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Odd primary homotopy decompositions of gauge groups

STEPHEN D THERIAULT

We construct p–local decompositions of certain gauge groups when p is an odd
prime. Specifically, we decompose SU.n/ , Sp.n/ and Spin.n/–gauge groups over
simply connected 4–manifolds and U.n/–gauge groups over compact, orientable
Riemann surfaces, given certain restrictions on n that depend on p .

54C35, 55P35, 55R10

1 Introduction

Let X be a path-connected, pointed topological space and G a topological group with
classifying space BG . Let P �!X be a principal G –bundle. The gauge group G.P /
is the group of G –equivariant automorphisms of P that fix X . The topology of gauge
groups and their classifying spaces plays a crucial role in mathematical physics and the
geometry of 4–manifolds. In physics, a gauge group describes the parallel transport
of point particles by means of connections on bundles. The role that the topology
of gauge groups plays is nicely described by Cohen and Milgram [5]. In geometry,
Donaldson [8] famously used topological information from SU.2/–gauge groups to help
identify polynomial invariants that distinguished between diffeomorphism structures on
4–dimensional Riemannian manifolds. Topological properties of gauge groups have
received considerable attention over the past twenty years, particularly in terms of
counting their distinct homotopy types (see Crabb and Sutherland [7], Hamanaka and
Kono [14], Kono [19], Kono and Tsukuda [20] and Sutherland [25]) and calculating the
homology and cohomology of their classifying spaces (see Crabb [6], Masbaum [22]
and Terzić [26]).

In this paper we consider how certain gauge groups decompose as products after
localization at an odd prime p . The goal is to produce analogues of the p–local
decompositions of simple, compact Lie groups determined by Harris [15], Mimura and
Toda [24] and Mimura, Nishida and Toda [23], which have proved to be useful when
investigating the homotopy theory of Lie groups. It is expected that the decompositions
proved here will be equally useful when investigating the homotopy theory of gauge
groups.
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536 Stephen D Theriault

We consider two collections of gauge groups. The first often arises in mathemati-
cal physics, and is associated to principal G–bundles over a simply connected 4–
manifold M , where G is a simple, simply connected compact Lie group. The second
is associated to principal U.n/–bundles over a compact, orientable Riemann surface †g

of genus g . Since the set of homotopy classes ŒM;BG� is isomorphic to Z, each
integer k classifies up to isomorphism a principal G–bundle Pk over M . Let GkG

be the gauge group of Pk . Similarly, as Œ†g;BU.n/�Š Z, to each integer k there is
an isomorphism class of principal U.n/–bundles over †g with gauge group GkU.n/.

We begin with a straightforward decomposition in Section 2 to reduce to the case when
the 4–manifold is S4 , or when the Riemann surface is S2 . To analyze these, we use
Gottlieb’s general result [11] (see also Atiyah and Bott [1]) that for any topological
group G and path-connected space X , the gauge group G.P / of a principal G –bundle
has classifying space BG.P / homotopy equivalent to MapP .X;BG/, the space of
continuous maps from X to BG that induce P . Evaluating at the basepoint of X

yields a fibration Map�P .X;BG/ �!MapP .X;BG/ �! BG , where the fiber is the
space of continuous, pointed maps from X to BG that induce P . This fibration
has a connecting map @k W G ! Map�P .X;BG/. For any integer m and space Y ,
let �m

0
Y denote the component of �mY containing the basepoint. Equivalently, if

Y hmi is the m–connected cover of Y , then �m
0

Y ' �mY hmi. In our cases, it is
well known (see Sutherland [25] for example) that the components Map�

k
.S4;BG/

are all homotopy equivalent to �3
0
G , and the components Map�

k
.S2;BU.n// are all

homotopy equivalent to �0U.n/ ' �SU.n/. So the connecting map @k induces
homotopy fibrations

GkG �!G
@k
�!�3

0G and GkU.n/ �! U.n/
@k
�!�0U.n/:

Our aim is to factor the maps @k in a useful way in order to produce p–local decom-
positions of GkG and GkU.n/. This is the key work in the paper, and should have
applications elsewhere. Note that p–localization is valid in this context by Hilton,
Mislin and Roitberg [16], as the spaces G , �3

0
G , U.n/, and �0U.n/ all have a

nilpotent (in fact abelian) fundamental group which acts nilpotently on the higher
homotopy groups.

We begin with a general theorem which is the driving force behind our results. Assume
that all spaces and maps have been localized at an odd prime p and take homology with
mod–p coefficients. It is well known that if the integral homology of G is p–torsion
free then there is an isomorphism H�.G/Šƒ.x2n1C1; : : : ;x2nlC1/, where n1< n2<

� � �< nl , the degree of x2niC1 is 2niC1, and the type of G is f2n1�1; : : : ; 2nl �1g.
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Let q D 2.p� 1/. It is also well known that there is an algebra decomposition

H�.G/Š

p�1O
iD1

ƒ.Vi/

where Vi consists of those generators in fx2n1C1; : : : ;x2nlC1g whose degrees are
of the form 2i C j q C 1 for some j � 0. Note that, depending on G , it may be
the case that Vi D ∅ for some i . Mimura, Nishida and Toda [23] realized this
algebra decomposition geometrically by showing that there is a homotopy equivalence
G '

Qp�1
iD1
xBi where H�. xBi/Šƒ.Vi/. An alternative equivalence eW G!

Qp�1
iD1

Bi

with H�.Bi/ Š ƒ.Vi/ was given in [28] in low ranks in which the factors and the
equivalence are better controlled. The list of groups and ranks for which this holds is
as follows:

(1)

SU.n/ if n� .p� 1/.p� 2/C 1

Sp.n/ if 2n� .p� 1/.p� 2/

Spin.2nC 1/ if 2n� .p� 1/.p� 2/

Spin.2n/ if 2.n� 1/� .p� 1/.p� 2/

G2;F4;E6 if p � 5

E7;E8 if p � 7:

The restrictions on n and p come from the fact that in these cases G is a retract
of �†A, where A is an appropriate subcomplex of G (more will be said on this in
Section 3).

Theorem 1.1 If G is one of the groups in (1) then there is a homotopy commutative
diagram

G
@k //

e

��

�3
0
G

Qp�1
iD1

Bi

ık // �3
0
G

where ık is an H –map.

The key here is the combination of ık being an H –map and the fact that G retracts off
�†A. This lets us deduce properties about ık by restricting to A. As one example,
we have an analogue to the classical fact that if G has type f2n1�1; : : : ; 2nl �1g and
p � nl then there is a homotopy decomposition G '

Ql
iD1 S2ni�1 .
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Proposition 1.2 Suppose the type of G is f2n1�1; : : : ; 2nl �1g. If p > nl C1 then
there is a homotopy equivalence

GkG ' S3
��4S3

h3i �

lY
iD2

�
S2ni�1

��4S2ni�1
�
:

In particular, Proposition 1.2 is a generalization to large primes of the rational decom-
position of GkG in Félix and Oprea [9].

The main application of Theorem 1.1 is to decompose GkG when G is one of SU.n/,
Sp.n/ or Spin.n/, as well as GkU.n/ for n� .p�1/.p�2/C1. We state the SU.n/
case, deferring the others to the body of the paper. The homotopy equivalence e takes
the more explicit form

SU.n/'
p�1Y
iD1

Bi

where the homology of Bi is H�.Bi/Šƒ.x2iC1;x2iCqC1; : : : ;x2iC.kn�1/qC1/ and
kn D b.n�i�1/=.p�1/c is the greatest integer less than or equal to .n�i�1/=.p�1/.
Let EW Sm!�SmC1 be the suspension. We show that the H –map ık in Theorem
1.1 is homotopic to the composite

Qp�1
iD1

Bi

��;� // B� �B� // S2n�3 �S2n�1
E4�E4

// �4S2nC1 ��4S2nC3

k�3xsn�k�3xsnC1 // �3
0
Bu ��

3
0
Bv

iu;v // Qp�1
iD1

�3
0
Bi

�3e�1
// �3

0
SU.n/:

Here, ��;� is the projection onto the factors B� and B� carrying the degree 2n� 3

and 2n�1 generators in homology, which is followed by the maps to the corresponding
spheres, E4 is the quadruple suspension, iu;v is the inclusion of the factors Bu and
Bv which inherit from the equivalence e the homotopy groups �2n.SU.n//ŠZ=n! Z
and �2nC2.SU.n// Š Z=.nC 1/! Z (a minor simplification of the latter has been
incorporated which is valid at odd primes), and these generators are represented by the
composites xsn ıE and xsnC1 ıE . The decomposition of Gk SU.n/ is a consequence
of this factorization of ık . Let Xk and Yk respectively be the homotopy fibers of the
composites

B� ����! S2n�3 E4

����!�4S2nC1 k�3xsn
����!�3

0Bu

B� ����! S2n�1 E4

����!�4S2nC3
k�3xsnC1

����! �3
0Bv :
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Theorem 1.3 Suppose 2� n� .p�1/.p�2/C1 and let k 2Z. There is a homotopy
decomposition

Gk SU.n/'Xk �Yk �

 
p�1Y
jD1

j¤�;�

Bj

!
�

 
p�1Y
iD1

i¤u;v

�4
0Bi

!
:

For example, if nD p then by Mimura and Toda [24], SU.p/'
Qp�1

iD1
S2i�1 . The

map ık is homotopic to the composite

p�1Y
iD1

S2i�1 �
��!S2p�3

�S2p�1 ˛�˛
0

��!�3
0S3
��3S5 {

!

p�1Y
iD1

�3
0S2i�1�

3e�1

��! �3
0 SU.p/;

where � is the projection, ˛ and ˛0 represent the least nonvanishing torsion homotopy
groups of S3 and S5 respectively – both of which have order p , and { is the injection.
Consequently, Gk SU.p/' X �Y �

Qp�3
jD1

S2j�1 �
Qp�1

iD1
�4S2i�1 , where X and

Y are the homotopy fibres of ˛ and ˛0 respectively.

Analogous decompositions of Gk Sp.n/, Gk Spin.2n/and Gk Spin.2nC 1/are given
in Theorems 6.2, 7.4 and 7.1 respectively, as well as a decomposition of GkU.n/ in
Theorem 6.3.

This paper is organized as follows. In Section 2 we reduce from simply connected
4–manifolds to S4 and compact, orientable Riemann surfaces to S2 . In Section 3 we
describe the properties we need of the low rank decomposition of G . Theorem 1.1 is
proved in Section 4, and several consequences are given. In Section 5 we specialize
to the cases when G D SU.n/ and G D Sp.n/, as well as consider the U.n/ case,
and prove factorizations of restricted versions of @k . These are then combined with
Theorem 1.1 in Section 6 to factor @k itself. The decomposition in Theorem 1.3 follows,
as well as analogues for Gk Sp.n/ and GkU.n/. Finally, in Section 7 we prove general
results which decompose Gk Spin.2nC 1/ and Gk Spin.2n/ in terms of Gk Sp.m/ for
appropriate values of m.

The author would like to thank the referee for a careful reading of the paper, and for
pointing out an omission in an earlier version of Theorem 7.1.

2 Reduction to the case when M D S 4

This section reduces the problem of decomposing gauge groups of principal G –bundles
over simply connected 4–manifolds to the special case when the manifold is S4 , and
of principal U.n/–bundles over compact, orientable Riemann surfaces to the special
case of S2 .
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First consider the case of a simply connected Spin 4–manifold M . Recall that M has
a CW–structure with has one 0–cell, d 2–cells for some nonnegative integer d , and
one 4–cell. This CW–structure implies that there is a homotopy cofibration sequence

S3 f
�!

d_
iD1

S2 i
�!M

q
�! S4

where f attaches the top cell, i is the inclusion, and q pinches onto the top cell. Since
M is a Spin–manifold, †f is null homotopic. Thus there is a homotopy decomposition
†M ' .

Wd
iD1 S3/_S5 .

Consider the k –th component of the evaluation fibration

Map�k.M;BG/ �!Mapk.M;BG/
ev
�! BG:

The evaluation map is natural so the pinch map M
q
�! S4 determines a homotopy

fibration diagram

(2)

G
'k // Map�k.S

4;BG/ //

q�

��

Mapk.S
4;BG/

ev //

q�

��

BG

G
@k // Map�k.M;BG/ // Mapk.M;BG/

ev // BG

which defines the map 'k . To distinguish between the associated gauge groups,
let Gk.M;G/ D �Mapk.M;BG/ and GkG D �Mapk.S

4;BG/. The following
decomposition is essentially a consequence of the triviality of †f .

Proposition 2.1 If M is a simply connected Spin 4–manifold with d two-cells then
there is an integral homotopy decomposition

Gk.M;G/'

 
dY

iD1

�2G

!
�GkG:

Proof The cofibration sequence

M
q
�! S4 †f

�!

d_
iD1

S3 †i
�!†M
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induces a fibration sequence

Map�k.†M;BG/
.†i/�

�! Map�k

 
d_

iD1

S3;BG

!
.†f /�

�! Map�k.S
4;BG/

q�

�!Map�k.M;BG/:

The factorization of @k through 'k in (2) implies that there is a homotopy commutative
diagram

Map�k.†M;BG/

��

Map�k.†M;BG/

.†i/�

��
GkG // Gk.M;G/

h //

��

Map�k.
Wd

iD1 S3;BG/

.†f /�

��
GkG // G

'k //

@k

��

Map�k.S
4;BG/

q�

��
Map�k.M;BG/ Map�k.M;BG/

which defines the map h. Focus on the fibration in the second row, in which h is the
map to the base. Note that Map�k.

Wd
iD1 S3;BG/ '

Qd
iD1�

2G . Since †f is null
homotopic, so is .†f /� . Thus .†i/� has a right homotopy inverse. This implies that
h has a right homotopy inverse, and so the loop structure on Gk.M;G/ lets us multiply
to obtain a homotopy equivalence 

dY
iD1

�2G

!
�GkG �! Gk.M;G/�Gk.M;G/ �! Gk.M;G/:

For a non–Spin–manifold, again there is a homotopy cofibration

S3 f
�!

d_
iD1

S2 i
�!M

q
�! S4

but now †f is not null homotopic. Since �4.S
3/ D Z=2Z it follows that †f has

order 2. So if we localize away from 2 then †f is null homotopic and there is a
Z.1=2/–local decomposition †M ' .

Wd
iD1 S3/_S5 . Arguing as in Proposition 2.1

and using the fact from [16] that Map�.X;Y /.1=2/ 'Map�.X.1=2/;Y.1=2//, we have
the following.
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Proposition 2.2 If M is a simply connected 4–manifold with d two-cells which is
not Spin, then there is a Z.1=2/–local decomposition

Gk.M;G/'

 
dY

iD1

�2G

!
�GkG:

Next, recall that a compact, orientable Riemann surface †g of genus g has a CW–
structure with one 0–cell, 2g 1–cells, and one 2–cell. So there is a homotopy
cofibration sequence

S1 f
�!

2g_
iD1

S1 i
�!†g

q
�! S2

where f attaches the top cell, i is the inclusion, and q pinches onto the top cell. It is
well known that f is the sum of Whitehead products

Lg
iD1
ha2i�1; a2ii where aj is the

inclusion of the j –th summand into the wedge
W2g

iD1
S1 . In particular, †f is null ho-

motopic and so ††g ' .
W2g

iD1
S2/_S3 . Let Gk.†g;U.n//D�Mapk.†g;BU.n//

and GkU.n/D�Mapk.S
2;BU.n//. Let Z2g be the product of 2g copies of Z.

Proposition 2.3 If †g is a compact, orientable Riemann surface of genus g then
there is an integral homotopy decomposition

Gk;g ' Z2g
�

 
2gY

iD1

�SU.n/

!
�GkU.n/:

Proof Argue as in Proposition 2.1, replacing the diagram in (2) with the analogous
diagram induced by the pinch map qW †g! S2 . Also, since U.n/' S1�SU.n/, we
have �U.n/' Z��SU.n/, and so the decomposition Gk.†g;U.n//' GkU.n/�Q2g

iD1
�U.n/ can be refined to the asserted one.

3 Decompositions of Lie groups

This section adds to what was said in the Introduction about decompositions of Lie
groups. Recall that all spaces and maps have been localized at an odd prime p and
homology is taken with mod–p coefficients. The Lie group G is simple, simply
connected, and compact, and its integral homology has no p–torsion. Of all the
groups Spin.n/, SU.n/, Sp.n/, G2 , F4 , E6 , E7 , and E8 and all the odd primes,
the torsion free assumption eliminates only F4 , E6 , E7 and E8 at the prime 3,
and E8 at the prime 5. In the torsion free cases there is an isomorphism H�.G/Š

ƒ.x2n1C1; : : : ;x2nlC1/, where f2n1 � 1; : : : ; 2nl � 1g is the type of G . There is a
further isomorphism H�.G/ Š

Np�1
iD1

ƒ.Vi/ where Vi consists of those generators
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in fx2n1C1; : : : ;x2nlC1g whose degrees are of the form 2i C j qC 1 for some j � 0.
Based on work in [15; 24; 23], it was shown in [28] that for each such G there exists
a space A and a map {W A! G such that H�.G/Šƒ. zH�.A// and {� includes the
generating set into the exterior algebra. For example, when G D SU.n/ we have
AD†CPn�1 and when G D Sp.n/ we have A equal to the space Qn constructed by
James [17].

Theorem 3.1 states some properties of the decomposition in [28] of the groups G in (1).
For our purposes, the advantage of this decomposition over that in [23] is the existence
of the factorization property in part (d). Note that the bounds on n for the matrix
groups in (1) depend on .p� 1/.p� 2/, whereas the statements in [28] had a bound
on n depending on .p� 1/.p� 3/. This was because the focus there was on a certain
universal property satisfied by the factors, which we do not need here. To distill what
is needed and why the stated bounds hold, we outline the proof. In what follows, we
will refer to S2mC1 as an H –space. To specify the H –structure, recall that there is a
homotopy fibration

�S4mC1 �w
�!�S2mC2 xr

�! S2mC1

where w is the Whitehead product of the identity map on S2mC2 with itself. The
H –structure on S2mC1 we need is that induced from the fact that the suspension
EW S2mC1!�S2mC2 is a left homotopy inverse of xr .

Theorem 3.1 Suppose that G is one of the groups in (1). Then there are maps
t W †G!†A and r W �†A!

Qp�1
iD1

Bi such that
(a) t is a left homotopy inverse of †{W †A!†G ;
(b) Bi is a spherically resolved H –space, H�.Bi/ Š ƒ.Vi/, and if the highest

dimensional element of V has degree 2miC1, then there is an H –map Bi �!

S2miC1 ;
(c) the composite

eW G
E
�!�†G

�t
�!�†A

r
�!

p�1Y
iD1

Bi

is a homotopy equivalence;
(d) the map r has the property that any H –map f W �†A! Z into a homotopy

associative, homotopy commutative H –space Z factors as

�†A
f //

r��

Z

Qp�1
iD1

Bi

xf // Z

where xf is an H –map.
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Proof The statements for the exceptional groups and part (a) are directly from [28].
For the matrix groups, by [24], there is a homotopy equivalence A'

Wp�1
iD1

Ai where
zH�.Ai/Š Vi . The bound on n in the statement of the theorem implies that each Ai

has at most p� 2 cells, all of which are in odd dimensions. By [4], these conditions
on the cells of Ai imply that there is a spherically resolved H –space Bi such that
H�.Bi/Šƒ. zH�.Ai//, and a homotopy fibration

(�) �Ri
��i
�!�†Ai

ri
�! Bi

where ri has a right homotopy inverse and �i is defined via Whitehead products. Since
the construction in [4] is functorial, the pinch map Ai �! S2miC1 to the top cell
induces a map of fibrations from (�) to

�S4miC1 �w
�!�S2miC2 xr

�! S2miC1;

which implies that the induced map Bi �!S2miC1 is an H –map. This proves part (b).
The map r is defined as the product of the maps ri for 1� i �p�1. Arguing as in [28,
1.1] shows that the composite e is an isomorphism in homology and so is a homotopy
equivalence, proving part (c). By the Hilton–Milnor Theorem, �†A'�.

Wp�1
iD1

†Ai/

decomposes as
Qp�1

iD1
�†Ai � P , where P is an infinite product of loop spaces,

each factor of which maps into �†A by a looped Whitehead product. Putting things
together, there is a homotopy fibration

P �

p�1Y
iD1

�†Ri
�
�!�†A

r
�!

p�1Y
iD1

Bi

where � is a product of looped Whitehead products. Further, the existence of a
right homotopy inverse for each ri implies that r has a right homotopy inverse. The
factorization property in part (d) now follows as in [27, 5.3].

A more precise account of the factors of SU.n/ was given in the Introduction. For
Sp.n/, the homotopy equivalence

Sp.n/'
p�1Y
iD1

Bi

simplifies as H�.Bi/Š 0 if i is even, and so Bi is contractible. If i is odd, H�.Bi/Š

ƒ.x2iC1;x2iCqC1; : : : ;x2iC.k0n�1/qC1/ for k 0n D b.2n� i C 1/=.p� 1/cC 1. The
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decomposition of Spin.n/ follows from that of Sp.n/ and Harris’ [15] decompositions

Spin.2nC 1/' Sp.n/

Spin.2n/' S2n�1
�Spin.2n� 1/:

Also, since U.n/' S1 �SU.n/, the decomposition of SU.n/ in Theorem 3.1 implies
that for n� .p� 1/.p� 2/C 1 there is a homotopy decomposition

U.n/' S1
�

p�1Y
iD1

Bi :

Note also in this case that there is a corresponding space AD S1 _†CPn�1 which
satisfies H�.U.n//Šƒ. zH�.A//.

One more general result is needed for what follows. This concerns being able to
determine when two H –maps are homotopic. Let | be the composite

| W A
{
�!G

e
�!

p�1Y
iD1

Bi :

By Theorem 3.1 (c), the map r W �†A!
Qp�1

iD1
Bi has a right homotopy inverse. So

by [12] we have the following.

Lemma 3.2 Suppose Y is an H –space and f;gW
Qp�1

iD1
Bi �! Y are H –maps with

the property that f ı | ' g ı | . Then f ' g .

4 A reformulation of @k

In this section we prove Theorem 1.1. We first require two preliminary results. The first
describes the adjoint of @k and was proved in [21]. Let �W S3! G be the inclusion
of the bottom cell. For k 2 Z, let kW G ! G be the k –th power map. Write the
composite k ı � as k�.

Lemma 4.1 The adjoint of the map @k W G ! �3
0
G is homotopic to the Samelson

product hk�; 1iW S3 ^G!G .

The second preliminary result concerns a decomposition of †G . By Theorem 3.1 the
map †{W †A!†G has a right homotopy inverse, so †G '†A_C for some space
C . In [13] the complementary factor C is decomposed very finely. One consequence
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is given in Lemma 4.2. Let evW †G '†�BG! BG be the evaluation map. Recall
that there is a homotopy fibration

†G ^G
��

�!†G
ev
�! BG

where �� is the canonical Hopf construction.

Lemma 4.2 Let G be one of the groups in (1) or let GDU.n/ and ADS1_†CPn�1

when n� .p� 1/.p� 2/C 1. Then there is a homotopy equivalence

†A_C
†{Cs
����!†G

where C is a retract of †G ^G and s factors through the Hopf construction �� .

Let N{ be the composite

†A
†{
�!†G

ev
�! BG:

By Lemma 4.2, †{ has a left homotopy inverse t W †G ! †A. Further, since s

factors through the Hopf construction, it composes trivially with the evaluation map
evW †G!G . Thus there is a homotopy commutative diagram

(3)

†G
ev //

t

��

BG

†A
N{ // BG:

Proof of Theorem 1.1 By (3), for k 2Z, the Whitehead product Œk�; ev�W †S3 ^G!

BG factors through the Whitehead product Œk�; N{�W †S3 ^A! BG and there is a
homotopy commutative diagram

(4)
†S3 ^G

Œk�;ev� //

†3t
��

BG

†S3 ^A
Œk�;N{� // BG:

Let s be the composite sW G
E
�!�†G

�t
�!�†A. Consider the diagram

G
E //

s
%%

�†G
�E3

//

�t

��

�4
0
†4G

�4Œk�;ev� //

�4†3t
��

�4
0
BG

�†A
�E3

// �4
0
†4A

�4Œk�;N{� // �4
0
BG
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where E3 is the triple suspension. The left triangle homotopy commutes by the
definition of s , the middle square homotopy commutes by the naturality of E3 , and
the right square homotopy commutes as it is the 4–fold loops of (4). Observe that the
top row is homotopic to the 4–fold right adjoint of Œk�; ev�, while Œk�; ev� is homotopic
to the 4–fold left adjoint of @k . Thus the top row is homotopic to @k . Simplifying,
there is a homotopy commutative diagram

G
@k //

s

��

�3
0
G

�†A
�ı0

k // �3
0
G

where ı0
k
D�3Œk�; N{� ıE3 .

Since �ı0
k

is an H –map, Theorem 3.1 implies that there is a homotopy commutative
square

�†A
�ı0

k //

r

��

�3
0
G

Qp�1
iD1

Bi

ık // �3
0
G

where ık is an H –map. Juxtaposing the previous two diagrams gives a homotopy
@k ' ık ı r ı s . By the definitions of s and e , r ı s is the homotopy equivalence e ,
and so the lemma has been proved.

Remark 4.3 An analogue of Lemma 4.2 holds for U.n/ and A D S1 _ CPn�1

because there is a standard decomposition U.n/' S1�SU.n/. Replacing �W S3!G

with the inclusion N�W S1 ! U.n/ of the bottom cell, an argument similar to that in
Theorem 1.1 can now be made to show that there is a homotopy commutative diagram

U.n/
@k //

e
��

�0U.n/

S1 �
Qp�1

iD1
Bi

ık // �0U.n/

where ık is an H –map.

Theorem 1.1 plays a key role in the decompositions of Gk SU.n/, Gk Sp.n/, and
GkU.n/. For now, we give another application to show how it can be used in tandem
with Lemma 3.2 to prove Proposition 1.2 and give some other decomposition results.
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Lemma 4.4 Let G be one of the groups in (1). Suppose that the composite

A
{
�!G

@k
�!�3

0G

is null homotopic. Then @k is null homotopic.

Proof By Theorem 1.1, it is equivalent to show that the map ık W
Qp�1

iD1
Bi!�3

0
G

is null homotopic. The hypothesis @k ı { ' � becomes equivalent to the composite

A
|
�!

p�1Y
iD1

Bi
ık
�!�3

0G

being null homotopic. Compare ık and the trivial map. Both are H –maps, and by
hypothesis, ık ı | ' �' �ı | . Thus Lemma 3.2 implies that ık ' �.

Proof of Proposition 1.2 It is well known that p>nl implies that G'
Ql

iD1 S2ni�1 .
Noting that 2n1� 1D 3 for all G , looping three times gives

�3
0G '�3S3

h3i �

lY
iD1

�3S2ni�1:

Since Gk is the homotopy fiber of the map @k W G!�3
0
G , the proposition will follow

if we show that @k is null homotopic. The condition p > nl guarantees that G is one
of the groups listed in (1). So by Lemma 4.4 it suffices to show that @k ı { is null
homotopic.

Observe that the decomposition of G as a product of spheres implies that the space A

is homotopy equivalent to
Wl

iD1 S2ni�1 . So the adjoint of ık ı { is a map †3A�!G

which can be replaced, up to homotopy equivalence, by
Wl

iD1 S2niC2!
Ql

iD1 S2ni�1 .
To show this is null homotopic, it is equivalent to show that each of the composites

�a;b W S
2naC2 ,!

l_
iD1

S2niC2
�!

lY
iD1

S2ni�1 � S2nb�1

is null homotopic for 1 � a; b � l . Now �m.S
2nb�1/ is torsion if m ¤ 2nb � 1,

and by [30], the p–torsion class of least dimension occurs when mD 2nbC 2p� 4.
Thus if 2naC 2 < 2nb C 2p� 3 for all 1 � a; b � l then �2naC2.S

2nb�1/D 0 and
so each �a;b is null homotopic. But this inequality is implied by the hypothesis that
p > nl C 1.
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Sometimes @k can be shown to be null homotopic when p � nl C 1 simply by
checking that the right homotopy groups of spheres are zero. As an example, consider
the exceptional Lie group E8 . It has type f3; 15; 23; 27; 35; 39; 47; 59g so nl D 30.
Thus Proposition 1.2 applies for primes p � 37. For primes p � 31 we have the
following.

Proposition 4.5 For any k 2 Z, the map @k W E8!�3
0
E8 is null homotopic when

p 2 f17; 23; 29g. Consequently, each case gives a p–local homotopy equivalence

GkE8 'E8 ��
4
0E8:

Proof We consider the pD 17 case, the others being similar. By Lemma 4.4 it suffices
to show that @k ı { is null homotopic. Localized at 17, E8 decomposes as a product
B.3; 35/�B.15; 47/�B.27; 59/� S23 � S39 , where each B.2mC 1; 2mC 33/ is
a three-cell H –space whose bottom two cells are connected by the stable class ˛1 .
Let A.2mC 1; 2mC 33/ be the .2mC 33/–skeleton of B.2mC 1; 2mC 33/. The
space A in this case is the wedge A.3; 35/_A.15; 47/_A.27; 59/_S23 _S39 .

The adjoint of @k ı { is a map f W †3A! E8 . The cells of †3A are in dimensions
D D f6; 18; 26; 30; 38; 42; 50; 62g. So to show that f is null homotopic it suffices to
show that �t .E8/D 0 for each t 2D . Using the decomposition of E8 and the fact
that there are homotopy fibrations S2mC1 �! B.2mC 1; 2mC 33/ �! S2mC33 for
each 2mC 1 2 f3; 15; 27g, we will have �t .E8/D 0 provided �t .S

t 0/D 0 for each
t 2D and t 0 2 f3; 15; 23; 27; 35; 39; 47; 59g. Checking Toda’s [30] calculations of the
odd primary homotopy groups of spheres shows that this is the case. Thus f is null
homotopic and so @k ı { is null homotopic.

It may be the case that the map @k W E8!�3
0
E8 is null homotopic for other primes

p � 37 by different means. Also, Lemma 4.1 implies that @k ' k@1 , so it may be the
case that for large enough values of k the potential obstructions to a null homotopy for
@k are annihilated by multiplication by k . Other examples where @k is null homotopic
for p � nl C 1 are F4 and E6 at 11, and E7 at 17 and 19.

5 A factorization related to the adjoint of @k

Let @a
k
W S3^G!G be the adjoint of @k W G!�3

0
G . By Lemma 4.1, @a

k
is homotopic

to the Samelson product hk�; 1i, which by linearity is homotopic to kh�; 1i ' k@a
1

. In
this section we specialize to G D SU.n/ and prove an odd primary factorization of the
composite

S3
^†CPn�1 1^{

�! S3
^SU.n/

@a
1
�! SU.n/:
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Corresponding factorizations for @a
k
ı .1^ {/ will follow by multiplying by k . Similar

integral factorizations are proved with respect to the composites

S3
^Qn

1^{
�! S3

^Sp.n/
@a

1
�! Sp.n/

S1
^†CPn�1 1^{

�! S1
^U.n/

@a
1
�! U.n/:

Consider the homotopy fibration sequence

�.SU =SU.n//
g
�! SU.n/

f
�! SU �! SU =SU.n/;

where SU is the infinite special unitary group and f is the canonical inclusion. Since
f is a group homomorphism it takes Samelson products to Samelson products. So as
SU is homotopy commutative, the composite f ı h�; 1i is null homotopic. Thus there
is a lift

S3 ^SU.n/
@a

1 //

� ((

SU.n/

�.SU =SU.n//

g

OO

for some map �. Consider the composite

S3
^†CPn�1 1^{

�! S3
^SU.n/

�
�!�.SU =SU.n//:

Since �.SU =SU.n// is .2n� 1/–connected, � ı .1^ {/ collapses out the .2n� 1/–
skeleton of S3 ^†CPn�1 . That is, if M D†.CPn�1=CPn�3/ is the suspension of
the stunted projective space and qW †CPn�1!M is the quotient map, then there is a
homotopy commutative diagram

(5)
S3 ^†CPn�1

1^{ //

†3q

��

S3 ^SU.n/
@a

1 // SU.n/

M
h // �.SU =SU.n//

g

OO

for some map h. Now we refine a bit. Observe that as a CW–complex, M D

S2n[ e2nC2 . Also, the .2nC 2/–skeleton of �.SU =SU.n// is S2n[ e2nC2 . Local-
ized at an odd prime both spaces are homotopy equivalent to S2n _S2nC2 , and the
map h becomes the composite

S2n
_S2nC2 a_b

�! S2n
_S2nC2 `0

�!�.SU =SU.n//;
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where a and b are some degree maps, and `0 is the inclusion of the .2nC2/–skeleton.
In Lemma 5.1 we show that both a and b equal ˙1.

In this section and the next, we need to consider �2nC2.SU.n//, which is isomorphic
integrally to Z=12Z if nD2, to Z=.nC1/!=2 Z if n is odd, and to Z=.nC1/! Z˚Z=2Z
if n� 4 is even. For an odd prime p the p–component in each case is the same as that
of Z=.nC 1/!Z, so for brevity we will abuse notation by writing �2nC2.SU.n// Š
Z=.nC 1/! Z.

Lemma 5.1 Let n� 2. After localizing at an odd prime, there is a homotopy commu-
tative diagram

S3 ^†CPn�1
1^{ //

†3q

��

S3 ^SU.n/
@a

1 // SU.n/

S2n _S2nC2
` // �.SU =SU.n//

g

OO

where ` is, up to signs, the inclusion of the bottom two cells.

Proof We begin with b . Let q0W M ! S2nC2 be the pinch map onto the top cell.
By [2], there is a characteristic map S2n�1 �! SU.n/ with the property that the
composite S2n�1 �! SU.n/ �! S2n�1 is of degree .n� 1/!. By [29], the canonical
map †CPn�1 �! SU.n/ induces an isomorphism on the free part of ��.SU.n//.
Thus there is a map cW S2n�1!†CPn�1 with the property that the composite

S2n�1 c
�!†CPn�1 q

�!M
q0

�! S2n�1

is of degree .n� 1/!. Consider the diagram

(6)
S3 ^S2n�1

1^c //

�C.n�1/! ((

S3 ^†CPn�1
1^{ //

†3q

��

S3 ^SU.n/
@a

1 // SU.n/

S2n _S2nC2
a_b // S2n _S2nC2

` // �.SU =SU.n//:

g

OO

The left triangle homotopy commutes since �2nC2.S
2n/ D 0 at odd primes. The

right rectangle homotopy commutes by the refinement of (5). The composition @a
1
ı

.1 ^ {/ ı .1 ^ c/ along the top row is the Samelson product Œ�; c�, which Bott [3]
showed to have order n.nC 1/. On the other hand, the restriction of g ı ` to S2nC2

represents the generator of �2nC2.SU.n//D Z=.nC 1/! Z. So the composite g ı ` ı

.a_ b/ ı .�C .n� 1/!/ in the lower direction of the diagram has order n.nC 1/=b .
The commutativity of the diagram therefore implies that we map put b D˙1.
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For a, replace 1^ c in (6) by the composite

S3
^S2n�3 1^c0

��! S3
^†CPn�2 1^t

��! S3
^†CPn�1

where c0 is the characteristic map and t is the inclusion. Now argue as before, using the
facts that h�; c0i has order .n�1/n and g ı` restricted to S2n represents the generator
of �2n.SU.n//D Z=n! Z, to show that we may put aD˙1. Taking `D `0 ı .a_ b/

completes the proof.

The symplectic case is similar via the homotopy fibration sequence

�.Sp =Sp.n//
g
�! Sp.n/ �! Sp �! Sp =Sp.n/:

As before, the Samelson product

S3
^Sp.n/

@a
1
�! Sp.n/

lifts through g to a map �W S3 ^Sp.n/!�.Sp =Sp.n//. The composite

S3
^Qn

1^{
�! S3

^Sp.n/
�
�!�.Sp =Sp.n//

collapses out the .4nC1/–skeleton since �.Sp =Sp.n// is .4nC1/–connected. Thus
�ı .1^ {/ factors through the pinch map †3qW S3^Qn! S4nC2 to the top cell, and
so there is a homotopy commutative diagram

S3 ^Qn
1^{ //

†3q

��

S3 ^Sp.n/
@a

1 // Sp.n/

S4nC2
h // �.Sp =Sp.n//

g

OO

for some map h. For connectivity reasons, h is homotopic to a composite

S4nC2 b
�! S4nC2 `0

�!�.Sp =Sp.n//

where b is some degree map and `0 is the inclusion of the bottom cell.

Lemma 5.2 Let n� 1. Integrally, there is a homotopy commutative diagram

S3 ^Qn
1^{ //

†3q

��

S3 ^Sp.n/
@a

1 // Sp.n/

S4nC2
` // �.Sp =Sp.n//

g

OO
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where ` is, up to sign, the inclusion of the bottom cell.

Proof We argue as in Lemma 5.1. By [2; 29], there is a characteristic map cW S4n�1!

Qn which has the property that q ı c has degree .2n� 1/! if n is odd and 2.2n� 1/!

if n is even. There is a homotopy commutative diagram

(7)
S3 ^S4n�1

1^c //

qıc &&

S3 ^Qn
1^{ //

†3q

��

S3 ^Sp.n/
@a

1 // Sp.n/

S4nC2
b // S4nC2

`0 // �.Sp =Sp.n//:

g

OO

The composition @a
1
ı .1 ^ {/ ı .1 ^ c/ along the top row is the Samelson product

h�; ci, which Bott [3] showed to have order a multiple of 4n.2nC 1/ if n is odd and
n.2nC1/ if n is even. On the other hand, the composite gı`0 represents the generator
of �4nC2.Sp.n//, which equals Z=2.2nC 1/! Z if n is odd and Z=.2nC 1/! Z if n

is even. So the composite g ı `0 ı b ı .n� 1/! in the lower direction of the diagram
has order 4n.2nC 1/=b if n is odd and n.2nC 1/=b if n is even. The commutativity
of the diagram therefore implies that we may put b D ˙1 for either n odd or even.
Taking `D `0 ı b completes the proof.

The case of U.n/–bundles over S2 is analogous to the symplectic case. Consider the
homotopy fibration sequence

�.U=U.n/
g
�! U.n/ �! U �! U=U.n/:

The Samelson product @a
1
W S1^U.n/!U.n/ lifts through g to a map �W S1 ^U.n/!

�.U=U.n//. The restriction of � to S1^†CPn�1 collapses out the .2n�1/–skeleton
since �.U=U.n// is .2n� 1/–connected. Thus � ı .1^ {/ factors through the pinch
map †qW S1^†CPn�1!S2n to the top cell, and so there is a homotopy commutative
diagram

S1 ^†CPn�1
1^{ //

†q

��

S1 ^U.n/
@a

1 // U.n/

S2n
h // �.U=U.n//

g

OO

for some map h. For connectivity reasons, h is homotopic to a composite

S2n b
�! S2n `0

�!�.U=U.n//

where b is some degree map and `0 is the inclusion of the bottom cell.
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Lemma 5.3 Let n� 2. Integrally, there is a homotopy commutative diagram

S1 ^†CPn�1
1^{ //

†q

��

S1 ^U.n/
@a

1 // U.n/

S2n
` // �.U=U.n//

g

OO

where ` is, up to sign, the inclusion of the bottom cell.

Proof We argue again as in Lemma 5.1. Consider the homotopy commutative diagram

(8)
S1 ^S2n�1

1^c //

.n�1/!
((

S1 ^†CPn�1
1^{ //

†q

��

S1 ^U.n/
@a

1 // U.n/

S2n
b // S2n

`0 // �.U=U.n//:

g

OO

The composition @a
1
ı .1 ^ {/ ı .1 ^ c/ along the top row is the Samelson product

h�; ci, which Bott [3] showed to have order n. On the other hand, g ı `0 represents the
generator of �2n.SU.n//DZ=n! Z. So the composite g ı `0 ıb ı .n�1/! in the lower
direction of the diagram has order n=b . The commutativity of the diagram therefore
implies that we may put b D˙1. Taking `D `0 ı b completes the proof.

6 The decompositions

In this section we prove the decomposition of Gk SU.n/ in Theorem 1.3, as well
as analogous decompositions for Gk Sp.n/ and GkU.n/ in Theorems 6.2 and 6.3.
Throughout we will assume spaces and maps have been localized at an odd prime.

First consider Gk SU.n/. We want to show that the H –map ık in Theorem 1.1 is
homotopic to another H –map which is explicitly defined. Let k be the composite

k W
Qp�1

iD1
Bi

��;� // B� �B� // S2n�3 �S2n�1
E4�E4

// �4S2nC1 ��4S2nC3

k�3xsn�k�3xsnC1 // �3
0
Bu ��

3
0
Bv

iu;v // Qp�1
iD1

�3
0
Bi

�3e�1
// �3

0
SU.n/:

Here, ��;� is the projection onto the factors B� and B� carrying the degree 2n� 3

and 2n� 1 generators in homology; this is followed by the maps to the corresponding
spheres; E4 is the quadruple suspension; iu;v is the inclusion of the factors Bu and Bv
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which inherit from the equivalence e the homotopy groups �2n.SU.n// Š Z=n! Z
and �2nC2.SU.n// Š Z=.nC 1/! Z respectively; and the maps xsnW �S2nC1 ! Bu

and xsnC1W �S2nC3! Bv are extensions of representatives of those generators, the
extensions existing because Bu and Bv are H –spaces. Numbering from left to right,
the first, fourth, fifth and sixth maps in the composite defining k are clearly H –maps;
the second map is an H –map by Theorem 3.1 (b); and in the third map each E4 is an
H –map with respect to the H –structure on an odd dimensional sphere defined just
prior to Theorem 3.1. Thus k is an H –map as it is the composite of H –maps.

Lemma 6.1 There is a homotopy commutative diagram

SU.n/
@k //

e

��

�3
0

SU.n/

Qp�1
iD1

Bi

k // �3
0

SU.n/:

Proof The lemma follows immediately from Theorem 1.1 if we show that ık is
homotopic to k . Since both ık and k are H –maps, to show they are homotopic
it suffices by Lemma 3.2 to show that ık ı | is homotopic to k ı | , where | is the
composite

†CPn�1 {
�! SU.n/

e
�!

p�1Y
iD1

Bi :

Recasting, Theorem 1.1 states that ık ı | ' @k ı { , so it is equivalent to show that
k ı | is homotopic to @k ı { .

First consider k ı | . By connectivity, the composite

†CPn�1 |
�!

Y
iD1

Bi

��;�
�! Bu �Bv �! S2n�3

�S2n�1

is homotopic to the composite

†CPn�1 q
�! S2n�3

_S2n�1 w
�! S2n�3

�S2n�1

where w is the inclusion of the wedge into the product. Thus k ı | '�
3e�1 ı iu;v ı

.E4 �E4/ ı .k�3xsn � k�3xsnC1/ ıw ı q .

Next consider @k ı { . Return to the diagram in Lemma 5.1. Let sn and snC1 be the
restrictions of

S2n
_S2nC2 `

�!�.SU =SU.n//
g
�! SU.n/
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to S2n and S2nC2 respectively. So sn and snC1 represent the generators of the groups
�2n.SU.n// Š Z=n! Z and �2nC2.SU.n// Š Z=.nC 1/! Z. Lemma 5.1 states that
there is a homotopy @a

1
ı .1^ {/' .snCsnC1/ı†

3q . Composing with the k –th power
map on SU.n/ gives k@a

1
ı .1^ {/' .ksnC ksnC1/ ı†

3q . Since Lemma 4.1 implies
that @a

k
' k@a

1
we obtain a homotopy commutative diagram

(9)
S3 ^†CPn�1

1^{ //

†3q
��

S3 ^SU.n/
@a

k // SU.n/

S2n _S2nC2
ksnCksnC1 // SU.n/:

Now introduce the decomposition eW SU.n/!
Qp�1

iD1
Bi in Theorem 3.1. Since sn

and snC1 represent the generators of �2n.SU.n// and �2nC1.SU.n//, the definition
of the maps xsn and xsnC1 implies that the composite

S2n
_S2nC1

ksnCksnC1

������! SU.n/
e

������!

p�1Y
iD1

Bi

is homotopic to the composite

�W S2n
_S2nC1

�! S2n
�S2nC1 E�E

��! �S2nC1
��S2nC3

kxsn�kxsnC1

��������! Bu �Bv
iu;v

��!

p�1Y
iD1

Bi :

Combining this homotopy with (9) gives e ı @a
k
ı .1^ {/ ' � ı†3q . Now take the

3–fold right adjoint, and use the naturality of adjointing with the 3–fold suspension to
obtain a homotopy commutative diagram

†CP n�1
{ //

q

��

SU.n/
@k // �3

0 SU.n/ �3e // Qp�1
iD1 �

3
0Bi

S2n�3_S2n�1
w // S2n�3�S2n�1

E4�E4
// �3S2nC1��3S2nC3

� // �3
0
Bu��

3
0
Bv

iu;v

OO

here � D k�3xsn � k�3xsnC1 . Equivalently, @k ı { ' �3e�1 ı iu;v ı .E
4 � E4/ ı

.k�3xsn � k�3xsnC1/ ıw ı q . Hence @k ı { ' k ı | , as required.

Now we are ready to decompose Gk SU.n/. Let Xk and Yk respectively be the
homotopy fibers of the composites

B� ����! S2n�3 E4

����!�4S2nC1 k�3xsn
����!�3

0Bu

B� ����! S2n�1 E4

����!�4S2nC3
k�3xsnC1

����! �3
0Bv:
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Proof of Theorem 1.3 The space Gk SU.n/ is the homotopy fiber of the map @k . By
Lemma 6.1, Gk SU.n/ is homotopy equivalent to the homotopy fiber of k . Eliminating
the equivalence �3e�1 in the definition of k shows that Gk SU.n/ is homotopy
equivalent to the homotopy fiber of the composite

Qp�1
iD1

Bi

��;� // Bu �Bv // S2n�3 �S2n�1
E4�E4

// �4S2nC1 ��4S2nC3

k�3xsn�k�3xsnC1 // �3
0
Bu ��

3
0
Bv

iu;v // Qp�1
iD1

�3
0
Bi :

Since the initial arrow is a projection and the final arrow is an inclusion, the asserted
decomposition of Gk SU.n/ follows immediately.

The case of Gk Sp.n/ is similar. The map k takes the form

k W
Qp�1

iD1
Bi

�� // B� // S4n�1
E4

// �4S4nC3

k�3xsn// �3
0
Bu

iu // Qp�1
iD1

�3
0
Bi

�3e�1
// �3

0
Sp.n/:

The diagram in Lemma 6.1 becomes

Sp.n/
@k //

e

��

�3
0

Sp.n/

Qp�1
iD1

Bi

k // �3
0

Sp.n/:

Let Xk be the homotopy fiber of the composite

B� ����! S4n�1 E4

����!�4S4nC3 k�3sn
����!�3

0Bu:

Arguing as in Theorem 1.3 we obtain the following.

Theorem 6.2 There is a homotopy decomposition

Gk Sp.n/'Xk �

 
p�1Y
jD1
j¤�

Bj

!
�

 
p�1Y
iD1
i¤�

�4
0Bi

!
:
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In the case of GkU.n/ the map k takes the form

k W S
1 �

Qp�1
iD1

Bi

�� // B� // S2n�1
E2

// �2S2nC1

k�xsn // �Bu
iu // Qp�1

iD1
�Bi

�e�1
// �0U.n/:

The diagram in Lemma 6.1 becomes

U.n/
@k //

e
��

�0U.n/

S1 �
Qp�1

iD1
Bi

k // �0U.n/:

Let Xk be the homotopy fiber of the composite

B� ��! S2n�1 E2

��!�2S2nC1 k�sn
��! �Bu:

Arguing as in Theorem 1.3 we obtain the following.

Theorem 6.3 There is a homotopy decomposition

GkU.n/' S1
�Xk �

 
p�1Y
jD1
j¤�

Bj

!
�

 
p�1Y
iD1
i¤�

�2Bi

!
:

7 Spin–gauge groups

In this section we only assume that p is odd, without any restriction on the dimension
parameter n. In Section 3 we saw that there are p–local homotopy equivalences
Spin.2nC 1/' Sp.n/ and Spin.2n/' S2n�1 � Sp.n� 1/. We will show that these
equivalences determine p–local homotopy equivalences Gk Spin.2nC 1/' Gk Sp.n/
and Gk Spin.2n/' S2n�1 ��4S2nC3 �Gk Sp.n� 1/. Further decompositions then
exist by Theorem 6.2.

Theorem 7.1 For n� 1 there is a Z.1=2/–local homotopy equivalence

Gk Spin.2nC 1/' Gk Sp.n/:

Proof Friedlander [10] showed that there is a Z.1=2/–local homotopy equivalence
f W B Spin.2nC 1/! B Sp.n/. This map does not exist integrally. Observe that the
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induced map �4.B Spin.2nC 1//˝Z.1=2/ �! �4.B Sp.n//˝Z.1=2/ is an isomor-
phism, implying that f � sends k 2 �4.B Spin.2nC 1// to 2j k 2 �4.B Sp.n// for
some integer j , possibly negative. By [16], there is a homotopy equivalence

BGk Spin.2nC 1/.1=2/ DMapk.S
4;B Spin.2nC 1//.1=2/

'Mapk.S
4;B Spin.2nC 1/.1=2//

and similarly BGk Sp.n/.1=2/ ' Mapk.S
4;B Sp.n/.1=2//. Thus f induces a mor-

phism between Z.1=2/–local evaluation fibrations Mapk.S
4;B Spin.2nC 1// �!

B Spin.2nC 1/ and Map2jk.S
4;B Sp.n// �! B Sp.n/ – we suppress the Z.1=2/

now – which induces a homotopy commutative diagram of fibration connecting maps

Spin.2nC 1/
@k //

��

�3
0

Spin.2nC 1/

��
Sp.n/

@
2j k // �3

0
Sp.n/:

Both vertical maps in this diagram are Z.1=2/–local homotopy equivalences, and so
induce a Z.1=2/–local homotopy equivalence Gk Spin.2nC 1/' G2jk Sp.n/ between
fibers.

To complete the proof, we will show that there is a Z.1=2/–local homotopy equivalence
G2jk Sp.n/ ' Gk Sp.n/. By Lemma 4.1 and the linearity of the Samelson product,
for any integer m there is a homotopy @m ' m ı @1 where the map m is the m–th
power map on �3

0
Sp.n/. Now suppose that j � 0. Then @2jk ' 2j ı@k , so there is a

homotopy fibration diagram

Gk Sp.n/ //

g

��

Sp.n/
@k // �3

0
Sp.n/

2j
��

G2jk Sp.n/ // Sp.n/
@

2j k // �3
0

Sp.n/

for some induced map g of fibers. Localizing at Z.1=2/ , the 2j –power map is a
homotopy equivalence, so the five-lemma implies that g is a Z.1=2/–local homotopy
equivalence. The argument for j < 0 is similar, using the fact that if k D 2�j k 0 , then
@k ' 2�j ı @k0 .

Next, consider the map @k W Spin.2n/!�3
0

Spin.2n/, or equivalently

@k W S
2n�1

�Spin.2n� 1/!�3S2n�1
��3

0 Spin.2n� 1/:

After some preliminary work, Lemma 7.3 reduces this to the case of @k W Sp.n� 1/!

�3
0

Sp.n� 1/.
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Lemma 7.2 Let n� 2. Suppose p � 5 or p D 3 and k is a multiple of 3. Then the
inclusion S2n�1 �! Spin.2n/ lifts to a map

S2n�1

��ww
Gk Spin.2n/ // Spin.2n/:

Proof We use the canonical fibration Spin.2n� 1/ �! Spin.2n/ �! S2n�1 , which
splits at odd primes. Consider the composite

f W S2n�1 ,! S2n�1
�Sp.2n� 1/

'
�! Spin.2n/

@k
�!�3

0 Spin.2n/:

Adjointing gives a map f aW S2nC2! Spin.2n/. We claim that the composite

S2nC2 f a

�! Spin.2n/ �! S2n�1

is null homotopic. This is the case if p� 5 because then �2nC2.S
2n�1/D 0. If pD 3

then �2nC2.S
2n�1/Š Z=3Z, so there is a potential obstruction to a null homotopy

for f a . By [18] (see Remark 7.5), this is in fact a genuine obstruction. But if k is
a multiple of 3 then, as Lemma 4.1 implies that @a

k
' k@a

1
, the factorization of f a

through @a
k

implies that f a is divisible by 3. Thus f a annihilates �2nC2.S
2n�1/

and so is null homotopic. In either case, the null homotopy for f a implies that it
lifts through the inclusion Spin.2n� 1/ �! Spin.2n/. By Lemma 4.1, the adjoint of
@k is homotopic to a Samelson product and so composes trivially into Spin.1/ as
this space is homotopy commutative. Thus f a , which factors through @a

k
, composes

trivially into Spin.1/. Therefore, the lift of f a through Spin.2n� 1/ lifts further
to a map S2n�1 �! �.Spin.1/=Spin.2n� 1//. This map is null homotopic since
�.Spin.1/=Spin.2n� 1// is .4n� 6/–connected. Thus f a is null homotopic, and
so f is null homotopic. The existence of the asserted lift to Gk Spin.2n/ follows
immediately.

Lemma 7.3 Let n� 2. Suppose p � 5 or pD 3 and k is a multiple of 3. Then there
is a homotopy commutative diagram

S2n�1 �Spin.2n� 1/
@k //

�2

��

�3S2n�1 ��3
0

Spin.2n� 1/

Spin.2n� 1/
@k // �3

0
Spin.2n� 1/

i2

OO

where �2 is the projection and i2 is the inclusion.
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Proof Since @k W Spin.2n/ ! �3
0

Spin.2n/ is a fibration connecting map, there is
a homotopy action � W �3

0
Spin.2n/� Spin.2n/! �3

0
Spin.2n/. Using the lift from

Lemma 7.2, consider the diagram

S2n�1�Spin.2n�1/ //

�2

��

Gk Spin.2n/�Spin.2n/ //

�2

��

Spin.2n/�Spin.2n/
� //

@k�1

��

Spin.2n/

@k

��
Spin.2n�1/ // Spin.2n/

i2 // �3
0

Spin.2n/�Spin.2n/
� // �3

0
Spin.2n/

where � is the loop multiplication. The left square homotopy commutes by the
naturality of the projection, the middle square homotopy commutes since

Gk Spin.2n/ �! Spin.2n/
@k
�!�3

0 Spin.2n/

is a homotopy fibration and so the composite is null homotopic. The right square
homotopy commutes because it is a canonical property of the homotopy action � . Thus
the diagram as a whole homotopy commutes. Now observe that the composite along the
top row is a homotopy equivalence. The composite along the bottom row simplifies to

aW Spin.2n� 1/ �! Spin.2n/
@k
�!�3

0 Spin.2n/:

Suppose we knew that a is homotopic to the composite

bW Spin.2n� 1/
@k
�!�3

0 Spin.2n� 1/ �!�3
0 Spin.2n/:

Then the outer rectangle of this diagram would be the diagram asserted by the lemma.

To show that a is homotopic to b , observe that the inclusion Spin.2n�1/�!Spin.2n/

is a group homomorphism and so induces a map B Spin.2n�1/�!B Spin.2n/. The
naturality of the evaluation fibration Mapk.X;BG/ �! BG therefore implies that
there is a homotopy commutative diagram of connecting maps

Spin.2n� 1/
@k //

��

�3
0

Spin.2n� 1/

��
Spin.2n/

@k // �3
0

Spin.2n/:

The upper direction around this square is the definition of b and the lower direction is
the definition of a, and so a' b , as required.

The factorization in Lemma 7.3 immediately gives the following.
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Theorem 7.4 Let n � 2. Suppose p � 5 or p D 3 and k is a multiple of 3. Then
there is a p–local homotopy decomposition

Gk Spin.2n/' S2n�1
��4S2n�1

�Gk Spin.2n� 1/:

Remark 7.5 After this paper appeared, the decomposition in Theorem 7.4 was also
proved by Kishimoto and Kono [18] using different methods. In addition, they determine
what happens when p D 3 and k is prime to 3: there is a homotopy decomposition
Gk Spin.2n/'X �Gk Spin.2n�1/ where X is known to not be homotopy equivalent
to S2n�1 ��4S2n�1 .
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