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On nonseparating contact hypersurfaces
in symplectic 4–manifolds

PETER ALBERS

BARNEY BRAMHAM

CHRIS WENDL

We show that certain classes of contact 3–manifolds do not admit nonseparating
contact type embeddings into any closed symplectic 4–manifold, eg this is the case
for all contact manifolds that are (partially) planar or have Giroux torsion. The latter
implies that manifolds with Giroux torsion do not admit contact type embeddings
into any closed symplectic 4–manifold. Similarly, there are symplectic 4–manifolds
that can admit smoothly embedded nonseparating hypersurfaces, but not of contact
type: we observe that this is the case for all symplectic ruled surfaces.

32Q65; 57R17

1 Introduction

1.1 Main results

Let .W; !/ denote a closed symplectic manifold of dimension four. A closed hyper-
surface M �W is of contact type if it is transverse to a Liouville vector field, ie a
smooth vector field Y defined near M such that LY ! D ! . Then �Y ! is a contact
form on M , and we will denote the resulting contact structure by � D ker �Y ! ; it is
independent of Y up to isotopy. If M separates W into two components, then it is said
to form a convex boundary on the component where Y points outward, and a concave
boundary on the other component. By constructions due to Etnyre–Honda [8] and
Eliashberg [5], every contact 3–manifold can occur as the concave boundary of some
compact symplectic manifold. This is not true for convex boundaries: for instance,
Gromov [15] and Eliashberg [4] showed that overtwisted contact manifolds can never
occur as convex boundaries, and a finer obstruction comes from Giroux torsion; see
Gay [10].

In this paper, we address the question of whether a given contact 3–manifold .M; �/

can occur as a nonseparating contact hypersurface in any closed symplectic manifold,
and similarly, whether a given symplectic 4–manifold .W; !/ admits nonseparating
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contact hypersurfaces. Observe that separating contact hypersurfaces always exist
in abundance, eg the boundaries of balls in Darboux neighborhoods. We will see in
Example 1.3 that nonseparating contact hypersurfaces sometimes exist, but there are
restrictions, as the following theorem shows.

Theorem 1.1 Suppose .M; �/ is a closed contact 3–manifold which has any one of
the following properties:

(1) .M; �/ has Giroux torsion.

(2) .M; �/ is planar or partially planar (see Definition 1.9 below).

(3) .M; �/ admits a symplectic cap containing a symplectically embedded sphere of
nonnegative self-intersection number.

Then every contact type embedding of .M; �/ into any closed symplectic 4–manifold
is separating.

Remark 1.2 Theorem 1.1 admits an easy generalization as follows. We will say
that .M; �/ has any given property after contact surgery if the property holds for
some contact manifold .M 0; � 0/ obtained from .M; �/ by a (possibly trivial) sequence
of contact connected sum operations and contact .�1/–surgeries. The significance
of these operations (see eg Geiges [13]) is that they imply the existence of a sym-
plectic cobordism from .M; �/ to .M 0; � 0/: recall that a symplectic cobordism from
.M�; ��/ to .MC; �C/ is in general a compact symplectic manifold .W; !/ with
@W D .�M�/tMC , such that there is a Liouville vector field near @W defining
.M�; ��/ and .MC; �C/ as concave and convex boundary components respectively.
The special case where M� D ∅ is a convex filling of .MC; �C/. If MC D ∅ we
instead get a concave filling of .M�; ��/, also known as a symplectic cap.

It will follow from the more general Theorem 2.7 below that Theorem 1.1 also holds
whenever properties (1) or (2) hold after contact surgery. (For property (3) this statement
is trivial.)

The following example shows that nonseparating contact type hypersurfaces do exist
in general.

Example 1.3 (Etnyre) Suppose .W0; !0/ is a compact symplectic manifold with a
convex boundary that has two connected components. In this case we say that .W0; !0/

is a convex semifilling of each of its boundary components; the existence of such objects
was first established by McDuff [27]. Produce a new symplectic manifold .W1; !1/

with convex boundary by attaching a symplectic 1–handle along a pair of 3–balls in
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different components of @W0 . Now cap W1 with a concave filling of @W1 as provided
by Etnyre and Honda [8]: this produces a closed symplectic manifold .W; !/, which
contains both of the components of @W0 as nonseparating contact hypersurfaces (see
Figure 1).

Figure 1: The construction from Example 1.3 of a symplectic manifold with
nonseparating contact hypersurfaces

The example demonstrates that .M; �/ can occur as a nonseparating hypersurface
in some closed symplectic manifold whenever it arises from a convex filling with
disconnected boundary. There are, however, contact manifolds that never arise in
this way: McDuff [27] showed that this is the case for the tight 3–sphere, and the
result was generalized by Etnyre [6] to all planar contact manifolds, ie those which
are supported by planar open books. The latter suggests that planar open books may
provide an obstruction to nonseparating contact embeddings, and this is indeed true
due to Theorem 1.1. As we’ll see shortly, there are also nonplanar contact manifolds
(eg the standard contact 3–torus) which satisfy the assumptions of Theorem 1.1, and
thus also the following corollary:

Corollary 1.4 Given the assumptions of Theorem 1.1 (see also Remark 1.2), every
convex semifilling of .M; �/ has connected boundary.

Actually one can use the same methods to give a slightly simpler proof of Corollary
1.4 which is independent of the theorem; we’ll do this in Section 5.

In the case of Giroux torsion, a result of Gay [10] shows that .M; �/ does not admit
any convex fillings,1 thus Theorem 1.1 has the following stronger consequence:

Corollary 1.5 If .M; �/ has Giroux torsion (possibly after contact surgery), then it
does not admit a contact embedding into any closed symplectic 4–manifold.

1An alternative proof closely related to the arguments in this paper appears in Wendl [40].
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Theorem 1.1 will follow from some more technical results stated in Section 2.2, which
also includes a more general statement involving contact hypersurfaces in a symplectic
manifold with convex boundary. The unifying idea can be summarized as follows.
Whenever a nonseparating hypersurface M �W exists, one can use it to construct
a special noncompact symplectic manifold .V; !/ with convex boundary M . We do
this by first cutting W open along M to produce a symplectic cobordism .V1; !/

from a concave copy of M to a convex copy of M , and then removing the concave
boundary by attaching an infinite chain of copies of .V1; !/ along matching concave
and convex boundaries; a picture of this construction appears as Figure 4 in Section 5,
where it is explained in detail. Now our assumptions on .W; !/ or .M; �/ guarantee
the existence of an embedded holomorphic curve in .V; !/ with certain properties: in
particular, we’ll show in Section 4 that this curve belongs to a smooth and compact
2–dimensional moduli space of curves that foliate .V; !/. But this would imply that
.V; !/ is compact, and thus yields a contradiction.

Remark 1.6 A contact manifold .M; �/ is said to be weakly fillable if it occurs as
the boundary of a compact symplectic manifold .W; !/ such that !j� > 0 on @W . A
fundamental result of Eliashberg [4] and Gromov [15] shows that overtwisted contact
manifolds are never weakly fillable: the original proof is based on the existence of a so-
called Bishop family of pseudoholomorphic disks with boundary on an overtwisted disk
in @W , and derives a contradiction using Gromov compactness (a complete exposition
may be found in Zehmisch [42]). In the setting described above, one can adapt the
Eliashberg–Gromov argument to show that overtwisted contact manifolds do not occur
as hypersurfaces of weak contact type in any closed symplectic manifold. If we remove
the word “weak”, then this is also implied by Corollary 1.5 since overtwisted contact
manifolds have infinite Giroux torsion.

The third condition in Theorem 1.1 is satisfied by any contact 3–manifold that has a
contact embedding into the standard symplectic R4 : indeed, the latter can be identified
with CP2

nCP1 , and CP1 is a symplectically embedded sphere with self-intersection 1.
As Yasha Eliashberg has pointed out to us, Theorem 1.1 in this case also morally follows,
via the infinite chain construction sketched above, from Gromov’s classification [15]
of symplectic manifolds that are Euclidean at infinity—one just has to be a little
more careful in the noncompact setting (cf Proposition 5.3). Natural examples are the
unit cotangent bundles of all closed surfaces that admit Lagrangian embeddings into
R4 , ie the torus, and the connected sums of the Klein bottle with a positive number
of oriented surfaces of positive, even genus. Further examples of symplectic caps
containing nonnegative symplectic spheres have appeared in the work of Ohta and
Ono [30] and Bhupal and Ono [2] on contact manifolds obtained from algebraic surface
singularities.
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We now explain the notion of a partially planar contact manifold, which is due to the
third author (cf [37; 36]). Recall that an open book decomposition for M consists of
the data .B; �/ where B �M is an oriented link, and � W M nB! S1 is a fibration
for which each fiber ��1.point/ is an embedded surface whose closure in M has
oriented boundary B . These fibers are called the pages of the open book .B; �/, and
B is called the binding. We recall the following important concept introduced by
Giroux [14].

Definition 1.7 A contact structure � on M is said to be supported by an open book
decomposition .B; �/ if it admits a contact form � such that the associated Reeb vector
field is positively transverse to the pages and is positively tangent to the link B .

In particular, the component circles of B are closed Reeb orbits for such a contact
form �. These are referred to as the binding orbits.

Definition 1.8 A contact manifold .M; �/ is said to be planar if it admits a supporting
open book decomposition for which each page has genus zero.

Giroux established that every contact structure on a closed 3–manifold is supported
by some open book decomposition. Etnyre showed in [6] that all overtwisted contact
structures are planar, though not all contact structures are.

The notion of a planar contact manifold can be generalized using the contact fiber sum;
the following is a special case of a construction originally due to Gromov [16] and
Geiges [12] (see also Geiges’ book [13]). For i D 1; 2, suppose .Mi ; �i/ are contact
manifolds with supporting open book decompositions �i W Mi nBi! S1 , and i �Bi

are connected components of the bindings. Each i is a transverse knot, thus one can
identify neighborhoods N .i/ with solid tori via an orientation preserving map

ˆW N .1/[N .2/! S1
�D;

thus defining coordinates .�; �; �/, where � 2S1 and .�; �/ are polar coordinates on D
(for simplicity we shall take � 2 S1 DR=Z, thus the actual angle is this times 2� ).
We will assume without loss of generality (and perhaps after a small isotopy of the
open books) that these coordinates have the following properties:

(1) The contact structure �i is the kernel of �i D f .�/ d�Cg.�/ d� for some pair
of functions f and g with f .0/ > 0 and g.0/D 0.

(2) The pages of �i have the form f� D constg near i .
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Note that the contact condition requires f .�/g0.�/� f 0.�/g.�/ > 0 for � > 0 and
g00.0/ > 0. Using these choices, a new contact manifold

.M1; �1/ #ˆ .M2; �2/

can be defined in two steps:

(i) Modify .Mi ; �i/ by “blowing up” i to produce a contact manifold . �Mi ; y�i/

with pre-Lagrangian torus boundary: we do this by removing a solid torus
neighborhood f� � �g and replacing it with S1 � Œ0; �� � S1 by the natural
identification of the coordinates .�; �; �/ 2 S1� Œ0; ���S1 . We also modify �i

for � 2 Œ0; �/ to define a smooth contact form near @ �Mi by making C 0 –small
changes to f and g so that they become restrictions of even and odd functions
respectively, with g0.0/ > 0. In terms of the Reeb vector field defined by �i , the
result of this change is to replace the single Reeb orbit originally at f�D 0g by
a torus S1 �S1 foliated by Reeb orbits of the form S1 � fptg.

(ii) Attach . �M1; y�1/ to . �M2; y�2/ along their boundaries as follows: first, define new
coordinates .y�; y�; y�/ 2 S1 �R�S1 near @ �Mi so that they are the same as the
old coordinates on �M1 , but on �M2 we set

.y�; y�; y�/ WD .�;��;��/;

so y� � 0 near @ �M2 . We now attach �M1 to �M2 via a diffeomorphism such that
.y�; y�; y�/ 2 S1 � Œ��; ���S1 become well defined coordinates after attaching.
Our assumptions on the modified functions f and g imply also that f .y�/ d y�C

g.y�/ d y� gives a smooth contact form on M1#ˆM2 which matches the original
outside the region fy� 2 .��; �/g.

In a straightforward way, one can generalize this definition to a sum of two or more
open books on contact manifolds .M1; �1/; : : : ; .MN ; �N / along multiple binding
components: then each of these components becomes a boundary component in its
respective “blown up” manifold �Mi , and it becomes a special pre-Lagrangian torus in
the sum

#ˆ.Mi ; �i/:

Definition 1.9 We say that .M; �/ is partially planar if it can be constructed in the
above manner as a contact fiber sum along binding orbits of open book decompositions,
at least one of which is planar.

Obviously, every planar contact manifold is also partially planar. Since there exist
contact 3–manifolds that admit semifillings with disconnected boundary, a consequence
of Corollary 1.4 is now the following:
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Corollary 1.10 Not every contact manifold is partially planar.

Example 1.11 McDuff showed in [27] that for any closed oriented surface † of genus
at least two, if ST �† denotes the unit cotangent bundle, then there is a symplectic
structure on Œ0; 1��ST �† which is convex on the boundary and induces the canonical
contact structure at f1g �ST �†. More generally, Geiges [11] constructed a class of
closed 3–manifolds M which admit pairs of contact forms �˙ such that

�C ^ d�C D��� ^ d�� > 0 and �C ^ d�� D �� ^ d�C D 0:

In this situation, Œ0; 1� �M admits a symplectic structure such that both boundary
components are convex, giving a convex filling of .M; ker�C/ t .�M; ker��/. It
follows from Corollary 1.4 that none of these contact manifolds are partially planar.
Moreover by Example 1.3, each of them admits a nonseparating contact type embedding
into some closed symplectic manifold.

The next example shows that there are also partially planar contact manifolds that are
not planar.

Example 1.12 The standard contact S1 �S2 is planar: it admits a supporting open
book decomposition with two binding orbits connected by cylindrical pages. If we
take two copies of this, pair up both of their respective binding components and
construct the fiber sum, we obtain the standard contact T 3 , which is not planar due
to a result of Etnyre [6]. In fact, each of the tight contact tori .T 3; �n/, where �n D
ker.cos.2�n�/ dxC sin.2�n�/ dy/ in coordinates .x;y; �/ 2 S1 �S1 �S1 , can be
obtained as a fiber sum of 2n copies of the standard S1�S2 ; see Figure 2. By a result
of Kanda [24], this includes every tight contact structure on T 3 .

Remark 1.13 As pointed out to us by Etnyre, one can often interpret the summing
procedure described above in terms of open books with quasi-compatible contact
structures, a notion defined by Etnyre and Van Horn–Morris [9]. This is true for
instance with T 3 as in Example 1.12, whose tight contact structures are all quasi-
compatible with the natural fibration T 3! S1 (viewed as an open book with empty
binding) obtained by piecing together its constituent planar open books. This only
works however if a certain orientation condition is satisfied, eg one obtains no such
fibration after doing the trick in Example 1.12 with an odd number of copies of S1�S2 .

By Example 1.12, every contact structure on T 3 is partially planar. In fact, other than
the standard torus .T 3; �1/, all contact 3–tori also have Giroux torsion, thus �1 is the
only convex fillable contact structure on T 3 . Theorem 1.1 therefore implies that every
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Figure 2: At left, we see four copies of the tight S1�S2 , represented by open
books with two binding components and cylindrical pages. For each dotted
oval surrounding two binding components, we construct the contact fiber sum
to produce the manifold at right, containing four special pre-Lagrangian tori
(the black line segments) that separate regions foliated by cylinders. The
result is the tight 3–torus .T 3; �2/ . In general, one can construct .T 3; �n/

from 2n copies of the tight S1 �S2 .

contact type embedding of T 3 into a closed symplectic 4–manifold separates (and the
induced contact structure must be �1 ). This result is not true for embeddings of weak
contact type: in fact all of the tight tori .T 3; �n/ admit weak symplectic semifillings
with disconnected boundary [7], and thus by the construction in Example 1.3, they also
admit nonseparating weakly contact type embeddings.

Recall however that if .W; !/ is a weak filling of .M; �/ and M is a homology 3–
sphere, then ! can always be deformed in a collar neighborhood of @W to produce a
convex filling of .M; �/; see for instance Geiges [13, Lemma 6.5.5]. Thus our results
have corresponding versions for weakly contact hypersurfaces that are homology 3–
spheres. For example, since the only tight contact structure on S3 is planar, every
weakly contact type embedding of S3 into a closed symplectic 4–manifold must
separate.

Here is a more general example that also implies the observation made above about the
3–torus. Let

†D†C[� †�

denote any closed oriented surface obtained as the union of two nonempty surfaces
with boundary †˙ along a multicurve � �†. By a result of Lutz [25], the manifold
M� WDS1�† admits a unique (up to isotopy) S1 –invariant contact structure �� which

Algebraic & Geometric Topology, Volume 10 (2010)



On nonseparating contact hypersurfaces in symplectic 4–manifolds 705

makes � the dividing set on fconstg �†. We claim that .M� ; ��/ is partially planar
whenever there exists a connected component of † n� having genus zero. Indeed, for
any connected component †0 �† n� , the closure of S1 �†0 may be viewed as an
open book with page †0 and trivial monodromy, blown up at all its binding circles;
the entirety of .M� ; ��/ can thus be obtained by attaching these blown up open books.
(The tight 3–tori arise from the case where †ŠT 2 and � is a union of parallel curves
that are primitive in H1.T

2/.) Moreover, using Etnyre’s obstruction [6] it is easy to
construct many examples .M� ; ��/ which are partially planar (as just explained) but
not planar. Theorem 1.1 now implies:

Corollary 1.14 If † n � has a connected component of genus zero, then the S1 –
invariant contact manifold .S1�†; ��/ does not admit any nonseparating contact type
embeddings into closed symplectic 4–manifolds.

Finally, the following demonstrates that in some settings where nonseparating hyper-
surfaces can be embedded smoothly, they can never be contact type. In contrast to
Theorem 1.1, here the assumptions are on the ambient symplectic 4–manifold and not
the contact manifold.

Theorem 1.15 If the closed and connected symplectic 4–manifold .W; !/ contains
a symplectically embedded sphere S �W with self-intersection number S �S � 0,
then every closed contact type hypersurface in W is separating.

The reason for this is closely related to McDuff’s results [26], which imply that .W; !/

in this situation is always rational or ruled (up to symplectic blowup). In fact, the case
where S �S > 0 follows immediately from [26], which shows that W is then a blowup
of either S2�S2 or CP2 and thus simply connected, so it does not admit nonseparating
hypersurfaces at all (contact or otherwise). The case S �S D 0 is more interesting:
the key fact here is that one can choose a compatible almost complex structure J

for which any given contact hypersurface M �W is J –convex, and W is foliated
by a family of embedded J –holomorphic spheres (possibly including some isolated
nodal spheres unless .W; !/ is minimal). If M does not separate, then there exists a
connected infinite cover . �W ; zJ / of .W;J /, constructed by gluing together infinitely
many copies of W nM in a sequence. Now the J –holomorphic spheres in W lift
to �W and form a foliation, which must include a J –holomorphic sphere that touches a
lift of M tangentially from below, violating J –convexity. That’s a quick sketch of the
proof—we’ll give an alternative proof in Section 5 that fits into a usefully generalized
context and doesn’t assume the results of [26]. There are obvious examples of smoothly
embedded nonseparating hypersurfaces in ruled surfaces, eg `�S2 �†�S2 , where
† is any closed oriented surface of positive genus and `�† is a nonseparating closed
curve. It follows that a hypersurface isotopic to this one is never contact type.

Algebraic & Geometric Topology, Volume 10 (2010)



706 Peter Albers, Barney Bramham and Chris Wendl

1.2 Open questions

Let „.3/ denote the collection of closed 3–manifolds with positive, cooriented contact
structures, and consider the inclusions

„nonsep.3/¨„embed.3/¨„.3/;

where „embed.3/ denotes all .M; �/ 2 „.3/ that admit a contact type embedding
into some closed symplectic manifold, and „nonsep.3/ denotes those that admit a
nonseparating embedding. The results stated in Section 1.1 imply that both inclusions
are proper.

Observe that if .M; �/ is convex fillable then it is also in „embed.3/, since a filling can
always be capped to produce a closed symplectic manifold. Conversely, if .M; �/ admits
a separating contact type embedding, then it is fillable. While the same is not strictly
true for a nonseparating embedding, the construction depicted in Figure 4 of Section 5
can be viewed as a filling that is noncompact but geometrically bounded, which makes
it a good setting for J –holomorphic curves. In this context, any filling obstruction
that involves J –holomorphic curves can also serve as an obstruction to nonseparating
contact embeddings (cf Corollary 1.5), thus implying that .M; �/ 62„embed.3/. This
motivates the conjecture that, in fact, „embed.3/ is the same as the set of convex fillable
contact 3–manifolds.

Conjecture 1 If .M; �/ is not convex fillable, then it admits no contact type embed-
dings into any closed symplectic manifold.

Equivalently, this would mean there is no contact 3–manifold that admits only nonsep-
arating contact type embeddings.

A more ambitious conjecture would arise from Example 1.3, which is the only method
we are yet aware of for constructing nonseparating contact embeddings: .M; �/ 2

„nonsep.3/ whenever it admits a convex semifilling with disconnected boundary. The
latter class of contact manifolds is evidently somewhat special, and one wonders
whether it might be equal to „nonsep.3/.

Question 1 Is there a contact 3–manifold that admits a nonseparating contact type
embedding but not a convex semifilling with disconnected boundary?

Finally, observe that while Theorem 1.15 rules out the existence of a nonseparating
contact hypersurface .M; �/� .W; !/ if .W; !/ is rational or ruled, it still allows the
possibility that .M; �/ 2„nonsep.3/ but admits a separating embedding into .W; !/.
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There is some reason to suspect that this could still never happen. There are indeed cases
where the existence of a contact embedding of .M; �/ into some particular symplectic
manifold implies .M; �/ 62„nonsep.3/, eg this is true if .M; �/ ,! .R4; !0/. Moreover,
the simplest known example of a manifold in „nonsep.3/, the unit cotangent bundle of
a higher genus surface, has been shown by Welschinger [33] to admit no contact type
embeddings into rational or ruled symplectic 4–manifolds.

Question 2 Is there a contact 3–manifold that admits a contact type embedding into
some rational/ruled symplectic 4–manifold and also admits a nonseparating contact
type embedding into some other closed symplectic manifold?

2 Pseudoholomorphic curves in symplectizations

2.1 Technical background

In this section we collect a number of important technical definitions. A positive
contact form on a 3–manifold M is a 1–form � for which � ^ d� > 0. The 2–
plane distribution � WD ker� is then a contact structure. The equations �X�

d�D 0 and
�.X�/D 1 uniquely determine a vector field X� , called the Reeb vector field associated
to �. Since X� is everywhere transverse to � , one obtains a splitting TM DRX�˚ � .
Moreover, .�; d�j�/ is a symplectic vector bundle, and the flow of X� preserves �,
hence also .�; d�j�/.

A periodic Reeb orbit of period T > 0 for a contact form � is a smooth map
 W R=T Z!M satisfying P .t/DX�. .t//. We identify all possible reparametriza-
tions t 7!  .t C const/. A Reeb orbit is called simply covered if it has degree 1 onto
its image, ie it is an embedding. If  covers a simply covered orbit with period � > 0,
we call � the minimal period of  .

Since the Reeb flow preserves the symplectic vector bundle .�; d�j�/, linearizing about
a periodic orbit  determines a symplectic linear map d�T .p/W �p! �p for each p

in the image of  . Then  is said to be nondegenerate if 1 is not an eigenvalue of
this map; this condition is independent of the point p . More generally, an orbit  of
period T is Morse–Bott if it lies in a submanifold N �M foliated by T –periodic
orbits, such that the 1–eigenspace of d�T .p/ is precisely TpN . We then call N a
Morse–Bott submanifold. A contact form � is said to be nondegenerate if all of its
periodic Reeb orbits are nondegenerate, and Morse–Bott if every periodic orbit belongs
to a Morse–Bott submanifold.

Given a symplectic trivialization ˆ of .�; d�/ along a T –periodic orbit  , the lin-
earized flow d�t .p/ for t 2 Œ0;T � defines a continuous family of symplectic matrices,
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which has a well defined Conley–Zehnder index if  is nondegenerate: we denote this
index by �ˆCZ. / 2 Z.

It is convenient also to express this in terms of asymptotic operators: associated to
any T –periodic Reeb orbit  is a linear operator A W �.x��/ ! �.x��/, where
xW R=Z!M is the reparametrization x.t/ WD  .T t/. If r is a symmetric connection
on TM and J is a complex structure on � !M compatible with the symplectic
structure d�j� , then A can be defined on smooth sections by

A�D�J.rt��Tr�X�/:

This expression is independent of the choice of connection. Choosing a unitary trivial-
ization ˆ of x�� , A is identified with the operator

(2-1) C1.S1;R2/! C1.S1;R2/W � 7! �J0

d

dt
��S � �;

where S.t/ is some smooth loop of symmetric 2–by–2 matrices. Thus the equation
A�D0 defines a linear Hamiltonian flow, and one can show that the resulting family of
symplectic matrices matches the family obtained from d�t .p/. It follows that A has
trivial kernel if and only if  is nondegenerate, and we can use the linear Hamiltonian
flow determined by (2-1) to define an integer �ˆCZ.A /, which matches �ˆCZ. /. The
advantage of this definition is that it does not reference the orbit directly, but makes
sense for any operator that takes the form of (2-1) in the trivialization: in particular we
can define �ˆCZ.A � c/ 2 Z whenever c 2R is not an eigenvalue of A , even if  is
degenerate. For this we will use the shorthand notation

�ˆCZ. � c/ WD �ˆCZ.A � c/:

We now recall some of the important spectral properties of asymptotic operators. For
more details and proofs we refer to Hofer, Wysocki and Zehnder [19].

A extends to an unbounded self-adjoint operator on the complexified Hilbert space
L2.x��/; its spectrum �.A / consists of real eigenvalues of multiplicity at most 2 that
accumulate only at infinity. Generalizing the statement above about nondegeneracy, if 
belongs to a Morse–Bott submanifold of dimension n2f1; 2; 3g, then the 0–eigenspace
of A is .n� 1/–dimensional.

Geometric properties of the eigenspaces are closely related to the Conley–Zehnder index.
Indeed, any eigenfunction � of A has a well defined winding number windˆ.�/ 2 Z
relative to the trivialization, which is independent of the choice of � in its eigenspace.
Thus we may speak of the winding number windˆ.�/ 2 Z for each eigenvalue � 2
�.A /, and it turns out that the map �.A /! ZW � 7! windˆ.�/ is nondecreasing

Algebraic & Geometric Topology, Volume 10 (2010)



On nonseparating contact hypersurfaces in symplectic 4–manifolds 709

and attains every value exactly twice (counting multiplicity). The following integers

˛ˆ� . / WDmaxfwindˆ.�/ j � < 0 is an eigenvalue of A g

˛ˆC. / WDminfwindˆ.�/ j � > 0 is an eigenvalue of A g

are therefore determined by the eigenfunctions with eigenvalues closest to 0 that are
negative and positive respectively. The number p. / WD ˛ˆC. /�˛

ˆ
� . / is called the

parity of  ; it is independent of ˆ and necessarily equals 0 or 1 if  is nondegenerate.
More generally, we can replace A by A � c for some c 2 R and similarly define
˛ˆ
˙
. � c/ and p. � c/; then if c 62 �.A /, a result in [19] implies the relation

(2-2) �ˆCZ. � c/D 2˛ˆ� . � c/Cp. � c/D 2˛ˆC. � c/�p. � c/:

Observe that every Morse–Bott submanifold of dimension 2 admits a nonzero vector
field and is thus either a torus or a Klein bottle. The following characterization of
Morse–Bott tori is a simple consequence of the spectral properties of A (cf [34,
Proposition 4.1]).

Proposition 2.1 Suppose  is a Morse–Bott periodic orbit of X� belonging to a
Morse–Bott submanifold N �M diffeomorphic to T 2 . Then the Morse–Bott property
is satisfied for all covers of all orbits in N , and they all have the same minimal period.

We will also need a relative version of the standard genericity result for nondegenerate
contact forms.

Lemma 2.2 Suppose N �M is a union of 2–tori which are Morse–Bott submanifolds
for some contact form �0 . Then for any T0 > 0, there exists an arbitrarily small
perturbation � of �0 such that � D �0 on a neighborhood of N and every periodic
orbit of X� with period less than T0 is Morse–Bott.

Proof Since all orbits in N are Morse–Bott (including all multiple covers, due to
Proposition 2.1), for any T0 > 0 we can find an open neighborhood U of N such that
SU nN contains no periodic orbits with period less than T0 . By Theorem A.1 in the
Appendix, one can then find a generic small perturbation of �0 with support in M nU
so that all orbits passing through M n SU are nondegenerate.

We now recall the basic notions of holomorphic curves in symplectizations and their
asymptotic properties. The symplectization of a contact manifold .M; � D ker�/ is
the product space R�M equipped with the exact symplectic form d.ea�/, where
aW R�M ! R refers to the R coordinate. An almost complex structure J on the
symplectization is said to be admissible if it is R–invariant, restricts to the symplectic
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vector bundle .�; d�/ as a compatible complex structure, and satisfies J@aDX� . Any
admissible J tames the symplectic form d.ea�/, and more generally tames every
symplectic form d.'�/ where 'W R! .0;1/ is smooth with '0 > 0.

A pseudoholomorphic (or J –holomorphic or simply holomorphic) curve from a punc-
tured Riemann surface . P†; j /, into an almost complex manifold .W;J / is a solution
uW P†!W to the nonlinear Cauchy–Riemann equation T u ı j D J.u/ ıT u. Here
we take P† WD † n � for some finite set of points � � †, where .†; j / is a closed
connected Riemann surface.

For the rest of this section, let us consider only the case where the target is the
symplectization of .M; �/, and J is an admissible almost complex structure on R�M .
The simplest case of a punctured J –holomorphic curve in this setting is the so-called
trivial cylinder

uW S2
n f0;1gŠR�S1

!R�M W .s; t/ 7! .T s;  .T t//;

where T > 0 and  is any T –periodic Reeb orbit. Following [17; 3], the energy of
a J –holomorphic curve uW P†!R�M can be defined as follows. Fix any constant
C > 0, and let

(2-3) E.u/ WD sup
'2T

Z
P†

u�d.'�/

where T is the set of smooth maps 'W R! .0;C / with '0 > 0. Since J is compatible
with d.'�/ for all ' 2 T , the integrand in (2-3) is always nonnegative, thus u is
constant if and only if its energy vanishes. Observe that the integrand of

R
P†

u�d� is
also nonnegative, and this integral is finite if u has finite energy: it vanishes identically
if and only if u is a branched cover of a trivial cylinder.

Definition 2.3 We will say that uW P†! R�M is a finite energy J –holomorphic
curve if it is proper and E.u/ <1.

Note that properness only fails when there exist punctures having neighborhoods which
are mapped into a compact set, in which case these punctures can be removed by
Gromov’s removable singularity theorem. Since d.'�/ is exact, Stokes’ theorem
implies that not all punctures are removable unless u is constant.

Let us recall now the behaviour of a finite energy J –holomorphic curve uW P†!R�M

in the neighborhood of a puncture. Each puncture z 2 � has a neighborhood on which
the R–value of u tends to C1 or �1, and we say that z is a positive/negative puncture
respectively. Denote the resulting partition into positive and negative punctures by
� D �C[�� . Restricting to a neighborhood of a puncture, we obtain a curve whose
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domain is the punctured closed disc, which is biholomorphic to both ZC WD Œ0;1/�S1

and Z� WD .�1; 0� � S1 with the standard complex structure. It is convenient to
choose the domain of the restricted curve to be ZC or Z� for z 2 �C or z 2 ��

respectively, and we will write uW Z˙!R�M . It was shown by Hofer in [17] that
for any sequence jsk j !1, there exists a subsequence such that u.sk ; � / converges
in C1.S1;M / to  .T � /, where  is a T –periodic Reeb orbit for some T > 0. We
say in this case that u is asymptotic to  , and  is an asymptotic orbit of u.

In the following statement, we choose any R–invariant connection on R�M to define
the exponential map, and use the term asymptotically trivial coordinates to refer to
a diffeomorphism .�; �/W Z˙! Z˙ such that �.s; t/� s and �.s; t/� t approach
constants as jsj !1 and their derivatives of all orders decay to zero.

Theorem [21; 20; 29] Suppose uW Z˙!R�M has finite energy and is asymptotic
to a Morse–Bott Reeb orbit  of period T > 0. Then there exist asymptotically trivial
coordinates .�; �/ such that for sufficiently large j� j, either u.�; �/D .T�;  .T �// or

(2-4) u.�; �/D exp.T�; .T �//
�
e�� .e�.�/C r.�; �//

�
;

where e� is an eigenfunction of A with eigenvalue � 2 �.A / such that ˙� < 0,
and the “remainder” term r.�; �/2 �.T�/ decays to zero uniformly with all derivatives
as j� j !1.

Definition 2.4 When (2-4) holds, we call e� the asymptotic eigenfunction of u

at the puncture, and say that u has transversal convergence rate j�j. In the case
where u.�; �/D .T�;  .T �//, we define the asymptotic eigenfunction to be 0 and the
transversal convergence rate to be 1.

Observe that the asymptotic eigenfunction e� is determined uniquely once a parametriza-
tion of  is fixed. We know also from the monotonicity of winding numbers that
windˆ.e�/ � ˛ˆ� . / if the puncture is positive, and windˆ.e�/ � ˛ˆC. / if it is
negative.

Let ��W TM ! � denote the natural projection with respect to the splitting TM D

RX�˚ � and suppose uD .uR;uM /W P†!R�M is a finite energy J –holomorphic
curve. Then the composition �� ıT uM defines a section of the bundle of complex
linear homomorphisms .T P†; j /! .u��;J /. As shown in [19], this section satisfies
a linear Cauchy–Riemann type equation, and thus is either trivial or has a discrete
set of zeros, all of positive order. The former holds if and only if any asymptotic
eigenfunction of u vanishes, in which case they all do: then

R
P†

u�d�D 0 and u is
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a branched cover of a trivial cylinder. Otherwise, (2-4) implies that �� ı T uM has
finitely many zeros, and we denote the algebraic count of these by

wind�.u/ 2 Z:

Clearly wind�.u/� 0, with equality if and only if uM W
P†!M is an immersion.

2.2 Property .?/ and the main results

We now use holomorphic curves to define two technical conditions on contact mani-
folds which imply the results stated in Section 1. Property .?/ and its weak version,
introduced below, will serve as obstructions to the existence of nonseparating contact
embeddings. They are implied by each of the contact topological assumptions mentioned
in Theorem 1.1, and in fact are more general (see also Wendl [37]).

Definition 2.5 A closed three-dimensional contact manifold .M; �/ satisfies Prop-
erty .?/ if there exists a contact form � with ker�D � and an admissible R–invariant
almost complex structure J on the symplectization R �M , which admits a finite
energy J –holomorphic punctured sphere

uD .uR;uM /W P†D S2
n fz1; : : : ; zN g !R�M

with the following properties:

(1) uM is an embedding, and the closure of uM . P†/�M is an embedded surface
whose oriented boundary is a union of Reeb orbits, called the “asymptotic orbits”
of u.

(2) Each asymptotic orbit of u is nondegenerate or Morse–Bott.

(3) If T1; : : : ;TN are the periods of the asymptotic orbits of u, then every Reeb
orbit not in the same Morse–Bott submanifold with one of these has period
strictly greater than T1C � � �CTN .

(4) u has no asymptotic orbit that is nondegenerate with Conley–Zehnder index
zero, relative to the natural trivialization determined by the image of uM near
the puncture.

(5) If any asymptotic orbit of u belongs to a 2–dimensional Morse–Bott manifold
N �M disjoint from uM . P†/, then N is a torus and contains no other asymptotic
orbits of u.
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Remarks � The fact that Reeb orbits comprise the oriented boundary of uM . P†/

implies that every puncture of u is positive. Moreover, each puncture is asymp-
totic to a distinct Reeb orbit, which is simply covered.

� The asymptotic formula (2-4) implies that on each cylindrical end of P†, uM

does not intersect the corresponding asymptotic orbit, thus it defines a natural
trivialization of � along this orbit. One can then show (cf (2-2)) that relative to
this trivialization, the orbit always has nonnegative Conley–Zehnder index if it
is nondegenerate—thus our definition requires this index to be anything strictly
larger than the minimum possible value.

Definition 2.6 We say that a closed three-dimensional contact manifold .M; �/ satis-
fies Weak Property .?/ if there is a symplectic cobordism .W; !/ from .M; �/ to a
contact manifold .M 0; � 0/, such that either .W; !/ contains a symplectically embedded
sphere of nonnegative self-intersection number or .M 0; � 0/ satisfies Property .?/.

For example, .M; �/ satisfies Weak Property .?/ if it admits a symplectic cap con-
taining a nonnegative symplectic sphere, or if it can be made to satisfy Property .?/
after a sequence of contact .�1/–surgeries or connected sum operations. Obviously
Property .?/ implies Weak Property .?/, and it’s plausible that the converse may also
be true, though this is presumably hard to prove.

We can now state some more technical results that imply Theorem 1.1. These will be
proved in Section 5, using the machinery of Section 4.

Theorem 2.7 Let .W; !/ be a closed and connected symplectic 4–manifold which
contains a closed contact type hypersurface M �W satisfying Weak Property .?/.
Then M separates W .

Theorem 2.8 Let .W; !/ be a compact and connected symplectic 4–manifold with
convex boundary containing a connected component M � @W that satisfies Weak
Property .?/. Then @W is connected.

Theorem 2.9 Let .W; !/ be a compact and connected 4–manifold with convex bound-
ary .M; �/ satisfying Weak Property .?/. Then any closed contact type hypersurface
H in W nM separates W into a convex filling of H and a symplectic cobordism from
H to M . In particular, H also satisfies Weak Property .?/.

Remark 2.10 A compact connected symplectic manifold with convex boundary can
never contain a symplectic sphere of nonnegative self-intersection. This follows easily

Algebraic & Geometric Topology, Volume 10 (2010)



714 Peter Albers, Barney Bramham and Chris Wendl

from the arguments we will use to prove the above results: otherwise one would
find a family of embedded holomorphic spheres foliating the positive end of the
symplectization of the convex boundary, and thus violating the maximum principle.

Remark 2.11 Note that Property .?/ depends only on the contact structure: we do
not assume in any of these theorems that the contact form induced on M by a Liouville
vector field is the same one which appears in Definition 2.5.

We will show in Section 3 that any contact manifold .M; �/ with Giroux torsion satisfies
Property .?/. It turns out that this is also true for a contact fiber sum of open books
.M; �/D #ˆ.Mi ; �i/ whenever any of the summands .Mi ; �i/ is planar. This follows
from an important relationship between open books and holomorphic curves: namely,
it is shown in both Abbas and Wendl [1; 38] that if the open book on .Mi ; �i/ is planar,
one can take its pages to be projected images of embedded index 2 holomorphic curves.
A variation on this construction in Wendl [37] extends it to the blown up manifold
. �Mi ; y�i/: the difference here is that each holomorphic page is asymptotic to a different
orbit in a Morse–Bott family foliating the boundary. Moreover, one can arrange the
contact form in this construction so that all the asymptotic orbits are either elliptic or
Morse–Bott and have much smaller period than any other Reeb orbit in #ˆ.Mi ; �i/. It
follows that #ˆ.Mi ; �i/ satisfies Property .?/ if any of its constituent open books is
planar.

3 Giroux torsion

Following a construction of Wendl in [40], but taking greater care over the size of
periods, we now establish the following proposition.

Proposition 3.1 Let .M; �/ be a closed contact manifold having Giroux torsion. Then
.M; �/ satisfies Property .?/.

Proof By definition, Giroux torsion means that .M; �/ contains a subset T that can
be identified with a thickened torus S1 �S1 � Œ0; 1�, on which � has the form

(3-1) � D ker
�
cos.2��/dxC sin.2��/dy

�
in coordinates .x;y; �/ 2 S1 �S1 � Œ0; 1�. Let us assume � D ker� for some contact
form � that is Morse–Bott outside of T , and in T has the form �Df .�/ dxCg.�/ dy

for smooth functions f;gW Œ0; 1�!R with

 .�/ WD .f .�/;g.�//D h.�/e2� i�
2R2;
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where h.�/ > 0 and h.�/ D 1 for � near 0 and 1. The path  is thus closed and
bounds a star-shaped region in R2 , and we will show that � has the desired properties
if  bounds a suitably oblong oval.

The Reeb vector field of � on T is given by

(3-2) X� D
1

D.�/
.g0.�/@x �f

0.�/@y/;

where D.�/ WD f .�/g0.�/� f 0.�/g.�/ > 0. Since this has no @� component, each
torus N.�0/ WD f.x;y; �0/ j .x;y/ 2 S1�S1g � T is invariant under the Reeb flow.
Moreover, the Reeb flow on each N.�/ is linear and has closed orbits if and only if
dx.X�/=dy.X�/2Q[f1g. From (3-2), this ratio is �g0.�/=f 0.�/D� slope. 0.�//,
so N.�/ has closed orbits precisely when slope. 0.�// is rational or infinite. In this
case every orbit in N.�/ is closed and represents the same class in H1.N.�//D Z2 ,
which we will denote by a pair of integers .p.�/; q.�// with gcd.jp.�/j; jq.�/j/D 1

and

(3-3)
p.�/

q.�/
D� slope. 0.�// 2Q[f1g:

Since d� vanishes on N.�/, all closed simply covered orbits in N.�/ have the same
period, which we will denote by T .�/ > 0. If � W R=Z!N.�/ parametrizes such an
orbit, we compute

(3-4) T .�/D
Z 1

0

���D p.�/f .�/C q.�/g.�/:

Lemma 3.2 Fix � > 0 small and assume that in addition to the above conditions,
 .�/Dh.�/e2�i� bounds a convex set symmetric about both axes, h.1=4/Dh.3=4/D

� and  0.�/ and  00.�/ are always linearly independent. Then:

(1) � is Morse–Bott.

(2) X� D .1=�/@y on N.1=4/ and �.1=�/@y on N.3=4/.

(3) T .1=4/ D T .3=4/ D � , and T .�/ > 1=4 for all other � at which N.�/ has
closed orbits.

Proof It follows by straightforward computation from the assumption that  0.�/
and  00.�/ are linearly independent that each N.�/ with closed orbits is a Morse–
Bott submanifold. The second claim follows immediately from (3-2) since symmetry
requires g0.1=4/D g0.3=4/D 0, and it is then clear that T .1=4/D T .3=4/D � .

To show that all other values of � have T .�/ > 1=4, observe first that by symmetry,
we can always assume g0 and �f 0 have the same sign as f and g respectively.
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Thus sign.p/D sign.dx.X�//D sign.g0/D sign.f / and sign.q/D sign.dy.X�//D

sign.�f 0/D sign.g/, so formula (3-4) becomes

(3-5) T .�/D jp.�/jjf .�/jC jq.�/jjg.�/j:

Let � denote the diamond shaped region in the xy –plane for which jxjC jyj � 1=2

(see Figure 3). We deal separately with two cases.

1



1
2

�

�

��

�1

Figure 3: The curve  and (shaded) region � in Lemma 3.2

Case  .�/ 2 � In this region, outside of the special values � D 1=4; 3=4 we have
0< j slope. 0.�//j< 2� , and by convexity, jg.�/j> �=2. With the slope nonzero, it
follows from (3-3) that both p and q are nonzero: in particular jpj � 1. Then from
the previous inequality

jqj D
jqj

jpj
jpj D

1

j slope. 0.�//j
jpj>

1

2�
jpj �

1

2�
;

and using (3-5), we obtain T .�/� jq.�/jjg.�/j> .1=.2�//.�=2/D 1=4:

Case  .�/ … � After verifying explicitly that T .0/ D T .1/ D 1, we can exclude
these two cases and assume once more that both p.�/ and q.�/ are nonzero. Then
(3-5) gives

T .�/� jf .�/jC jg.�/j> 1=2

by the definition of �.

Using the lemma, we can arrange � in T without changing it in M n T so that
T .1=4/D T .3=4/D � is less than half the period of every other periodic orbit in M .
Now copying the original construction in Wendl [40, Example 2.11], we construct a
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family of embedded J –holomorphic cylinders in R�T that foliate the region between
N.1=4/ and N.3=4/, each of the form

uW R�S1
!R�M W .s; t/ 7! .˛.s/C a0;x0; t; �.s//;

where a0 2 R and x0 2 S1 are arbitrary constants, ˛W R! R is a fixed function
that goes to C1 at both ends and �W R! .1=4; 3=4/ is a fixed orientation reversing
diffeomorphism. Any of these cylinders satisfies the requirements of Property .?/.

4 Fredholm theory, intersection numbers and compactness

In this section, assume .W; !/ is a connected (and possibly noncompact) symplectic
4–manifold with convex boundary @W DM . The boundary need not be connected
or nonempty; for simplicity we will assume that it is compact, though we will later
be able to relax this assumption. Choosing a Liouville vector field Y and a smooth
function f W M !R, we define a contact form � on M by �Y !jM D ef � and denote
by � D ker� the induced contact structure. We can then use the reverse flow of Y to
identify a neighborhood of @W symplectically with a neighborhood of the boundary of
.f.t;m/ 2R�M j t � f .m/g; d.et�//. Thus we can smoothly attach the cylindrical
end

EC WD .f.t;m/ 2R�M j t � f .m/g

with symplectic form d.et�/, forming an enlarged symplectic manifold .W1; !/
which naturally contains .ŒT;1/�M; d.et�// for sufficiently large T .

Assumption 4.1 With .W; !/ as described above, assume either of the following:
(1) .W; !/ contains a symplectically embedded sphere u0W S

2 ! W with self-
intersection number zero.

(2) .M; �/ satisfies Property .?/.

In the first case, we can define P† WD S2 with the standard complex structure, choose
any admissible R–invariant almost complex structure JC on .ŒT;1/�M; d.et�//

and extend it to an !–compatible almost complex structure J on W1 such that u0

is (after reparametrization) a J –holomorphic curve. In the second case, we can (by
appropriate choice of the function f ) take � and JC to be the particular contact form
and almost complex structure arising from Definition 2.5, and again extend JC to an
!–compatible structure J on W1 . After a sufficiently large R–translation, the JC–
holomorphic curve given by Definition 2.5 may then be regarded as a J –holomorphic
curve

u0 D .uR;uM /W P†! ŒT;1/�M �W1;

where P†D S2 n fz1; : : : ; zN g with the standard complex structure of S2 .
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Given any smooth function 'W R! .0;1/ that is monotone increasing and satisfies
'.t/D et for t � T , we can define a new symplectic form on W1 by

(4-1) !' D

(
! in W ,

d.'�/ in EC.

Observe that J is also compatible with !' .

Definition 4.2 The energy of a J –holomorphic curve uW P†!W1 is

E.u/D sup
'2T

Z
P†

u�!' ;

where !' is as defined in (4-1) and T is the set of all smooth functions 'W R! .0;1/

that satisfy '0 > 0, '.t/D et for t � T and sup' � e2T .

This is equivalent to the definition of energy given by Bourgeois–Eliashberg–Hofer [3],
in the sense that uniform bounds on either imply uniform bounds on the other. As in
Section 2.1, we will always assume that finite energy J –holomorphic curves in W1

are proper and thus have no removable punctures: then they also satisfy the asymptotic
formula (2-4) and thus have well defined asymptotic eigenfunctions and transversal
convergence rates at each puncture.

Denote by M� the moduli space of all proper, somewhere injective finite energy
J –holomorphic curves in W1 , with arbitrary conformal structures on the domains
and any two curves considered equivalent if they are related by a biholomorphic
reparametrization that preserves each puncture. We assign to M� the natural topology
defined by C1–convergence on compact subsets and C 0 –convergence up to the ends,
and denote by M�

0
�M� the connected component containing u0 . Observe that

since
R

u�!' depends only on ' and the relative homology class represented by u,
the energy E.u/ is uniformly bounded for all u 2M�

0
.

We shall now define special subsets Mc �M� and Mc
0
�M�

0
, consisting of J –

holomorphic curves that satisfy asymptotic constraints. If u0 has no punctures, we can
simply set Mc DM� and Mc

0
DM�

0
. Otherwise, let us fix the following notation:

for each puncture z 2 � of u0 , denote the corresponding asymptotic orbit of u0 by z ,
with asymptotic operator Az , asymptotic eigenfunction ez and transversal convergence
rate ��z , so �z 2 �.Az/. Choose any unitary trivialization ˆ for � along each of the
orbits z . We will define a new partition

� D �C [�U
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in terms of the asymptotic behavior of u0 , calling these the constrained and uncon-
strained punctures respectively. Namely, define z 2 � to be in �C if and only if z is
either nondegenerate or belongs to a Morse–Bott submanifold N �M that intersects
uM . P†/.

Lemma 4.3 If z belongs to a Morse–Bott submanifold N �M of dimension at
least 2, then N intersects uM . P†/ if and only if windˆ.ez/ < 0, where ˆ is the unique
trivialization in which the nontrivial sections in ker Az have zero winding.

Proof It is obvious from the asymptotic formula (2-4) that uM intersects N if
windˆ.ez/ < 0. To prove the converse, observe first that since uM is embedded, it
cannot intersect its own asymptotic orbits. One then has to show that if u0 intersects
any trivial cylinder R �  0 over an orbit  0 in N , then it also has an “asymptotic
intersection” with R� z , which cannot be true if windˆ.ez/D 0. This follows easily
from the intersection theory of punctured holomorphic curves; see Siefring [31] and
also Siefring–Wendl [32] for details.

Lemma 4.4 For each z 2 �C , there exists a number cz < 0 such that cz 62 �.Az/,
˛ˆ� .z � cz/D windˆ.ez/ and ˛ˆC.z � cz/D windˆ.ez/C 1.

Proof Choose ˆ so that windˆ.ez/ D 0; in the language of Definition 2.5, this is
the special trivialization determined by the asymptotic behavior of uM near z . Then
˛ˆ� .z/� 0, and if z is nondegenerate, (2-2) implies �ˆCZ.z/� 0, with equality if
and only if ˛ˆ� .z/D ˛

ˆ
C.z/D 0. The latter is therefore excluded by the condition

�ˆCZ.z/¤ 0 from Definition 2.5. It follows that if � 2 �.Az/ is the largest eigenvalue
with windˆ.�/ D windˆ.ez/, then � < 0 and we can choose cz to be any number
slightly larger than �.

For the case where z is Morse–Bott, the fact that uM intersects the Morse–Bott sub-
manifold means 0Dwindˆ.ez/<windˆ.0/ due to Lemma 4.3. Thus the eigenvalue �
defined above is again negative and we can choose cz to be slightly larger.

In the following, let cz < 0 denote the number given by Lemma 4.4 for each constrained
puncture z 2 �C , and for z 2 �U set cz WD � > 0 small enough so that .0; �/ never
intersects �.Az/.

Definition 4.5 The constrained moduli space Mc consists of all curves u 2M�

having at most #� punctures, which can be identified with a subset of � in such a
way that at every z 2 �C that is a puncture of u, the asymptotic orbit of u is z ,
with transversal convergence rate strictly greater than jczj. Let Mc

0
�Mc denote the

connected component containing u0 .
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Proposition 4.6 Every curve u 2Mc
0

is embedded.

Proof By Definition 2.5, each asymptotic orbit for the curves in Mc
0

is either fixed or
allowed to vary in a Morse–Bott torus that contains no other asymptotic orbits, thus the
orbits of each u 2Mc

0
are all distinct and simply covered. It follows that embedded

curves form an open subset of Mc
0

, which is also nonempty since it contains u0 . By
positivity of intersections, it is also closed, so the claim follows from the assumption
that Mc

0
is connected.

Topologically, Mc is a closed subspace of M� . Recall that M� can locally be
identified (up to symmetries) with the zero set of the nonlinear Cauchy–Riemann
operator x@J , regarded as a smooth section of a certain Banach space bundle. The same
is true for Mc , but with Banach spaces of maps whose behavior at the ends satisfies
exponential weighting constraints determined by the numbers cz . We refer to [34;
39] for details on the general analytical setup, and [22; 35; 39] for the exponential
weights. A given curve u 2Mc is called Fredholm regular if the linearization of x@J

at u is surjective. In general, this linearization is a Fredholm operator, whose index
(with correction terms for the dimensions of Teichmüller space and the automorphism
group) defines the “virtual dimension” of the moduli space near u. We’ll denote
this virtual dimension by ind.uI c/, and call it the (constrained) index of u. If u is
Fredholm regular, then the implicit function theorem implies that Mc near u is a
smooth manifold, whose dimension is given by the index.

Theorem 4.7 Every u 2Mc
0

is Fredholm regular and has ind.uI c/D 2. Moreover, a
neighborhood of u in Mc

0
forms a smooth 2–parameter family fu�g�2D , with u0D u,

such that:

(1) The images u� . P†/ foliate a neighborhood of u. P†/ in W .

(2) For any puncture z 2 �U , the set of all curves fu�g�2D that approach the same
orbit as u at z is a smooth 1–dimensional submanifold.

Proof We first verify the claim that ind.uI c/ D 2. For the case where u is a
closed embedded sphere with self-intersection zero, this follows immediately from
the adjunction formula: 0D u � uD c1.u

�T W1/� 2, thus c1.u
�T W1/D 2 and

ind.u/D�2C 2c1.u
�T W1/D 2.

In the case where u0 arises from Property .?/, it suffices to prove that ind.u0I c/D 2

with u0 regarded as a JC–holomorphic curve in R�M . Recall from [35] that one can
associate with u0 an integer cN .u0I c/, called the (constrained) normal Chern number,
which satisfies

(4-2) 2cN .u0I c/D ind.u0I c/� 2C 2gC #�0.c/;
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where g is the genus of P† (in this case zero) and �0.c/ is the subset of punctures
z 2 � at which p.z � cz/D 0. It also satisfies

(4-3) cN .u0I c/D wind�.u0/C
X
z2�

�
˛ˆ� .z � cz/�windˆ.ez/

�
:

By Lemma 4.4 and the fact that uM W
P†!M is an embedding, the right hand side

of (4-3) vanishes, implying cN .u0I c/ D 0. We claim also that #�0.c/ D 0, ie all
punctures satisfy p.z � cz/D 1; for z 2 �C this already follows from Lemma 4.4.
For unconstrained punctures z 2 �U , Lemma 4.3 implies that ez has the same winding
number as a nontrivial section in ker Az : these also span the two eigenspaces of
Az � cz D Az � � with negative eigenvalues closest to zero. It follows that every
positive eigenvalue of Az�� has strictly larger winding, thus p.z��/D 1 as claimed.
Now (4-2) implies ind.u0I c/D 2.

The remainder of the proof consists of minor generalizations of well established results
from [22; 41], so we shall merely sketch the main ideas. Since u2Mc

0
is embedded, the

regularity question can be reduced to the study of the normal Cauchy–Riemann operator
DN

u as in [18; 22; 34]. The domain of DN
u is an exponentially weighted Banach space

of sections of the normal bundle Nu !
P†, and the sections in ker DN

u have only
positive zeroes, whose algebraic count is bounded in general by cN .uI c/; cf [34].
In our case cN .uI c/ D cN .u0I c/ D 0, thus every section in ker DN

u is zero free; a
simple linear independence argument then shows that dim ker DN

u � 2D ind DN
u , hence

DN
u is surjective. This shows that Mc

0
is a smooth 2–manifold near u, and TuMc

0

is identified with a space of smooth nowhere vanishing sections ker DN
u � �.Nu/,

implying the claim that the curves near u foliate a neighborhood.

Finally we note that for each z 2 �U , one can apply an additional constraint to
study subspaces of curves in Mc

0
that fix the position of the asymptotic orbit. In the

linearization this amounts to replacing cz D � by cz D �� ; this idea is explained in
detail in Wendl [41; 39]. The problem with the additional constraint then has index 1

and is again regular by an argument using the formal adjoint of DN
u , as in [34].

Note that in the above proof, Fredholm regularity does not require any genericity
assumptions, rather it comes for free due to “automatic” transversality (cf [34]). As a
consequence, u0 can be deformed with sufficiently small perturbations of J and � so
that Theorem 4.7 still applies. After such a perturbation (using Lemma 2.2), we can
therefore assume the following from now on:

(1) All orbits of period less than some large constant C > 0 are Morse–Bott.

(2) J is generic outside of ŒT;1/�M , so that in particular every curve u 2Mc

that isn’t wholly contained in ŒT;1/�M has ind.uI c/� 0.
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The exact details of our generic perturbation of J are somewhat delicate and specific
to the application we have in mind; this will be explained in Lemma 5.2 in Section 5.
Note that the purpose of this assumption has nothing to do with the curves in Mc

0
,

which are already regular—rather we will see below that genericity is needed to gain
control over the degenerations that can occur in the natural compactification of Mc

0
.

Due to the Morse–Bott assumption, the compactness theorem of [3] now applies to
any sequence of J –holomorphic curves in W1 that satisfy a suitable C 0 –bound and
energy bound: in particular, such a sequence has a subsequence that converges to a
nodal holomorphic building, typically with multiple levels. In our situation, the bottom
level will be a nodal J –holomorphic curve in W1 , and all levels above this are nodal
JC–holomorphic curves in R�M .

Theorem 4.8 Suppose uk 2Mc
0

is a sequence whose images are all contained in
W0[EC for some compact subset W0 �W . Then a subsequence of uk converges to
one of the following:

(1) another smooth curve in Mc
0

,

(2) a holomorphic building with empty bottom level and one nontrivial upper level
that consists of a smooth, embedded JC–holomorphic curve in R�M satisfying
the conditions of Property .?/,

(3) a nodal J –holomorphic curve in W1 with exactly two components, both in
Mc and both embedded with (constrained) index 0.

Moreover the set of index 0 curves that can appear as components of nodal curves in
the third case is finite.

Before we prove the theorem we state the following important corollary. For this, we
denote by S �W1 the set through which the finitely many limit curves from part (3)
of Theorem 4.8 pass, and let C �W1 nS consist of all points that are contained in
curves from Mc

0
.

Corollary 4.9 In addition to the assumptions of Theorem 4.8, assume that the images
of all curves in Mc

0
are contained in W0 [EC for some compact subset W0 � W .

Then C DW1 nS , and thus W is compact.

Proof We claim that C is a nonempty, open and closed subset of W1 n S . It is
clearly nonempty since Mc

0
also is, by construction. Openness is a direct consequence

of Theorem 4.7 part (1). To prove that C is closed, we choose a sequence .pn/� C

with pn ! p� 2 W1 n S . Then by definition, there exist curves un 2Mc
0

with
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pn 2 im.un/. A subsequence of un converges to a holomorphic building u� , which
by Theorem 4.8 is either a smooth curve or a nodal curve with one level. Since p� is
in the image of u� and p� 62 S , we conclude that u� 2Mc

0
and p� 2 im u� � C .

Now, since S is a finite union of images of holomorphic curves, W1 nS is connected
and it follows from the above claim that C DW1 n S . Since by assumption C �

W0[EC , we conclude that W is compact.

In proving Theorem 4.8, we will make use of a few concepts from the intersection
theory of punctured holomorphic curves; this theory is developed in detail in the papers
[31; 32], and the last section of [34] also contains a summary. Assume v1; v2 2Mc .
Then there is an algebraic intersection number

i.v1I c j v2I c/ 2 Z

which has the following properties:

(1) i.v1I c j v2I c/ is unchanged under continuous variations of v1 and v2 in Mc .

(2) If v1 and v2 are not both covers of the same somewhere injective curve, then

i.v1I c j v2I c/� 0;

and the inequality is strict if they intersect.

Unlike the usual homological intersection theory applied to closed holomorphic curves,
the last statement is not an “if and only if”: it is possible in general for v1 and v2 to be
disjoint even if i.v1I c j v2I c/>0, though this phenomenon is in some sense nongeneric.
The intersection number can also be defined for curves in the symplectization R�M ,
possibly with both positive and negative punctures. In this case one has invariance
under R–translation, so if i.v1I c j v2I c/D 0 then the projected images of v1 and v2

in M never intersect.

Lemma 4.10 i.u0I c j u0I c/D 0.

Proof Since u0 has only simply covered Reeb orbits and all of them are distinct, it
satisfies the following somewhat simplified version of the adjunction formula from
Siefring [31] and Siefring–Wendl [32]:

(4-4) i.u0I c j u0I c/D 2ı.u0/C cN .u0I c/:

Here ı.u0/ is the algebraic count of double points and singularities of u0 (see McDuff
and Salamon [28]), which vanishes since u0 is embedded. As we saw in the proof of
Theorem 4.7, cN .u0I c/ also vanishes, so the claim follows.
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Lemma 4.11 If v 2Mc
0

is contained in ŒT;1/�M �W1 , then its projection to M

is embedded.

Proof Write v D .vR; vM /W P†! ŒT;1/�M . By assumption, v can be deformed
continuously to u0 through Mc , thus i.vI c j vI c/D i.u0I c ju0I c/D 0 by the previous
lemma, and cN .vI c/ D cN .u0I c/ D 0. Now (4-3) implies that wind�.v/ D 0, thus
vM is immersed, and the vanishing self-intersection number implies that v has no
intersections with any of its R–translations, so vM is also injective.

Proof of Theorem 4.8 By Bourgeois, Eliashberg and Hofer [3], uk has a subsequence
converging to some holomorphic building, which we’ll denote by u. Our first task is
to show that unless u is a 2–level building with empty bottom level as described in
Case (2), it can have no nontrivial upper levels. This is already clear in the case where
u is closed, as convexity prevents uk from venturing into the region ŒT;1/�M at all.
Let us therefore assume that uk has punctures and that u has nontrivial upper levels. If
no component in these upper levels has any negative punctures, then there must be only
one nontrivial level, which consists of one or more connected components v1; : : : ; vN

attached to each other by nodes. All of these components have punctures, since the
symplectic form in R�M is exact; moreover, the positive ends of each vi correspond
to some subset of the positive ends of u0 , and since these are all simply covered and
distinct, each vi is somewhere injective and satisfies the asymptotic constraints defined
by c. Now (4-2) and (4-3) give

0� 2 wind�.vi/� 2cN .vi I c/D ind.vi I c/� 2;

hence ind.vi I c/ � 2. Since ind.u0I c/ D 2 as well, we conclude that u can have at
most one connected component, with no nodes, ie it is a smooth JC–holomorphic
curve in R�M with only positive punctures. Up to R–translation, u can therefore be
identified with some smooth curve in Mc

0
whose image is contained in ŒT;1/�M ,

and the projection into M is embedded due to Lemma 4.11. It follows that this curve
satisfies the conditions of Property .?/.

Alternatively, suppose u has nontrivial upper levels and the top level contains a JC–
holomorphic curve uC in R�M which is not the trivial cylinder over an orbit and has
both positive and negative punctures. Repeating the above argument about behavior at
the positive ends, uC is somewhere injective. Applying Stokes’ theorem to

R
u�Cd��0,

the negative asymptotic orbits of uC have total period bounded by the total period of the
positive orbits, implying that all of the negative orbits belong to the same Morse–Bott
manifolds as the orbits of u0 . We claim that after some R–translation, uC intersects u0 .
This will imply a contradiction almost immediately, as positivity of intersections then
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gives an intersection of uk with some R–translation of u0 for sufficiently large k ,
contradicting Lemma 4.10 since i.uk I c j u0I c/D i.u0I c j u0I c/D 0.

To prove the claim, it suffices to show that the projected images of uC and u0 in M

intersect each other. Suppose  is an asymptotic orbit of u0 that lies in the same
Morse–Bott submanifold N �M as one of the negative asymptotic orbits  0 of uC .
Denote the corresponding asymptotic eigenfunctions by e and e0 respectively. We
consider the following cases:

Case 1 N is a circle. Then  is nondegenerate and  0 is the k –fold cover of  for
some k 2N . Choose a trivialization ˆ along  so that windˆ.e/D 0. By Lemma
4.4, A has two eigenvalues (counting multiplicity) � < 0 with windˆ.�/D 0. Then
the k –fold covers of their eigenfunctions are eigenfunctions of A 0 with negative
eigenvalues and zero winding, implying that every positive eigenvalue of A 0 has
strictly positive winding. Thus windˆ.e0/� ˛ˆC.

0/ > 0, forcing the projections of u0

and uC in M to intersect each other near N .

Case 2 N is a torus disjoint from uM . Now  0 can be deformed through a 1–
parameter family of orbits to a k –fold cover of  for some k 2 N . Choose a
trivialization ˆ along every simply covered orbit in N so that sections in the 0–
eigenspaces have zero winding. By Lemma 4.3, A has an eigenvalue �< 0 such that
windˆ.e/D windˆ.�/D 0, and taking k –fold covers of eigenfunctions, we similarly
find eigenfunctions of A 0 that have zero winding and eigenvalues k�< 0 and 0. This
implies that windˆ.e0/ � ˛ˆC.

0/ > 0, which forces the projection of uC in M to
intersect N , ie uC intersects a trivial cylinder R� 1 for some orbit 1 �N . Then
by the homotopy invariance of the intersection number, uC also intersects R� . This
intersection is transverse unless it occurs at a point where �� ı T uC D 0, but the
similarity principle implies that there are finitely many such points (see Hofer, Wysocki
and Zehnder [19]). Thus if necessary we can use Theorem 4.7 to perturb u0 and thus
move  to a nearby orbit, so that the intersection of R �  with uC is transverse.
This implies a transverse intersection of the projected image of uC in M with  , and
therefore an intersection of the projections of uC and u0 nearby.

Case 3 N is a Morse–Bott manifold intersecting uM . The argument is similar to
Case 2, only now we use the intersection of uM with N to show that uM intersects
 0 and thus also the projected image of uC near  0 .

We’ve shown now that u cannot have any nontrivial upper level except in Case (2), so
it must therefore be a 1–level building in W1 , ie a nodal J –holomorphic curve. The
deduction of Case (3) now proceeds almost exactly as in the proof of [40, Theorem 7].
To summarize, the connected components of u are all either punctured curves with
positive ends at distinct simply covered orbits (and thus somewhere injective), or closed
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curves (which must be nonconstant by an index argument). The latter could in general
be multiple covers, but if v is a k –fold branched cover of some closed somewhere
injective curve v0 , then we find ind.v/D k � ind.v0/C2.k�1/. Due to our genericity
assumption, all somewhere injective curves have index at least 0, so we find that the
total index of u becomes more than 2 unless there is at most one node connecting
two components, and in this case both components must be somewhere injective. The
adjunction formula (4-4) can now be used to show that these two components, v1

and v2 , are both embedded, satisfy i.vi I c j vi I c/ D �1, i.vi I c j u0I c/ D 0 and
i.v1I c j v2I c/D 1; moreover, they are both Fredholm regular and have (constrained)
index 0.

There’s one minor point to address which was irrelevant in [40]: if there are no
punctures, we haven’t ruled out the possibility that u is a smooth multiple cover,
ie uD v ı' for some closed somewhere injective sphere v and holomorphic branched
cover 'W S2 ! S2 . Since c1.u

�T W1/ D 2, this is allowed numerically only if
c1.v

�T W1/D 1 and ' has degree 2. But then we get a simple contradiction using
the adjunction formula: since u �uD 0, the same holds for v , thus

0D v � v D 2ı.v/C c1.v
�T W1/� 2D 2ı.v/� 1

where ı.v/ is the algebraic count of double points and singularities. The right hand
side is odd; in particular it can never be zero.

It remains to show that the set of all index 0 curves arising from nodal degenerations of
uk is finite. Indeed, suppose vk is a sequence of finite energy J –holomorphic curves
in W1 with uniform energy and C 0 –bounds such that:

(1) The punctures of vk are identified with a subset of � and satisfy the asymptotic
constraints of Definition 4.5.

(2) i.vk I c j u0I c/D 0.

(3) ind.vk I c/D 0.

Then we claim that vk has a convergent subsequence. The argument is familiar: we rule
out nontrivial upper levels exactly as before by showing that any nontrivial component
vC in such a level must intersect u0 . Thus the only remaining possible nonsmooth
limit is a nodal curve in W1 , but the same index argument now implies that there is
at most one component, thus no nodes, and the limit is somewhere injective. It follows
that this set of curves is a compact smooth 0–dimensional manifold, ie a finite set.
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5 Proofs of the main results

5.1 Proofs of Theorem 1.15 and Theorem 2.7

We consider a closed and connected symplectic 4–manifold .W; !/ which contains
a closed contact type hypersurface M such that W nM is connected. Under the
assumptions of Theorems 1.15 or 2.7, we will construct from this a noncompact
symplectic manifold with convex boundary to which Corollary 4.9 applies, giving a
contradiction. The general idea of the construction is outlined in Figure 4.

To start with, we compactify W nM by adding to each end a copy of M , obtaining
a compact and connected symplectic manifold .W1; !/ with one convex boundary
component MC and an identical concave boundary component M� . Inductively, we
define the compact symplectic manifold Wn by Wn WDWn�1[M�DMCW1 , denoting
the symplectic form on Wn again by ! . Note that Wn�1 is a compact symplectic
submanifold of Wn in a natural way. Thus the set

(5-1) .W; !/ WD
[
n�1

.Wn; !/

is a noncompact symplectic manifold with convex boundary M corresponding to the
convex boundary of W1 .

Assume that W contains a symplectically embedded sphere S�W with S�SDN �0.
Since ! is exact on M , Stokes’ theorem implies that S cannot be contained entirely
in M . We can thus blow up W at N distinct points in S that are not in M , modifying
both W and S so that S �S D 0 without loss of generality. Now we claim that S can
be “lifted” to a symplectic sphere zS in .W; !/ with zS � zS D 0. To see this, construct
a symplectic infinite cover . �W ; z!/ of .W; !/ by gluing together a sequence of copies
f.W

j
1
; !/gj2Z of .W1; !/, with the concave boundary of W

j
1

attached to the convex
boundary of W

jC1
1

for each j 2 Z. Since the sphere is simply connected, S has a
lift zS � �W , and moreover, . �W ; z!/ naturally contains .W; !/, which we may assume
contains zS without loss of generality.

Similarly, if M with its induced contact structure satisfies Weak Property .?/, then
after attaching a symplectic cobordism to the convex boundary of .W; !/, we may
assume without loss of generality that either .W; !/ contains a symplectic sphere of
zero self-intersection (after blowing up) or Property .?/ holds for @W .

In either case, .W; !/ now satisfies Assumption 4.1. As explained in Section 4, we
can then attach to @W a cylindrical end EC that contains .ŒT;1/ �M; d.et�//

for sufficiently large T 2 R and a suitable contact form �, obtaining an enlarged

Algebraic & Geometric Topology, Volume 10 (2010)



728 Peter Albers, Barney Bramham and Chris Wendl

.W; !/

.M; �/

.Wn; !/ Wn[EC

Y

.W1; !/

Figure 4: The compact symplectic manifold .W; !/ contains the nonsep-
arating contact hypersurface .M; �/ . W nM is compactified to produce
.W1; !/ , which has two boundary components contactomorphic to M , one
convex and one concave. Successively attaching n copies of W1 to itself
produces .Wn; !/ . Then Property .?/ gives rise to a moduli space of finite
energy curves which, due to the monotonicity lemma, cannot escape from
Wn[EC if n is sufficiently large.

symplectic manifold .W1; !/, with an !–compatible almost complex structure J0

that is admissible and R–invariant on ŒT;1/ �M , and a nonempty moduli space
Mc

0
�Mc of J0 –holomorphic curves in W1 . Moreover for some n0 2N , we can

assume that J0 belongs to the following set.
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Definition 5.1 Let J per be the space of compatible almost complex structures on
.W1; !/ which match J0 on .ŒT;1/�M; d.et�// and whose restrictions to W Š

WnC1 nWn �W1 are independent of n for n� n0.J0/. Such a J will be called
periodic.

Lemma 5.2 For a generic J 2 J per , all J –holomorphic curves in Mc are Fredholm
regular.

Proof Recall that the J –holomorphic curves in Mc are somewhere injective; see
Section 4. The proof of transversality is a small variation on the standard technique,
as in McDuff and Salamon [28]: the key is to show that the universal moduli space
f.u;J / j u is J –holomorphicg is a smooth Banach manifold for periodic J and u

satisfying the relevant conditions. This will use the fact that a perturbation of J can
be localized at an injective point of u without interfering at other points in the image
of u. Then regular values of the projection .u;J / 7! J are generic by the Sard–Smale
theorem, and for these, all J –curves are Fredholm regular.

Assume J 2J per and u2Mc is not fully contained in ŒT;1/�M . If u also intersects
Wn0
[EC , then it suffices to perturb J only in this region and thus preserve periodicity

of J . Thus it remains only to show that J per permits sufficient perturbations of J

when the image of u is contained in W nWn0
, in which case u must be a somewhere

injective closed curve. Since J is required to be periodic, the only danger not present
in the standard case is that u may have periodic points, in the following sense. Recall
that W1 contains infinitely many identical copies of a certain manifold V , in the
form �Wn WDWnC1 nWn . Thus each point x 2 V appears infinitely often in W1 , and
we call these different points translates of x . Then z 2 P† is a periodic point of u

if a translate of u.z/ is contained in the image im.u/ of u. In this case a periodic
perturbation of J cannot be localized in the image of u.

We claim that for any somewhere injective closed holomorphic curve in W nWn0
, the

set of injective points which are not periodic is open and dense. To see this, we can
consider the covering space � W �W !W which was constructed above Definition 5.1.
Since J is periodic, the projection � ıu is a holomorphic curve in W . It will suffice
to show that also � ıu is somewhere injective, since then the set of injective points of
� ıu is open and dense, and injective points of � ıu give rise to nonperiodic injective
points of u. Denote by � W �W ! �W the deck transformation that maps �Wn to �WnC1 .
Then if � ıu is multiply covered, the fact that u is somewhere injective implies (using
unique continuation) that u and �k ıu are equivalent curves for some integer k ¤ 0.
But then u is also equivalent to �nk ıu for any n 2Z, implying that the image of u in�W is unbounded. Since u was assumed to be closed, this is a contradiction and shows
that � ıu is indeed somewhere injective.
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With this, the usual proof that the universal moduli space is a smooth Banach manifold
goes through unchanged.

For the remainder of this section we assume that the almost complex structure J

(formerly called J0 ) is periodic and generic.

Proposition 5.3 There exists N0 2N such that for all u 2M�
0

we have

(5-2) im.u/�WN0
[EC:

Proof We denote the convex boundary of Wn�W by MC and the concave boundary
by M�

n . Recall that MC is the same for all Wn . Then we claim that there exists a
positive constant c0 > 0 such that all u 2M�

0
with im.u/\MC and im.u/\M�

n

both nonempty have energy

(5-3) E.u/� c0n :

This follows from the monotonicity lemma (see Lemma 5.4 below) and the fact that the
almost complex structure is periodic. Indeed, we fix a copy of W1 in Wn and denote
for the moment its convex and concave boundary by @W C and @W � respectively. We
claim that there exists zc > 0 such that any holomorphic curve v with v�1.@W C/¤∅
and v�1.@W �/ ¤ ∅ has at least energy E.v/ � zc . To see this we observe that
each such v has to pass through a point in W with distance �0 > 0 to the boundary
@W C[@W � of W . Thus we conclude from Lemma 5.4 that E.v/�C�2

0
for each v ,

where C and �0 only depend on the almost complex structure J . Since J is periodic,
and a map u 2M�

0
with im.u/\MC ¤ ∅ and im.u/\M�

n ¤ ∅ passes through
the boundaries of n copies of W1 , Equation (5-3) follows. Using the uniform energy
bound for u 2M�

0
, this implies the proposition in the case where u0 has punctures, as

every u 2M�
0

is then either confined to EC or passes through MC .

A small modification is required for the case without punctures: here u0 2M�
0

is a
sphere, and we can choose its lift from W to W1 so that without loss of generality,
the image of u0 intersects W1 (ie the first copy). Then we claim that every u 2M�

0

intersects W1 . Otherwise, the fact that M�
0

is connected implies the existence of some
holomorphic sphere in M�

0
that touches M�

1
tangentially from inside W2 nW1 , and

this is impossible by convexity. We conclude that every u 2M�
0

which escapes from
W1[EC must also pass through M�

1
, so the above argument goes through by using

M�
1

in place of MC .

For the sake of completeness, we include here the monotonicity lemma; see Hum-
mel [23] for a proof.
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Lemma 5.4 For any compact almost complex manifold .W;J / with Hermitian met-
ric g , there are constants �0 and C > 0 such that the following holds. Assume
.S; j / is a compact Riemann surface, possibly with boundary, and uW S ! W is
a pseudoholomorphic curve. Then for every z 2 Int.S/ and r 2 .0; �0/ such that
u.@S/\Br .u.z//D∅, the following inequality holds:

Area .u.S/\Br .u.z///� C r2

Since WN0
is compact, Proposition 5.3 allows us to apply Corollary 4.9. But this implies

that W is compact, and is thus a contradiction, concluding the proof of Theorems 1.15
and 2.7.

5.2 Proof of Theorem 2.8

Theorem 2.8 follows immediately from Theorem 2.7 and Example 1.3, since a symplec-
tic semifilling with disconnected boundary can always be turned into a closed symplectic
4–manifold containing nonseparating contact hypersurfaces. One can nonetheless give
a slightly easier proof as follows.

Assume that the boundary @W is disconnected and contains a component M satisfying
Property .?/. Thus W satisfies Assumption 4.1, and after attaching cylindrical ends,
we obtain a moduli space Mc

0
of J –holomorphic curves that fill the enlarged manifold

W1 . Moreover, all J –holomorphic curves have positive punctures going to the end
corresponding to M . Since they fill W1 , some of these curves must therefore touch
@W nM tangentially, which is impossible if @W is convex.

5.3 Proof of Theorem 2.9

Let .W; !/ be a compact connected 4–manifold with convex boundary .M; �/ satisfy-
ing the Weak Property .?/. After attaching a symplectic cobordism to @W , we may
without loss of generality remove the word “weak”. Now assume that H �W nM is a
nonseparating contact hypersurface. Thus we can cut W open along H and compactify
to obtain a connected symplectic cobordism W1 with two convex boundary components
HC and M , and one concave boundary component H� .

Now we can repeat the construction in the proof of Theorems 1.15 and 2.7, namely
we glue infinitely many copies of W1 along H , obtaining a noncompact symplectic
manifold W with one convex boundary component H and infinitely many convex
boundary components which are copies of M . From here, we proceed exactly as
in the previous proofs, using the moduli space of holomorphic curves arising from
Property .?/ on the first copy of M . The only new feature is that @W is not compact,
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but since it consists of copies of the same compact and convex components, the results
of Section 4 still hold, as convexity prevents the holomorphic curves in Mc

0
from ever

approaching the other copies of M . In particular, Corollary 4.9 applies and again
yields a contradiction.

Appendix A Relative nondegeneracy of contact forms

Our main argument uses holomorphic curves asymptotic to Morse–Bott families of
periodic orbits. We prefer not to assume from the start that the contact form is globally
Morse–Bott. Thus, we need a perturbation result that preserves a given Morse–Bott
submanifold and makes � nondegenerate everywhere else. For this, it suffices to show
that one can perturb � in some precompact subset to make all orbits that pass through
that subset nondegenerate.

Theorem A.1 Suppose M is a .2n�1/–dimensional manifold with a smooth contact
form �, and U �M is an open subset with compact closure. Then there exists a Baire
subset

ƒreg.U/� ff 2 C1.M / j f > 0 and f jMnU � 1g

such that for each f 2 ƒreg.U/, every periodic orbit of Xf � passing through U is
nondegenerate.

Proof We give a proof in two steps, first showing that a generic choice of the function f
makes all simply covered orbits of Xf � passing through U nondegenerate. Then we
extend this to multiple covers by a further perturbation.

The first step is an adaptation of the standard Sard–Smale argument. Let � D ker�,
and for some large k 2N , define the Banach space

C k
U .M /D ff 2 C k.M;R/ j f jMnU � 0g

and Banach manifold

ƒk.U/D ff 2 C k.M;R/ j f > 0 and f � 1 2 C k
U .M /g;

whose tangent space at any f 2 ƒk.U/ can be identified with C k
U .M /. We will

consider the nonlinear operator

�.x;T; f / WD Px�TXf �.x/

as a section of a Banach space bundle over H 1.S1;M /� .0;1/�ƒk.U/ whose fiber
at .x;T; f / is L2.x�TM /. Since Xf � depends on the first derivative of f , it is of
class C k�1 and the section � is therefore of class C k�2 . Choosing any symmetric
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connection r on M , the linearization of � at .x;T; f / 2 ��1.0/ with respect to the
first variable defines the operator

(A-1) Dx W H
1.x�TM /!L2.x�TM /W yx 7! rt yx�TryxXf �:

Since PxDTXf �.x/, we can identify the normal bundle of x with x�� and thus define
a splitting x�TM D TS1˚ x�� . A short calculation then allows us to rewrite Dx

with respect to the splitting in the block form

(A-2) Dx D

�
@t 0

0 DN
x

�
;

where DN
x W H

1.x��/!L2.x��/ is defined again by (A-1), and is a Fredholm operator
of index 0. The orbit x is nondegenerate if and only if DN

x is an isomorphism.

The total linearization of � at .x;T; f / 2 ��1.0/ is now

D�.x;T; f /.yx; yT ; yf /DDx yx� yT Xf �.x/�T yX .x/;

where we define the vector field

yX WD @�X.fC� yf /�j�D0:

By definition of the Reeb vector field, yX takes the form � yfXf �CV yf where V yf 2�.�/

is uniquely determined by the condition

(A-3) d.f �/.V yf ; � /
ˇ̌
�
D d yf

ˇ̌
�
:

We define the universal moduli space of parametrized Reeb orbits as M WD ��1.0/,
and let M� �M denote the open subset consisting of triples .x;T; f / for which x

is simply covered and x.S1/\U ¤∅. Similarly, denote

M�.f /D f.x;T / j .x;T; f / 2M�
g:

We claim that D�.x;T; f / is surjective whenever .x;T; f / 2 M� , hence M�

is a C k�2 –smooth Banach manifold. To see this, note that one can always find
� 2 H 1.TS1/ and yT 2 R so that T x.@t�/� yT Xf �.x/ takes any desired value in
L2.x�.RXf �//, thus it suffices to show that the “normal part”

H 1.x��/˚C k
U .M /!L2.x��/W .yx; yf / 7!DN

x yx�T V yf

is surjective. If it isn’t, then there exists a section � ¤ 0 2 L2.x��/ such that
hDN

x yx; �iL2D0 for all yx2H 1.x��/ and hV yf ; �iL2D0 for all yf 2C k
U .M / vanishing

outside of U . The first relation implies that � is in the kernel of the formal adjoint of
DN

x , a first order linear differential operator, hence � is smooth and nowhere vanishing.
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But then if x.t0/ 2 U , then using (A-3), yf can be chosen near x.t0/ so that the second
relation requires � to vanish on a neighborhood of t0 , giving a contradiction.

Now applying the Sard–Smale theorem to the natural projection

M�
!ƒk.U/W .x;T; f / 7! f ;

we find a Baire subset ƒk
reg.U/�ƒk.U/ for which every simply covered Reeb orbit

passing through U is nondegenerate.

For the second step, denote by dist. ; / the distance functions resulting from any choice
of Riemannian metrics on S1 and M , and define for each positive integer N 2N a
subset

MN .f /�M�.f /

consisting of Reeb orbits .x;T / that satisfy the following conditions:

(1) T �N .

(2) There exists t 2 S1 such that

inf
t 02S1nftg

dist.x.t/;x.t 0//
dist.t; t 0/

�
1

N
:

(3) There exists t 2 S1 such that dist.x.t/;M nU/� 1=N .

Moreover, let ƒreg;N .U/�ƒ1.U/ denote the space of all smooth functions f 2ƒk.U/
for which all covers of orbits in MN .f / up to multiplicity N are nondegenerate.
Since nondegeneracy is an open condition and any sequence .xk ;Tk/ 2MN .fk/

with fk ! f in C1 has a convergent subsequence by the Arzelà–Ascoli theorem,
ƒreg;N .U/ is an open set. We claim it is also dense. Indeed, any f 2ƒ1.U/ has a
perturbation f� 2ƒk.U/ for which all the simple orbits in MN .f�/ are nondegenerate
due to step 1. In this case MN .f�/ is a smooth compact 1–manifold, ie a finite union
of circles, which are the parametrizations of finitely many distinct nondegenerate orbits,
and the space is stable under small perturbations of f� . Thus by a further perturbation,
we can make f� smooth and arrange that none of the orbits in MN .f�/ have a Floquet
multiplier that is a k –th root of unity for k 2 f1; : : : ;N g. The latter can be achieved
using a normal form for f�� as in [21, Lemma 2.3] near each individual orbit: in
particular, we can perturb so that each orbit remains unchanged but the linearized
return map changes arbitrarily within the space of symplectic linear maps. This proves
that ƒreg;N .U/ is dense in ƒ1.U/, and we can now construct ƒreg.U/ as a countable
intersection of open dense sets:

ƒreg.U/D
\

N2N

ƒreg;N .U/:
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