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Faithfulness of a functor of Quillen

WILLIAM G DWYER

ANDREI RĂDULESCU-BANU

SEBASTIAN THOMAS

There exists a canonical functor from the category of fibrant objects of a model
category modulo cylinder homotopy to its homotopy category. We show that this
functor is faithful under certain conditions, but not in general.

18G55, 55U35

1 Introduction

We let M be a model category. Quillen defines in [5, Chapter I, Section 1] a homotopy
relation on the full subcategory Fib.M/ of fibrant objects, using cylinders. He obtains
a quotient category Fib.M/=

c
� and a canonical functor

Fib.M/=
c
�! Ho Fib.M/:

The question occurs whether this functor is faithful.

We show that it is faithful if M is left proper and fulfills an additional technical
condition. Moreover, we show by an example that it is not faithful in general.

Conventions and notation
� The composite of morphisms f W X!Y and gW Y!Z is denoted by fgW X!Z .

� Given n 2 N0 , we abbreviate Z=n WD Z=nZ. Given k; m; n 2 N0 , we write
kW Z=m! Z=n; aCmZ 7! kaC nZ, provided n divides km.

� Given a category C with finite coproducts and objects X; Y 2 Ob C , we denote
by X qY a (chosen) coproduct. The embedding X ! X qY is denoted by
emb0 , the embedding Y ! X q Y by emb1 . Given morphisms f W X ! Z

and gW Y !Z in C , the induced morphism X qY !Z is denoted by
�

f
g

�
.

� Given a category C and an object X 2Ob C , the category of objects in C under X

will be denoted by .X # C/. The objects in .X # C/ are denoted by .Y; f /,
where Y 2 Ob C and f W X ! Y is a morphism in C .
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2 Preliminaries from homotopical algebra

We recall some basic facts from homotopical algebra. Our main reference is Quillen [5,
Chapter I, Section 1].

Model categories

Throughout this note, we let M be a model category [5, Chapter I, Section 1, Defini-
tion 1]. In M, there are three kinds of distinguished morphisms, called cofibrations,
fibrations and weak equivalences. Cofibrations are closed under pushouts. If weak
equivalences in M are closed under pushouts along cofibrations, M is said to be left
proper [3, Definition 13.1.1(1)].

An object X 2ObM is said to be fibrant if the unique morphism M!� is a fibration,
where � is a (chosen) terminal object in M. The full subcategory of M of fibrant
objects is denoted by Fib.M/.

The homotopy category of C DM resp. C D Fib.M/ is a localisation of C with
respect to the weak equivalences in C and is denoted by Ho C . The localisation functor
of Ho C is denoted by Γ D ΓHoC W C! Ho C .

Given an object X 2 ObM, the category .X #M/ of objects under X obtains a
model category structure where a morphism in .X #M/ is a weak equivalence resp. a
cofibration resp. a fibration if and only if it is one in M.

Homotopies

A cylinder for an object X 2 ObM consists of an object Z 2 ObM, a cofibration� ins0

ins1

�
D insD insZ

W X qX !Z and a weak equivalence sD sZ W Z!X such that
ins sD

�
1
1

�
.

Given parallel morphisms f; gW X ! Y in M, we say that f is cylinder homotopic
to g , written f

c
� g , if there exists a cylinder Z for X and a morphism H W Z! Y

with ins0H D f and ins1H D g . In this case, H is said to be a cylinder homotopy
from f to g . (In the literature, cylinder homotopy is also called left homotopy; see
Quillen [5, Chapter I, Section 1, Definitions 3–4, Lemma 1].) The relation c

� is
reflexive and symmetric, but in general not transitive. Moreover, c

� is compatible with
composition in Fib.M/. We denote by Fib.M/=

c
� the quotient category of Fib.M/

with respect to the congruence generated by c
�.
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Quillen’s homotopy category theorem

There are dual notions to fibrant objects, cylinders, cylinder homotopic c
�, the full

subcategory of fibrant objects Fib.M/, its quotient category Fib.M/=
c
� and its homo-

topy category Ho Fib.M/, namely cofibrant objects, path objects, path homotopic
p
�,

the full subcategory of cofibrant objects Cof.M/, its quotient category Cof.M/=
p
�

and its homotopy category Ho Cof.M/, respectively. Moreover, an object X 2 ObM
is said to be bifibrant if it is cofibrant and fibrant. On the full subcategory of bifibrant
objects Bif.M/, the relations c

� and
p
� coincide and yield a congruence. One writes

� WD
c
�D

p
� in this case, and the quotient category is denoted by Bif.M/=�. Moreover,

Ho Bif.M/ is a localisation of Bif.M/ with respect to the weak equivalences in
Bif.M/.

Quillen’s homotopy category theorem [5, Chapter I, Section 1, Theorem 1] (cf Hovey [4,
Corollary 1.2.9, Theorem 1.2.10]) states that the various inclusion and localisation
functors induce the following commutative diagram, where the functors labeled by '
are equivalences and the functor labeled by Š is an isofunctor.

Cof.M/=
p
� Ho Cof.M/

Bif.M/=� Ho Bif.M/ HoM

Fib.M/=
c
� Ho Fib.M/

'

Š

'

'

'

In this note, we treat the question whether the functors Fib.M/=
c
� ! Ho Fib.M/

and Cof.M/=
p
�!Ho Cof.M/ are faithful. By duality, it suffices to consider the first

functor.

The model category mod.Z=4/

The category mod.Z=4/ of finitely generated modules over Z=4 is a Frobenius category
(with respect to all short exact sequences), that is, there are enough projective and
injective objects in mod.Z=4/ and, moreover, these objects coincide (we call such
objects bijective). Therefore mod.Z=4/ carries a canonical model category structure (cf
Hovey [4, Section 2.2]): The cofibrations are the monomorphisms and the fibrations are
the epimorphisms in mod.Z=4/. Every object in mod.Z=4/ is bifibrant, and the weak
equivalences are precisely the homotopy equivalences, where parallel morphisms f

and g are homotopic if g� f factors over a bijective object in mod.Z=4/. That is,
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the weak equivalences in mod.Z=4/ are the stable isomorphisms and the homotopy
category of mod.Z=4/ is isomorphic to the stable category [2, Chapter I, Section 2.2]
of mod.Z=4/.

We remark that every object in mod.Z=4/ is isomorphic to .Z=4/˚k ˚ .Z=2/˚l for
some k; l 2N0 , and every bijective object is isomorphic to .Z=4/˚k for some k 2N0 .

3 Faithfulness of the functor Fib.M/= c
�!Ho Fib.M/

We give a sufficient criterion for the functor under consideration to be faithful.

Proposition If the model category M is left proper and if wqw is a weak equivalence
for every weak equivalence w in M, then c

� is a congruence on Fib.M/ and the
canonical functor Fib.M/=

c
�! Ho Fib.M/ is faithful.

Proof We suppose given fibrant objects X and Y and morphisms f; gW X ! Y with
Γf D Γg in Ho Fib.M/. By [1, Theorem 1(ii)], there exists a weak equivalence
wW X 0!X such that wf

p
�wg . It follows that wf

c
�wg by [5, Chapter I, Section 1,

dual of Lemma 5], that is, there exists a cylinder Z0 for X 0 and a cylinder homotopy
H 0W Z0! Y from wf to wg . We let

X 0qX 0 X qX

Z0 Z

wqw

�

insZ0
i

w0

�

be a pushout of w q w along insZ 0

. By assumption, w q w and w0 are weak
equivalences. Since

.wqw/
�

1
1

�
D insZ 0

sZ 0

w;

there exists a unique morphism sW Z!X with�
1
1

�
D is and sZ 0

w D w0s:

Then s is a weak equivalence since sZ 0

, w and w0 are weak equivalences and therefore
Z becomes a cylinder for X with insZ

WD i and sZ WD s . Moreover,

.wqw/
�

f
g

�
D insZ 0

H 0

implies that there exists a unique morphism H W Z! Y with�
f
g

�
D insZ H and H 0 D w0H:
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So in particular f
c
� g .

X 0qX 0 X qX Y

Z0 Z Y

X 0 X

wqw

�

insZ0

�
f
g

�
insZ

w0

�

sZ0

�

H

sZ

�

w

�

Altogether, we have shown that morphisms in Fib.M/ represent the same morphism in
Ho Fib.M/ if and only if they are cylinder homotopic. In particular, c

� is a congruence
on Fib.M/.

The following counterexample shows that the canonical functor

Fib.M/=
c
�! Ho Fib.M/

is not faithful in general.

Example We consider the category .Z=4 #mod.Z=4// of finitely generated Z=4–
modules under Z=4 with the model category structure inherited from mod.Z=4/; see
Section 2. All objects in .Z=4 #mod.Z=4// are fibrant since all objects in mod.Z=4/

are fibrant.

We study morphisms .Z=4; 2/! .Z=4˚ Z=2; . 2 0 // in .Z=4 # mod.Z=4//. We
let .Z; t/ be a cylinder of .Z=4; 2/ and we let H W .Z; t/! .Z=4˚Z=2; . 2 0 // be
a cylinder homotopy (from ins0H to ins1H ). Then we have a weak equivalence
.Z; t/! .Z=4; 2/ in .Z=4 # mod.Z=4// and hence a weak equivalence Z! Z=4

in mod.Z=4/. Thus Z is bijective and therefore we may assume that Z D .Z=4/˚k .
Since ins0 and ins1 are morphisms from .Z=4; 2/ to .Z; t/, we have 2ins0D tD2ins1

and hence ins0 �2 ins1 as morphisms from Z=4 to Z . But this implies that the
second components of ins0H and ins1H are the same. In other words, we have
shown that cylinder homotopic morphisms from .Z=4; 2/ to .Z=4 ˚ Z=2; . 2 0 //

coincide in the second component. It follows that the morphisms . 1 0 /W .Z=4; 2/!

.Z=4˚Z=2; . 2 0 // and . 1 1 /W .Z=4; 2/! .Z=4˚Z=2; . 2 0 // in .Z=4#mod.Z=4//

represent different morphisms in the quotient category Fib..Z=4 #mod.Z=4///=
c
�.

On the other hand, since Z=4 is bijective, the morphism 2W Z=4! Z=4 is a weak
equivalence in mod.Z=4/, and therefore 2W .Z=4; 1/! .Z=4; 2/ is a weak equiva-
lence in .Z=4 # mod.Z=4//. But 2. 1 0 / D 2. 1 1 / as morphisms from .Z=4; 1/ to
.Z=4˚Z=2; . 2 0 // in .Z=4 # mod.Z=4//, so in particular Γ .2. 1 0 // D Γ .2. 1 1 //

and hence Γ . 1 0 /D Γ . 1 1 /.
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