Degree ±1 self-maps and self-homeomorphisms on prime 3-manifolds

HONGBIN SUN

We determine all closed orientable geometrizable prime 3-manifolds that admit a degree 1 or -1 self-map not homotopic to a homeomorphism.

57M05, 57M50; 20F34

1 Introduction

1.1 Background

All manifolds in this paper are closed and orientable unless stated otherwise. Definitions of terminology not stated here can be found in Hempel [5] and Hatcher [2].

Given a closed oriented n-manifold M, it is natural to ask whether all the degree ± 1 self-maps of M can be homotopic to homeomorphisms.

If the property stated above holds for M, we say M has property H. In particular, if all the degree 1 (-1) self-maps of M are homotopic to homeomorphisms, we say M has property 1H (-1H). M has property H if and only if M has both property 1H and property -1H. Observe that if M admits an orientation-reversing self-homeomorphism, then M has property 1H if and only if M has property -1H. So we need only consider property 1H in most of this paper.

The first positive result on property H is the Hopf theorem: two self-maps of S^n are homotopic if and only if they have the same mapping degree. The result that every 1– and 2–dimensional manifold has property H is also well-known: since its fundamental group is Hopfian (see Hempel [4]), all automorphisms of $\pi_1(M^2)$ can be realized by a homeomorphism [5, 13.1], and every M^2 except S^2 is a $K(\pi, 1)$.

For dimension > 3, it seems difficult to get general results, since there are no classification results for manifolds of dimension n > 3, and the homotopy groups can be rather complicated.

Now we restrict to dimension 3. From now on, unless stated otherwise, all manifolds in the following are 3-manifolds. Thurston's geometrization conjecture [20], which

Published: 10 April 2010 DOI: 10.2140/agt.2010.10.867

seems to be confirmed, implies that closed oriented 3-manifolds can be classified in a reasonable sense. So we can check whether 3-manifolds have property H case-by-case.

Thurston's geometrization conjecture claims that each Jaco-Shalen-Johannson piece of a prime 3-manifold supports one of the eight geometries, E^3 , H^3 , S^3 , $S^2 \times E^1$, $H^2 \times E^1$, PSL(2,R), Nil, Sol (for details see Thurston [20] and Scott [19]). Call a closed orientable 3-manifold M geometrizable if each prime factor of M meets Thurston's geometrization conjecture. All 3-manifolds discussed in this paper are geometrizable, and we may sometimes omit "geometrizable".

In this paper, we would like to determine which prime 3-manifolds, the basic part of 3-manifolds, have property H.

Since all degree ± 1 maps f on M induce surjections on its fundamental group, and the fundamental groups of geometrizable 3-manifolds are residually finite (therefore, Hopfian) (for example, see Hempel [5, 15.13; 6, 1.3] or Kalliongis and McCullough [11, 3.22]), f_* : $\pi_1(M) \to \pi_1(M)$ is an isomorphism.

Hyperbolic 3-manifolds, which seem to be the most mysterious, have property H by the celebrated Mostow rigidity theorem [13]. By Waldhausen's theorem on Haken manifolds (see Hempel [5, 13.6]), all Haken manifolds also have property H.

These two theorems cover most cases of prime geometrizable 3-manifolds, including manifolds with nontrivial JSJ decomposition, hyperbolic manifolds and Seifert manifolds with incompressible surface. It is also easy to see that $S^2 \times S^1$ has property H by elementary obstruction theory. So the remaining cases are:

- (Class 1) M^3 supporting the S^3 -geometry ($M = S^3/\Gamma$, where $\Gamma < O(4) \cong \mathrm{Iso}_+(S^3)$ acts freely on S^3).
- (Class 2) Seifert manifolds M^3 supporting the Nil or $\widetilde{PSL(2, R)}$ geometries with orbifold $S^2(p, q, r)$.

Essentially, it is known that the manifolds in Class 2 have property H. However, the author can't find a proper reference. We can copy the proof of [19, Theorem 3.9] word-for-word to prove this result.

1.2 Main Results

Mainly, the aim of this paper is to determine which S^3 -manifolds (manifolds in Class 1) have property H.

According to [16] or [19], the fundamental group of a 3-manifold supporting the S^3 -geometry belongs to one of the following eight types: \mathbb{Z}_p , D_{4n}^* , T_{24}^* , O_{48}^* , I_{120}^* , $T_{8\cdot 3}^{'}$, $D_{n'\cdot 2}^{'}$ and $\mathbb{Z}_m \times \pi_1(N)$, where N is a S^3 -manifold, $\pi_1(N)$ belongs to one of the previous seven types and $|\pi_1(N)|$ is coprime to m. The cyclic group Z_p is realized by lens space L(p,q). Each group in the remaining types is realized by a unique S^3 -manifold.

Theorem 1.1 For M supporting the S^3 -geometry, M has property 1H if and only if M belongs to one of the following classes:

- (i) S^3 .
- (ii) L(p,q) satisfying one of the following:

(a)
$$p = 2, 4, p_1^{e_1}, 2p_1^{e_1}$$

(a)
$$p = 2, 4, p_1^{e_1}, 2p_1^{e_1}$$
.
(b) $p = 2^s (s > 2), 4p_1^{e_1}, p_1^{e_1}p_2^{e_2}, 2p_1^{e_1}p_2^{e_2}, q^2 \equiv 1 \mod p \text{ and } q \neq \pm 1$.

(iii)
$$\pi_1(M) = \mathbb{Z}_m \times D_{4k}^*$$
, $(m, k) = (1, 2^k)$, $(p_1^{e_1}, 2^k)$, $(1, p_2^{e_2})$ or $(p_1^{e_1}, p_2^{e_2})$.

(iv)
$$\pi_1(M) = D'_{2^{k+2}p_1^{e_1}}$$
.

(v)
$$\pi_1(M) = T_{24}^* \text{ or } \mathbb{Z}_{p_1^{e_1}} \times T_{24}^*$$
.

(vi)
$$\pi_1(M) = T'_{8\cdot 3^{k+1}}$$
.

(vii)
$$\pi_1(M) = O_{48}^*$$
 or $\mathbb{Z}_{p_1^{e_1}} \times O_{48}^*$.

(viii)
$$\pi_1(M) = I_{120}^* \text{ or } \mathbb{Z}_{p_1^{e_1}} \times I_{120}^*$$
.

Here p_1 , p_2 are odd prime numbers, and e_1 , e_2 , k, m are positive integers.

By [3] and elementary number theory, among all the S^3 -manifolds, only S^3 and lens spaces admit degree -1 self-maps. So when considering property -1 H, we can restrict the manifold to be L(p,q).

Proposition 1.2 L(p,q) has property -1H if and only if L(p,q) belongs to one of the following classes:

- (i) 4|p or some odd prime factor of p is of the form 4k + 3.
- (ii) $q^2 \equiv -1 \mod p$ and p = 2, $p_1^{e_1}$, $2p_1^{e_1}$, where p_1 is a prime number of the form 4k + 1.

Synthesizing Mostow's theorem, Waldhausen's theorem, Theorem 1.1 and Proposition 1.2, we get the following consequence:

Theorem 1.3 Suppose M is a prime geometrizable 3-manifold.

- (1) M has property 1H if and only if M belongs to one of the following classes:
 - (i) M does not support the S^3 -geometry.
 - (ii) M is in one of the classes stated in Theorem 1.1.
- (2) M has property -1H if and only if M belongs to one of the following classes:
 - (i) M does not support the S^3 -geometry.
 - (ii) $M \neq L(p,q)$ and supports the S^3 -geometry.
 - (iii) M is in one of the classes stated in Proposition 1.2.
- (3) M has property H if and only if M belongs to one of the following classes:
 - (i) M does not support the S^3 -geometry.
 - (ii) M is in one of the classes other than (ii) stated in Theorem 1.1.
 - (iii) L(p,q) satisfying one of the following:
 - (a) p = 2, 4.

 - (b) $p = p_1^{e_1}, 2p_1^{e_1}$, where p_1 is 4k + 3 type prime number. (c) $p = p_1^{e_1}, 2p_1^{e_1}$, where p_1 is 4k + 1 type prime number and $q^2 \equiv$

 - (d) $p = 2^s \ (s > 2), 4p_1^{e_1}, q^2 \equiv 1 \mod p, q \neq \pm 1.$ (e) $p = p_1^{e_1} p_2^{e_2}, 2p_1^{e_1} p_2^{e_2}$, where one of p_1, p_2 is 4k + 3 type prime number, $q^2 \equiv 1 \mod p, q \neq \pm 1.$

In Section 2 we give some definitions which will be used later and transform our main question to the computation of $\mathrm{Out}(\pi_1(M))$ and the mapping class group of M. In Section 3, we determine which lens spaces have property H. In Section 4, we compute $\operatorname{Out}(\pi_1(M))$ by combinatorial methods. Mapping class groups of S^3 -manifolds are computed in Section 5. Although the mapping class groups of S^3 -manifolds are determined by Boileau and Otal [1] and McCullough [12] and some partial results are given by Hodgson and Rubinstein [8], Rubinstein [17] and Rubinstein and Birman [18], we give a complete computation based on the fact that all self-homeomorphisms on an S^3 -manifold $M \neq L(p,q)$ can be isotopic to a fiber-preserving homeomorphism. In Section 6, Table 1 shows the computation results.

2 Definitions and preliminaries

Definition 2.1 Suppose an oriented 3-manifold M' is a circle bundle with a given section F, where F is a compact surface with boundary components c_1, \ldots, c_n , c_{n+1}, \ldots, c_{n+m} with n > 0. On each boundary component of M', orient c_i and the circle fiber h_i so that the product of their orientation on $c_i \times S^1$ matches with the induced orientation of M'. Now attach n solid tori N_i to the first n boundary tori of M' so that the meridian of N_i is identified with slope $l_i = \alpha_i c_i + \beta_i h_i$ with $\alpha_i > 0$. Denote the resulting manifold by M, which has the Seifert fiber structure (foliated by circles) extended from the circle bundle structure of M', and the core of N_i is a "singular fiber" for $\alpha_i > 1$.

We will denote this Seifert fiber structure of M by $\{(\pm g, m); r_1, \ldots, r_n\}$ where g is the genus of the section F of M, where the sign is + if F is orientable and - if F is nonorientable. Here "genus" of nonorientable surfaces means the number of $\mathbb{R}P^2$ connected summands and $r_i = \beta_i/\alpha_i$, while (α_i, β_i) is the index of the corresponding singular fiber.

Almost all Seifert manifolds we consider in this paper have structure $\{(0,0); r_1,\ldots,r_n\}$ with $n \le 3$. For simplicity, we denote the structure $\{(0,0); r_1,\ldots,r_n\}$ by $\{b; r'_1,\ldots,r'_n\}$, where $0 < r'_i < 1, r'_i \equiv r_i \mod 1$, and $\sum_{i=1}^n r_i = b + \sum_{i=1}^n r'_i$. This does not bring about confusion since $\{(0,0); r_1,\ldots,r_n\}$ is fiber-preserving, orientation-preserving homeomorphic to $\{(0,0); r'_1,\ldots,r'_n,b\}$, and the form $\{b; r'_1,\ldots,r'_n\}$ is unique.

When we identify every S^1 fiber of M to a point, we get a "2-manifold" $\mathcal{O}(M)$ with singular points corresponding to the singular fibers, which is called an orbifold. Although there is a standard definition for orbifold (see Scott [19]), we do not state it here, but just think of an orbifold as a Hausdorff space that is locally isomorphic to quotient space of R^n by a finite group action. More simply, the orbifolds we consider in this paper are just surfaces with singular points, where every neighborhood of a singular point is isomorphic to D^2/\mathbb{Z}_n (the action is $2\pi/n$ rotation). When we delete a neighborhood of all singular points, the remaining part of $\mathcal{O}(M)$ can be identified with the section F in Definition 2.1. An orientation on $\mathcal{O}(M)$ is induced by an orientation on the section F.

According to Orlik [16] or Scott [19], the fundamental group of a 3-manifold with the S^3 -geometry structure belong to one of the following eight types: \mathbb{Z}_p , D_{4n}^* , T_{24}^* , O_{48}^* , I_{120}^* , $T_{8\cdot 3}^q$, $D_{n'\cdot 2}^q$ and $\mathbb{Z}_m \times G$ where G belongs to one of the previous seven types and |G| is coprime to m. All the manifolds are uniquely determined by the fundamental group except when $\pi_1(M) = \mathbb{Z}_p$, in this case M = L(p,q) for some q. The fundamental groups and Seifert structures of these manifolds are given by Orlik [16]:

Theorem 2.2 The manifolds supporting S^3 –geometry are classified as follows:

(1) $M = \{b; \beta_1/\alpha_1, \beta_2/\alpha_2\}$, here we allow $\alpha_i = 1$, $\beta_i = 0$, are lens spaces with $\pi_1(M) \cong \mathbb{Z}_p$, where $p = |b\alpha_1\alpha_2 + \alpha_1\beta_2 + \alpha_2\beta_1|$.

(2) $M = \{b; 1/2, 1/2, \beta_3/\alpha_3\}$ are called prism manifolds, let $m = (b+1)\alpha_3 + \beta_3$; if $(m, 2\alpha_3) = 1$, then $\pi_1(M) \cong \mathbb{Z}_m \times D^*_{4\alpha_3} \cong \mathbb{Z}_m \times \{x, y \mid x^2 = (xy)^2 = y^{\alpha_3}\}$; if $(m, 2\alpha_3) \neq 1$, then $m = 2^k m'$, we have $\pi_1(M) \cong \mathbb{Z}_{m'} \times D'_{2^{k+2}\alpha_3} \cong \mathbb{Z}_{m'} \times \{x, y \mid x^{2^{k+2}} = 1, y^{\alpha_3} = 1, xy = y^{-1}x\}$.

- (3) $M = \{b; 1/2, \beta_2/3, \beta_3/3\}$, let $m = 6b + 3 + 2(\beta_2 + \beta_3)$; if (m, 12) = 1, then $\pi_1(M) \cong \mathbb{Z}_m \times T^* \cong \mathbb{Z}_m \times \{x, y \mid x^2 = (xy)^3 = y^3, x^4 = 1\}$; if $(m, 12) \neq 1$, $m = 3^k m'$, then $\pi_1(M) \cong \mathbb{Z}_{m'} \times T'_{8 \cdot 3^k} \cong \mathbb{Z}_{m'} \times \{x, y, z \mid x^2 = (xy)^2 = y^2, z^{3^{k+1}} = 1, zxz^{-1} = y, zyz^{-1} = xy\}$.
- (4) $M = \{b; 1/2, \beta_2/3, \beta_3/4\}$, let $m = 12b + 6 + 4\beta_2 + 3\beta_3$, then (m, 24) = 1, $\pi_1(M) \cong \mathbb{Z}_m \times O^* \cong \mathbb{Z}_m \times \{x, y \mid x^2 = (xy)^3 = y^4, x^4 = 1\}$.
- (5) $M = \{b; 1/2, \beta_2/3, \beta_3/5\}$, let $m = 30b + 15 + 10\beta_2 + 6\beta_3$, then (m, 60) = 1, $\pi_1(M) \cong \mathbb{Z}_m \times I^* \cong \mathbb{Z}_m \times \{x, y \mid x^2 = (xy)^3 = y^5, x^4 = 1\}$.

Remark The Seifert structures on lens spaces are not unique, while the orbifolds are all S^2 with at most two singular points. The prism manifolds also have another Seifert structure with orbifold P^2 with one singular point. The other S^3 -manifolds have unique Seifert structures.

Since a degree ± 1 self-map f of M is surjective on fundamental group and $\pi_1(M)$ is finite, f induces an isomorphism on $\pi_1(M)$. Therefore we need only consider self-maps that induce isomorphism on $\pi_1(M)$.

All the degrees of self-maps that induce isomorphisms on $\pi_1(M)$ are given in Hayat-Legrand et al [3]:

Proposition 2.3 For a 3-manifold M supporting the S^3 geometry,

$$D_{\mathrm{iso}}(M) = \{k^2 + l|\pi_1(M)| \mid \gcd(k, |\pi_1(M)|) = 1\}.$$

Here $D_{iso}(M) = \{ \deg(f) \mid f : M \to M, f \text{ induces isomorphism on } \pi_1(M) \}.$

Any S^3 -manifold $M \neq L(p,q)$ satisfies $|\pi_1(M)| = 4k$, and any odd square number has form 4l + 1. So M does not admit any degree -1 self-map, and we only consider property 1H in most of this paper.

Since the second homotopy group of a S^3 -manifold is trivial, the existence of self-mappings can be detected by obstruction theory. P Olum showed in [15] the first and in [14] the second part of the following proposition.

Proposition 2.4 Let M be an orientable 3-manifold with finite fundamental group and trivial $\pi_2(M)$. Every endomorphism $\phi \colon \pi_1(M) \to \pi_1(M)$ is induced by a (basepoint-preserving) continuous map $f \colon M \to M$.

Furthermore, if g is also a continuous self-map of M such that f_* is conjugate to g_* , then $\deg f \equiv \deg g \mod |\pi_1(M)|$; furthermore, f and g are homotopic to each other if and only if f_* is conjugate to g_* and $\deg(f) = \deg(g)$.

According to this proposition, homotopic information of self-maps can be completely determined by degree and induced homomorphism on π_1 .

We also need a little elementary number theory:

Definition 2.5 Let $U_p = \{\text{all units in the ring } \mathbb{Z}_p\}$, $U_p^2 = \{a^2 \mid a \in U_p\}$, which is a subgroup of U_p . Denote $|U_p/U_p^2|$ by $\Psi(p)$.

The following theorem in number theory can be found in Ireland and Rosen [9, page 44]:

Lemma 2.6 Let $p = 2^a p_1^{e_1} \cdots p_l^{e_l}$ be the prime decomposition of p. Then $U_p \cong U_{2^a} \times U_{p_1^{e_1}} \times \cdots \times U_{p_l^{e_l}}$, where $U_{p_i^{e_i}}$ is the cyclic group of order $p_i^{e_i-1}(p_i-1)$. The group U_{2^a} is the cyclic group of order 1 and 2 for a=1 and 2, respectively, and if a>2, then it is the product of one cyclic group of order 2 and another of order 2^{a-2} .

By Lemma 2.6 and elementary computation, we get:

Lemma 2.7 Let $p = 2^a p_1^{a_1} \cdots p_l^{a_l}$ be the prime decomposition of p. Then

$$\Psi(p) = \begin{cases} (\mathbb{Z}_2)^l & \text{if } a = 0, 1, \\ (\mathbb{Z}_2)^{l+1} & \text{if } a = 2, \\ (\mathbb{Z}_2)^{l+2} & \text{if } a > 2. \end{cases}$$

This Lemma is useful in the computation process that determines which S^3 -manifolds have property H.

If $|\pi_1(M)|=p$, denote $U^2(|\pi_1(M)|)$ by U_p^2 . Then we define group homomorphism $\mathcal{H}\colon \mathrm{Out}(\pi_1(M))\to U^2(|\pi_1(M)|)\colon \text{for all }\phi\in \mathrm{Out}(\pi_1(M))$, take a self-map f of M, such that $f_*\in\phi$, and define $\mathcal{H}(\phi)=\deg(f)\in U^2(|\pi_1(M)|)$.

By Proposition 2.3, $\deg(f) \in U^2(|\pi_1(M)|)$ (after mod $|\pi_1(M)|$). By Proposition 2.4, \mathcal{H} is well defined. By Proposition 2.3 again, \mathcal{H} is surjective.

Let $K(M) = \{\phi \in \text{Out}(\pi_1(M)) \mid \exists f \colon M \to M, \ f_* \in \phi, \ \deg(f) = 1\}$. We can see that $K(M) = \ker(\mathcal{H}), \ |K(M)| = |\text{Out}(\pi_1(M))| / |U^2(|\pi_1(M)|)|$. By Proposition 2.4, K(M) corresponds bijectively with

{degree 1 self-maps
$$f$$
 on M } / homotopy.

Let $K'(M) = \{\phi \in \text{Out}(\pi_1(M)) \mid \exists f : M \to M \text{ an orientation-preserving homeomorphism, } f_* \in \phi \}$, which is a subgroup of K(M). K'(M) corresponds bijectively with the orientation-preserving subgroup of mapping class group of M:

 $\mathcal{MCG}^+(M) = \{\text{orientation-preserving homeomorphism } f \text{ on } M\} / \text{homotopy}$

For an S^3 -manifold $M \neq L(p,q)$, M does not admit a degree -1 self-map, so $\mathcal{MCG}^+(M) = \mathcal{MCG}(M)$.

Remark For the standard definition of $\mathcal{MCG}(M)$, we should use isotopy, not homotopy. However, [1] shows that, for self-homeomorphisms on S^3 -manifolds, homotopy implies isotopy.

To determine whether M has property 1H, we need only determine whether K(M) = K'(M), or whether $|K(M)| = |\mathcal{MCG}^+(M)|$. For this, define the realization coefficient of M:

$$RC(M) = \frac{|K(M)|}{|K'(M)|} = \frac{|\operatorname{Out}(\pi_1(M))|}{|U^2(|\pi_1(M)|)| \cdot |\mathcal{MCG}^+(M)|}.$$

So M has property 1H if and only if RC(M)=1. We need only compute $|Out(\pi_1(M))|$ and $|\mathcal{MCG}^+(M)|$, the computations are completed in Section 4 and Section 5. Section 4 only contains algebraic computations; we will give geometric generators of $\mathcal{MCG}^+(M)$ in Section 5, and determine the relations by results in Section 4.

Since L(p,q) may also admit degree -1 self-maps, and it admits different Seifert structures, we will use a different way to determine $\mathcal{MCG}(M)$ in this case. Section 3 will deal with the lens space case first.

3 Property H of lens spaces

Suppose L(p,q) is decomposed as $L(p,q) = N_1 \cup_T N_2$, where each N_i is a solid torus and $T = \partial N_1 = \partial N_2$ is the Heegaard torus. Let l be the core circle of N_1 .

The following result can be found in [2, Theorem 2.5]:

Lemma 3.1 For any homeomorphism $f: L(p,q) \to L(p,q)$, f(T) is isotopic to T.

Lemma 3.2 Suppose f is a degree 1 self-map on L(p,q), f is homotopic to an orientation-preserving homeomorphism if and only if

$$f_*(l) = \begin{cases} \pm l & \text{if } p \nmid (q^2 - 1), \\ \pm l, \pm ql & \text{if } p \mid (q^2 - 1). \end{cases}$$

Proof By Proposition 2.4, we need only determine all the possible $n \in \mathbb{Z}_p$, such that there is an orientation-preserving homeomorphism f of L(p,q), such that $f_*(l) = nl$.

Suppose f is an orientation-preserving homeomorphism of L(p,q). By Lemma 3.1, f(T) is isotopic to T. So we can isotope f so that f(T) = T. In this case, f sends N_i to N_i (i = 1, 2) or f exchanges N_i .

If f exchanges N_i , suppose $T_i = \partial N_i$, and T_1 is pasted to T_2 by a linear homeomorphism A. Then there is the commutative diagram

$$T_{1} \xrightarrow{f|_{T_{1}}} T_{2}$$

$$A \downarrow \qquad \qquad \downarrow_{A^{-1}}$$

$$T_{2} \xrightarrow{f|_{T_{2}}} T_{1}.$$

Since A pastes the two solid tori to L(p,q), A can be written as

$$\begin{pmatrix} r & p \\ s & q \end{pmatrix}$$
,

where rq - sp = 1. Also $f|T_i$ can be extended to a homeomorphism from N_i to N_j $(i \neq j)$, so $f|T_i$ sends meridian to meridian. Since f preserves the orientation, $f|T_i$ has the form

$$\pm \begin{pmatrix} 1 & 0 \\ m & -1 \end{pmatrix}$$
.

From $A \circ f|_{T_2} \circ A = f|_{T_1}$, we have

$$\begin{pmatrix} r^2 + mrp - sp & rp + mp^2 - pq \\ sr + mrp - sq & sp + mrp - q^2 \end{pmatrix} = \begin{pmatrix} r & p \\ s & q \end{pmatrix} \begin{pmatrix} 1 & 0 \\ m & -1 \end{pmatrix} \begin{pmatrix} r & p \\ s & q \end{pmatrix} = \pm \begin{pmatrix} 1 & 0 \\ n & -1 \end{pmatrix}.$$

So $rp + mp^2 - pq = 0$, and then q - r = mp, $r \equiv q \mod p$. Since rq - sp = 1, we have $q^2 \equiv 1 \mod p$. In this case, $f_*(l) = \pm rl = \pm ql$.

On the other hand, when $q^2 = np + 1$, taking r = q, s = n,

$$f|T_1 = f|T_2 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Then we can obtain an orientation-preserving homeomorphism f on L(p,q) with $f_*(l) = \pm q l$.

If f sends N_i to N_i as a homeomorphism, then f must send l to a longitude of N_1 and so does f_* in $\pi_1(L(p,q))$: $f_*(l) = \pm l$. The homeomorphisms can be realized as in the last case.

Thus we can compute RC(M) directly:

Proposition 3.3 For the lens space L(p,q), $Out(\pi_1(L(p,q))) \cong Out(\mathbb{Z}_p) \cong U_p$,

$$\mathcal{MCG}^{+}(L(p,q)) = \begin{cases} \{e\} & \text{if } p = 2, \\ \mathbb{Z}_{2} & \text{if } p \nmid (q^{2}-1) \text{ or } q = \pm 1, \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text{if } p \mid (q^{2}-1) \text{ and } q \neq \pm 1, \end{cases}$$

$$RC(L(p,q)) = \begin{cases} 1 & \text{if } p = 2, \\ \Psi(p)/2 & \text{if } p \nmid (q^{2}-1) \text{ or } q = \pm 1, \\ \Psi(p)/4 & \text{if } p \mid (q^{2}-1) \text{ and } q \neq \pm 1. \end{cases}$$

The L(p,q) part of Theorem 1.1 follows from this Proposition and Lemma 2.7.

Lemma 3.4 L(p,q) admits a degree -1 self-map if and only if $4 \nmid p$ and all the odd prime factors of p are of the form 4k + 1.

Proof By Proposition 2.3, we need only determine for which p, there is an integer q, such that $q^2 \equiv -1 \mod p$.

Suppose $4 \nmid p$ and all odd prime factors of p are of the form 4k + 1. By Lemma 2.6, U_p is direct sum of some order 4k cyclic groups and the order of -1 in U_p is 2, so q exists

On the other hand, if $4 \mid p$, there is no q such that $q^2 \equiv -1 \mod p$, since odd squares are congruent to $1 \mod 4$. If some prime factor p_1 of p is of the form 4k + 3, then $q^{4k+2} \equiv 1 \mod p_1$, by Fermat's Little Theorem, and so again there is no q such that $q^2 \equiv -1 \mod p$.

By the same computation as Lemma 3.2, we get:

Lemma 3.5 L(p,q) admits an orientation-reversing homeomorphism if and only if $q^2 \equiv -1 \mod p$. In this case, a degree -1 self-map f on L(p,q) is homotopic to an orientation-reversing homeomorphism if and only if $f_*(l) = \pm ql$.

If L(p,q) admits an orientation-reversing homeomorphism, then L(p,q) has property 1H if and only if L(p,q) has property -1H. Synthesizing Lemma 3.4, Lemma 3.5 and Proposition 3.3, we get Proposition 1.2.

4 Out($\pi_1(M)$) of S^3 -manifolds

We are only interested in the order of $Out(\pi_1(M))$, so we only compute the order here. Moreover, we also give a presentation of $Out(\pi_1(M))$, since it will help us in Section 5. All the arguments in this section are combinatorial.

If (m, |G|) = 1, we have $Out(\mathbb{Z}_m \times G) \cong Out(\mathbb{Z}_m) \times Out(G) \cong U_m \times Out(G)$. So the main aim of this section is to compute Out(G) for G in Theorem 2.2 without cyclic summands.

We know that $SU(2) \subset O(4) \cong Iso_+(S^3)$. Let $p: SU(2) \to O(3)$ be the canonical two-to-one Lie group homomorphism. T^* , O^* , I^* and $D^*_{4\alpha_3}$ are the preimage of T, O, I and $D_{2\alpha_3}$ respectively. T, O, I are the symmetry groups of regular tetrahedron, octagon and icosahedron (isomorphic to A_4 , A_5 respectively), and $D_{2\alpha_3}$ is the dihedral group.

Case 1 $G \cong T^*$ or O^* or I^* .

By [7, VIII-2], $Out(T^*) \cong Out(O^*) \cong Out(I^*) \cong \mathbb{Z}_2$. The elements in $Out(G^*)$ not equal to identity can be presented as follows (we can lift an element of Out(G) to $Out(G^*)$ to obtain the presentation $(G \cong T, O, I)$, and we will talk more about this method in the next case):

$$T^*: \quad \phi(x) = x^3, \qquad \phi(y) = y^5,$$
 $O^*: \quad \phi(x) = x^3, \qquad \phi(y) = y^5,$
 $I^*: \quad \phi(x) = xyx^{-1}y^{-1}x^{-1}, \quad \phi(y) = x^2y^2.$

Case 2
$$G \cong D_{4\alpha_3}^* \cong \{x, y \mid x^2 = (xy)^2 = y^{\alpha_3}\}.$$

We determine $\operatorname{Out}(D_{2\alpha_3})$ first. $D_{2\alpha_3} \cong \{x, y \mid x^2 = (xy)^2 = y^{\alpha_3} = 1\}$. Every element in $D_{2\alpha_3}$ can be presented by y^n or xy^n and order of xy^n is 2.

If $\alpha_3 = 2$, $D_{4\alpha_3}^* \cong Q_8 \cong \{\pm 1, \pm i, \pm j, \pm k\}$, $Out(D_8^*) \cong S_3$. So we assume $\alpha_3 > 2$ in the following.

By elementary combinatorial arguments, we can get the following consequence (the condition $\alpha_3 > 2$ is used here):

- (1) When α_3 is odd, $\operatorname{Out}(D_{2\alpha_3})$ is presented by $\phi(x) = x, \phi(y) = y^k$, where $1 \le k \le \alpha_3/2$, $(k, \alpha_3) = 1$.
- (2) When α_3 is even, $Out(D_{2\alpha_3})$ is presented by $\phi(x) = x, \phi(y) = y^k$; $\phi(x) = xy, \phi(y) = y^k$, where $1 \le k \le \alpha_3/2$, $(k, \alpha_3) = 1$.

For $p: D_{4\alpha_3}^* \to D_{2\alpha_3}$, $\ker(p)$ is the center of $D_{4\alpha_3}^*$. Every automorphism ϕ' on $D_{4\alpha_3}^*$ sends the center to the center, so induces an automorphism ϕ on $D_{2\alpha_3}$. If two induced automorphism ϕ_1, ϕ_2 are conjugate in $D_{2\alpha_3}$, then two automorphisms ϕ'_1, ϕ'_2 on $D_{4\alpha_3}^*$ are conjugate. So we can work in this process: given a presentation of $\operatorname{Out}(D_{2\alpha_3})$, ϕ_1, \ldots, ϕ_k , list all the possible liftings of every ϕ_i (there are at most four), and check whether there are any pair of liftings of the same ϕ_i are conjugate with each other. Then we get a presentation of $\operatorname{Out}(D_{4\alpha_3}^*)$.

Lemma 4.1 A presentation of $Out(D_{4\alpha_3}^*)$ is given by the following:

- (1) $\alpha_3 = 2$, $|\text{Out}(D_8^*)| = 6$: id; $\phi(x) = x$, $\phi(y) = xy$; $\phi(x) = y$, $\phi(y) = x$; $\phi(x) = y$, $\phi(y) = xy$; $\phi(x) = xy$, $\phi(y) = x$; $\phi(x) = xy$, $\phi(y) = y$.
- (2) α_3 odd, $|\operatorname{Out}(D_{4\alpha_3}^*)| = |U_{4\alpha_3}|/2$: $\phi(x) = x$, $\phi(y) = y^k$; $\phi(x) = x^3$, $\phi(y) = y^k$, here $1 \le k \le \alpha_3$, $(k, \alpha_3) = 1$, k odd.
- (3) $\alpha_3 > 2$ even, $|\operatorname{Out}(D_{4\alpha_3}^*)| = |U_{4\alpha_3}|/2$: $\phi(x) = x$, $\phi(y) = y^k$; $\phi(x) = x^3 y$, $\phi(y) = y^k$, here $1 \le k \le \alpha_3$, $(k, \alpha_3) = 1$.

Case 3 $G \cong D'_{2^{k+2}\alpha_3} \cong \{x, y \mid x^{2^{k+2}} = y^{\alpha_3} = 1, xy = y^{-1}x\}$, here α_3 is odd.

In $D'_{2^{k+2}\alpha_3}$, every element can be written as $x^u y^v$. Since the subgroup generated by y is product of normal Sylow subgroups of $D'_{2^{k+2}\alpha_3}$, it is a characteristic subgroup. So for any automorphism ϕ of $D'_{2^{k+2}\alpha_3}$, there is $\phi(x) = x^u y^v$, $\phi(y) = y^w$, $(w, \alpha_3) = 1$.

To guarantee ϕ is a homomorphism, u should be odd, and it is enough for ϕ to be an automorphism. The inversion of ϕ is $\phi'(x) = x^{u'}y^{v'}$, $\phi'(y) = y^{w'}$, $uu' \equiv 1 \mod 2^{k+2}$, $ww' \equiv 1 \mod \alpha_3$, $v + v'w \equiv 0 \mod \alpha_3$. Aut $(D'_{2^{k+2}\alpha_3})$ is given as

$$\phi(x) = x^u y^v$$
, $\phi(y) = y^w$, $(w, \alpha_3) = 1$, u odd.

So $|\text{Aut}(D'_{2^{k+2}\alpha_3})| = 2^{k+1}\alpha_3|U_{\alpha_3}|$.

For every automorphism $\phi(x) = x^u y^v$, $\phi(y) = y^w$, conjugate by $x^p y^q$, we get $\phi'(x) = x^u y^{(-1)^p (v-2q)}$, $\phi'(y) = y^{(-1)^p w}$. So the inner automorphism group of $D'_{2^{k+2}\alpha_3}$ has order $2\alpha_3$.

So we get $|\operatorname{Out}(D'_{2^{k+2}\alpha_3})| = 2^k |U(\alpha_3)|$. A presentation of $\operatorname{Out}(D'_{2^{k+2}\alpha_3})$ is

$$\phi(x) = x^u, \phi(y) = y^v, u \text{ odd}, 1 \le v \le \frac{\alpha_3}{2}, (v, \alpha_3) = 1.$$

Case 4 $G \cong T'_{8\cdot 3^{k+1}} \cong \{x, y, z \mid x^2 = y^2 = (xy)^2, z^{3^{k+1}} = 1, zxz^{-1} = y, zyz^{-1} = xy\}.$

Here we assume $k \ge 1$, since $T'_{24} \cong T^*_{24}$. We can observe that $N = \{x, y \mid x^2 = y^2 = (xy)^2\}$ is a normal Sylow subgroup of $T'_{8\cdot3}{}^{k+1}$, so every automorphism ϕ must send N to itself. By conjugation, we can assume $\phi(x) = x, \phi(y) = y$ or xy.

There are eight possibilites for $\phi(z)$: $z^n, z^n x, z^n y, z^n xy, z^n x^2, z^n x^3, z^n yx, z^n y^3$, so ϕ may have sixteen forms. However, to guarantee ϕ to be an automorphism, ϕ can only be one of the following:

$$\phi(x) = x$$
, $\phi(y) = y$, $\phi(z) = z^n$, $n \equiv 1 \mod 3$,
 $\phi(x) = x$, $\phi(y) = xy$, $\phi(z) = z^n x$, $n \equiv 2 \mod 3$.

We can check that all these automorphisms are not conjugate to each other, so they give a presentation of $\operatorname{Out}(T'_{8\cdot3^{k+1}})$, and $|\operatorname{Out}(T'_{8\cdot3^{k+1}})| = 2\cdot3^k$.

5 Mapping class group of S^3 -manifolds

We determine the mapping class group of S^3 -manifolds $M \neq L(p,q)$. In this section, all the manifolds have Seifert manifold structure $M = \{b; \beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3\}$. For these manifolds, $\mathcal{MCG}(M) = \mathcal{MCG}^+(M)$.

In [1; 12], the mapping class groups of S^3 -manifolds have been determined, and some partial results are given in [8; 17; 18]. However, we would like to recompute the mapping class group based on the fact that all homeomorphisms on an S^3 -manifold $M \neq L(p,q)$ can be isotoped to fiber-preserving homeomorphism [1; 10].

5.1 Geometric generators of mapping class group

At first, we construct two types of homeomorphisms of $M = \{b; \beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3\}$ (the second type may be available only for certain types of M). Then we prove these two types of homeomorphisms generate $\mathcal{MCG}(M)$.

Homeomorphism Type I As Definition 2.1, we first define the homeomorphism on $M' = F \times S^1$, and then extend it over three solid tori N_1, N_2, N_3 .

Here F is the three punctured sphere, and we draw it as in Figure 1. Define ρ_1 to be the reflection with respect to the x-axis; σ_1 to be the homeomorphism on S^1 , $\sigma_1(\theta) = -\theta$.

Let $f_1' = \rho_1 \times \sigma_1$ on M'. This preserves the orientation of M', and reverses the orientation on F and S^1 . The restriction of f_1' to the boundary tori is $(\phi, \theta) \to (-\phi, -\theta)$, which sends $l_i = \alpha_i c_i + \beta_i h_i$ to $--l_i$. So we can extend f_1' to a homeomorphism f_1 on M.

Homeomorphism Type II In this case we need $\beta_1/\alpha_1 = \beta_2/\alpha_2$. The two boundary components c_1, c_2 of F corresponding to $\beta_1/\alpha_1, \beta_2/\alpha_2$ are drawn in Figure 1.

Take the polar coordinate (r, θ) on D^2 , assume c_1, c_2 are symmetric with respect to the π rotation on D^2 . Define homeomorphism ρ_2 on F as follows: $\rho_2(r, \theta) = (r, \theta + \pi)$. Then ρ_2 exchanges c_1 and c_2 .

Figure 1

Let $f_2' = \rho_2 \times \mathrm{id}_{S^1}$ on M'. This preserves the orientation of M', F and S^1 . Since $\beta_1/\alpha_1 = \beta_2/\alpha_2$, so f_2' exchanges l_1, l_2 , and sends l_3 to itself. So we can extend f_2' to a homeomorphism f_2 on M.

We can see that these two types of homeomorphisms are involutions of M and they commute with each other.

We will prove that these two types of homeomorphisms generate $\mathcal{MCG}(M)$. First, we need this proposition [1, Proposition 3.1; 10, Lemmas 3.5, 3.6]:

Proposition 5.1 Suppose M is an S^3 -manifold which has a Seifert structure with orbifold S^2 with three singular points. Then any homeomorphism $f: M \to M$ is isotopic to a fiber-preserving homeomorphism with respect to the fibration.

Lemma 5.2 Suppose F is a three punctured sphere, $g: F \to F$ is a homeomorphism and $g|_{\partial F} = \mathrm{id}_{\partial F}$. Then g is isotopic to identity.

Proof We denote the three boundary components of F by c_1, c_2, c_3 . Take a simple arc α connecting c_1 and c_2 .

A basic fact due to Dehn is that we can isotope g so that $g|_{\alpha} = \mathrm{id}_{\alpha}$, and we can still require g to be identity on ∂F . Cutting along α , we get an annulus F_1 and g induces

a homeomorphism g_1 on F_1 such that $g_1|_{\partial F_1}=\mathrm{id}_{\partial F_1}$. The boundary component of F_1 consists of arcs c_1, c_2 and α is denoted by α' . Then we can isotopy g_1 to id_{F_1} and the isotopy process fix all points on α' .

Then we can paste the isotopy on F_1 to an isotopy on F, since the isotopy process fixes α' pointwise. Thus we can isotope g to id_F .

Lemma 5.3 Suppose that $M = \{b; r_1, r_2, r_3\}$, $f: M \to M$ is a fiber-preserving, orientation-preserving homeomorphism, the induced map $\bar{f}: \mathcal{O}(M) \to \mathcal{O}(M)$ preserves the orientation of orbifold, and $\bar{f}(x_i) = x_i$ for the singular points x_i , i = 1, 2, 3. Then f is homotopic to the identity.

Proof Decompose M as the union of $M' = F \times S^1$ and solid tori N_1, N_2, N_3 as in Definition 2.1; the boundary torus of N_i is denoted by T_i . F can be identified with a subsurface of $\mathcal{O}(M)$: $\mathcal{O}(M)$ minus neighborhood of singular points. ∂F consists of three boundary components c_1, c_2, c_3 , which correspond to singular points x_1, x_2, x_3 respectively (see Figure 2). Suppose $r_i = \beta_i/\alpha_i$.

Figure 2

Since $\overline{f}(x_i) = x_i$, we can assume f(M') = M' and $f(N_i) = N_i$.

Since N_i is a solid torus, the homeomorphism must send the meridian to meridian, so we have $(f|_{T_i})_*(\alpha_i c_i + \beta_i h_i) = \pm (\alpha_i c_i + \beta_i h_i)$ on the boundary torus T_i . Since \overline{f} preserves the orientation of $\mathcal{O}(M)$, f preserves the orientation of M, and so preserves the orientation of regular fiber, we have $f_*(h) = h$, thus $(f|_{T_i})_*(h_i) = h_i$. Then we get $(f|_{T_i})_*(c_i) = c_i$.

Take two loops γ_1, γ_2 to be generators of $\pi_1(F)$ as shown in Figure 2. Since $(f|_{T_i})_*(c_i) = c_i$, and c_i is isotopic to γ_i in F, for the subgroup $\pi_1(F) < \pi_1(M')$, we have $(f|_{M'})_*(\pi_1(F)) = \pi_1(F)$ and also $(f|_{M'})_*(h) = h$.

For $g = \overline{f}|_F$, we have $g|_{\partial F} = \mathrm{id}$. By Lemma 5.2, we get a homotopy $H: (F, \partial F) \times I \to (F, \partial F)$, such that $H_0 = g$, $H_1 = \mathrm{id}$. So g_* is conjugate to $\mathrm{id}_{\pi_1(F)}$.

Conjugate by the same element in $\pi_1(F) < \pi_1(M')$, we get $(f|_{M'})_*$ is conjugate to id $|_{\pi_1(M')}$. Since i_* : $\pi_1(M') \to \pi_1(M)$ is surjective, f_* conjugates to the identity. By Proposition 2.4, f is homotopic to the identity. \Box

Lemma 5.4 Suppose that $f: M \to M$ is a fiber-preserving, orientation-preserving homeomorphism and \overline{f} preserves the orientation of $\mathcal{O}(M)$. If f sends singular fiber with index (α_1, β_1) to singular fiber with index (α_2, β_2) , then $\alpha_1 = \alpha_2$ and $\alpha_1 | (\beta_2 - \beta_1)$.

Proof The notation is as in the last lemma.

We can assume that $f(N_1)=N_2$. Since $f|_{N_1}\colon N_1\to N_2$ is a homeomorphism, $f|_{N_1}$ sends the meridian to meridian, thus $(f|_{T_1})_*(\alpha_1c_1+\beta_1h_1)=\pm(\alpha_2c_2+\beta_2h_2)\in\pi_1(T_2)$. Since \overline{f} preserves the orientation of $\mathcal{O}(M)$, we have $(\overline{f}|_F)_*(c_1)=c_2$, so $(f|_{T_1})_*(c_1)=c_2+lh_2$. Since \overline{f} preserves the orientation of $\mathcal{O}(M)$, f preserves the orientation of M and the Seifert structure of M, we have $(f|_{T_1})_*(h_1)=h_2$. Then we have

$$\alpha_2 c_2 + \beta_2 h_2 = (f|_{T_1})_* (\alpha_1 c_1 + \beta_1 h_1) = \alpha_1 c_2 + (l\alpha_1 + \beta_1) h_2 \in \pi_1(T_2).$$
 Since c_2, h_2 is a basis of $\pi_1(T_2)$, we get $\alpha_1 = \alpha_2$ and $\alpha_1 | (\beta_2 - \beta_1)$.

Proposition 5.5 For an S^3 -manifold $M \neq L(p,q)$, the mapping class group of M is generated by the homeomorphisms of type I and type II defined at the beginning of Section 5.1.

Proof Suppose f is an orientation-preserving homeomorphism of M. Then by Proposition 5.1, we can isotope f to a fiber-preserving homeomorphism.

If necessary, compose f with homeomorphism of type I. For the new homeomorphism f_1 , we can assume $\overline{f_1}$ preserves the orientation on $\mathcal{O}(M)$. If $\overline{f_1}$ sends a singular point x_1 to singular point x_2 , by Lemma 5.4, we have $\alpha_1=\alpha_2$ and $\alpha_1|(\beta_2-\beta_1)$. If necessary, rechoose the section F, we can assume $\beta_1=\beta_2$. Composing with homeomorphism of type II, we get a new homeomorphism f_2 such that $\overline{f_2}(x_1)=x_1$, and $\overline{f_2}$ still preserves the orientation on $\mathcal{O}(M)$. By induction, we obtain a map f_3 that sends every singular fiber to itself.

Now f_3 satisfies the condition of Lemma 5.3, so f_3 is homotopic to identity. Since we compose f with homeomorphisms of type I and II to get $f_3 \sim \text{id}$, we obtain that f is homotopic to composition of homeomorphisms of type I and II.

5.2 Equivalence of two presentations

The presentations of $\pi_1(M)$ in Theorem 2.2 do not reflect the Seifert structure of S^3 -manifolds. However, for a Seifert manifold $M = \{b; \beta_1/\alpha_1, \beta_2/\alpha_2, \beta_3/\alpha_3\}$, there is a natural presentation of $\pi_1(M)$ from the Seifert structure [16]:

$$\pi_1(M) \cong \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^{\alpha_1} h^{\beta_1} = c_2^{\alpha_2} h^{\beta_2} = (c_1 c_2)^{-\alpha_3} h^{b\alpha_3 + \beta_3} = 1\}.$$

For simplicity, we call the presentation given in Theorem 2.2 the classical presentation, and denote it by G; we call the presentation given by the Seifert structure Seifert presentation, and denote it by G'.

The induced maps on π_1 of the homeomorphisms of type I and II are more easily obtained for the Seifert presentation:

- For a type I homeomorphism f_1 , we have $(f_1)_*(c_1) = c_1^{-1}$, $(f_1)_*(c_2) = c_2^{-1}$, $(f_1)_*(h) = h^{-1}$.
- For a type II homeomorphism f_2 , we have $(f_2)_*(c_1) = c_2$, $(f_2)_*(c_2) = c_1$, $(f_2)_*(h) = h$.

However, we have given a presentation of $Out(\pi_1(M))$ by the classical presentation, so we shall show how the presentations correspond to each other. Then we can present the induced map on fundamental group of type I and II homeomorphisms by the known presentation of $Out(\pi_1(M))$.

Denote by $i: G \to G', j: G' \to G$ the isomorphism between the two presentations of $\operatorname{Out}(\pi_1(M))$ such that $ji = \operatorname{id}_G, ji = \operatorname{id}_{G'}$. We will give i, j explicitly in the following.

Case 1
$$M = \{b; 1/2, 1/2, \beta_3/\alpha_3\}, m = (b+1)\alpha_3 + \beta_3, (m, 2\alpha_3) = 1.$$

(i) If $\alpha_3 > 2$, classical presentation: $G = \{a, x, y | a^m = 1, [x, a] = [y, a] = 1, x^2 = (xy)^2 = y^{\alpha_3} \}$; Seifert presentation: $G' = \{h, c_1, c_2 | [c_1, h] = [c_2, h] = 1, c_1^2 h = c_2^2 h = (c_1 c_2)^{-\alpha_3} h^{b\alpha_3 + \beta_3} = 1 \}$.

$$i(a) = h^{1-m}, \quad i(x) = c_1^{-m^2}, \qquad i(y) = c_1 c_2^{-1},$$

 $j(h) = ax^2, \quad j(c_1) = a^{(m-1)/2} x^{-1}, \quad j(c_2) = a^{(m-1)/2} y^{-1} x^{-1}.$

(ii) If $\alpha_3 = 2$, we take the same classical presentation but another Seifert presentation, since this presentation can reflect the symmetry of the orbifold better. $G' = \{h, c_1, c_2, c_3 \mid [c_1, h] = [c_2, h] = [c_3, h] = 1, c_1^2 h = c_2^2 h = c_3^2 h = c_1 c_2 c_3 h^{-b} = 1\}$.

$$i(a) = h^{2b+4}, i(x) = h^{2b^2+4b+1}c_1^{-1}, i(y) = h^{2b^2-4}c_2,$$

 $j(h) = ax^2, j(c_1) = a^{b+1}x, j(c_2) = a^{b+1}y, j(c_3) = a^{b+1}(xy)^{2b-1}.$

Case 2 $M = \{b; 1/2, 1/2, \beta_3/\alpha_3\}, m = (b+1)\alpha_3 + \beta_3, m = 2^k m'.$

Classical presentation: $G = \{a, x, y \mid a^{m'} = 1, [x, a] = [y, a] = 1, x^{2^{k+2}} = y^{\alpha_3} = 1, xy = y^{-1}x\}$; Seifert presentation: $G' = \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^2 h = c_2^2 h = (c_1c_2)^{-\alpha_3}h^{b\alpha_3+\beta_3} = 1\}$. Suppose the integer w satisfies $wm' \equiv 1 \mod 2^{k+2}$.

$$i(a) = h^{1-m'w}, \quad i(x) = (h^{(m'-1)/2}c_1^{-1})^w, \quad i(y) = c_1^{-1-2m}c_2,$$

 $j(h) = ax^2, \qquad j(c_1) = a^{(m'-1)/2}x^{-1}, \qquad j(c_2) = a^{(m'-1)/2}x^{-1-2m}y.$

Case 3 $M = \{b; 1/2, \beta_2/3, \beta_3/3\}, m = 6b + 3 + 2(\beta_2 + \beta_3), (m, 12) = 1$. Then we can assume $\beta_2 = \beta_3 = 1$, so m = 6b + 7.

Classical presentation: $G = \{a, x, y \mid a^m = 1, [x, a] = [y, a] = 1, x^2 = (xy)^3 = y^3, x^4 = 1\}$; Seifert presentation: $G' = \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^3 h = c_2^3 h = (c_1c_2)^2 h^{-1-2b} = 1\}$.

$$i(a) = h^{6b+8}, \quad i(x) = c_1 c_2 h^{-4b-4}, \quad i(y) = c_2^{-1} h^{2b+2},$$

 $j(h) = ax^2, \quad j(c_1) = a^{2b+2} xy, \quad j(c_2) = a^{2b+2} y^{-1}.$

Case 4 $M = \{b; 1/2, \beta_2/3, \beta_3/3\}, m = 6b + 3 + 2(\beta_2 + \beta_3), (m, 12) \neq 1$. We assume $\beta_2 = 1, \beta_3 = 2$. Then $m = 6b + 9 = 3^k m'$, so we can also assume m' = 3n + 1.

Classical presentation: $G = \{a, x, y, z \mid a^{m'} = 1, [x, a] = [y, a] = [z, a] = 1, x^2 = (xy)^2 = y^2, zxz^{-1} = y, zyz^{-1} = xy, z^{3^{k+1}} = 1\};$ Seifert presentation: $G' = \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^3 h = c_2^3 h^2 = (c_1 c_2)^2 h^{-1-2b} = 1\}.$

$$i(a) = h^{(1-m')^k},$$
 $i(x) = c_1 c_2 h^{-4b-5},$
 $i(y) = c_2 c_1 h^{2b+4},$ $i(z) = c_2^{-1} c_1^{-2} h^{-(1-m')^{k+1}/3 + 4b+5},$

$$j(h) = ax^2z^3$$
, $j(c_1) = a^{-(m'-1)^2/3}z^{-1}x^{-1}$, $j(c_2) = a^{4b+5+(m'-1)^2/3}xy^3z^{12b+16}$.

Actually, in Case 5 and Case 6, we do not need the isomorphism to determine $\mathcal{MCG}(M)$. However, for completion, we list the isomorphisms here.

Case 5 $M = \{b; 1/2, \beta_2/3, \beta_3/4\}, m = 12b + 6 + 4\beta_2 + 3\beta_3$. We can assume $\beta_2 = 1$.

Classical presentation: $G = \{a, x, y \mid a^m = 1, [x, a] = [y, a] = 1, x^2 = (xy)^3 = y^4, x^4 = 1\}$; Seifert presentation: $G' = \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^3 h = c_2^4 h^{\beta_3} = (c_1c_2)^2 h^{-1-2b} = 1\}$.

(i) $\beta_3 = 1$, so m = 12b + 13:

$$i(a) = h^{12b+14}$$
, $i(x) = c_1 c_2 h^{12b^2 - 6b - 20}$, $i(y) = c_2^{-1} h^{12b^2 + 4b - 10}$, $j(h) = ax^2$, $j(c_1) = a^{4b+4} xy$, $j(c_2) = a^{3b+3} y^{-1}$.

(ii) $\beta_3 = 3$, so m = 12b + 19:

$$i(a) = h^{12b+20}$$
, $i(x) = c_1 c_2 h^{12b^2+12b-20}$, $i(y) = c_2^{-1} h^{12b^2+22b+4}$,
 $i(h) = ax^2$, $i(c_1) = a^{4b+6} xy$, $i(c_2) = a^{3b+4} y^{-1}$.

Case 6 $M = \{b; 1/2, \beta_2/3, \beta_3/5\}, m = 30b + 15 + 10\beta_2 + 6\beta_3$. We can assume $\beta_2 = 1$.

Classical presentation: $G = \{a, x, y \mid a^m = 1, [x, a] = [y, a] = 1, x^2 = (xy)^3 = y^5, x^4 = 1\}$; Seifert presentation: $G' = \{h, c_1, c_2 \mid [c_1, h] = [c_2, h] = 1, c_1^3 h = c_2^5 h^{\beta_3} = (c_1c_2)^2 h^{-1-2b} = 1\}$.

(i) $\beta_3 = 1$ or 3:

$$i(a) = h^{30b+26+6\beta_3}, \quad i(x) = c_1 c_2 h^{-16b-13-3\beta_3}, \quad i(y) = c_2^{-1} h^{6b+5+\beta_3},$$

 $j(h) = ax^2, \qquad j(c_1) = a^{10b+8+2\beta_3} xy, \qquad j(c_2) = a^{6b+5+\beta_3} y^{-1}.$

(ii) $\beta_3 = 2 \text{ or } 4$:

$$i(a) = h^{30b+26+6\beta_3}, \quad i(x) = c_1^{-1}c_2^{-1}h^{16b+13+3\beta_3}, \quad i(y) = c_2h^{-6b-5-\beta_3},$$

 $j(h) = ax^2, \qquad j(c_1) = a^{10b+8+2\beta_3}y^{-1}x^{-1}, \quad j(c_2) = a^{6b+5+\beta_3}x^2y.$

5.3 Determination of mapping class group

Given the equivalence connecting the classical and Seifert presentations of $\pi_1(M)$, we can compute the $\mathcal{MCG}(M)$ now (for S^3 -manifolds $M \neq L(p,q)$, $\mathcal{MCG}(M) = \mathcal{MCG}^+(M)$).

Case 1
$$M = \{b; 1/2, 1/2, \beta_3/\alpha_3\}, m = (b+1)\alpha_3 + \beta_3, (m, 2\alpha_3) = 1, \pi_1(M) \cong \mathbb{Z}_m \times D_{4\alpha_3}^*$$
.

(i) We first assume $\alpha_3 > 2$. Since only one pair of singular fibers of M satisfies $\alpha_1 = \alpha_2$, and $\alpha_1 | (\beta_2 - \beta_1)$, M only admit one homeomorphism of type II.

Suppose f is the homeomorphism of type I: $f_*(c_1) = c_1^{-1}$, $f(c_2) = c_2^{-1}$, $f_*(h) = h^{-1}$. By the equivalence given in the last part, in the classical presentation, we have $f_*(a) = a^{-1}$, $f_*(x) = x^3$, $f_*(y) = y$.

Suppose g is the unique homeomorphism of type II: $g_*(c_1) = c_2$, $g_*(c_2) = c_1$, $g_*(h) = h$. In the classical presentation, we have $g_*(a) = a$, $g_*(x) = (xy)^{-1}$, $g_*(y) = y^{-1}$.

When α_3 is odd, conjugating by $xy^{-(\alpha_3-1)/2}$, we get g_* is conjugated to $\phi(a)=a$, $\phi(x)=x^3$, $\phi(y)=y$. Comparing with the presentation of $\operatorname{Out}(D_{4\alpha_3}^*)$ in Section 4,

we have: when m = 1, $f_* \sim g_* \not\sim \text{id}$ (here \sim means conjugate), $\mathcal{MCG}(M) \cong \mathbb{Z}_2$; when m > 1, id $\not\sim f_* \not\sim g_* \not\sim \text{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

When α_3 is even, conjugating by $y^{\alpha_3/2}$, f_* is conjugated to $\phi(a) = a^{-1}$, $\phi(x) = x, \phi(y) = y$; conjugate by $xy^{\alpha_3/2+1}$, g_* is conjugated to $\phi(a) = a$, $\phi(x) = x^3y$, $\phi(y) = y$. Comparing with Section 4, we have: when m = 1, id $\sim f_* \not\sim g_*$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$; when m > 1, id $\not\sim f_* \not\sim g_* \not\sim \mathrm{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(ii) When $\alpha_3 = 2$, the three singular fibers are symmetric with each other, so there are more homeomorphisms of type II.

We take the section F' of $M'' = F' \times S^1$ as in Figure 3; here F' is a four-punctured sphere, while one puncture corresponds to a regular fiber, c_i corresponds to singular fiber l_i , i = 1, 2, 3 respectively.

Figure 3

Suppose f is the homeomorphism of type I, $f_*(c_1) = c_1^{-1}$, $f(c_2) = c_2^{-1}$, $f(c_2) = c_2^{-1}$, $f_*(h) = h^{-1}$. By the isomorphism given in the last part, for the Seifert presentation, $f_*(a) = a^{-1}$, $f_*(x) = x^3$, $f_*(y) = y^3$; conjugating by xy, we have f_* is conjugated to $\phi(a) = a^{-1}$, $\phi(x) = x$, $\phi(y) = y$.

Suppose g, g' are two homeomorphisms of type II where g exchanges l_1, l_2 , fixes l_3 , while g' exchanges l_2, l_3 , fixes l_1 , and the type II homeomorphism that exchanges l_1, l_3 and fixes l_2 is equal to gg'g. The group generated by the g, g' actions on l_1, l_2, l_3 acts as the permutation group S_3 , so the corresponding subgroup of $\mathcal{MCG}(G)$ is a quotient group of S_3 .

Under the Seifert presentation, g, g' are: $g_*(c_1) = c_2, g_*(c_2) = c_1, g_*(c_3) = c_1^{-1}c_3c_1, g_*(h) = h; g'_*(c_1) = c_2^{-1}c_1c_2, g'_*(c_2) = c_3, g'_*(c_3) = c_2, g'_*(h) = h$. On the classical presentation, we have $g_*(a) = a, g_*(x) = y, g_*(y) = x; g'_*(a) = a, g'_*(x) = x^3, g'_*(y) = (xy)^{2b-1}$. Conjugating by y or xy, we have g'_* conjugates

to $\psi(a) = a, \psi(x) = x, \psi(y) = xy$. Comparing with Section 4, we have: the action of g_* and g_*' on D_8^* generate the whole $\operatorname{Out}(D_8^*) \cong S_3$.

Considering f_* , we have: when m = 1, $\mathcal{MCG}(M) \cong S_3$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times S_3$.

Case 2 $M = \{b; 1/2, 1/2, \beta_3/\alpha_3\}, m = (b+1)\alpha_3 + \beta_3, m = 2^k m', \pi_1(M) \cong \mathbb{Z}'_m \times D'_{2^{k+2}\alpha_3}.$

Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_*(a) = a^{-1}$, $f_*(x) = x^{-1}$, $f_*(y) = y$.

Suppose g is the unique homeomorphism of type II. In the classical presentation, we have $g_*(a) = a$, $g_*(x) = x^{2^{k+1}+1}y$, $g_*(y) = y^{-1}$. Conjugating by $xy^{(1+\alpha_3)/2}$, g_* conjugates to $\phi(a) = a$, $\phi(x) = x^{2^{k+1}+1}$, $\phi(y) = y$.

Comparing with the presentation of $\operatorname{Out}(D'_{2^{k+2}\alpha_3})$ in Section 4, we have: $\operatorname{id} \not\sim f_* \not\sim g_* \not\sim \operatorname{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Case 3 $M = \{b; 1/2, \beta_2/3, \beta_3/3\}, m = 6b + 3 + 2(\beta_2 + \beta_3), (m, 12) = 1$. We can assume $\beta_2 = \beta_3 = 1, \pi_1(M) \cong \mathbb{Z}_m \times T_{24}^*$.

Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_*(a) = a^{-1}$, $f_*(x) = y^{-1}x^{-1}y$, $f_*(y) = y^{-1}$. Conjugating by y, f_* conjugates to $\phi(a) = a^{-1}$, $\phi(x) = x^{-1}$, $\phi(y) = y^{-1}$.

Suppose g is the unique homeomorphism of type II. In the classical presentation, we have $g_*(a) = a, g_*(x) = y^{-1}xy, g_*(y) = y^{-1}x^{-1}$. Conjugating by $y^{-1}xy^2, g_*$ conjugates to $\psi(a) = a, \psi(x) = x^{-1}, \psi(y) = y^{-1}$.

Comparing with the presentation of $\operatorname{Out}(T_{24}^*)$ in Section 4, we have: when m=1, $f_* \sim g_* \not\sim \operatorname{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$; when m>1, $\operatorname{id} \not\sim f_* \not\sim g_* \not\sim \operatorname{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Case 4 $M = \{b; 1/2, \beta_2/3, \beta_3/3\}, m = 6b + 3 + 2(\beta_2 + \beta_3), (m, 12) \neq 1$. We assume $\beta_2 = 1, \beta_3 = 2$, so $m = 6b + 9 = 3^k m'$, and we can still assume m' = 3n + 1, $\pi_1(M) \cong \mathbb{Z}_{m'} \times T'_{8,3^{k+1}}$.

Here M does not admit a homeomorphism of type II. Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_*(a) = a^{-1}$, $f_*(x) = y$, $f_*(y) = x$, $f_*(z) = xz^{-1}$. Conjugating by z^{-1} , f_* is conjugate to $\phi(a) = a^{-1}$, $\phi(x) = x$, $\phi(y) = xy$, $\phi(z) = z^{-1}x$.

Comparing with the presentation of $\operatorname{Out}(T'_{8\cdot3}{}^{k+1})$ in Section 4, we have $f_* \not\sim \operatorname{id}$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$.

Case 5 $M = \{b; 1/2, \beta_2/3, \beta_3/4\}, m = 12b + 6 + 4\beta_2 + 3\beta_3, \pi_1(M) \cong \mathbb{Z}_m \times O_{48}^*$.

Case 6 $M = \{b; 1/2, \beta_2/3, \beta_3/5\}, m = 30b + 15 + 10\beta_2 + 6\beta_3, \pi_1(M) \cong \mathbb{Z}_m \times I_{120}^*.$

In these two cases, M does not admit a homeomorphism of type II, so $\mathcal{MCG}(M) \cong \mathbb{Z}_2$ or is trivial. Suppose f is the homeomorphism of type I.

When m > 1, then the fiber h corresponds with an element of type $(\bar{1}, u) \in \pi_1(M) \cong \mathbb{Z}_m \times O_{48}^*$ or $\pi_1(M) \cong \mathbb{Z}_m \times I_{120}^*$. So we have $f_*(\bar{1}, u) = (-\bar{1}, g(u))$, and $f_* \not\sim \mathrm{id}$, so $\mathcal{MCG}(M) \cong \mathbb{Z}_2$.

When m=1, by Section 4, we have $\operatorname{Out}(O_{48}^*)\cong\operatorname{Out}(I_{120}^*)\cong\mathbb{Z}_2$, and $U_{48}^2\cong U_{120}^2\cong\mathbb{Z}_2$. But $|K(M)|=|\operatorname{Out}(\pi_1(M))|/|U^2(|\pi_1(M)|)||$, so we have $K(M)=\{\operatorname{id}\}$. Since f is a degree one self-map on M, f is homotopic to identity, thus $\mathcal{MCG}(M)\cong\{e\}$.

Bringing together the above results, we get the following:

Theorem 5.6 The mapping class groups of S^3 –manifolds are shown as follows:

- (i) $M = S^3$, $\mathcal{MCG}(M) \cong \{e\}$.
- (ii) M = L(p, q):
 - (a) $q = \pm 1$, or $p \nmid q^2 1$, $p \nmid q^2 + 1$, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$.
 - (b) $p \mid q^2 1, q \neq \pm 1, \mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2.$
 - (c) $p \mid q^2 + 1, q \neq \pm 1, \mathcal{MCG}(M) \cong \mathbb{Z}_4$.
- (iii) $\pi_1(M) \cong \mathbb{Z}_m \times D_{4\alpha_3}^*$:
 - (a) $\alpha_3 = 2$: when m = 1, $\mathcal{MCG}(M) \cong S_3$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times S_3$.
 - (b) $\alpha_3 > 2$: when m = 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (iv) $\pi_1(M) \cong \mathbb{Z}'_m \times D'_{2^{k+2}\alpha_3}$, $\alpha_3 > 1$ odd, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (v) $\pi_1(M) \cong \mathbb{Z}'_m \times T_{24}^*$: when m = 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
- (vi) $\pi_1(M) \cong \mathbb{Z}'_m \times T'_{8,3^{k+1}}, k > 0, \mathcal{MCG}(M) \cong \mathbb{Z}_2.$
- (vii) $\pi_1(M) \cong \mathbb{Z}'_m \times O_{48}^*$: when m = 1, $\mathcal{MCG}(M) \cong \{e\}$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$.
- (viii) $\pi_1(M) \cong \mathbb{Z}'_m \times I^*_{120}$: when m = 1, $\mathcal{MCG}(M) \cong \{e\}$; when m > 1, $\mathcal{MCG}(M) \cong \mathbb{Z}_2$.

6 Conclusions

The computational results of $Out(\pi_1(M))$, $\mathcal{MCG}(M)$, RC(M) ($M \neq L(p,q)$) are shown in Table 1. By elementary computation, we can get the part of Theorem 1.1 for $M \neq L(p,q)$ easily.

$\pi_1(M)$	$ \mathrm{Out}(\pi_1(M)) $	$ \mathcal{MCG}(M) $	RC(M)
$\mathbb{Z}_m \times D_8^*$	$6 U_m $	6 m = 1 $12 m > 1$	$1 \qquad m = 1$ $\Psi(m)/2 m > 1$
$\mathbb{Z}_m \times D_{4\alpha_3}^*, \\ \alpha_3 > 2$	$ U_m U_{4\alpha_3} /2$	2 m = 1 4 m > 1	$\Psi(4\alpha_3)/4 \qquad m = 1$ $\Psi(m)\Psi(4\alpha_3)/8 m > 1$
	$2^k U_m U_{\alpha_3} $	4	$\Psi(m)\Psi(\alpha_3)/2$
$\mathbb{Z}_m \times T_{24}^*$	$2 U_m $	2 m = 1 4 m > 1	$1 \qquad m = 1$ $\Psi(m)/2 m > 1$
$\mathbb{Z}_m \times T'_{8\cdot 3^{k+1}},$ $k > 0$	$2\cdot 3^k U_m $	2	$\Psi(m)$
$\mathbb{Z}_m \times O_{48}^*$	$2 U_m $	1 m = 1 2 m > 1	$1 \qquad m = 1$ $\Psi(m)/2 m > 1$
$\mathbb{Z}_m \times I_{120}^*$	$2 U_m $	$ \begin{array}{ccc} 1 & m = 1 \\ 2 & m > 1 \end{array} $	$1 \qquad m = 1$ $\Psi(m)/2 m > 1$

Table 1

Acknowledgements Thanks to Professor Michel Boileau and Professor Hyam Rubinstein for introducing me to references and related results about mapping class groups of S^3 -manifolds.

References

- [1] **M Boileau**, **J-P Otal**, Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert, Invent. Math. 106 (1991) 85–107 MR1123375
- [2] **A Hatcher**, *Notes on basic* 3-manifold topology Available at http://www.math.cornell.edu/~hatcher/
- [3] C Hayat-Legrand, E Kudryavtseva, S Wang, H Zieschang, Degrees of self-mappings of Seifert manifolds with finite fundamental groups, Rend. Istit. Mat. Univ. Trieste 32 (2001) 131–147 (2002) MR1893395 Dedicated to the memory of Marco Reni
- [4] **J Hempel**, *Residual finiteness of surface groups*, Proc. Amer. Math. Soc. 32 (1972) 323 MR0295352
- [5] **J Hempel**, 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976) MR0415619

[6] J Hempel, Residual finiteness for 3-manifolds, from: "Combinatorial group theory and topology (Alta, Utah, 1984)", (S M Gersten, J R Stallings, editors), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379–396 MR895623

- J A Hillman, The algebraic characterization of geometric 4-manifolds, London Math. Soc. Lecture Note Ser. 198, Cambridge Univ. Press (1994) MR1275829
- [8] C Hodgson, J H Rubinstein, Involutions and isotopies of lens spaces, from: "Knot theory and manifolds (Vancouver, B.C., 1983)", (D Rolfsen, editor), Lecture Notes in Math. 1144, Springer, Berlin (1985) 60–96 MR823282
- [9] K Ireland, M Rosen, A classical introduction to modern number theory, second edition, Graduate Texts in Math. 84, Springer, New York (1990) MR1070716
- [10] **B Jiang**, **S Wang**, **Y-Q Wu**, *Homeomorphisms of 3–manifolds and the realization of Nielsen number*, Comm. Anal. Geom. 9 (2001) 825–877 MR1868922
- [11] **J Kalliongis**, **D McCullough**, π_1 -injective mappings of compact 3-manifolds, Proc. London Math. Soc. (3) 52 (1986) 173–192 MR812450
- [12] **D McCullough**, *Isometries of elliptic 3–manifolds*, J. London Math. Soc. (2) 65 (2002) 167–182 MR1875143
- [13] **G D Mostow**, *Strong rigidity of locally symmetric spaces*, Annals of Math. Studies 78, Princeton Univ. Press (1973) MR0385004
- [14] **P Olum**, *Mappings of manifolds and the notion of degree*, Ann. of Math. (2) 58 (1953) 458–480 MR0058212
- [15] **P Olum**, *On mappings into spaces in which certain homotopy groups vanish*, Ann. of Math. (2) 57 (1953) 561–574 MR0054250
- [16] P Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer, Berlin (1972) MR0426001
- [17] **J H Rubinstein**, On 3–manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979) 129–137 MR531972
- [18] **J H Rubinstein**, **J S Birman**, *One-sided Heegaard splittings and homeotopy groups of some 3–manifolds*, Proc. London Math. Soc. (3) 49 (1984) 517–536 MR759302
- [19] P Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401–487 MR705527
- [20] **W P Thurston**, *Three-dimensional manifolds*, *Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.) 6 (1982) 357–381 MR648524

Department of Mathmatics, Princeton University Princeton, NJ 08544

hongbins@princeton.edu

Received: 16 September 2009 Revised: 4 February 2010