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Bridge number and Conway products

RYAN C BLAIR

In this paper, we give a structure theorem for c-incompressible Conway spheres
in link complements in terms of the standard height function on S3 . We go on
to define the generalized Conway product K1 �c K2 of two links K1 and K2 .
Provided K1 �c K2 satisfies minor additional hypotheses, we prove the lower bound
ˇ.K1 �c K2/� ˇ.K1/�1 for the bridge number of the generalized Conway product
where K1 is the distinguished factor. Finally, we present examples illustrating that
this lower bound is tight.

57M25, 57M27, 57M50

1 Introduction

Bridge number is the fewest number of maxima in any projection of a link K . This
classical invariant is denoted ˇ.K/ and was introduced by Schubert in his paper [5]
Über eine Numerische Knoteninvariante. Schubert proves that, given a composite
knot K with summands K1 and K2 , the bridge number of K satisfies the following
equation:

ˇ.K/D ˇ.K1/Cˇ.K2/� 1:

The techniques used in this paper are inspired by Schultens’ more modern and more
elegant proof of the same equality [6].

The classical Conway sum and Conway product were originally defined in [1] as
operations which received as input two tangle diagrams and produced as output a new
tangle diagram. These original operations have inspired several related constructions.
In [2], Lickorish studies a method of producing prime links by identifying together the
boundaries of prime tangles. Scharlemann and Tomova’s operation takes two links,
evacuates untangles from the links’ complements to form two tangles, and identifies
together the boundaries of these two tangles to form a new link [4]. The definition of
generalized Conway product used in this paper encapsulates the construction in [4]. By
carefully choosing the two untangles and the gluing map, Scharlemann and Tomova
showed the existence of a generalized Conway product which respects bridge surfaces.
They go on to prove that the following inequality holds for such a product:

ˇ.K1 �c K2/� ˇ.K1/Cˇ.K2/� 1
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However, it is also shown in [4] (via a construction by the author) that the above
inequality is not always an equality, so a lower bound is needed.

The main goal of this paper is to present a lower bound on the bridge number of the
generalized Conway product in terms of the bridge number of the factor links.

As an intermediary step to achieving this goal, we prove a structure theorem for c-
incompressible Conway spheres. A sphere C embedded in S3 which meets a link K

transversely in four points is called a Conway sphere. Loosely speaking, C is worm-like
if it is the boundary of a regular neighborhood of an arc in S3 and meets K in exactly
two points near each of the endpoints of this arc. A rigorous definition of worm-like
will ultimately rely on how C is embedded with respect to h, the standard height
function on S3 . The definition of worm-like and a proof of the following structure
theorem are presented in Section 5.

Theorem A If C is a c-incompressible Conway sphere embedded in the complement
of a link K in S3 and bridge position for K is thin position, then there is an isotopy of
C and K resulting in hjK having ˇ.K/ maxima and C being worm-like.

The main theorem appears below and is proven in Section 6. Also, in this section, we
give the definition of generalized Conway product and distinguished factor.

Theorem B If K1�cK2 is a generalized Conway product such that C is c-incompress-
ible and bridge position for K1 �c K2 is thin position, then ˇ.K1 �c K2/� ˇ.K1/� 1

where K1 is the distinguished factor.

In Section 7, we provide examples that show this lower bound is tight.

I am grateful to Martin Scharlemann for suggesting that I investigate the relationship
between Conway products and bridge number and for many helpful conversations.

2 Definitions and preliminaries

In this paper, K will denote a tame, nonsplit link embedded in S3 and hW S3 !

R[f�1;C1g is a height function with level sets consisting of 2–spheres and two
exceptional points corresponding to C1 and �1. We require that h restricts to a
Morse function on K .

Definition 2.1 If the maxima of hjK occur above all of the minima, then K is in
bridge position. The fewest number of maxima of hjK over all embeddings of K is
the bridge number of K , denoted ˇ.K/.
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We will use the structure afforded us by the height function h to study a Conway
sphere C in the complement of a link K in the following way. Let ±C be the singular
foliation on the Conway sphere C induced by hjC . A saddle is any leaf of this foliation
homeomorphic to the wedge of two circles. By standard position, we can assume that
all saddles of ±C are disjoint from K .

A detailed analysis of the embedding of C near a given saddle will be integral to the
argumentation that follows. As such, we fix the following notation.

Any given saddle � D s�
1
_ s�

2
, lies in a level sphere S� D h�1.h.�//. Let D�

1
be the

closure of the component of S� � s�
1

that is disjoint from s�
2

and D�
2

be the closure
of the component of S� � s�

2
that is disjoint from s�

1
.

A subdisk D in ±C is monotone if its boundary is entirely contained in a leaf of ±C

and the interior of D is disjoint from every saddle in ±C . In practice, we will use the
term subdisk in a slightly broader sense, allowing @.D/ to be immersed in C , where if
@.D/ is immersed, then @.D/ denotes the saddle. We say a monotone disk is outermost
if its boundary is s�i for some saddle � and label the disk D� . Similarly, if s�i bounds
an outermost disk D� , we say � is an outermost saddle. It is usually the case that only
one of s�

1
and s�

2
is the boundary of an outermost disk, so, our convention is to relabel

so that @.D� /D s�
1

.

Suppose � is an outermost saddle. S� cuts S3 into two 3–balls. The one that contains
D� is again cut by D� into two 3–balls B� and B0� . We chose the labeling of B�
and B0� so that @.B� /DD�

1
[D� .

We say � is an inessential saddle if � is an outermost saddle and D� is disjoint from K .
An n–punctured disk denotes a disk embedded in S3 that meets K transversely in
exactly n points. An embedded simple closed curve in a Conway sphere C is c-
inessential if it bounds a 1–punctured disk in C . Similarly, � is a c-inessential saddle
if � is an outermost saddle and D� meets K exactly once.

We say a saddle � in ±C is standard if there is a monotone disk E� such that
@.E� /D � . If � is a standard saddle, A� is the 3–ball with boundary E� [D�

1
[D�

2

that lies completely to one side of S� .

By general position arguments, we can assume every saddle � in ±C has a bicollared
neighborhood in C that is disjoint from K and all other singular leafs of ±C . The
boundary of this bicollared neighborhood consists of three circles c�

1
, c�

2
, and c�

3

where c�
1

and c�
2

are parallel to s�
1

and s�
2

respectively. We can assume c�
1

, c�
2

, and
c�

3
are level with respect to h and that c�

1
and c�

2
lie in the same level surface.

When there is no confusion as to which saddle we are referring, we will drop the
superscripts and subscripts of � . Figure 1 illustrates all of the terminology outlined
above.

Algebraic & Geometric Topology, Volume 10 (2010)



792 Ryan C Blair

s�
1

c�
1

D�

B�

D�
1

B1
�

�

A�

E�

D�
2

c�
2

s�
2

c�
3

Figure 1

3 Conway spheres

Definition 3.1 Following [6], say a Conway sphere, C , is taut if the number of saddles
in ±C is minimal subject to the condition that hjK has ˇ.K/ maxima.

The goal of this section is to demonstrate the connection between the tautness of C and
the existence of inessential and c-inessential saddles in ±C . Most of the results will be
devoted to generalizing Schultens work on companion tori in link complements [6] to
the case of Conway spheres. As we will see, the condition that C be taut precludes
inessential saddles and some c-inessential saddles. In the following sections, we will
assume additional hypotheses on the nature of bridge position of K and on the Conway
sphere C . Under these additional hypotheses we will show that a taut Conway sphere
has no inessential and no c-inessential saddles.

Lemma 3.2 and its proof are immediate generalizations of Schultens’ Lemma 1 in [6].
We need alter the statement and proof only slightly to account for punctures in the
Conway sphere.

Lemma 3.2 Let � be an outermost saddle in ±C . After an isotopy of C that does
not change the number of saddles in ±C and leaves both � and K fixed, B� does not
contain C1 or �1.

Proof Without loss of generality we will assume D� has a unique maximum a (by
general position, we can take a to be distinct from any points in K\C ). If B� does
not contain C1, then we are done.
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Bridge number and Conway products 793

Suppose B� contains C1 and ˛ is a monotone arc with endpoints a and C1 that
misses K and intersects C only at local maxima. Label the points of ˛\C in order
of increasing height with a; a1; : : : ; an . See Figure 2. Again by general position, we
can assume all of the a0is do not lie on K . Let SC be a level sphere contained in a
small neighborhood of C1 such that SC does not meet C or K . Let ˇn be a subarc
of ˛ with endpoints an and C1. Enlarge ˇn slightly to be a vertical solid cylinder V

such that @.V / consists of a small neighborhood of an in C , a small disk in SC and
an annulus A with ±A being a collection of circles. Replacing C with the Conway
sphere .C �V /[A[ .SC�V / represents an isotopy of C in S3�K that does not
change the number of saddles in ±C .

D�

s�
1

a

˛

1

�

D�

s�
1

a

˛

1

�

Figure 2

By induction on n, we can assume ˛ is disjoint from C except at the point a. By
isotoping D� to a new disk D�� in the manner described above, we have enlarged B0�
to contain C1 and shrunk B� so that it is disjoint from C1. After a small tilt so
that h again restricts to a Morse function on D�� , ±D��

is a collection of circles and
one maximum. The resulting Conway sphere C � is isotopic to C via an isotopy that
leaves � and K fixed and does not change the number of saddles of ±C .

Lemma 3.3 If ±C contains an inessential saddle, then C is not taut.

Proof outline (This is Schultens’ Lemma 2 in [6].) Suppose ±C contains an inessential
saddle � . Use Lemma 3.2 to ensure B� does not contain C1 or �1. Isotope B�\C
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and B� \K out of B� in a level preserving way. Now that B� is disjoint from C

and K , isotope D� to D�
1

via B� . After a small tilt, we have eliminated � without
introducing new critical points to hjK or new saddles to ±C . We conclude C is not
taut.

Definition 3.4 We say � is a removable saddle if � is an outermost saddle where
D� has a unique maximum (minimum) and hjK\B� has a local end-point maxi-
mum (minimum) at every point of K \D� . See Figure 3. Otherwise, we say � is
nonremovable.

�

Figure 3

Lemma 3.5 If ±C contains a removable saddle, then C is not taut.

Proof Assume � is a removable saddle in ±C . Without loss of generality, we can
assume D� has a unique maximum and hjK\B� has a local maxima at each of
fk1; k2; : : : ; kngDD�\K . By appealing to the isotopy in Lemma 3.2, we can assume
that B� does not contain C1. Since D� is a monotone disk, .K[C /\ int.B� / can
be shrunk horizontally and subsequently lowered to lie just below D1 . This isotopy
does not change the number of saddles of ±C nor the number of maxima of hjK ,
however, it does produce a collection of monotone arcs connecting every ki to the
image of K\ int.B� / under the isotopy. See Figure 4.

The union D1[D� now bounds a 3–ball minus a collection of monotone arcs, each
of which has one endpoint on D1 and one endpoint on D� . Isotope D� to D1 while
fixing K to create C � . After a small tilt, we have produced a new Conway sphere
C � which is isotopic to C while preserving the number of maxima of hjK . Since
the number of saddles of ±C� is one less than the number of saddles of ±C , C is not
taut.
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Figure 4

Since hjK has ˇ.K/ maxima, we can decompose K into 2ˇ.K/ monotone arcs.
Hence, K D

S2ˇ.K /
iD1

i where i has one endpoint a maximum and one endpoint a
minimum of hjK . If � is a c-inessential saddle in ±C , then let � be the i which
meets D� .

Lemma 3.6 If ±C contains a nonremovable c-inessential saddle � such that D� has
a maximum (minimum) and � is disjoint from the Conway sphere C above (below)
K\D� , then C is not taut.

Proof Without loss of generality we can assume D� has a unique maximum and
hjK\B� has a local minimum at p� DK\D� . Let @.� /D fx1;x2g where x1 is the
highest point on � and x2 is the lowest. Let ˛ be the subarc of � connecting p�
to x1 . Since � is disjoint from C above K\D� , we can choose �.˛/ to be a small
neighborhood of ˛ such that �.˛/ is disjoint from C except in a small neighborhood
of p� on C and disjoint from K except for a small neighborhood of ˛ in K . C cuts
@.�.˛// into two 1–punctured disks E and F where E is mostly above p� and F

is mostly below. The 1–punctured disks �.˛/\C and E cobound a 3–ball minus
a monotone arc. Hence, there is an isotopy taking �.˛/\C to E that fixes K and
results in a new Conway sphere C � which is isotopic to C but has exactly one new
inessential saddle & such that s

&
1

lies in D� just above p� and s
&
2

lies in E . & is
inessential since s

&
1

bounds a outermost disk D& (the portion of D� above p� ). See
Figure 5. It is also important to note that, after this isotopy, hjK\B� now has a local
maximum at K\D� , though, D� is no longer a monotone disk. Using the isotopies in
Lemma 3.2 and Lemma 3.3, we can produce another Conway sphere C �� by isotoping
the disk D& to be level whereby we eliminate & without altering the number or nature
of maxima of hjK .

Since C � had one more saddle than C and C �� has one less saddle than C � , then
C and C �� have the same number of saddles. The aggregate isotopy from C to C ��

fixes � , preserves the number of saddles of the Conway sphere, preserves the number
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�
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�

&

� �
�

Figure 5

of maxima of hjK , but replaces D� with a different outermost disk so that � is now a
removable c-inessential saddle. By Lemma 3.5, C is not taut.

The sphere C decomposes S3 into two 3–balls B1 and B2 . Let � be a saddle in ±C

and L be the level sphere either just above or just below � that contains c�
1

and c�
2

.
L� .c�

1
[ c�

2
/ is composed of two disks and an annulus A. If a collar of @.A/ in A is

contained in B1 , then we say � is unnested with respect to B1 . If not, we say � is
nested with respect to B1 . We define nested and unnested with respect to B2 similarly.
Note that nested with respect to B1 is the same as unnested with respect to B2 and
nested with respect to B2 is unnested with respect to B1 .

Two saddles � D s�
1
_ s�

2
and � D s�

1
_ s�

2
in ±C are adjacent if, up to labeling, s�

1

and s�
1

cobound an annulus in C that is disjoint from s�
2

, s�
2

, all other saddles, and K .
Recall that, if � is a standard saddle, E� is the monotone disk with boundary � .

Lemma 3.7 If � and � are adjacent saddles with � a standard saddle such that
E� \K D∅ and � and � are nested with respect to different 3–balls, then C is not
taut.

Proof This is Schultens’ Lemma 3 in [6].

4 Thin position, pods and nesting

In this section, we will exploit a connection between the existence of c-inessential
saddles and an isotopy which thins K . Marty Scharlemann coined the term “Pods” for
the arrangement of c-inessential saddles that give rise to this isotopy.

Following [3], we make the following definitions.
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Definition 4.1 Suppose K � S3 is in general position with respect to the standard
height function h, c0 < c1 < � � � < cn are the critical values of hjK and the regular
values ri are chosen so that ci�1 < ri < ci , i D 1; : : : ; n. The width of K with respect
to h, denoted by w.K; h/, is

P
i jh
�1.ri/\Kj. The width of K , denoted by w.K/,

is the minimum of w.K0; h/ over all knots K0 isotopic to K . We say that K is in thin
position if w.K; h/D w.K/.

Recall the definition of bridge position from Section 2. We will be making extensive
use of the following fact: If hjK has ˇ.K/ maxima and there is a minimum of hjK
above a maximum of hjK , then bridge position for K is not thin position for K .

Definition 4.2 A surface F in S3�K is c-incompressible if every disk or 1–punctured
disk D in S3�K with D\F D @.D/ is properly isotopic into F .

In particular, we will be analyzing c-incompressible Conway spheres. A Conway
sphere C is c-incompressible in the complement of a knot K if and only if C is
incompressible and neither complementary tangle contains a summand of K . Hence,
if K is prime, then every incompressible Conway sphere is c-incompressible.

Recall that if � is a c-inessential saddle, then B� is the 3–ball with boundary D�[D�
1

and B0� is the 3–ball with boundary D� [ .S� �D�
1
/ where S� is the level surface

containing � . See Figure 1.

Lemma 4.3 If C is a taut c-incompressible Conway sphere in S3 �K and � is a
c-inessential saddle in ±C such that D� contains a maximum (minimum) of hjC , then
each of B� and B0� contain a maximum (minimum) of hjK .

Proof Without loss of generality we can assume D� contains a maximum. Since C

is taut, � is nonremovable, by Lemma 3.5. Since � is nonremovable, hjK\B� has a
local minimum at p� DK\D� . hjK is initially increasing as K passes into B� and
subsequently decreases to exit B� through D�

1
. Hence, hjK must have a maximum

in B� .

If K\B0� is not a monotone arc, then there is a maximum of hjK in B0� and we are
done.

Suppose K\B0� is a monotone arc with the lower endpoint not in D�
2

, then D�
2
\KD

∅. C \D�
2

is a collection of disjoint simple closed curves. An innermost such curve ˛
bounds a disk E1 in D�

2
such that E1 is disjoint from K and E1 \ C D @.E1/.

By c-incompressibility of C , ˛ also bounds a disk E2 in C that is disjoint from K .
Additionally, E1 and E2 cobound a 3–ball that is disjoint from K , since K is a
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nonsplit link. See Figure 6. Hence, we can eliminate ˛ as a curve of intersection
by an isotopy which takes E2 across this 3–ball and just past E1 . This isotopy
leaves K fixed and can only decrease the number of saddles in ±C . By repeating this
process, we can eliminate all curves of intersection of C with int.D�

2
/. Again, by

c-incompressibility of C , s�
2

bounds a disk E2 in C which is disjoint from K . So,
� is an inessential saddle or an innermost saddle of ±E2

is an inessential saddle. By
Lemma 3.3, the existence of an inessential saddle implies C is not taut.

D�

K

B�

D�
1

B0�

�
D�

2
E1

E2

Figure 6

Suppose K \B0� is a monotone arc with the lower endpoint in D�
2

. Let L be the
level surface containing � . Since K\B0� is a monotone arc, K meets L exactly once
outside of D�

1
. Hence, K\D�

2
consists of a single point. C \D�

2
is a collection of

disjoint simple close curves. An innermost such curve ˛ bounds a disk E1 in D�
2

that
is disjoint from C except in its boundary. Since K meets all of D�

2
in a single point,

K meets E1 in at most one point. See Figure 7. If E1\K D∅, then, as described in
the above paragraph, there is an isotopy of C which eliminates ˛ , leaves K fixed, and
can only decrease the number of saddles in ±C . If E1\K is a single point, then, by
c-incompressibility of C , ˛ bounds a 1–punctured disk E2 in C such that E1[E2

bounds a 3–ball containing a single unknotted subarc of K . Hence, we can eliminate
˛ as an arc of intersection by an isotopy which takes E2 across this 3–ball and just
past E1 . This isotopy leaves K fixed and can only decrease the number of saddles
in ±C . By repeating this process, we can eliminate all arcs of intersection of C with
int.D�

2
/. Again, by c-incompressibility of C , s�

2
bounds a 1–punctured disk E2 in

C such that D�
2
[E2 bounds a 3–ball containing a single unknotted subarc of K .

We can isotope E2 to D�
2

across this 3–ball leaving K fixed. After a small tilt, this
isotopy results in a new Conway sphere in general position with respect to h but with
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one fewer saddle, having eliminated � . Since K was fixed at every step of the isotopy,
we have shown the original C is not taut with respect to ˇ.K/.

D�

D�
1

B�

K
B0�

D�
2

�
E1

E2

Figure 7

Recall that � is the monotone subarc of K that meets D� for some c-inessential
saddle � in ±C .

Definition 4.4 We say a c-inessential saddle � in ±C is a pod if D� contains a
maximum (minimum), there is an additional c-inessential saddle & such that D& \K

is a point on � above(below) D� \K , and D& has a unique minimum(maximum).
See Figure 8.

�

&

Figure 8
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Lemma 4.5 If C is a taut c-incompressible Conway sphere in S3�K and � is a pod,
then bridge position for K is not thin position.

Proof Without loss of generality, suppose D� contains a maximum. Let � \D� D a

and � \D& D b , where & is a c-inessential saddle, and h.a/ < h.b/. By Lemma 3.5,
we can assume both � and & are nonremovable saddles. Let S be the level surface
containing & . By the definition of pod, D& has a unique minimum. D& divides the 3–
ball below S into two 3–balls B& and B0& . Since & is nonremovable, B& contains � .
Since � and & are nonremovable, c-inessential saddles in ±C such that D� contains a
maximum and D& contains a minimum, then hK\B0�

has a local maximum at K\D�

and hK\B0&
has a local minimum at K \D& . We can now appeal to the isotopy in

Lemma 3.5 to horizontally shrink and vertically lower B0� and horizontally shrink and
vertically lift B0& . Since h.D� \K/ < h.D& \K/, then h.�/ < h.&/. Hence, we can
lower B0� and lift B0& until B0� lies strictly below B0& . However, by Lemma 4.3, B0�
contains a maximum of hjK and B0& contains a minimum of hjK . See Figure 9. Thus,
bridge position for K is not thin position for K .

�

&

�

&

Figure 9

Recall the definitions of standard, outermost, B� and A� , from Section 2.

Lemma 4.6 If C is a taut Conway sphere in S3�K and � is an outermost standard
saddle in ±C such that B� \C ¤∅, then .B� [A� /

c contains a nonstandard saddle
of ±C or a point of K\C .

Proof Assume � is nested with respect to B1 . Since C is connected and B�\C ¤∅,
then .B� [A� /

c contains at least one saddle. Let � be the saddle in .B� [A� /
c

nearest s�
2

in C . If � is nonstandard then we are done. In particular, we can assume
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s�
2

cobounds a monotone annulus A� with s�
1

. If � is nested with respect to B2

and .A� [ E� / \ K D ∅, then, by Lemma 3.7, we contradict C being taut. If
.A� [E� /\K ¤∅, then we have a point of K\C in .B� [A� /

c and we are done.
Hence, we can assume � is a standard saddle nested with respect to B1 . s�

2
can not

bound an outermost disk since B� \C ¤∅. Let & be the saddle nearest to � in ±C

in the direction of c�
2

. Since � is nested with respect to B1 , & must be in .B� [A� /
c .

If & is nonstandard we are done. Hence, we can assume that s�
2

and s
&
1

cobound a
monotone annulus. We repeat the above argumentation to conclude & is nested with
respect to B1 or there is a point of K\C in .B�[A� /

c . Inductively, all finitely-many
saddles of ±C are standard and nested with respect to B1 or there is a point of K\C

in .B� [A� /
c . However, all saddles in ±C being standard and nested with respect

to B1 contradicts B� \C ¤∅. Hence, .B� [A� /
c contains a nonstandard saddle of

±C or a point of K\C .

5 Nonremovable saddles

Lemma 5.1 The number of outermost disks in ±C is two more than the number of
nonstandard saddles in ±C .

Proof Let A be the collection of all curves ci
� where i�f1; 2; 3g and � is any saddle

in ±C . Viewing C as an embedded surface in S3 , A decomposes C into x monotone
disks, y pairs of pants and z vertical annuli. See Figure 10. Hence, �.C /D 2D x�y .
Let x1 be the number of monotone disks in C �A with boundary c1

� or c2
� for some

saddle � . Let x2 be the number of monotone disks in C �A with boundary c3
� for

some saddle � . By the definition of standard saddle, x2 is the number of standard
saddles in ±C and y�x2 is the number of nonstandard saddles in ±C . By definition of
outermost disk, x1 is the number of outermost disks. Since 2Dx�y and xDx1Cx2 ,
then x1 D .y � x2/C 2. Hence, The number of outermost disks in ±C is two more
than the number of nonstandard saddles in ±C .

Remark 1 If there are more than four outermost disks in ±C , then one of these disks
does not meet K , so, there is an inessential saddle in ±C . By Lemma 3.3, if C is
taut, then ±C contains four or fewer outermost disks and two or fewer nonstandard
saddles. Similarly, for every point in K\C that is not contained in the collection of
outermost disks of ±C there is one fewer outermost disk and one fewer nonstandard
saddle possible in ±C .

Definition 5.2 We say a saddle � in ±C is doubly c-inessential if both s�
1

and s�
2

bound outermost disks D� and D0� in ±C such that each of D� and D0� meet K in
exactly one point.
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Figure 10

Lemma 5.3 If C is a taut c-incompressible Conway sphere and bridge position for K

is thin position then ±C does not contain any doubly c-inessential saddles.

Proof Suppose � is a doubly c-inessential saddle. Assume that both D� and D0� have
maxima (the case where D� and D0� have minima is proved similarly). Let B� be
the 3–ball disjoint from s�

2
with boundary D� [D�

1
. Similarly, let B0� be the 3–ball

disjoint from s�
2

with boundary D0� [D�
2

. If hjK\B� has a maximum at K\D� or
hjK\B0�

has a maximum at K\D0� , then � is a removable saddle and C is not taut,
by Lemma 3.5. Let � be the monotone strand of K that meets D� and  0� be the
monotone strand of K that meets D0� . If � is disjoint from C above K \D� or
 0� is disjoint from C above K\D0� , then ±C is not taut, by Lemma 3.6. Hence, C

meets both the interior of B� and the interior of B0� . Since C \B� ¤∅, then � must
be a nonstandard saddle. Let x1 be the point of K\C above K\D� on � and x2

be the point of K\C above K\D0� on  0� . By Remark 1, � nonstandard implies
at least one of x1 or x2 lies on an outermost disk of ±C . x1 and x2 cannot lie on a
common monotone disk of ±C since such a disk cannot meet both the interior of B�
and the interior of B0� . Figure 11 illustrates one potential embedding of C .

Without loss of generality, suppose x1 lies on an outermost disk D& of ±C . x1 must
be the unique point of C \K that meets D& , so & is a c-inessential saddle.

If & is a removable c-inessential saddle, then, by Lemma 3.5, C is not taut.

If & is a nonremovable c-inessential saddle such that D& has a minimum, then & and
� are pods. By Lemma 4.5, C is not taut or bridge position for K is not thin position.

If & is a nonremovable c-inessential saddle such that D& has a maximum, then & is
disjoint from C above x1 and, by Lemma 3.6, C is not taut.
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�

&

Figure 11

Corollary 5.4 If C is a taut c-incompressible Conway sphere in S3�K and bridge
position for K is thin position, then there is a one-to-one correspondence between
nonremovable c-inessential saddles of ±C and outermost disks of ±C that meet K in
exactly one point.

Proof There is an obvious well-defined map between 1–punctured outermost disks
and c-inessential saddles. This map sends each outermost disk to the saddle that
contains its boundary. If two or more disks get mapped to the same saddle then this
saddle is doubly c-inessential. However, this contradicts Lemma 5.3. Thus, there is
a one-to-one correspondence between nonremovable c-inessential saddles of ±C and
outermost disks of ±C that meet K in exactly one point.

Lemma 5.5 Let C be a c-incompressible Conway sphere in S3�K . If ±C contains
distinct c-inessential saddles � and & such that D� has a maximum (minimum) and
D& meets � above(below) D� \K , then C is not taut or bridge position for K is
not thin position.

Proof Both � and & are nonremovable or else C is not taut, by Lemma 3.5. Without
loss of generality, suppose D� contains a maximum and D& \ K D b is above
D� \KD a on � . If D& has a minimum, then � is a pod and C is not taut or bridge
position for K is not thin position, by Lemma 4.5. Hence, we can assume that D& has
a maximum.

Suppose C meets � exactly once above a. Then C is disjoint from � above b . By
Lemma 3.6, C is not taut.

Suppose C meets � exactly twice above a in the points b and c . If b is the highest
of these two points, then, by Lemma 3.6, C is not taut. If c is the highest of these two
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points, poke a small neighborhood of the point c in C along � toward and slightly
past the maximum of � as in the proof of Lemma 3.6. This isotopy fixes K , but adds
a single c-inessential saddle to ±C . After this isotopy, fa; bg D � \C . Hence, we
can perform the isotopy in Lemma 3.6 to eliminate first & and subsequently � . See
Figure 12. The net effect of this isotopy is to decrease the number of saddles in ±C by
one while preserving the number of maxima of hjK . This contradicts the assumption
that C is taut.

a
b

c

a
b

&

�

&

�

&

�

Figure 12

Suppose C meets � exactly three times above D� \K in points b , c and d . In this
case all points of K\C are contained in B� . By Lemma 4.6, either � is nonstandard
or there exists a nonstandard saddle of ±C in .B� [A� /

c . Then, by Remark 1, there
are at least three outermost disks D� , D& , and D� in ±C . Again by Remark 1, at least
one of D& and D� meet K in a single point. We now analyze the possibilities for D� .

Assume D� meets K exactly once at the point c . � is a nonremovable c-inessential
saddle or else C is not taut, by Lemma 3.5. If D� has a minimum, then � and � are
pods and, by Lemma 4.5, C is not taut or bridge position for K is not thin position.
So, we can assume D� has a maximum. Recall from the first paragraph of this proof
that we have assumed D& has a maximum.

If b or c is the highest of the four points on � , we can use the isotopy from Lemma
3.6 to eliminate & or � contradicting the fact that C is taut. Hence, we can assume
d is that highest of the four points. Poke a small neighborhood of the point d in C

in along � toward and slightly past the maximum of � . This isotopy fixes K , but
adds a single c-inessential saddle to ±C . After this isotopy, fa; b; cg D � \C . Hence,
we can perform the isotopy in Lemma 3.6 to eliminate first � , then & and finally � .
This isotopy is similar to that of Figure 12, but with three nonremovable, c-inessential
saddles. The net effect of this isotopy is to decrease the number of saddles in ±C by
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two while preserving the number of maxima of hjK . Hence, we conclude C is not
taut.

Assume D� meets K exactly twice. Label the points of � \C from lowest to highest
as fa; b; c; dg where a D K \D� . If d D K \D& , then we can eliminate & as in
Lemma 3.6 and conclude ±C is not taut. By parity, the labels of the two points in
K\D� must be consecutive. Hence, b DK\D& and fc; dg DK\D� .

Suppose D� contains a maximum. Poke a small neighborhood of d in D� along �
toward and just past the maximum of � . Since � is disjoint from C above d , this
isotopy creates a single new inessential saddle. Eliminate this saddle using the isotopy
in Lemma 3.3. After these isotopies, fa; b; cg D C \ � . Poke a small neighborhood
of the point c in C in along � toward and slightly past the maximum of � . This
isotopy fixes K but adds a single c-inessential saddle to ±C as in Figure 13. After this
isotopy, fa; bg D � \C .

Figure 13

Hence, we can perform the isotopy in Lemma 3.6 to eliminate first & and then � . The
net effect of this isotopy is to decrease the number of saddles in ±C by one while
preserving the number of maxima of hjK . Hence, C is not taut.

Suppose D� contains a minimum. Let S� be the level surface containing � . D�

divides the 3–ball below S� into two three balls B� and B0� where we choose the
labels in the unconventional way where B� contains � and may or may not contain s�

2

in its boundary.

Let F be a level disk properly embedded in B0� that lies below � but above d .

Claim There is a minimum of hjK contained in B0� below F .
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Proof We know by hypothesis that there is a monotone subarc of K in B0� connecting
c to d . Suppose, to form a contradiction, that F \K D∅. C \F is a collection of
disjoint simple close curves. An innermost such curve ˛ bounds a disk E1 in F with
interior disjoint from both C and K . By c-incompressibility of C , ˛ also bounds a
disk E2 in C that is disjoint from K . Additionally, E1 and E2 cobound a 3–ball
which is disjoint from K , since K is not split. Hence, we can eliminate ˛ as an
arc of intersection by an isotopy which takes E2 across this 3–ball and just past E1 .
This isotopy leaves K fixed and can only decrease the number of saddles in ±C . By
repeating this process, we can eliminate all curves of intersection of C with int.F /. If
C and K are disjoint from int.F /, then F is an essential compressing disk for C and
we contradict c-incompressibility of C . We conclude that K\F ¤∅. However, any
arc of K with endpoints in F must have a minimum in B0� below F . This proves the
claim.

By appealing to Lemma 3.2, we can assume B0� does not contain C1 and B0� does
not contain �1. Horizontally shrink and vertically lift the portion of B0� below c

until the minimum of D� is just below c . Horizontally shrink and vertically lower B0�
until the maximum of D� is just above a. Since h.c/ > h.a/, this isotopy insures that
B0� lies completely above B0� . By Lemma 4.3, there is a maximum of hjK in B0� and,
by the above claim, there is a minimum of hjK in B0� . Bridge position for K is not
thin position for K since we have isotoped a minimum of hjK above a maximum of
hjK without introducing any new critical points. See Figure 14.

�
D�

�

D�

Figure 14

Theorem 5.6 Let C be a c-incompressible Conway sphere in S3�K . If ±C contains
both a c-inessential saddle � and a nonstandard saddle, then C is not taut or bridge
position for K is not thin position.
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Proof If � is removable then C is not taut, by Lemma 3.5. Hence we can assume �
is nonremovable and D� has a unique maximum. By Remark 1, ±C contains at least
three outermost disks with each disk meeting K at least once or C is not taut. Hence,
we will assume ±C contains a second c-inessential saddle � . We will break the proof
up into cases based on jC \ � j.

Suppose jC \ � j D 1. By Lemma 3.6, C is not taut.

Suppose jC \ � j D 2. Let fa; bg D C \ � where a D D� \K . By Lemma 3.6,
h.b/ < h.a/ implies C is not taut. Assume h.b/ > h.a/ and we proceed by cases.

Case I Suppose b 2D& for some c-inessential saddle & in ±C . By Lemma 5.5, C is
not taut or bridge position for K is not thin position.

Case II Suppose b is not the puncture associated to a c-inessential saddle of ±C .

Case II.A Additionally, suppose that b is not contained in an outermost disk in ±C .
Since b is not contained in an outermost disk and C is taut, then each of the three
outermost disks of ±C meets K exactly once. By Corollary 5.4, ±C contains three
distinct c-inessential saddles, � , & and � . By Lemma 3.5, we can assume both &
and � are nonremovable. Assume that D& has a unique maximum. By Lemma 3.6,
C meets & above D& \K or C is not taut. Since jC \ � j D 2 and b ¤D& \K ,
then & is distinct from � and D� \K is the unique point of intersection of C with
& above D& \K . By Lemma 5.5, C is not taut or bridge position for K is not thin
position. The proof when D& has a unique minimum follows similarly.

Case II.B Suppose b is contained in an outermost disk D& where @.D& /D s
&
1

for
some saddle & D s

&
1
_ s

&
2

in ±C . Since we have assumed b is not the puncture
associated to a c-inessential saddle of ±C , then D& must have one or two additional
punctures. Since each of the three outermost disks must meet K at least once, D&

meets K exactly twice. Let D& \K D fb; b0g.

The other c-inessential saddle � , like � , must be nonremovable and j� \C j � 2 or
else we can use Lemma 3.5 or Lemma 3.6 to show C is not taut. By assumption,
jC \ � j D 2 and, thus, � is distinct from � .

Hence, C \ � D fc; b
0g where c D D� \K . We have now accounted for all four

points of K \C (c and b0 on � , and a and b on � ). We focus on the monotone
strand of K that meets D& nearest its maxima (minima). If this strand is � , then our
labeling stays the same and we move on. If this strand is � , then we swap the labels
b and b0 as well as � and � . Additionally, we reflect along a level sphere if necessary
so that D� continues to have a unique maximum. Figure 15 illustrates one possible
configuration of � , � and & .
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�

&

�

Figure 15

Case II.B.i Suppose D& has a maximum. Poke a neighborhood of b in D& along �
away from a and just past the maxima of � as in the proof of Lemma 3.6. Since we
have renamed so that b is higher on D& than b0 and � is disjoint from C above b ,
then this isotopy of D& creates a single inessential saddle. Use the isotopy in Lemma
3.3 to eliminate the resulting inessential saddle. The net result of these isotopies is
to leave the number of saddles in ±C and the number of maxima of hjK unchanged.
Additionally, this isotopy results in a being the only point of intersection of C with � .
By Lemma 3.6, C is not taut.

Case II.B.ii Suppose D& has a minimum. Let S& be the level surface containing & .
D& divides the 3–ball below S& into two three balls B& and B0& where we choose the
labels in the unconventional way where B& contains � and may or may not contain
s
&
2

in its boundary.

Case II.B.ii.a If hjK\B0&
has a maximum at b0 , then there must be a minimum of

hjK in B0& or � D & . However, the second possibility would imply j� \C j > 2.
So, we can assume there is a minimum of hjK in B0& . By Lemma 3.2, we can assume
B0& does not contain �1 and B0� does not contain C1. As in Lemma 4.5, we can
horizontally shrink and vertically lift the portion of B0& lying below b0 so that the
resulting minimum of D& lies just below b0 and horizontally shrink and vertically
lower B0� so that it lies just above � . By Lemma 4.3, B0� contains a maximum of hjK
and, by the argument above, B0& contains a minimum of hjK . Since we have isotoped a
minimum of hjK above a maximum of hjK , bridge position for K is not thin position.

Case II.B.ii.b Suppose hjK\B0&
has a minimum at b0 .

Suppose c is above b0 on � . Since we have assumed h.b/<h.b0/, then h.a/<h.b/<

h.b0/ < h.c/. Since c is the highest point of C \K , then, if D� has a maximum, C is
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not taut, by Lemma 3.6. If D� has a minimum, then h.a/ < h.c/ implies h.�/ < h.&/

and we can appeal to the proof of Lemma 4.5 to show bridge position for K is not thin
position. Hence, we can assume h.c/ < h.b0/.

If & � @.B& /, then & is a removable saddle and C is not taut, by Lemma 3.5. So, we
can assume & � @.B0& /. Since D& contains two punctures, there can be at most three
outermost disks in ±C and, thus, at most one nonstandard saddle. With that in mind, at
least one of � and � is standard. Both � and � are nonremovable, c-inessential saddles.
We will assume � is standard (the case when � is standard is proved analogously).
This is the configuration depicted in Figure 15. Additionally, we can see .B� [A� /

c

is disjoint from C \K .

Since B� [A� contains all of C \K , then, by Lemma 4.6, .B� [A� /
c contains

the unique nonstandard saddle for ±C . Since & � @.B0& /, the potentially nonstandard
labeling of B& and B0& we have assumed for this case matches the standard labeling as
outlined in Section 2. With that in mind, � 2B& and & standard imply that .B�[A� /

c

and .B&[A& /
c are disjoint. Since .B�[A� /

c contains the unique nonstandard saddle
for ±C , then .B& [A& /

c does not contain a nonstandard saddle. Since B& meets C ,
.B& [A& /

c is disjoint from C \K , and .B& [A& /
c does not contain a nonstandard

saddle, then C is not taut, by Lemma 4.6.

Suppose jC \ � j D 3. Let � and � be c-inessential saddles where D� \K D a and
D� \K D b . By Lemma 3.5 and Lemma 3.6, both � and � are nonremovable saddles
and both j� \C j and j� \C j are greater than one or else C is not taut. If b is not
contained in � , then j� \ C j D 1 and C is not taut, by Lemma 3.6. So, we can
assume � D � . If D� has a minimum and h.a/ < h.b/, then � and � are pods.
Hence, C is not taut or bridge position for K is not thin position for K , by Lemma
4.5. If D� has a minimum and h.a/ > h.b/, then � is disjoint from C either above a

or below b . In either case, we can use the isotopy in Lemma 3.6 to eliminate one of �
and � and conclude C is not taut. Hence, we can assume D� has a maximum and b

is contained in � . Since both D� and D� contain maxima, then, up to relabeling of
� and � , we can assume h.b/ > h.a/. By Lemma 5.5, C is not taut or bridge position
for K is not thin position.

Suppose jC \ � j D 4. Without loss of generality, we will assume that D� has a
maximum. Label the points of C \ � D fa; b; c; dg in order of increasing hight so
that h.a/ < h.b/ < h.c/ < h.d/.

If there are three or more c-inessential saddles in ±C , any possible arrangement satisfies
the hypothesis of Lemma 5.5, showing C is not taut or thin position for K is not bridge
position. Hence, we can assume there are at most two c-inessential saddles in ±C .

Algebraic & Geometric Topology, Volume 10 (2010)



810 Ryan C Blair

Let p� DD� \K and p� DD� \K . Since there are at most two c-inessential saddles
and at least one nonstandard saddle in ±C , the points in C \K which are not p� and
p� are the punctures of a 2–punctured outermost disk in ±C . By parity, these two
punctures must be consecutive. Recall we have assumed D� contains a maximum.

If p� D d then, by Lemma 3.6, C is not taut with respect to ˇ.K/.

If p� D c , then a and b are the punctures on the twice punctured outermost disk and
p� D d . Since p� is above p� on � , C is not taut or bridge position for K is not
thin position, by Lemma 5.5.

If p� D b , then c and d are the punctures on the twice punctured outermost disk
and p� D a. Since C is disjoint from � below a, then, by Lemma 3.6, D� has a
maximum or C is not taut or bridge position for K is not thin position. However, if
D� has a maximum, then p� is above p� on � and C is not taut or bridge position
for K is not thin position for K , by Lemma 5.5.

If p� D a, then p� is above p� on � and, by Lemma 5.5, C is not taut or bridge
position for K is not thin position.

Theorem 5.7 Let C be a c-incompressible Conway sphere in S3�K . If ±C contains
a c-inessential saddle � and contains only standard saddles, then C is not taut or bridge
position for K is not thin position.

Proof If � is removable then C is not taut, by Lemma 3.5. Hence, we can assume �
is nonremovable. Without loss of generality, we will assume D� contains a maximum.
By Lemma 5.1, ±C contains only standard saddles implies C is not taut or ±C contains
exactly two outermost disks D� and D& . Hence, we will assume ±C contains exactly
two outermost disks D� and D& . If � D & , then there is a unique saddle in ±� . Since
C is disjoint from the interior of B� , � is disjoint from C above D� \K . Thus, C

is not taut, by Lemma 3.6. Henceforth, we will assume that � is distinct from & . Let
aDD� \K . We will proceed by cases.

Case I Suppose C is disjoint from � above a. By Lemma 3.6, C is not taut.

Case II Suppose C meets � above a in exactly one point b .

Case II.A If b is not contained in D& , then poke a neighborhood of b in C along �
toward and just past the maximum of � as in the proof of Lemma 3.6. Since �
is disjoint from C above b , this isotopy leaves K fixed while adding exactly one
c-inessential saddle � to ±C . If b was not originally contained on a monotone disk of
±C , then � is nonstandard. If b was originally contained on a monotone disk of ±C

such that this disk has a unique maximum, then � is nonstandard. If b was originally
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contained on a monotone disk D of ±C such that this disk has a unique minimum,
then @.D/ D ı where ı is a saddle in ±C . In this case, ı is nonstandard after the
isotopy. Hence, we can assume that, after the isotopy, ±C contains a nonstandard
saddle. Additionally, after this isotopy, � is disjoint from C above a. Hence, we
can use the isotopy in the proof of Lemma 3.6 to eliminate � . The net change to the
number of saddles in ±C under these two isotopies is zero. However, ±C now contains
both a c-inessential saddle and a nonstandard saddle. Thus, C is not taut or bridge
position for K is not thin position, by Theorem 5.6. See Figure 16.

�

�

� �

�
�

�

Figure 16

Case II.B.i If b is contained in D& and K\D& D fbg, then C is not taut or bridge
position for K is not thin position for K , by Lemma 5.5.

Case II.B.ii b is contained in D& and K\D& D fb; b
0g.

Case II.B.ii.a Suppose D& has a maximum and h.b/ > h.b0/. Poke a neighborhood
of b in C along � toward and just past the maximum of � as in Lemma 3.6. Since
� is disjoint from C above b , this isotopy leaves K fixed while adding exactly one
saddle � to ±C . Since D& is disjoint from K above b , � is an inessential saddle. We
can eliminate � using the isotopy from Lemma 3.3. After these two isotopies, the
number of saddles in ±C has not been changed and � is disjoint from C above a.
By Lemma 3.6, C is not taut.

Case II.B.ii.b Suppose D& has a maximum and h.b0/ > h.b/. Poke a neighborhood
of b in C along � toward and just past the maximum of � as in Lemma 3.6. Since
� is disjoint from C above b , this isotopy leaves K fixed while adding exactly one
saddle � to ±C . Since D& meets K only in b0 above b , then � is a doubly c-inessential
saddle. After this isotopy, � is disjoint from C above a. Hence, we can eliminate �
by using the isotopy from Lemma 3.6. The net effect of these isotopies is to leave the
number of saddles in ±C unchanged and introduce a doubly c-inessential saddle � . By
Lemma 5.3, C is not taut or bridge position for K is not thin position for K .
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Case II.B.ii.c Suppose D& has a minimum. Let & D s
&
1
_ s

&
2

. Since D& is an
outermost disk, then, up to relabeling, we can assume that @.D& / D s

&
1

. Let S& be
the level surface containing & . D& cuts the three ball below S& in to two 3–balls
B& and B0& as described in Section 2. By hypothesis, & is a standard saddle and,
thus, is the boundary of a monotone disk E& . Since C is embedded, E& is contained
completely in B� . If E& \K ¤ ∅, then all four points of C \K are contained in
B� [A� and K is disjoint from E� . By Lemma 4.6, C is not taut or bridge position
for K is not thin position for K . Hence we can assume that E& \K D∅. Since all
saddles in ±C are standard, then, by Lemma 4.6, we can assume .B& [A& /

c contains
at least one point of C \K . If � is contained in B& , then .B& [A& /

c is contained
in int.A� [B� / and A� [B� contains all four points of C \K . Then, by Lemma
4.6, C is not taut or bridge position for K is not thin position. Hence, we can assume
that � is contained in B0& . Since � is contained in B0& , then hK\B& has a minimum
at b . If b0 is a minimum of hK\B& , then & is a removable saddle and C is not taut,
by Lemma 3.5. Hence, we can assume that b0 is a maximum of hK\B& . This leads us
to the following two possibilities. After these observations, one possible arrangement
of K , � and & is depicted in Figure 17.

a

b

b0

&

�

Figure 17

Case II.B.ii.c.1 D& has a minimum, B0& contains � , b0 is a maximum of hK\B&

and h.b/ < h.b0/. Since b0 is a maximum of hjK\B& and b0 is not on � , then there
is a minimum of hjK in B& .

By appealing to Lemma 3.2, we can assume B0� does not contain C1 and B& does
not contain �1. Since � is a nonremovable, c-inessential saddle in ±C such that D�

contains a maximum, then hK\B0�
has a local maximum at K\D� . Since hjK\B0�

has a local maximum at a, we can appeal to the isotopy in Lemma 3.5 to horizontally
shrink and vertically lower B0� until h.B0� / lies between h.�/ and h.�/C " for any
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" > 0. Since b is the lowest point of intersection of K with D& we can horizontally
shrink and vertically raise the portion of B& that lies below b until h.B& / is contained
between h.b/�" and h.&/ for any ">0. Since h.b/>h.a/, then h.b/>h.�/. Hence,
we can lower B0� and raise B& until B0� lies strictly below B& without changing the
number of maxima of hK and without introducing any new saddles. However, by
Lemma 4.3, B0� contains a maximum of hjK and, by the above argument, B& contains
a minimum of hjK . Thus, bridge position for K is not thin position.

Case II.B.ii.c.2 D& has a minimum, B0& contains � , b0 is a maximum of hK\B&

and h.b0/ < h.b/. This is the situation depicted in Figure 17. Let b0 be the maximal
monotone subarc of K that contains b0 . If b0 meets C at any point other than b0

then B� [A� contains all four points of C \K and, by Lemma 4.6, C is not taut or
bridge position of K is not thin position. Hence, we can assume that b0 \C D fb0g.

Poke a neighborhood of b0 in C along b0 toward and just past the minimum of b0

as in Lemma 3.6. Since b0 is disjoint from C below b0 , this isotopy leaves K fixed
while adding exactly one saddle � to ±C . Since D& is disjoint from K below b0 , then
� is an inessential saddle. We can eliminate � using the isotopy from Lemma 3.3.
After these two isotopies, the number of saddles in ±C has not been changed and both
points of intersection of K with D& are minima of hjK\B& . Hence, & is a removable
saddle and C is not taut, by Lemma 3.5. See Figure 18.

&

�

&

�

&

�

&

�

&

�

Figure 18

Case II.B.iii Assume b is contained in D& and K \D& D fb; b
0; b00g. In this case,

all four points of C \K are contained in B� [A� and � is a standard saddle such
that K is disjoint from E� . Since .B� [A� /

c contains only standard saddles and is
disjoint from K\C , then C is not taut, by Lemma 4.6.

Case III Suppose C meets � above a in exactly two points b and c where h.a/ <

h.b/ < h.c/.
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If both b and c are disjoint from D& , then & is a nonremovable c-inessential saddle or
else C is not taut. If & is distinct from � , then & consists of a single point and C

is not taut, by Lemma 3.6. If & D � , then D& \K is below a on � . If D& has a
maximum, then C is not taut or bridge position for K is not thin position, by Lemma
5.5. If D& has a minimum, then C is not taut, by Lemma 3.6. Hence, we can assume
that b or c lie on D& .

If D& meets K in a single point, then that point is either b or c and & is a c-inessential
saddle. By Lemma 5.5, C is not taut or bridge position for K is not thin position.
If D& meets K in two points, one of which is not contained in the set fb; cg, then
B� [A� contains all four points of C \K and, by Lemma 4.6, C is not taut or bridge
position for K is not thin position. If D& meets K in three points, then B� [A�
contains all four points of C \K and, by Lemma 4.6, C is not taut or bridge position
for K is not thin position. Hence, we can assume D& meets K in exactly the two
points b and c .

Case III.A Suppose D& has a maximum and D& meets K in exactly the two points
b and c . Poke a neighborhood of c in C along � toward and just past the maximum
of � as in Lemma 3.6. Since � is disjoint from C above c , this isotopy leaves K

fixed while adding exactly one saddle � to ±C . Since D& is disjoint from K above c ,
then � is an inessential saddle. We can eliminate � using the isotopy from Lemma
3.3. This is illustrated in Figure 19. After these two isotopies, neither the number of
critical points of hjK nor the number of saddles in ±C has been changed and C meets
� above a in exactly one point. Hence, we have reduced this case to Case II and can
conclude C is not taut or bridge position for K is not thin position.

D&

�

D&

�

D&

�

Figure 19

Case III.B Suppose D& has a minimum and D& meets K in exactly the two points
b and c . Let Sc be a level surface just above c . The portion of D& that lies below Sc

cuts the 3–ball below Sc into two 3–balls Bc and B0c where we choose the labeling
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such that B0c contains � . The curve D&\Sc cuts Sc into two disks Dc and D0c where
Dc meets Bc . If Dc is disjoint from K , then we can use an innermost disk argument
and the fact that C is incompressible to isotope C to be disjoint from Dc while leaving
K fixed and possibly decreasing the number for saddles of ±C . After this isotopy, Dc

is a compressing disk for C , contradicting the fact that C is incompressible. Hence,
we can assume that K is not disjoint from Dc . Since K is not disjoint from Dc and
b is connected to c in Bc via a monotone subarc of K , then there must be a minimum
of hjK in Bc . By appealing to Lemma 3.2, we can assume B0� does not contain C1
and Bc does not contain �1. Since � is a nonremovable, c-inessential saddle in ±C

such that D� contains a maximum, then hK\B0�
has a local maximum at K \D� .

Since hjK\B0�
has a local maximum at a, we can appeal to the isotopy in Lemma

3.5 to horizontally shrink and vertically lower B0� until h.B0� / lies between h.�/ and
h.�/C " for any " > 0. Since Dc is disjoint from K below b , we can horizontally
shrink and vertically rase the portion of Bc that lies below b until h.Bc/ is contained
between h.b/� " and h.Sc/ for any " > 0. Since h.b/ > h.a/, then h.b/ > h.�/.
Hence, we can lower B0� and raise Bc until B0� lies strictly below Bc without changing
the number of maxima of hK and without introducing any new saddles. However,
by Lemma 4.3, C is not taut or B0� contains a maximum of hjK and, by the above
argument, Bc contains a minimum of hjK . Thus, C is not taut or bridge position for
K is not thin position for K .

Case IV Suppose C meets � above a in exactly three points. In this case, all four
points of C \K are contained in B� [A� and � is a standard saddle such that K is
disjoint from E� . Since .B� [A� /

c contains only standard saddles and is disjoint
from K\C , then C is not taut, by Lemma 4.6.

Theorem 5.8 Let C be a c-incompressible Conway sphere in S3 �K . If C is taut
and ±C contains a c-inessential saddle, then bridge position for K is not thin position
for K .

Proof If ±C contains a nonstandard saddle, we are done by Theorem 5.6. If ±C does
not contain a nonstandard saddle, we are done by Theorem 5.7.

Recall the definition of nested from Section 3.

Definition 5.9 A Conway sphere is worm-like if, for every saddle � D s�
1
_ s�

2
, each

of s�
1

and s�
2

cut C into two twice punctured disks and every saddle in ±C is nested
with respect to the same side of C .

Theorem A If C is a taut c-incompressible Conway sphere in S3 �K and bridge
position for K is thin position, then C is worm-like.
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Proof By Theorem 5.8, ±C contains no c-inessential saddles. By the remark following
Lemma 5.1, ±C contains no nonstandard saddles. Thus, there are exactly two outermost
disks in ±C each meeting K exactly twice. Since every saddle in ±C is standard,
then every saddle � bounds a monotone disk E� . If any E� meets K , then one of
the two outermost disks in ±C meets K in less than two points. Hence, every E� is
disjoint from K . If any s�i bounds a disk D in C that is disjoint from K or meets K

once, then an outermost saddle in ±D is an inessential or c-inessential saddle. Hence,
every s�i cuts C into two twice punctured disks. Let C decompose S3 into two
3–balls B1 and B2 . If ±C contains saddles nested with respect to B1 and saddles
nested with respect to B2 , then there are adjacent saddles in ±C nested with respect to
distinct 3–balls. However, this contradicts C being taut, by Lemma 3.7. Thus, C is
worm-like.

6 Conway products and bridge inequalities

Let K1 � S3
1

and K2 � S3
2

be links embedded in distinct 3-spheres. For each i D 1; 2

let �i be arcs in S3
i such that @�i �Ki but �i is otherwise disjoint from Ki . Let �.�i/

be a regular closed neighborhood of �i , then �.�i/\Ki is a trivial tangle and @.�.�i//

is a Conway sphere for Ki . Let Bi D S3
i � int.�.�i//.

Definition 6.1 Let K1�c K2 (the generalized Conway product of K1 and K2 ) denote
the link in S3 formed by removing int.�.�i// from S3

i and gluing @.B1/ to @.B2/

via a homeomorphism which sends K1\ @.B1/ to K2\ @.B2/.

The image C of @.�.�1// and @.�.�2// after their identification, is the Conway sphere
of the generalized Conway product.

The isotopy class of K1 �c K2 is dependent on the isotopy classes of K1 and K2 ,
the isotopy classes of �1 and �2 , and the gluing homeomorphism. In fact, there are
infinitely many distinct links K1 �c K2 for any pair of links K1 and K2 . An example
of a generalized Conway product is given in Figure 25.

In this section, we will use Theorem A to relate the bridge number of the factor links
K1 and K2 to the bridge number of their generalized Conway product K1 �c K2 . To
do so, we restrict only to generalized Conway products were C is c-incompressible
and bridge position for K1 �c K2 is thin position. In addition, if C is taut, then, by
Theorem A, C is worm-like. In particular, all saddles of ±C are nested with respect
to B2 , up to labeling. With this labeling, we say K1 is the distinguished factor of
K1 �c K2 .
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Let K be a link in S3 and C be a c-incompressible Conway sphere. If C is taut
and bridge position for K is thin position, then, by Theorem A, there are exactly two
outermost disks in ±C , D1 and D2 , and each Di meets K exactly twice. We use the
following labeling convention: fxi

1
;xi

2
g D K \Di and h.xi

1
/ > h.xi

2
/ for i D 1; 2.

We will want to keep track of the following properties:

(1) Is xi
j a local minimum or maximum of hjK\B1

for i D 1; 2 and j D 1; 2?

(2) Does hjDi
have a unique local minimum or maximum for i D 1; 2? (That is, is

Di a cap or a cup?)

To accomplish this we define a 3–tuple labeling .x;y; z/�fm;M g3 for each Di where
xDm (resp. M ) if xi

1
is a minimum (resp. maximum) of hjK\B1

, y Dm (resp. M )
if xi

2
is a minimum (resp. maximum) of hjK\B1

, and z Dm (resp. M ) if hjDi
has a

unique minimum (resp. maximum).

As an example, the disk in Figure 20 is labeled .M;m;m/.

B1

B2

Figure 20

Lemma 6.2 If K D K1 �c K2 is a generalized Conway product such that C is c-
incompressible and bridge position for K is thin position, then there is an isotopy of K

and C resulting in hjK having ˇ.K/ maxima, C being taut, and hjK having at least
one maximum or minimum in B2 .

Proof By isotoping C so that ±C has the fewest number of saddles subject to hjK
having ˇ.K/ maxima, we can assume C is taut. By Theorem A, we can assume C

is worm-like. If ±C contains saddles then D1 and D2 are defined as in the above
discussion. If ±C has no saddles, then let s be a level curve in ±C which separates
two points in C \K from two others. The two components of C �s are the monotone,
twice-punctured disks D1 and D2 .

We will proceed by cases using the 3–tuple labeling of D1 and D2 . An underscore
in a coordinate of a labeling will indicate m or M . (That is, .m; ;M / represents
.m;m;M / or .m;M;M //.
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Suppose Di is labeled .M;M;M / or .m;m;m/ for i�f1; 2g. Let � be the saddle in
±C such that @.Di/ � � . Since all saddles are nested with respect to B1 a label of
.M;M;M / or .m;m;m/ implies � is removable and contradicts the assumption that
C is taut, by Lemma 3.5.

Suppose one of Di for i D 1; 2 is labeled .m; ;M / or . ;M;m/. Up to renaming
of the disks and reflection in a level sphere, we can assume D1 has the 3–tuple label
.m; ;M /. Let � be the saddle in ±C such that @.D1/ D s�

1
. Let L be the level

surface containing � . Let  be the maximal monotone strand of K\B1 that contains
x1

1
, so  ascends from x1

1
into B1 .

Suppose C meets  above x1 in a point a. If a is contained in D2 , then D2 is entirely
contained in B� [A� and B� [A� contains all four points of C \K . Since ±C

contains only standard saddles, then we contradict C being taut or bridge position for
K being thin position, by Lemma 4.6. If a is not contained in D2 , then a must be x1

2
.

However, this would place x1
2

higher with respect to h than x1
1

. This is a contradiction
to how we defined x1

1
. Thus, we may assume that  is disjoint from C above x1

1
.

Poke a small neighborhood of the point x1
1

in C along  toward and slightly past
the maximum of  as in the proof of Lemma 3.6. This isotopy fixes K and, since
 is disjoint from C above x1

1
, adds a single saddle � to ±C . Since K is disjoint

from D1 above x1
1

, then � is an inessential saddle. Use the isotopy from Lemma 3.3
to remove � . This isotopy preserves the number of maxima of hjK and results in C

being taut, but alters D1 so that its new label is .M; ;M /. See Figure 5.

Therefore, we can assume the labels of D1 and D2 are both chosen from the set
f.M;m;m/; .M;m;M /g. The disks corresponding to these two possible labelings are
depicted in Figure 21.

Figure 21

Suppose D1 is labeled .M;m;M / and D2 is labeled .M;m;m/. Let ˛ be the
component of K\B2 with an endpoint x1

1
. If ˛ contains a maximum or minimum

of hjK , then we are done. If not, then ˛ is monotone and the other endpoint of ˛
must be x2

2
. This leaves x1

2
and x2

1
connected by ˇ , a component of K \B2 . The
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monotonicity of ˛ ensures h.x2
2
/ > h.x1

1
/. Since h.x1

1
/ > h.x1

2
/, h.x2

1
/ > h.x2

2
/ and

h.x2
2
/ > h.x1

1
/, then h.x1

2
/ > h.x2

1
/. However, x1

2
is labeled m and x2

1
is labeled

M , so there must be both a minimum and a maximum of hjK in ˇ � B2 . See Figure
22. Thus, hjK\B2

contains at least one minimum or maximum. This result follows
analogously for the other possible labelings of D1 and D2 .

Figure 22

Theorem B If K D K1 �c K2 is a generalized Conway product such that C is c-
incompressible and bridge position for K is thin position, then ˇ.K/ � ˇ.K1/� 1

where K1 is the distinguished factor.

Proof Choose C taut. By Theorem A and Lemma 6.2, we can assume C is worm-like
and hjK has at least one maximum in B2 (the case where hjK has one minimum in
B2 is proved analogously). To prove the theorem, we need only prove that the number
of maxima of hjK in B1 is greater than or equal to ˇ.K1/� 2. The theorem will then
follow since ˇ.K/ D .number of maxima of hjK in B1/C .number of maxima of
hjK in B2/.

First, we analyze the case where ±C contains no saddles. In this case, there is a level
preserving isotopy of S3 taking C to a standard round 2–sphere. Such an isotopy
preserves the number and nature of maxima of hjK in B1 . As in Lemma 6.2, a point in
K\C is labeled with an m if it is a local minimum of hjK\B1

and is labeled with an
M if it is a local maximum of hjK\B1

. The link K1 can be recovered from K\B1

by gluing a rational tangle T to K \B1 along their common 4–punctured sphere
boundary. If more points of K\C are labeled with an M , take T to lie above C . If
more are labeled with an m, take T to lie below C . See Figure 23. Since the portion
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of the rational tangle lying in the region labeled R can be taken to be monotone with
respect to h, this rational completion causes the creation of at most two new maxima.
The number of maxima of the resulting embedding of K1 is at most two more than
the number of maxima of hjK in B1 . Hence, the number of maxima of hjK in B1 is
greater than or equal to ˇ.K1/� 2.

(Note: If ±C has no saddles, we get the analogous estimate that the number of maxima
of hjK in B2 is greater than or equal to ˇ.K2/� 2. Hence, in this special case, we
get the additional inequality ˇ.K/� ˇ.K1/Cˇ.K2/� 4.)

R

B1

m

m

M

M

Figure 23

We now assume ±C contains saddles. To establish the desired inequality in this general
setting, we build an isotopy of S3 which takes B1 to a standard round 3–ball and
preserves the number and nature of critical points of hjK in B1 . This isotopy, however,
does not preserve the number of critical points of hjK in B2 . Let D1 and D2 be the
two outermost disks for ±C . ±D1

is a collection of circles and one point corresponding
to a maximum of hjC (if the point is a minimum, the case is analogous). Recall the
terminology introduced in Section 2. Let � be the saddle in ±C such that D� DD1 .
By appealing to the proof of Lemma 3.2, we can assume B� does not meet C1. Each
point of K\D1 (x1

1
and x1

2
) receives a label of M or m as described above.

Since hjD1
has a maximum as the unique critical point, we can horizontally shrink

and vertically lower B� until D1 lies just above D�
1

. Let C � be the image of C and
D�

1
be the image of D1 under this isotopy and let p be the unique maximum of hjD�

1
.

Let J be the level surface containing p . Since we assume the h restricts to a Morse
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function on C � , J \C � consists of the point p and a collection of circles. One such
circle c2 is parallel in C � to s�

2
. By isotoping D�

1
close enough to D�

1
, we can choose

a point b in c2 and an arc ˛ in J that is disjoint from C � except at its boundary,
fb;pg. Choose another arc ˇ in C � that does not meet K , has boundary fb;pg and
is transverse to ±C everywhere except where it passes through s�

1
\ s�

2
. Having made

D�
1

sufficiently close to D�
1

, we can assume ˛ and ˇ cobound a disk F that is vertical
with respect to h, disjoint from K , and disjoint from C except along ˇ . Isotope C �

along F to effectively cancel a saddle with a maximum. See Figure 24.

M

m M
m

F M
m

Figure 24

Repeat this process to produce an isotopy that preserves the number and nature of
critical points of hjK\B1

and takes C to a standard round sphere. By the above
argument, the number of maxima of hjK in B1 is greater than or equal to ˇ.K1/� 2.
This completes the proof of the theorem.

7 An example

In Figure 25, K1 is the connect sum of four trefoils and K2 is an index 2 satellite
link of the trefoil. Schubert’s seminal work on bridge number tells us that ˇ.K1/D 5

and ˇ.K2/� 4. Since Figure 25 gives a presentation of K2 with exactly 4 maxima,
we conclude that ˇ.K2/D 4. The link K1 �c K2 depicted in Figure 25 is an index
2 satellite link of the trefoil. Again Schubert’s results tell us that ˇ.K1 �c K2/ � 4

and again we have a presentation of K1 �c K2 with exactly 4 maxima. Hence,
ˇ.K1 �c K2/D 4D ˇ.K1/� 1. By analyzing the Conway sphere of K1 �c K2 in the
projection depicted in Figure 25, we see that K1 is indeed the distinguished factor.

To prove the lower bound in Theorem B is tight it is left to show that C in this example
is c-incompressible and the projection of K1 �c K2 in Figure 25 is thin. It is easy
to show K1 �c K2 in the example is prime and, thus, C is c-incompressible. Bridge
position for K1 �c K2 in this example is thin position. The proof uses standard ideas
but has been omitted due to its length. Hence, the bound presented in Theorem B is
tight.
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K1 D K2 D

K1 �c K2 D Š

Figure 25
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