/;

where F 0W Œp� C is the G–crossed lax functor as in (59), defined by the objects
F 0i D G�

0;i
Fi , the morphisms F 0i;j D G�

0;j
Fi;j W F

0j ! G�i;j F 0i and the deforma-
tions yF 0

i;j ;k
W G�

j ;k
F 0i;jıF

0
j ;k
)F 0

i;k
and yF 0i W 1F 0i) F 0i;i , which are, respectively, the

composites

yF 0
i;j ;k
W G�

0;k
Fi;j ıG�

0;k
Fj ;k

yG�
0;k +3 G�

0;k
.Fi;j ıFj ;k/

G�
0;k
yFi;j ;k

+3 G�
0;k

Fi;k ;

yF 0i W 1G�
0;i

Fi

yG�
0;i +3 G�

0;i
1Fi

G�
0;i
yFi
+3 G�

0;i
Fi;i :

To prove that this map � is a weak equivalence, our strategy now is to apply the weak
homotopy equivalences (2) on the bisimplicial set S , defined in (58). Since diagS D

hocolimI�C , we have a weak homotopy equivalence ˆW hocolimI�C! SW S , and
the proof will be complete once we show a simplicial isomorphism

‰W SW S Š �
R

IC

making the diagram of simplicial sets commutative:

(62)

hocolimI�C
� //

ˆ

'

%%

�
R

IC

SW S:

‰

Š
;;

For, note that a p–simplex of SW S , say �, can be described as a list of pairs

�D
��

F
.0

;G
.p�
; : : : ;

�
F
.m

;G
.p�m�

; : : : ;
�
F
.p

;G
.0��

;
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in which each G
.p�m

W Œp �m�! I is a functor and each F
.m

W Œm� C
G
.p�m

0
is a

lax functor, such that the equalities

G
.p�m

d0 DG
.p�m�1

; F
.mC1

dmC1 DG
.p�m

0;1

�

F
.m

;

hold for all 0�m< p . Writing G
.p

W Œp�! I simply as GW Œp�! I , an iterated use
of the above equalities proves that

G
.p�m

DGd0 .m
� � � d0

W Œp�m�! I;

for 0�m� p , and

F
.mC1

dmC1
� � � dkC1

DG�k;mC1F
.k

W Œk� CG.mC1/;

for 0� k �m< p . These latter equations mean that8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

F
.j

i DG�i;j F
.i

i for i � j ;

F
.k

i;j DG�
j ;k

F
.j

i;j for i � j � k;

yF
.`

i;j ;k
DG�

k;`
yF
.k

i;j ;k
for i � j � k � `;

yF
.j

i DG�i;j
yF
.i

i for i � j ;

whence we see how the p–simplex � of SW S is uniquely determined by GW Œp�!I , the
objects F

.i

i of CGi , the morphisms F
.j

i;j W F
.j

j ! F
.j

i DG�i;j F
.i

i of CGj , and the de-
formations yF

.k

i;j ;k
W F

.k

i;j ıF
.k

j ;k
DG�

j ;k
F
.j

i;j ıF
.k

j ;k
)F

.k

i;k
in CGk , and yF

.i

i W 1F
.i

i
)F

.i

i;i

in CGi , all for 0 � i � j � k � p . At this point, we observe that there is a normal
G–crossed lax functor F 0 D fF 0i;F 0i;j ;

yF 0
i;j ;k

; yF 0igW Œp� C , as in (59), defined just
by putting

F 0i D F
.i

i; F 0i;j D F
.j

i;j ;
yF 0i;j ;k D F

.k

i;j ;k and yF 0i D F
i

i

(the commutativity of diagrams (60) and (61) follows from F
.`

and F
.j

being lax
functors). Thus, the p–simplex � 2 SW S defines the p–simplex .F 0;G/ of �

R
IC ,

which itself uniquely determines �.

In this way, we get an injective simplicial map

‰W SW S !�
R

IC;��
F
.0

;G
.p�
; : : : ;

�
F
.p

;G
.0��
7! .F 0;G/D

�
fF

.i

i;F
.j

i;j ;
yF
.k

i;j ;k ;
yF
.i

i g;G
.p�

which is also surjective, that is, actually an isomorphism, as we can see by retracing
our steps:
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To any pair .F 0;G/ describing a p–simplex of �
R

IC , that is, with GW Œp�!I a functor
and F 0 D fF 0i;F 0i;j ;

yF 0
i;j ;k

; yF 0igW Œp� C a G–crossed lax functor, we associate the
p–simplex

�D
��

F
.m

;G
.p�m/��

of SW S , where, for each 0�m� p , G
.p�m

W Œp�m�! I is the composite

Œp�m�
.d0/m

! Œp�
G
! I;

and the lax functor F
.m

W Œm� C
G
.p�m

0
is defined by the objects F

.m

i DG�i;mF 0i ,
the morphisms

F
.m

i;j DG�j ;mF 0i;j W F
.m

j ! F
.m

i;

and the deformations

yF
.m

i;j ;k W F
.m

i;j ıF
.m

j ;k ) F
.m

i;k and F
.m

i W 1F
.m

i
) F

.m

i;i

which are respectively given as the compositions

yF
.m

i;j ;k
W G�j ;mF 0i;j ıG�

k;m
F 0

j ;k

yG�
k;m +3 G�

k;m
.G�

j ;k
F 0i;j ıF 0

j ;k
/

G�
k;m
yF 0

i;j ;k +3 G�
k;m

F 0
i;k
;

yF
.m

i W 1G�
i;m

F 0i

yG�
i;m +3 G�i;m1F 0i

G�
i;m
yF 0

i +3 G�i;mF 0i;i :

One easily checks that ‰.�/D .F 0;G/, whence we conclude that the simplicial map
‰ is an isomorphism as claimed.

Finally, since the map � in the theorem occurs in the commutative diagram (62), that
is, �D‰ˆ, where ‰ is an isomorphism and ˆ a weak homotopy equivalence, the
proof is complete.

For any functor CW I op! Bicat, the bicategory
R

IC assembles all bicategories Ci in
the following precise sense: There is a projection 2–functor

� W
R

IC! I;

given by

.y; j /

.u;a/

''

.v;a/

77
+.�;a/ .x; i/

�
7! j

a // i ;
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and, for each object j of I , there is a pullback square of bicategories

(63)

Cj
� //

��

R
IC

�

��
Œ0�

j // I

where �W Cj !
R

IC is the embedding homomorphism defined by

y

u
&&

v

88+� x
�
7! .y; j /

.u;1j /

''

.v;1j /

77
+.�;1j / .x; j / :

Thus, Cj Š �
�1.j /, the fibre bicategory of � at j .

After Quillen’s Lemma [35, page 90] (see also Goerss and Jardine [19, Section IV,
Lemma 5.7]), the following result is a consequence of our Theorem 7.3:

Theorem 7.4 Suppose that CW I op! Bicat is a diagram of bicategories such that the
induced map Ba�W BCi ! BCj , for each morphism aW j ! i in I , is a homotopy
equivalence. Then, for every object j of I , the square induced by (63) on classifying
spaces

BCj //

��

B
R

IC

��
?

j // BI

is homotopy cartesian. Therefore, for each object y 2 Cj there is an induced long exact
sequence on homotopy groups, relative to the base points y of BCj , .y; j / of B

R
IC ,

and j of BI ,

� � � ! �nC1BI ! �nBCj ! �nB
R

IC! �nBI ! � � � :

Remark 7.5 Let MW I op!MonCat, .aW j ! i/ 7! .a�WMi!Mj /, be a diagram
of monoidal categories. It follows from Theorem 6.1 and Theorem 7.3 that the homotopy
type of M is modeled by the bicategoryR

I�
�1M;

where ��1W MonCat ! Bicat is the delooping embedding (see Remark 3.3 and
Remark 5.1).
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Notice that
R

I�
�1M is a genuine bicategory: It has the same objects i as the cate-

gory I , its hom-categories areR
I�
�1M.j ; i/D

F
j

a
!i

Mj DMj � I.j ; i/;

where Mj is the underlying category of the monoidal category equally denoted, and
its horizontal compositions are given by

k

.v;b/

!!

.v0;b/

==+. ;b/ j

.u;a/

  

.u0;a/

>>+.�;a/ i
� ı // k

.b�u˝v;ab/

##

.b�u0˝v0;ab/

;;+.b�'˝ ;ab/ i:

Hence, the reader interested in the study of classifying spaces of monoidal categories
can find in the above fact a good reason to also be interested in the study of classifying
spaces of bicategories.

Recall that a notion of nerve NerIM, for a diagram of monoidal categories MW I op!

MonCat, was defined in [12, (66)] as follows: A “2–cocycle” of I with coefficients
in M is a system of data .Y; f / consisting of:

� For each arrow aW j ! i in I , an object Ya 2Mj .

� For each pair of composable arrows in I , bW k! j and aW j ! i , a morphism
in Mk

b�Ya˝Yb

fa;b // Yab;

such that Y1j D I (the unit object of Mj ), the morphisms f1;aW a
�I˝Ya! Ya

and fa;1W Ya˝I!Ya are the canonical isomorphisms given by the unit constrains
of the monoidal category Mj and the monoidal functor a� , and for any three
composable triplet, cW `! k , bW k! j and aW j ! i , of morphisms in I , the
diagram in M`

.c�b�Ya˝ c�Yb/˝Yc
Š // c�.b�Ya˝Yb/˝Yc

c�fa;b˝1
// c�Yab˝Yc

fab;c

��
c�b�Ya˝ .c

�Yb˝Yc/

Š

OO

1˝fb;c // c�b�Ya˝Ybc

fa;bc // Yabc
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(where the unnamed isomorphisms are canonical) is commutative. Then, NerIM,
the nerve of the diagram, is defined as the simplicial set

(64) NerIMW Œn� 7!
G

GW Œn�!I

Z2
�
Œn�;MG

�
;

where GW Œn�! I is any functor and Z2
�
Œn�;MG

�
is the set of 2–cocycles

of Œn� in the composition of the functors GW Œn�! I and MW I !MonCat.

It is a fact that this simplicial set (64) actually represents the homotopy type of the
diagram of monoidal categories M since a straightforward comparison shows the
existence of a natural isomorphism of simplicial sets

NerIMŠ�u
R

I�
�1M;

between NerIM and the normal geometric nerve (31) of the bicategory
R

I�
�1M.
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