Degree ± 1 self-maps and self-homeomorphisms on prime 3-manifolds

Hongbin Sun

Abstract

We determine all closed orientable geometrizable prime 3-manifolds that admit a degree 1 or -1 self-map not homotopic to a homeomorphism.

57M05, 57M50; 20F34

1 Introduction

1.1 Background

All manifolds in this paper are closed and orientable unless stated otherwise. Definitions of terminology not stated here can be found in Hempel [5] and Hatcher [2].

Given a closed oriented n-manifold M, it is natural to ask whether all the degree ± 1 self-maps of M can be homotopic to homeomorphisms.

If the property stated above holds for M, we say M has property H. In particular, if all the degree $1(-1)$ self-maps of M are homotopic to homeomorphisms, we say M has property $1 \mathrm{H}(-1 \mathrm{H}) . M$ has property H if and only if M has both property 1 H and property -1 H . Observe that if M admits an orientation-reversing self-homeomorphism, then M has property 1 H if and only if M has property -1 H . So we need only consider property 1 H in most of this paper.

The first positive result on property H is the Hopf theorem: two self-maps of S^{n} are homotopic if and only if they have the same mapping degree. The result that every $1-$ and 2 -dimensional manifold has property H is also well-known: since its fundamental group is Hopfian (see Hempel [4]), all automorphisms of $\pi_{1}\left(M^{2}\right)$ can be realized by a homeomorphism [5, 13.1], and every M^{2} except S^{2} is a $K(\pi, 1)$.

For dimension >3, it seems difficult to get general results, since there are no classification results for manifolds of dimension $n>3$, and the homotopy groups can be rather complicated.

Now we restrict to dimension 3. From now on, unless stated otherwise, all manifolds in the following are 3-manifolds. Thurston's geometrization conjecture [20], which
seems to be confirmed, implies that closed oriented 3-manifolds can be classified in a reasonable sense. So we can check whether 3 -manifolds have property H case-by-case.

Thurston's geometrization conjecture claims that each Jaco-Shalen-Johannson piece of a prime 3 -manifold supports one of the eight geometries, $E^{3}, H^{3}, S^{3}, S^{2} \times E^{1}$, $H^{2} \times E^{1}, \widetilde{\operatorname{PSL}}(2, R)$, Nil, Sol (for details see Thurston [20] and Scott [19]). Call a closed orientable 3-manifold M geometrizable if each prime factor of M meets Thurston's geometrization conjecture. All 3-manifolds discussed in this paper are geometrizable, and we may sometimes omit "geometrizable".

In this paper, we would like to determine which prime 3 -manifolds, the basic part of 3 -manifolds, have property H .

Since all degree ± 1 maps f on M induce surjections on its fundamental group, and the fundamental groups of geometrizable 3-manifolds are residually finite (therefore, Hopfian) (for example, see Hempel [5, 15.13; 6, 1.3] or Kalliongis and McCullough [11, 3.22]), $f_{*}: \pi_{1}(M) \rightarrow \pi_{1}(M)$ is an isomorphism.

Hyperbolic 3-manifolds, which seem to be the most mysterious, have property H by the celebrated Mostow rigidity theorem [13]. By Waldhausen's theorem on Haken manifolds (see Hempel [5, 13.6]), all Haken manifolds also have property H.

These two theorems cover most cases of prime geometrizable 3-manifolds, including manifolds with nontrivial JSJ decomposition, hyperbolic manifolds and Seifert manifolds with incompressible surface. It is also easy to see that $S^{2} \times S^{1}$ has property H by elementary obstruction theory. So the remaining cases are:

- (Class 1) M^{3} supporting the S^{3}-geometry $\left(M=S^{3} / \Gamma\right.$, where $\Gamma<O(4) \cong$ Iso $+\left(S^{3}\right)$ acts freely on $\left.S^{3}\right)$.
- (Class 2) Seifert manifolds M^{3} supporting the Nil or $\widehat{\operatorname{PSL}(2, R)}$ geometries with orbifold $S^{2}(p, q, r)$.

Essentially, it is known that the manifolds in Class 2 have property H. However, the author can't find a proper reference. We can copy the proof of [19, Theorem 3.9] word-for-word to prove this result.

1.2 Main Results

Mainly, the aim of this paper is to determine which S^{3}-manifolds (manifolds in Class 1) have property H .

According to [16] or [19], the fundamental group of a 3 -manifold supporting the S^{3}-geometry belongs to one of the following eight types: $\mathbb{Z}_{p}, D_{4 n}^{*}, T_{24}^{*}, O_{48}^{*}$, $I_{120}^{*}, T_{8 \cdot 3^{q}}^{\prime}, D_{n^{\prime} \cdot 2^{q}}^{\prime}$ and $\mathbb{Z}_{m} \times \pi_{1}(N)$, where N is a S^{3}-manifold, $\pi_{1}(N)$ belongs to one of the previous seven types and $\left|\pi_{1}(N)\right|$ is coprime to m. The cyclic group Z_{p} is realized by lens space $L(p, q)$. Each group in the remaining types is realized by a unique S^{3}-manifold.

Theorem 1.1 For M supporting the S^{3}-geometry, M has property 1H if and only if M belongs to one of the following classes:
(i) S^{3}.
(ii) $L(p, q)$ satisfying one of the following:
(a) $p=2,4, p_{1}^{e_{1}}, 2 p_{1}^{e_{1}}$.
(b) $p=2^{s}(s>2), 4 p_{1}^{e_{1}}, p_{1}^{e_{1}} p_{2}^{e_{2}}, 2 p_{1}^{e_{1}} p_{2}^{e_{2}}, q^{2} \equiv 1 \bmod p$ and $q \neq \pm 1$.
(iii) $\pi_{1}(M)=\mathbb{Z}_{m} \times D_{4 k}^{*},(m, k)=\left(1,2^{k}\right),\left(p_{1}^{e_{1}}, 2^{k}\right),\left(1, p_{2}^{e_{2}}\right)$ or $\left(p_{1}^{e_{1}}, p_{2}^{e_{2}}\right)$.
(iv) $\pi_{1}(M)=D_{2}^{\prime} k+2 p_{1}^{e_{1}}$.
(v) $\pi_{1}(M)=T_{24}^{*}$ or $\mathbb{Z}_{p_{1}}^{e_{1}} \times T_{24}^{*}$.
(vi) $\pi_{1}(M)=T_{8 \cdot 3^{k+1}}^{\prime}$.
(vii) $\pi_{1}(M)=O_{48}^{*}$ or $\mathbb{Z}_{p_{1}^{e_{1}}} \times O_{48}^{*}$.
(viii) $\pi_{1}(M)=I_{120}^{*}$ or $\mathbb{Z}_{p_{1}^{e_{1}}} \times I_{120}^{*}$.

Here p_{1}, p_{2} are odd prime numbers, and e_{1}, e_{2}, k, m are positive integers.
By [3] and elementary number theory, among all the S^{3}-manifolds, only S^{3} and lens spaces admit degree -1 self-maps. So when considering property -1 H , we can restrict the manifold to be $L(p, q)$.

Proposition 1.2 $L(p, q)$ has property -1 H if and only if $L(p, q)$ belongs to one of the following classes:
(i) $4 \mid p$ or some odd prime factor of p is of the form $4 k+3$.
(ii) $q^{2} \equiv-1 \bmod p$ and $p=2, p_{1}^{e_{1}}, 2 p_{1}^{e_{1}}$, where p_{1} is a prime number of the form $4 k+1$.

Synthesizing Mostow's theorem, Waldhausen's theorem, Theorem 1.1 and Proposition 1.2 , we get the following consequence:

Theorem 1.3 Suppose M is a prime geometrizable 3-manifold.

(1) M has property 1 H if and only if M belongs to one of the following classes:
(i) M does not support the S^{3}-geometry.
(ii) M is in one of the classes stated in Theorem 1.1.
(2) M has property $-1 H$ if and only if M belongs to one of the following classes:
(i) M does not support the S^{3}-geometry.
(ii) $M \neq L(p, q)$ and supports the S^{3}-geometry.
(iii) M is in one of the classes stated in Proposition 1.2.
(3) M has property H if and only if M belongs to one of the following classes:
(i) M does not support the S^{3}-geometry.
(ii) M is in one of the classes other than (ii) stated in Theorem 1.1.
(iii) $L(p, q)$ satisfying one of the following:
(a) $p=2,4$.
(b) $p=p_{1}^{e_{1}}, 2 p_{1}^{e_{1}}$, where p_{1} is $4 k+3$ type prime number.
(c) $p=p_{1}^{e_{1}}, 2 p_{1}^{e_{1}}$, where p_{1} is $4 k+1$ type prime number and $q^{2} \equiv$ $-1 \bmod p$.
(d) $p=2^{s}(s>2), 4 p_{1}^{e_{1}}, q^{2} \equiv 1 \bmod p, q \neq \pm 1$.
(e) $p=p_{1}^{e_{1}} p_{2}^{e_{2}}, 2 p_{1}^{e_{1}} p_{2}^{e_{2}}$, where one of p_{1}, p_{2} is $4 k+3$ type prime number, $q^{2} \equiv 1 \bmod p, q \neq \pm 1$.

In Section 2 we give some definitions which will be used later and transform our main question to the computation of $\operatorname{Out}\left(\pi_{1}(M)\right)$ and the mapping class group of M. In Section 3, we determine which lens spaces have property H. In Section 4, we compute $\operatorname{Out}\left(\pi_{1}(M)\right)$ by combinatorial methods. Mapping class groups of S^{3}-manifolds are computed in Section 5. Although the mapping class groups of S^{3}-manifolds are determined by Boileau and Otal [1] and McCullough [12] and some partial results are given by Hodgson and Rubinstein [8], Rubinstein [17] and Rubinstein and Birman [18], we give a complete computation based on the fact that all self-homeomorphisms on an S^{3}-manifold $M \neq L(p, q)$ can be isotopic to a fiber-preserving homeomorphism. In Section 6, Table 1 shows the computation results.

2 Definitions and preliminaries

Definition 2.1 Suppose an oriented 3-manifold M^{\prime} is a circle bundle with a given section F, where F is a compact surface with boundary components c_{1}, \ldots, c_{n}, c_{n+1}, \ldots, c_{n+m} with $n>0$. On each boundary component of M^{\prime}, orient c_{i} and the circle fiber h_{i} so that the product of their orientation on $c_{i} \times S^{1}$ matches with the
induced orientation of M^{\prime}. Now attach n solid tori N_{i} to the first n boundary tori of M^{\prime} so that the meridian of N_{i} is identified with slope $l_{i}=\alpha_{i} c_{i}+\beta_{i} h_{i}$ with $\alpha_{i}>0$. Denote the resulting manifold by M, which has the Seifert fiber structure (foliated by circles) extended from the circle bundle structure of M^{\prime}, and the core of N_{i} is a "singular fiber" for $\alpha_{i}>1$.

We will denote this Seifert fiber structure of M by $\left\{(\pm g, m) ; r_{1}, \ldots, r_{n}\right\}$ where g is the genus of the section F of M, where the sign is + if F is orientable and - if F is nonorientable. Here "genus" of nonorientable surfaces means the number of $\mathbb{R} P^{2}$ connected summands and $r_{i}=\beta_{i} / \alpha_{i}$, while $\left(\alpha_{i}, \beta_{i}\right)$ is the index of the corresponding singular fiber.

Almost all Seifert manifolds we consider in this paper have structure $\left\{(0,0) ; r_{1}, \ldots, r_{n}\right\}$ with $n \leq 3$. For simplicity, we denote the structure $\left\{(0,0) ; r_{1}, \ldots, r_{n}\right\}$ by $\left\{b ; r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right\}$, where $0<r_{i}^{\prime}<1, r_{i}^{\prime} \equiv r_{i} \bmod 1$, and $\sum_{i=1}^{n} r_{i}=b+\sum_{i=1}^{n} r_{i}^{\prime}$. This does not bring about confusion since $\left\{(0,0) ; r_{1}, \ldots, r_{n}\right\}$ is fiber-preserving, orientation-preserving homeomorphic to $\left\{(0,0) ; r_{1}^{\prime}, \ldots, r_{n}^{\prime}, b\right\}$, and the form $\left\{b ; r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right\}$ is unique.

When we identify every S^{1} fiber of M to a point, we get a " 2 -manifold" $\mathcal{O}(M)$ with singular points corresponding to the singular fibers, which is called an orbifold. Although there is a standard definition for orbifold (see Scott [19]), we do not state it here, but just think of an orbifold as a Hausdorff space that is locally isomorphic to quotient space of R^{n} by a finite group action. More simply, the orbifolds we consider in this paper are just surfaces with singular points, where every neighborhood of a singular point is isomorphic to D^{2} / \mathbb{Z}_{n} (the action is $2 \pi / n$ rotation). When we delete a neighborhood of all singular points, the remaining part of $\mathcal{O}(M)$ can be identified with the section F in Definition 2.1. An orientation on $\mathcal{O}(M)$ is induced by an orientation on the section F.

According to Orlik [16] or Scott [19], the fundamental group of a 3-manifold with the S^{3}-geometry structure belong to one of the following eight types: $\mathbb{Z}_{p}, D_{4 n}^{*}$, $T_{24}^{*}, O_{48}^{*}, I_{120}^{*}, T_{8 \cdot 3^{q}}^{\prime}, D_{n^{\prime} \cdot 2^{q}}^{\prime}$ and $\mathbb{Z}_{m} \times G$ where G belongs to one of the previous seven types and $|G|$ is coprime to m. All the manifolds are uniquely determined by the fundamental group except when $\pi_{1}(M)=\mathbb{Z}_{p}$, in this case $M=L(p, q)$ for some q. The fundamental groups and Seifert structures of these manifolds are given by Orlik [16]:

Theorem 2.2 The manifolds supporting S^{3}-geometry are classified as follows:
(1) $M=\left\{b ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}\right\}$, here we allow $\alpha_{i}=1, \beta_{i}=0$, are lens spaces with $\pi_{1}(M) \cong \mathbb{Z}_{p}$, where $p=\left|b \alpha_{1} \alpha_{2}+\alpha_{1} \beta_{2}+\alpha_{2} \beta_{1}\right|$.
(2) $M=\left\{b ; 1 / 2,1 / 2, \beta_{3} / \alpha_{3}\right\}$ are called prism manifolds, let $m=(b+1) \alpha_{3}+\beta_{3}$; if $\left(m, 2 \alpha_{3}\right)=1$, then $\pi_{1}(M) \cong \mathbb{Z}_{m} \times D_{4 \alpha_{3}}^{*} \cong \mathbb{Z}_{m} \times\left\{x, y \mid x^{2}=(x y)^{2}=y^{\alpha_{3}}\right\}$; if $\left(m, 2 \alpha_{3}\right) \neq 1$, then $m=2^{k} m^{\prime}$, we have $\pi_{1}(M) \cong \mathbb{Z}_{m^{\prime}} \times D_{2^{k+2} \alpha_{3}}^{\prime} \cong \mathbb{Z}_{m^{\prime}} \times\{x, y \mid$ $\left.x^{2^{k+2}}=1, y^{\alpha_{3}}=1, x y=y^{-1} x\right\}$.
(3) $M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 3\right\}$, let $m=6 b+3+2\left(\beta_{2}+\beta_{3}\right)$; if $(m, 12)=1$, then $\pi_{1}(M) \cong \mathbb{Z}_{m} \times T^{*} \cong \mathbb{Z}_{m} \times\left\{x, y \mid x^{2}=(x y)^{3}=y^{3}, x^{4}=1\right\} ;$ if $(m, 12) \neq 1$, $m=3^{k} m^{\prime}$, then $\pi_{1}(M) \cong \mathbb{Z}_{m^{\prime}} \times T_{8 \cdot 3^{k}}^{\prime} \cong \mathbb{Z}_{m^{\prime}} \times\left\{x, y, z \mid x^{2}=(x y)^{2}=\right.$ $\left.y^{2}, z^{3^{k+1}}=1, z x z^{-1}=y, z y z^{-1}=x y\right\}$.
(4) $M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 4\right\}$, let $m=12 b+6+4 \beta_{2}+3 \beta_{3}$, then $(m, 24)=1$, $\pi_{1}(M) \cong \mathbb{Z}_{m} \times O^{*} \cong \mathbb{Z}_{m} \times\left\{x, y \mid x^{2}=(x y)^{3}=y^{4}, x^{4}=1\right\}$.
(5) $M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 5\right\}$, let $m=30 b+15+10 \beta_{2}+6 \beta_{3}$, then $(m, 60)=1$, $\pi_{1}(M) \cong \mathbb{Z}_{m} \times I^{*} \cong \mathbb{Z}_{m} \times\left\{x, y \mid x^{2}=(x y)^{3}=y^{5}, x^{4}=1\right\}$.

Remark The Seifert structures on lens spaces are not unique, while the orbifolds are all S^{2} with at most two singular points. The prism manifolds also have another Seifert structure with orbifold P^{2} with one singular point. The other S^{3}-manifolds have unique Seifert structures.

Since a degree ± 1 self-map f of M is surjective on fundamental group and $\pi_{1}(M)$ is finite, f induces an isomorphism on $\pi_{1}(M)$. Therefore we need only consider self-maps that induce isomorphism on $\pi_{1}(M)$.

All the degrees of self-maps that induce isomorphisms on $\pi_{1}(M)$ are given in HayatLegrand et al [3]:

Proposition 2.3 For a 3-manifold M supporting the S^{3} geometry,

$$
D_{\text {iso }}(M)=\left\{k^{2}+l\left|\pi_{1}(M)\right| \mid \operatorname{gcd}\left(k,\left|\pi_{1}(M)\right|\right)=1\right\} .
$$

Here $D_{\text {iso }}(M)=\left\{\operatorname{deg}(f) \mid f: M \rightarrow M, f\right.$ induces isomorphism on $\left.\pi_{1}(M)\right\}$.
Any S^{3}-manifold $M \neq L(p, q)$ satisfies $\left|\pi_{1}(M)\right|=4 k$, and any odd square number has form $4 l+1$. So M does not admit any degree -1 self-map, and we only consider property 1 H in most of this paper.

Since the second homotopy group of a S^{3}-manifold is trivial, the existence of selfmappings can be detected by obstruction theory. P Olum showed in [15] the first and in [14] the second part of the following proposition.

Proposition 2.4 Let M be an orientable 3-manifold with finite fundamental group and trivial $\pi_{2}(M)$. Every endomorphism $\phi: \pi_{1}(M) \rightarrow \pi_{1}(M)$ is induced by a (basepoint-preserving) continuous map $f: M \rightarrow M$.

Furthermore, if g is also a continuous self-map of M such that f_{*} is conjugate to g_{*}, then $\operatorname{deg} f \equiv \operatorname{deg} g \bmod \left|\pi_{1}(M)\right|$; furthermore, f and g are homotopic to each other if and only if f_{*} is conjugate to g_{*} and $\operatorname{deg}(f)=\operatorname{deg}(g)$.

According to this proposition, homotopic information of self-maps can be completely determined by degree and induced homomorphism on π_{1}.

We also need a little elementary number theory:
Definition 2.5 Let $U_{p}=\left\{\right.$ all units in the ring $\left.\mathbb{Z}_{p}\right\}, U_{p}^{2}=\left\{a^{2} \mid a \in U_{p}\right\}$, which is a subgroup of U_{p}. Denote $\left|U_{p} / U_{p}^{2}\right|$ by $\Psi(p)$.

The following theorem in number theory can be found in Ireland and Rosen [9, page 44]:
Lemma 2.6 Let $p=2^{a} p_{1}^{e_{1}} \cdots p_{l}^{e_{l}}$ be the prime decomposition of p. Then $U_{p} \cong$ $U_{2^{a}} \times U_{p_{1}}^{e_{1}} \times \cdots \times U_{p_{l}}^{e_{l}}$, where $U_{p_{i}}^{e_{i}}$ is the cyclic group of order $p_{i}^{e_{i}-1}\left(p_{i}-1\right)$. The group $U_{2^{a}}$ is the cyclic group of order 1 and 2 for $a=1$ and 2 , respectively, and if $a>2$, then it is the product of one cyclic group of order 2 and another of order 2^{a-2}.

By Lemma 2.6 and elementary computation, we get:
Lemma 2.7 Let $p=2^{a} p_{1}^{a_{1}} \cdots p_{l}^{a_{l}}$ be the prime decomposition of p. Then

$$
\Psi(p)= \begin{cases}\left(\mathbb{Z}_{2}\right)^{l} & \text { if } a=0,1, \\ \left(\mathbb{Z}_{2}\right)^{l+1} & \text { if } a=2 \\ \left(\mathbb{Z}_{2}\right)^{l+2} & \text { if } a>2\end{cases}
$$

This Lemma is useful in the computation process that determines which S^{3}-manifolds have property H .

If $\left|\pi_{1}(M)\right|=p$, denote $U^{2}\left(\left|\pi_{1}(M)\right|\right)$ by U_{p}^{2}. Then we define group homomorphism $\mathscr{H}: \operatorname{Out}\left(\pi_{1}(M)\right) \rightarrow U^{2}\left(\left|\pi_{1}(M)\right|\right)$: for all $\phi \in \operatorname{Out}\left(\pi_{1}(M)\right)$, take a self-map f of M, such that $f_{*} \in \phi$, and define $\mathscr{H}(\phi)=\operatorname{deg}(f) \in U^{2}\left(\left|\pi_{1}(M)\right|\right)$.
By Proposition 2.3, $\operatorname{deg}(f) \in U^{2}\left(\left|\pi_{1}(M)\right|\right)\left(\right.$ after $\left.\bmod \left|\pi_{1}(M)\right|\right)$. By Proposition 2.4, \mathscr{H} is well defined. By Proposition 2.3 again, \mathscr{H} is surjective.

Let $K(M)=\left\{\phi \in \operatorname{Out}\left(\pi_{1}(M)\right) \mid \exists f: M \rightarrow M, f_{*} \in \phi, \operatorname{deg}(f)=1\right\}$. We can see that $K(M)=\operatorname{ker}(\mathscr{H}),|K(M)|=\left|\operatorname{Out}\left(\pi_{1}(M)\right)\right| /\left|U^{2}\left(\left|\pi_{1}(M)\right|\right)\right|$. By Proposition 2.4, $K(M)$ corresponds bijectively with

$$
\{\text { degree } 1 \text { self-maps } f \text { on } M\} / \text { homotopy. }
$$

Let $K^{\prime}(M)=\left\{\phi \in \operatorname{Out}\left(\pi_{1}(M)\right) \mid \exists f: M \rightarrow M\right.$ an orientation-preserving homeomorphism, $\left.f_{*} \in \phi\right\}$, which is a subgroup of $K(M) . K^{\prime}(M)$ corresponds bijectively with the orientation-preserving subgroup of mapping class group of M :
$\mathcal{M C G}^{+}(M)=\{$ orientation-preserving homeomorphism f on $M\} /$ homotopy
For an S^{3}-manifold $M \neq L(p, q), M$ does not admit a degree -1 self-map, so $\mathcal{M C G}^{+}(M)=\mathcal{M C G}(M)$.

Remark For the standard definition of $\mathcal{M C G}(M)$, we should use isotopy, not homotopy. However, [1] shows that, for self-homeomorphisms on S^{3}-manifolds, homotopy implies isotopy.

To determine whether M has property 1 H , we need only determine whether $K(M)=$ $K^{\prime}(M)$, or whether $|K(M)|=\left|\mathcal{M C G}^{+}(M)\right|$. For this, define the realization coefficient of M :

$$
\operatorname{RC}(M)=\frac{|K(M)|}{\left|K^{\prime}(M)\right|}=\frac{\left|\operatorname{Out}\left(\pi_{1}(M)\right)\right|}{\left|U^{2}\left(\left|\pi_{1}(M)\right|\right)\right| \cdot\left|\mathcal{M C G}^{+}(M)\right|}
$$

So M has property 1 H if and only if $\mathrm{RC}(M)=1$. We need only compute $\left|\operatorname{Out}\left(\pi_{1}(M)\right)\right|$ and $\left|\mathcal{M C G}^{+}(M)\right|$, the computations are completed in Section 4 and Section 5. Section 4 only contains algebraic computations; we will give geometric generators of $\mathcal{M C G}^{+}(M)$ in Section 5, and determine the relations by results in Section 4.

Since $L(p, q)$ may also admit degree -1 self-maps, and it admits different Seifert structures, we will use a different way to determine $\mathcal{M C G}(M)$ in this case. Section 3 will deal with the lens space case first.

3 Property H of lens spaces

Suppose $L(p, q)$ is decomposed as $L(p, q)=N_{1} \cup_{T} N_{2}$, where each N_{i} is a solid torus and $T=\partial N_{1}=\partial N_{2}$ is the Heegaard torus. Let l be the core circle of N_{1}.

The following result can be found in [2, Theorem 2.5]:
Lemma 3.1 For any homeomorphism $f: L(p, q) \rightarrow L(p, q), f(T)$ is isotopic to T.

Lemma 3.2 Suppose f is a degree 1 self-map on $L(p, q), f$ is homotopic to an orientation-preserving homeomorphism if and only if

$$
f_{*}(l)= \begin{cases} \pm l & \text { if } p \nmid\left(q^{2}-1\right) \\ \pm l, \pm q l & \text { if } p \mid\left(q^{2}-1\right)\end{cases}
$$

Proof By Proposition 2.4, we need only determine all the possible $n \in \mathbb{Z}_{p}$, such that there is an orientation-preserving homeomorphism f of $L(p, q)$, such that $f_{*}(l)=n l$.
Suppose f is an orientation-preserving homeomorphism of $L(p, q)$. By Lemma 3.1, $f(T)$ is isotopic to T. So we can isotope f so that $f(T)=T$. In this case, f sends N_{i} to $N_{i}(i=1,2)$ or f exchanges N_{i}.
If f exchanges N_{i}, suppose $T_{i}=\partial N_{i}$, and T_{1} is pasted to T_{2} by a linear homeomorphism A. Then there is the commutative diagram

Since A pastes the two solid tori to $L(p, q), A$ can be written as

$$
\left(\begin{array}{ll}
r & p \\
s & q
\end{array}\right)
$$

where $r q-s p=1$. Also $f \mid T_{i}$ can be extended to a homeomorphism from N_{i} to N_{j} $(i \neq j)$, so $f \mid T_{i}$ sends meridian to meridian. Since f preserves the orientation, $f \mid T_{i}$ has the form

$$
\pm\left(\begin{array}{cc}
1 & 0 \\
m & -1
\end{array}\right)
$$

From $\left.A \circ f\right|_{T_{2}} \circ A=\left.f\right|_{T_{1}}$, we have
$\left(\begin{array}{ll}r^{2}+m r p-s p & r p+m p^{2}-p q \\ s r+m r p-s q & s p+m r p-q^{2}\end{array}\right)=\left(\begin{array}{cc}r & p \\ s & q\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ m & -1\end{array}\right)\left(\begin{array}{ll}r & p \\ s & q\end{array}\right)= \pm\left(\begin{array}{cc}1 & 0 \\ n & -1\end{array}\right)$.
So $r p+m p^{2}-p q=0$, and then $q-r=m p, r \equiv q \bmod p$. Since $r q-s p=1$, we have $q^{2} \equiv 1 \bmod p$. In this case, $f_{*}(l)= \pm r l= \pm q l$.

On the other hand, when $q^{2}=n p+1$, taking $r=q, s=n$,

$$
f\left|T_{1}=f\right| T_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then we can obtain an orientation-preserving homeomorphism f on $L(p, q)$ with $f_{*}(l)= \pm q l$.
If f sends N_{i} to N_{i} as a homeomorphism, then f must send l to a longitude of N_{1} and so does f_{*} in $\pi_{1}(L(p, q)): f_{*}(l)= \pm l$. The homeomorphisms can be realized as in the last case.

Thus we can compute $\mathrm{RC}(M)$ directly:
Proposition 3.3 For the lens space $L(p, q)$, $\operatorname{Out}\left(\pi_{1}(L(p, q))\right) \cong \operatorname{Out}\left(\mathbb{Z}_{p}\right) \cong U_{p}$,

$$
\begin{gathered}
\mathcal{M C G}^{+}(L(p, q))= \begin{cases}\{e\} & \text { if } p=2, \\
\mathbb{Z}_{2} & \text { if } p \nmid\left(q^{2}-1\right) \text { or } q= \pm 1, \\
\mathbb{Z}_{2} \times \mathbb{Z}_{2} & \text { if } p \mid\left(q^{2}-1\right) \text { and } q \neq \pm 1,\end{cases} \\
\operatorname{RC}(L(p, q))= \begin{cases}1 & \text { if } p=2, \\
\Psi(p) / 2 & \text { if } p \nmid\left(q^{2}-1\right) \text { or } q= \pm 1, \\
\Psi(p) / 4 & \text { if } p \mid\left(q^{2}-1\right) \text { and } q \neq \pm 1\end{cases}
\end{gathered}
$$

The $L(p, q)$ part of Theorem 1.1 follows from this Proposition and Lemma 2.7.
Lemma 3.4 $L(p, q)$ admits a degree -1 self-map if and only if $4 \nmid p$ and all the odd prime factors of p are of the form $4 k+1$.

Proof By Proposition 2.3, we need only determine for which p, there is an integer q, such that $q^{2} \equiv-1 \bmod p$.
Suppose $4 \nmid p$ and all odd prime factors of p are of the form $4 k+1$. By Lemma 2.6, U_{p} is direct sum of some order $4 k$ cyclic groups and the order of -1 in U_{p} is 2 , so q exists.
On the other hand, if $4 \mid p$, there is no q such that $q^{2} \equiv-1 \bmod p$, since odd squares are congruent to $1 \bmod 4$. If some prime factor p_{1} of p is of the form $4 k+3$, then $q^{4 k+2} \equiv 1 \bmod p_{1}$, by Fermat's Little Theorem, and so again there is no q such that $q^{2} \equiv-1 \bmod p$.

By the same computation as Lemma 3.2, we get:
Lemma 3.5 $L(p, q)$ admits an orientation-reversing homeomorphism if and only if $q^{2} \equiv-1 \bmod p$. In this case, a degree -1 self-map f on $L(p, q)$ is homotopic to an orientation-reversing homeomorphism if and only if $f_{*}(l)= \pm q l$.

If $L(p, q)$ admits an orientation-reversing homeomorphism, then $L(p, q)$ has property 1 H if and only if $L(p, q)$ has property -1 H . Synthesizing Lemma 3.4, Lemma 3.5 and Proposition 3.3, we get Proposition 1.2.

$4 \operatorname{Out}\left(\pi_{1}(M)\right)$ of $S^{\mathbf{3}}$-manifolds

We are only interested in the order of $\operatorname{Out}\left(\pi_{1}(M)\right)$, so we only compute the order here. Moreover, we also give a presentation of $\operatorname{Out}\left(\pi_{1}(M)\right)$, since it will help us in Section 5. All the arguments in this section are combinatorial.

If $(m,|G|)=1$, we have $\operatorname{Out}\left(\mathbb{Z}_{m} \times G\right) \cong \operatorname{Out}\left(\mathbb{Z}_{m}\right) \times \operatorname{Out}(G) \cong U_{m} \times \operatorname{Out}(G)$. So the main aim of this section is to compute $\operatorname{Out}(G)$ for G in Theorem 2.2 without cyclic summands.

We know that $\mathrm{SU}(2) \subset O(4) \cong \operatorname{Iso}_{+}\left(S^{3}\right)$. Let $p: \mathrm{SU}(2) \rightarrow O(3)$ be the canonical two-to-one Lie group homomorphism. T^{*}, O^{*}, I^{*} and $D_{4 \alpha_{3}}^{*}$ are the preimage of T, O, I and $D_{2 \alpha_{3}}$ respectively. T, O, I are the symmetry groups of regular tetrahedron, octagon and icosahedron (isomorphic to A_{4}, S_{4}, A_{5} respectively), and $D_{2 \alpha_{3}}$ is the dihedral group.

Case $1 G \cong T^{*}$ or O^{*} or I^{*}.
$\operatorname{By}[7, \operatorname{VIII}-2], \operatorname{Out}\left(T^{*}\right) \cong \operatorname{Out}\left(O^{*}\right) \cong \operatorname{Out}\left(I^{*}\right) \cong \mathbb{Z}_{2}$. The elements in $\operatorname{Out}\left(G^{*}\right)$ not equal to identity can be presented as follows (we can lift an element of $\operatorname{Out}(G)$ to Out $\left(G^{*}\right)$ to obtain the presentation ($G \cong T, O, I$), and we will talk more about this method in the next case):

$$
\begin{array}{rll}
T^{*}: & \phi(x)=x^{3}, & \phi(y)=y^{5}, \\
O^{*}: & \phi(x)=x^{3}, & \phi(y)=y^{5}, \\
I^{*}: & \phi(x)=x y x^{-1} y^{-1} x^{-1}, & \phi(y)=x^{2} y^{2} .
\end{array}
$$

Case $2 G \cong D_{4 \alpha_{3}}^{*} \cong\left\{x, y \mid x^{2}=(x y)^{2}=y^{\alpha_{3}}\right\}$.
We determine $\operatorname{Out}\left(D_{2 \alpha_{3}}\right)$ first. $D_{2 \alpha_{3}} \cong\left\{x, y \mid x^{2}=(x y)^{2}=y^{\alpha_{3}}=1\right\}$. Every element in $D_{2 \alpha_{3}}$ can be presented by y^{n} or $x y^{n}$ and order of $x y^{n}$ is 2 .

If $\alpha_{3}=2, D_{4 \alpha_{3}}^{*} \cong Q_{8} \cong\{ \pm 1, \pm i, \pm j, \pm k\}, \operatorname{Out}\left(D_{8}^{*}\right) \cong S_{3}$. So we assume $\alpha_{3}>2$ in the following.

By elementary combinatorial arguments, we can get the following consequence (the condition $\alpha_{3}>2$ is used here):
(1) When α_{3} is $\operatorname{odd}, \operatorname{Out}\left(D_{2 \alpha_{3}}\right)$ is presented by $\phi(x)=x, \phi(y)=y^{k}$, where $1 \leq k \leq \alpha_{3} / 2, \quad\left(k, \alpha_{3}\right)=1$.
(2) When α_{3} is even, $\operatorname{Out}\left(D_{2 \alpha_{3}}\right)$ is presented by $\phi(x)=x, \phi(y)=y^{k} ; \phi(x)=$ $x y, \phi(y)=y^{k}$, where $1 \leq k \leq \alpha_{3} / 2,\left(k, \alpha_{3}\right)=1$.

For $p: D_{4 \alpha_{3}}^{*} \rightarrow D_{2 \alpha_{3}}, \operatorname{ker}(p)$ is the center of $D_{4 \alpha_{3}}^{*}$. Every automorphism ϕ^{\prime} on $D_{4 \alpha_{3}}^{*}$ sends the center to the center, so induces an automorphism ϕ on $D_{2 \alpha_{3}}$. If two induced automorphism ϕ_{1}, ϕ_{2} are conjugate in $D_{2 \alpha_{3}}$, then two automorphisms $\phi_{1}^{\prime}, \phi_{2}^{\prime}$ on $D_{4 \alpha_{3}}^{*}$ are conjugate. So we can work in this process: given a presentation of $\operatorname{Out}\left(D_{2 \alpha_{3}}\right)$, $\phi_{1}, \ldots, \phi_{k}$, list all the possible liftings of every ϕ_{i} (there are at most four), and check whether there are any pair of liftings of the same ϕ_{i} are conjugate with each other. Then we get a presentation of $\operatorname{Out}\left(D_{4 \alpha_{3}}^{*}\right)$.

Lemma 4.1 A presentation of $\operatorname{Out}\left(D_{4 \alpha_{3}}^{*}\right)$ is given by the following:
(1) $\alpha_{3}=2,\left|\operatorname{Out}\left(D_{8}^{*}\right)\right|=6$:
$\mathrm{id} ; \phi(x)=x, \phi(y)=x y ; \phi(x)=y, \phi(y)=x ; \phi(x)=y, \phi(y)=x y$; $\phi(x)=x y, \phi(y)=x ; \phi(x)=x y, \phi(y)=y$.
(2) α_{3} odd, $\left|\operatorname{Out}\left(D_{4 \alpha_{3}}^{*}\right)\right|=\left|U_{4 \alpha_{3}}\right| / 2$:
$\phi(x)=x, \phi(y)=y^{k} ; \phi(x)=x^{3}, \phi(y)=y^{k}$, here $1 \leq k \leq \alpha_{3},\left(k, \alpha_{3}\right)=$ $1, k$ odd.
(3) $\alpha_{3}>2$ even, $\left|\operatorname{Out}\left(D_{4 \alpha_{3}}^{*}\right)\right|=\left|U_{4 \alpha_{3}}\right| / 2$:

$$
\phi(x)=x, \phi(y)=y^{k} ; \phi(x)=x^{3} y, \phi(y)=y^{k}, \text { here } 1 \leq k \leq \alpha_{3},\left(k, \alpha_{3}\right)=1
$$

Case $3 G \cong D_{2^{k+2} \alpha_{3}}^{\prime} \cong\left\{x, y \mid x^{2^{k+2}}=y^{\alpha_{3}}=1, x y=y^{-1} x\right\}$, here α_{3} is odd.
In $D_{2^{k+2} \alpha_{3}}^{\prime}$, every element can be written as $x^{u} y^{v}$. Since the subgroup generated by y is product of normal Sylow subgroups of $D_{2}^{\prime}{ }^{k+2} \alpha_{3}$, it is a characteristic subgroup. So for any automorphism ϕ of $D_{2^{k+2} \alpha_{3}}^{\prime}$, there is $\phi(x)=x^{u} y^{v}, \phi(y)=y^{w},\left(w, \alpha_{3}\right)=1$.

To guarantee ϕ is a homomorphism, u should be odd, and it is enough for ϕ to be an automorphism. The inversion of ϕ is $\phi^{\prime}(x)=x^{u^{\prime}} y^{v^{\prime}}, \phi^{\prime}(y)=y^{w^{\prime}}, u u^{\prime} \equiv$ $1 \bmod 2^{k+2}, w w^{\prime} \equiv 1 \bmod \alpha_{3}, v+v^{\prime} w \equiv 0 \bmod \alpha_{3} . \operatorname{Aut}\left(D_{2^{k+2} \alpha_{3}}^{\prime}\right)$ is given as

$$
\phi(x)=x^{u} y^{v}, \phi(y)=y^{w},\left(w, \alpha_{3}\right)=1, u \text { odd. }
$$

So $\left|\operatorname{Aut}\left(D_{2^{k+2} \alpha_{3}}^{\prime}\right)\right|=2^{k+1} \alpha_{3}\left|U_{\alpha_{3}}\right|$.
For every automorphism $\phi(x)=x^{u} y^{v}, \phi(y)=y^{w}$, conjugate by $x^{p} y^{q}$, we get $\phi^{\prime}(x)=x^{u} y^{(-1)^{p}(v-2 q)}, \phi^{\prime}(y)=y^{(-1)^{p} w}$. So the inner automorphism group of $D_{2^{k+2} \alpha_{3}}^{\prime}$ has order $2 \alpha_{3}$.
So we get $\left|\operatorname{Out}\left(D_{2^{k+2} \alpha_{3}}^{\prime}\right)\right|=2^{k}\left|U\left(\alpha_{3}\right)\right|$. A presentation of $\operatorname{Out}\left(D_{2^{k+2} \alpha_{3}}^{\prime}\right)$ is

$$
\phi(x)=x^{u}, \phi(y)=y^{v}, u \text { odd, } 1 \leq v \leq \frac{\alpha_{3}}{2},\left(v, \alpha_{3}\right)=1
$$

Case $4 G \cong T_{8 \cdot 3^{k+1}}^{\prime} \cong\left\{x, y, z \mid x^{2}=y^{2}=(x y)^{2}, z^{3^{k+1}}=1, z x z^{-1}=y, z y z^{-1}=\right.$ $x y\}$.

Here we assume $k \geq 1$, since $T_{24}^{\prime} \cong T_{24}^{*}$. We can observe that $N=\left\{x, y \mid x^{2}=y^{2}=\right.$ $\left.(x y)^{2}\right\}$ is a normal Sylow subgroup of $T_{8 \cdot 3^{k+1}}^{\prime}$, so every automorphism ϕ must send N to itself. By conjugation, we can assume $\phi(x)=x, \phi(y)=y$ or $x y$.
There are eight possibilites for $\phi(z): z^{n}, z^{n} x, z^{n} y, z^{n} x y, z^{n} x^{2}, z^{n} x^{3}, z^{n} y x, z^{n} y^{3}$, so ϕ may have sixteen forms. However, to guarantee ϕ to be an automorphism, ϕ can only be one of the following:

$$
\begin{array}{ll}
\phi(x)=x, \quad \phi(y)=y, \quad \phi(z)=z^{n}, & n \equiv 1 \bmod 3 \\
\phi(x)=x, \phi(y)=x y, \quad \phi(z)=z^{n} x, & n \equiv 2 \bmod 3 .
\end{array}
$$

We can check that all these automorphisms are not conjugate to each other, so they give a presentation of $\operatorname{Out}\left(T_{8 \cdot 3^{k+1}}^{\prime}\right)$, and $\left|\operatorname{Out}\left(T_{8 \cdot 3^{k+1}}^{\prime}\right)\right|=2 \cdot 3^{k}$.

5 Mapping class group of S^{3}-manifolds

We determine the mapping class group of S^{3}-manifolds $M \neq L(p, q)$. In this section, all the manifolds have Seifert manifold structure $M=\left\{b ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}, \beta_{3} / \alpha_{3}\right\}$. For these manifolds, $\mathcal{M C G}(M)=\mathcal{M C G}^{+}(M)$.
In $[1 ; 12]$, the mapping class groups of S^{3}-manifolds have been determined, and some partial results are given in $[8 ; 17 ; 18]$. However, we would like to recompute the mapping class group based on the fact that all homeomorphisms on an S^{3}-manifold $M \neq L(p, q)$ can be isotoped to fiber-preserving homeomorphism $[1 ; 10]$.

5.1 Geometric generators of mapping class group

At first, we construct two types of homeomorphisms of $M=\left\{b ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}, \beta_{3} / \alpha_{3}\right\}$ (the second type may be available only for certain types of M). Then we prove these two types of homeomorphisms generate $\mathcal{M C G}(M)$.

Homeomorphism Type I As Definition 2.1, we first define the homeomorphism on $M^{\prime}=F \times S^{1}$, and then extend it over three solid tori N_{1}, N_{2}, N_{3}.
Here F is the three punctured sphere, and we draw it as in Figure 1. Define ρ_{1} to be the reflection with respect to the x-axis; σ_{1} to be the homeomorphism on S^{1}, $\sigma_{1}(\theta)=-\theta$.

Let $f_{1}^{\prime}=\rho_{1} \times \sigma_{1}$ on M^{\prime}. This preserves the orientation of M^{\prime}, and reverses the orientation on F and S^{1}. The restriction of f_{1}^{\prime} to the boundary tori is $(\phi, \theta) \rightarrow(-\phi,-\theta)$, which sends $l_{i}=\alpha_{i} c_{i}+\beta_{i} h_{i}$ to $--l_{i}$. So we can extend f_{1}^{\prime} to a homeomorphism f_{1} on M.

Homeomorphism Type II In this case we need $\beta_{1} / \alpha_{1}=\beta_{2} / \alpha_{2}$. The two boundary components c_{1}, c_{2} of F corresponding to $\beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}$ are drawn in Figure 1.

Take the polar coordinate (r, θ) on D^{2}, assume c_{1}, c_{2} are symmetric with respect to the π rotation on D^{2}. Define homeomorphism ρ_{2} on F as follows: $\rho_{2}(r, \theta)=(r, \theta+\pi)$. Then ρ_{2} exchanges c_{1} and c_{2}.

Figure 1
Let $f_{2}^{\prime}=\rho_{2} \times \mathrm{id}_{S^{1}}$ on M^{\prime}. This preserves the orientation of M^{\prime}, F and S^{1}. Since $\beta_{1} / \alpha_{1}=\beta_{2} / \alpha_{2}$, so f_{2}^{\prime} exchanges l_{1}, l_{2}, and sends l_{3} to itself. So we can extend f_{2}^{\prime} to a homeomorphism f_{2} on M.

We can see that these two types of homeomorphisms are involutions of M and they commute with each other.

We will prove that these two types of homeomorphisms generate $\mathcal{M C G}(M)$. First, we need this proposition [1, Proposition 3.1; 10, Lemmas 3.5, 3.6]:

Proposition 5.1 Suppose M is an S^{3}-manifold which has a Seifert structure with orbifold S^{2} with three singular points. Then any homeomorphism $f: M \rightarrow M$ is isotopic to a fiber-preserving homeomorphism with respect to the fibration.

Lemma 5.2 Suppose F is a three punctured sphere, $g: F \rightarrow F$ is a homeomorphism and $\left.g\right|_{\partial F}=\mathrm{id}_{\partial F}$. Then g is isotopic to identity.

Proof We denote the three boundary components of F by c_{1}, c_{2}, c_{3}. Take a simple $\operatorname{arc} \alpha$ connecting c_{1} and c_{2}.

A basic fact due to Dehn is that we can isotope g so that $\left.g\right|_{\alpha}=\mathrm{id}_{\alpha}$, and we can still require g to be identity on ∂F. Cutting along α, we get an annulus F_{1} and g induces
a homeomorphism g_{1} on F_{1} such that $\left.g_{1}\right|_{\partial F_{1}}=\operatorname{id}_{\partial F_{1}}$. The boundary component of F_{1} consists of $\operatorname{arcs} c_{1}, c_{2}$ and α is denoted by α^{\prime}. Then we can isotopy g_{1} to $\mathrm{id}_{F_{1}}$ and the isotopy process fix all points on α^{\prime}.

Then we can paste the isotopy on F_{1} to an isotopy on F, since the isotopy process fixes α^{\prime} pointwise. Thus we can isotope g to id_{F}.

Lemma 5.3 Suppose that $M=\left\{b ; r_{1}, r_{2}, r_{3}\right\}, f: M \rightarrow M$ is a fiber-preserving, orientation-preserving homeomorphism, the induced map $\bar{f}: \mathcal{O}(M) \rightarrow \mathcal{O}(M)$ preserves the orientation of orbifold, and $\bar{f}\left(x_{i}\right)=x_{i}$ for the singular points $x_{i}, i=1,2,3$. Then f is homotopic to the identity.

Proof Decompose M as the union of $M^{\prime}=F \times S^{1}$ and solid tori N_{1}, N_{2}, N_{3} as in Definition 2.1; the boundary torus of N_{i} is denoted by $T_{i} . F$ can be identified with a subsurface of $\mathcal{O}(M): \mathcal{O}(M)$ minus neighborhood of singular points. ∂F consists of three boundary components c_{1}, c_{2}, c_{3}, which correspond to singular points x_{1}, x_{2}, x_{3} respectively (see Figure 2). Suppose $r_{i}=\beta_{i} / \alpha_{i}$.

Figure 2
Since $\bar{f}\left(x_{i}\right)=x_{i}$, we can assume $f\left(M^{\prime}\right)=M^{\prime}$ and $f\left(N_{i}\right)=N_{i}$.
Since N_{i} is a solid torus, the homeomorphism must send the meridian to meridian, so we have $\left(\left.f\right|_{T_{i}}\right)_{*}\left(\alpha_{i} c_{i}+\beta_{i} h_{i}\right)= \pm\left(\alpha_{i} c_{i}+\beta_{i} h_{i}\right)$ on the boundary torus T_{i}. Since \bar{f} preserves the orientation of $\mathcal{O}(M), f$ preserves the orientation of M, and so preserves the orientation of regular fiber, we have $f_{*}(h)=h$, thus $\left(\left.f\right|_{T_{i}}\right)_{*}\left(h_{i}\right)=h_{i}$. Then we $\operatorname{get}\left(\left.f\right|_{T_{i}}\right)_{*}\left(c_{i}\right)=c_{i}$.

Take two loops γ_{1}, γ_{2} to be generators of $\pi_{1}(F)$ as shown in Figure 2. Since $\left(\left.f\right|_{T_{i}}\right)_{*}\left(c_{i}\right)=c_{i}$, and c_{i} is isotopic to γ_{i} in F, for the subgroup $\pi_{1}(F)<\pi_{1}\left(M^{\prime}\right)$, we have $\left(\left.f\right|_{M^{\prime}}\right)_{*}\left(\pi_{1}(F)\right)=\pi_{1}(F)$ and also $\left(\left.f\right|_{M^{\prime}}\right)_{*}(h)=h$.

For $g=\left.\bar{f}\right|_{F}$, we have $\left.g\right|_{\partial F}=\mathrm{id}$. By Lemma 5.2, we get a homotopy $H:(F, \partial F) \times I \rightarrow$ $(F, \partial F)$, such that $H_{0}=g, H_{1}=\mathrm{id}$. So g_{*} is conjugate to $\mathrm{id}_{\pi_{1}(F)}$.
Conjugate by the same element in $\pi_{1}(F)<\pi_{1}\left(M^{\prime}\right)$, we get $\left(\left.f\right|_{M^{\prime}}\right)_{*}$ is conjugate to $\left.\mathrm{id}\right|_{\pi_{1}\left(M^{\prime}\right)}$. Since $i_{*}: \pi_{1}\left(M^{\prime}\right) \rightarrow \pi_{1}(M)$ is surjective, f_{*} conjugates to the identity. By Proposition 2.4, f is homotopic to the identity.

Lemma 5.4 Suppose that $f: M \rightarrow M$ is a fiber-preserving, orientation-preserving homeomorphism and \bar{f} preserves the orientation of $\mathcal{O}(M)$. If f sends singular fiber with index $\left(\alpha_{1}, \beta_{1}\right)$ to singular fiber with index $\left(\alpha_{2}, \beta_{2}\right)$, then $\alpha_{1}=\alpha_{2}$ and $\alpha_{1} \mid\left(\beta_{2}-\beta_{1}\right)$.

Proof The notation is as in the last lemma.
We can assume that $f\left(N_{1}\right)=N_{2}$. Since $\left.f\right|_{N_{1}}: N_{1} \rightarrow N_{2}$ is a homeomorphism, $\left.f\right|_{N_{1}}$ sends the meridian to meridian, thus $\left(\left.f\right|_{T_{1}}\right)_{*}\left(\alpha_{1} c_{1}+\beta_{1} h_{1}\right)= \pm\left(\alpha_{2} c_{2}+\beta_{2} h_{2}\right) \in$ $\pi_{1}\left(T_{2}\right)$. Since \bar{f} preserves the orientation of $\mathcal{O}(M)$, we have $\left(\left.\bar{f}\right|_{F}\right)_{*}\left(c_{1}\right)=c_{2}$, so $\left(\left.f\right|_{T_{1}}\right)_{*}\left(c_{1}\right)=c_{2}+l h_{2}$. Since \bar{f} preserves the orientation of $\mathcal{O}(M), f$ preserves the orientation of M and the Seifert structure of M, we have $\left(\left.f\right|_{T_{1}}\right)_{*}\left(h_{1}\right)=h_{2}$. Then we have

$$
\alpha_{2} c_{2}+\beta_{2} h_{2}=\left(\left.f\right|_{T_{1}}\right)_{*}\left(\alpha_{1} c_{1}+\beta_{1} h_{1}\right)=\alpha_{1} c_{2}+\left(l \alpha_{1}+\beta_{1}\right) h_{2} \in \pi_{1}\left(T_{2}\right)
$$

Since c_{2}, h_{2} is a basis of $\pi_{1}\left(T_{2}\right)$, we get $\alpha_{1}=\alpha_{2}$ and $\alpha_{1} \mid\left(\beta_{2}-\beta_{1}\right)$.
Proposition 5.5 For an S^{3}-manifold $M \neq L(p, q)$, the mapping class group of M is generated by the homeomorphisms of type I and type II defined at the beginning of Section 5.1.

Proof Suppose f is an orientation-preserving homeomorphism of M. Then by Proposition 5.1, we can isotope f to a fiber-preserving homeomorphism.

If necessary, compose f with homeomorphism of type I. For the new homeomorphism f_{1}, we can assume $\overline{f_{1}}$ preserves the orientation on $\mathcal{O}(M)$. If $\overline{f_{1}}$ sends a singular point x_{1} to singular point x_{2}, by Lemma 5.4, we have $\alpha_{1}=\alpha_{2}$ and $\alpha_{1} \mid\left(\beta_{2}-\beta_{1}\right)$. If necessary, rechoose the section F, we can assume $\beta_{1}=\beta_{2}$. Composing with homeomorphism of type II, we get a new homeomorphism f_{2} such that $\overline{f_{2}}\left(x_{1}\right)=x_{1}$, and $\overline{f_{2}}$ still preserves the orientation on $\mathcal{O}(M)$. By induction, we obtain a map f_{3} that sends every singular fiber to itself.

Now f_{3} satisfies the condition of Lemma 5.3, so f_{3} is homotopic to identity. Since we compose f with homeomorphisms of type I and II to get $f_{3} \sim \mathrm{id}$, we obtain that f is homotopic to composition of homeomorphisms of type I and II.

5.2 Equivalence of two presentations

The presentations of $\pi_{1}(M)$ in Theorem 2.2 do not reflect the Seifert structure of S^{3}-manifolds. However, for a Seifert manifold $M=\left\{b ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}, \beta_{3} / \alpha_{3}\right\}$, there is a natural presentation of $\pi_{1}(M)$ from the Seifert structure [16]:
$\pi_{1}(M) \cong\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{\alpha_{1}} h^{\beta_{1}}=c_{2}^{\alpha_{2}} h^{\beta_{2}}=\left(c_{1} c_{2}\right)^{-\alpha_{3}} h^{b \alpha_{3}+\beta_{3}}=1\right\}$.
For simplicity, we call the presentation given in Theorem 2.2 the classical presentation, and denote it by G; we call the presentation given by the Seifert structure Seifert presentation, and denote it by G^{\prime}.
The induced maps on π_{1} of the homeomorphisms of type I and II are more easily obtained for the Seifert presentation:

- For a type I homeomorphism f_{1}, we have $\left(f_{1}\right)_{*}\left(c_{1}\right)=c_{1}^{-1},\left(f_{1}\right)_{*}\left(c_{2}\right)=c_{2}^{-1}$, $\left(f_{1}\right)_{*}(h)=h^{-1}$.
- For a type II homeomorphism f_{2}, we have $\left(f_{2}\right)_{*}\left(c_{1}\right)=c_{2},\left(f_{2}\right)_{*}\left(c_{2}\right)=c_{1}$, $\left(f_{2}\right)_{*}(h)=h$.

However, we have given a presentation of $\operatorname{Out}\left(\pi_{1}(M)\right)$ by the classical presentation, so we shall show how the presentations correspond to each other. Then we can present the induced map on fundamental group of type I and II homeomorphisms by the known presentation of $\operatorname{Out}\left(\pi_{1}(M)\right)$.
Denote by $i: G \rightarrow G^{\prime}, j: G^{\prime} \rightarrow G$ the isomorphism between the two presentations of $\operatorname{Out}\left(\pi_{1}(M)\right)$ such that $j i=\operatorname{id}_{G}, j i=\operatorname{id}_{G^{\prime}}$. We will give i, j explicitly in the following.

Case $1 \quad M=\left\{b ; 1 / 2,1 / 2, \beta_{3} / \alpha_{3}\right\}, m=(b+1) \alpha_{3}+\beta_{3},\left(m, 2 \alpha_{3}\right)=1$.
(i) If $\alpha_{3}>2$, classical presentation: $G=\left\{a, x, y \mid a^{m}=1,[x, a]=[y, a]=1, x^{2}=\right.$ $\left.(x y)^{2}=y^{\alpha_{3}}\right\}$; Seifert presentation: $G^{\prime}=\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{2} h=c_{2}^{2} h=\right.$ $\left.\left(c_{1} c_{2}\right)^{-\alpha_{3}} h^{b \alpha_{3}+\beta_{3}}=1\right\}$.

$$
\begin{array}{lll}
i(a)=h^{1-m}, & i(x)=c_{1}^{-m^{2}}, & i(y)=c_{1} c_{2}^{-1}, \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{(m-1) / 2} x^{-1}, & j\left(c_{2}\right)=a^{(m-1) / 2} y^{-1} x^{-1} .
\end{array}
$$

(ii) If $\alpha_{3}=2$, we take the same classical presentation but another Seifert presentation, since this presentation can reflect the symmetry of the orbifold better. $G^{\prime}=\left\{h, c_{1}, c_{2}, c_{3} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=\left[c_{3}, h\right]=1, c_{1}^{2} h=c_{2}^{2} h=c_{3}^{2} h=c_{1} c_{2} c_{3} h^{-b}=1\right\}$.

$$
\begin{array}{lll}
i(a)=h^{2 b+4}, & i(x)=h^{2 b^{2}+4 b+1} c_{1}^{-1}, & i(y)=h^{2 b^{2}-4} c_{2}, \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{b+1} x, & j\left(c_{2}\right)=a^{b+1} y, \\
j\left(c_{3}\right)=a^{b+1}(x y)^{2 b-1}
\end{array}
$$

Case $2 M=\left\{b ; 1 / 2,1 / 2, \beta_{3} / \alpha_{3}\right\}, m=(b+1) \alpha_{3}+\beta_{3}, m=2^{k} m^{\prime}$.
Classical presentation: $G=\left\{a, x, y \mid a^{m^{\prime}}=1,[x, a]=[y, a]=1, x^{2^{k+2}}=y^{\alpha_{3}}=\right.$ 1, $\left.x y=y^{-1} x\right\}$; Seifert presentation: $G^{\prime}=\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{2} h=\right.$ $\left.c_{2}^{2} h=\left(c_{1} c_{2}\right)^{-\alpha_{3}} h^{b \alpha_{3}+\beta_{3}}=1\right\}$. Suppose the integer w satisfies $w m^{\prime} \equiv 1 \bmod 2^{k+2}$.

$$
\begin{array}{lll}
i(a)=h^{1-m^{\prime} w}, & i(x)=\left(h^{\left(m^{\prime}-1\right) / 2} c_{1}^{-1}\right)^{w}, & i(y)=c_{1}^{-1-2 m} c_{2}, \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{\left(m^{\prime}-1\right) / 2} x^{-1}, & j\left(c_{2}\right)=a^{\left(m^{\prime}-1\right) / 2} x^{-1-2 m} y .
\end{array}
$$

Case $3 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 3\right\}, m=6 b+3+2\left(\beta_{2}+\beta_{3}\right),(m, 12)=1$. Then we can assume $\beta_{2}=\beta_{3}=1$, so $m=6 b+7$.
Classical presentation: $G=\left\{a, x, y \mid a^{m}=1,[x, a]=[y, a]=1, x^{2}=(x y)^{3}=\right.$ $\left.y^{3}, x^{4}=1\right\}$; Seifert presentation: $G^{\prime}=\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{3} h=c_{2}^{3} h=\right.$ $\left.\left(c_{1} c_{2}\right)^{2} h^{-1-2 b}=1\right\}$.

$$
\begin{array}{lll}
i(a)=h^{6 b+8}, & i(x)=c_{1} c_{2} h^{-4 b-4}, & i(y)=c_{2}^{-1} h^{2 b+2}, \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{2 b+2} x y, & j\left(c_{2}\right)=a^{2 b+2} y^{-1} .
\end{array}
$$

Case $4 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 3\right\}, m=6 b+3+2\left(\beta_{2}+\beta_{3}\right),(m, 12) \neq 1$. We assume $\beta_{2}=1, \beta_{3}=2$. Then $m=6 b+9=3^{k} m^{\prime}$, so we can also assume $m^{\prime}=3 n+1$.
Classical presentation: $G=\left\{a, x, y, z \mid a^{m^{\prime}}=1,[x, a]=[y, a]=[z, a]=1, x^{2}=\right.$ $\left.(x y)^{2}=y^{2}, z x z^{-1}=y, z y z^{-1}=x y, z^{3^{k+1}}=1\right\}$; Seifert presentation: $G^{\prime}=$ $\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{3} h=c_{2}^{3} h^{2}=\left(c_{1} c_{2}\right)^{2} h^{-1-2 b}=1\right\}$.

$$
\begin{gathered}
i(a)=h^{\left(1-m^{\prime}\right)^{k}}, \quad i(x)=c_{1} c_{2} h^{-4 b-5}, \\
i(y)=c_{2} c_{1} h^{2 b+4}, \quad i(z)=c_{2}^{-1} c_{1}^{-2} h^{-\left(1-m^{\prime}\right)^{k+1} / 3+4 b+5}, \\
j(h)=a x^{2} z^{3}, j\left(c_{1}\right)=a^{-\left(m^{\prime}-1\right)^{2} / 3} z^{-1} x^{-1}, j\left(c_{2}\right)=a^{4 b+5+\left(m^{\prime}-1\right)^{2} / 3} x y^{3} z^{12 b+16} .
\end{gathered}
$$

Actually, in Case 5 and Case 6, we do not need the isomorphism to determine $\mathcal{M C G}(M)$. However, for completion, we list the isomorphisms here.
Case $5 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 4\right\}, m=12 b+6+4 \beta_{2}+3 \beta_{3}$. We can assume $\beta_{2}=1$.
Classical presentation: $G=\left\{a, x, y \mid a^{m}=1,[x, a]=[y, a]=1, x^{2}=(x y)^{3}=\right.$ $\left.y^{4}, x^{4}=1\right\}$; Seifert presentation: $G^{\prime}=\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{3} h=c_{2}^{4} h^{\beta_{3}}=\right.$ $\left.\left(c_{1} c_{2}\right)^{2} h^{-1-2 b}=1\right\}$.
(i) $\beta_{3}=1$, so $m=12 b+13$:

$$
\begin{array}{lll}
i(a)=h^{12 b+14}, & i(x)=c_{1} c_{2} h^{12 b^{2}-6 b-20}, & i(y)=c_{2}^{-1} h^{12 b^{2}+4 b-10}, \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{4 b+4} x y, & j\left(c_{2}\right)=a^{3 b+3} y^{-1} .
\end{array}
$$

(ii) $\beta_{3}=3$, so $m=12 b+19$:

$$
\begin{array}{lll}
i(a)=h^{12 b+20}, & i(x)=c_{1} c_{2} h^{12 b^{2}+12 b-20}, & i(y)=c_{2}^{-1} h^{12 b^{2}+22 b+4} \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{4 b+6} x y, & j\left(c_{2}\right)=a^{3 b+4} y^{-1}
\end{array}
$$

Case $6 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 5\right\}, m=30 b+15+10 \beta_{2}+6 \beta_{3}$. We can assume $\beta_{2}=1$.

Classical presentation: $G=\left\{a, x, y \mid a^{m}=1,[x, a]=[y, a]=1, x^{2}=(x y)^{3}=\right.$ $\left.y^{5}, x^{4}=1\right\}$; Seifert presentation: $G^{\prime}=\left\{h, c_{1}, c_{2} \mid\left[c_{1}, h\right]=\left[c_{2}, h\right]=1, c_{1}^{3} h=c_{2}^{5} h^{\beta_{3}}=\right.$ $\left.\left(c_{1} c_{2}\right)^{2} h^{-1-2 b}=1\right\}$.
(i) $\beta_{3}=1$ or 3 :

$$
\begin{array}{lll}
i(a)=h^{30 b+26+6 \beta_{3}}, & i(x)=c_{1} c_{2} h^{-16 b-13-3 \beta_{3}}, & i(y)=c_{2}^{-1} h^{6 b+5+\beta_{3}} \\
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{10 b+8+2 \beta_{3}} x y, & j\left(c_{2}\right)=a^{6 b+5+\beta_{3}} y^{-1}
\end{array}
$$

(ii) $\beta_{3}=2$ or 4 :

$$
\begin{array}{ll}
i(a)=h^{30 b+26+6 \beta_{3}}, & i(x)=c_{1}^{-1} c_{2}^{-1} h^{16 b+13+3 \beta_{3}},
\end{array} \quad i(y)=c_{2} h^{-6 b-5-\beta_{3}}, ~ \begin{array}{ll}
j(h)=a x^{2}, & j\left(c_{1}\right)=a^{10 b+8+2 \beta_{3}} y^{-1} x^{-1},
\end{array} \quad j\left(c_{2}\right)=a^{6 b+5+\beta_{3}} x^{2} y .
$$

5.3 Determination of mapping class group

Given the equivalence connecting the classical and Seifert presentations of $\pi_{1}(M)$, we can compute the $\mathcal{M C G}(M)$ now (for S^{3}-manifolds $M \neq L(p, q), \mathcal{M C G}(M)=$ $\left.\mathcal{M C G}^{+}(M)\right)$.
Case $1 M=\left\{b ; 1 / 2,1 / 2, \beta_{3} / \alpha_{3}\right\}, m=(b+1) \alpha_{3}+\beta_{3},\left(m, 2 \alpha_{3}\right)=1, \pi_{1}(M) \cong$ $\mathbb{Z}_{m} \times D_{4 \alpha_{3}}^{*}$.
(i) We first assume $\alpha_{3}>2$. Since only one pair of singular fibers of M satisfies $\alpha_{1}=\alpha_{2}$, and $\alpha_{1} \mid\left(\beta_{2}-\beta_{1}\right), M$ only admit one homeomorphism of type II.

Suppose f is the homeomorphism of type I: $f_{*}\left(c_{1}\right)=c_{1}^{-1}, f\left(c_{2}\right)=c_{2}^{-1}, f_{*}(h)=$ h^{-1}. By the equivalence given in the last part, in the classical presentation, we have $f_{*}(a)=a^{-1}, f_{*}(x)=x^{3}, f_{*}(y)=y$.

Suppose g is the unique homeomorphism of type II: $g_{*}\left(c_{1}\right)=c_{2}, g_{*}\left(c_{2}\right)=c_{1}, g_{*}(h)=$ h. In the classical presentation, we have $g_{*}(a)=a, g_{*}(x)=(x y)^{-1}, g_{*}(y)=y^{-1}$.
When α_{3} is odd, conjugating by $x y^{-\left(\alpha_{3}-1\right) / 2}$, we get g_{*} is conjugated to $\phi(a)=$ $a, \phi(x)=x^{3}, \phi(y)=y$. Comparing with the presentation of $\operatorname{Out}\left(D_{4 \alpha_{3}}^{*}\right)$ in Section 4,
we have: when $m=1, f_{*} \sim g_{*} \nsim$ id (here \sim means conjugate), $\mathcal{M C G}(M) \cong \mathbb{Z}_{2}$; when $m>1$, id $\nsim f_{*} \nsim g_{*} \nsim \mathrm{id}, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
When α_{3} is even, conjugating by $y^{\alpha_{3} / 2}, f_{*}$ is conjugated to $\phi(a)=a^{-1}, \phi(x)=$ $x, \phi(y)=y$; conjugate by $x y^{\alpha_{3} / 2+1}, g_{*}$ is conjugated to $\phi(a)=a, \phi(x)=x^{3} y$, $\phi(y)=y$. Comparing with Section 4, we have: when $m=1$, id $\sim f_{*} \nsim g_{*}$, $\mathcal{M C G}(M) \cong \mathbb{Z}_{2}$; when $m>1$, id $\nsim f_{*} \nsim g_{*} \nsim \mathrm{id}, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(ii) When $\alpha_{3}=2$, the three singular fibers are symmetric with each other, so there are more homeomorphisms of type II.
We take the section F^{\prime} of $M^{\prime \prime}=F^{\prime} \times S^{1}$ as in Figure 3; here F^{\prime} is a four-punctured sphere, while one puncture corresponds to a regular fiber, c_{i} corresponds to singular fiber $l_{i}, i=1,2,3$ respectively.

Figure 3
Suppose f is the homeomorphism of type $\mathrm{I}, f_{*}\left(c_{1}\right)=c_{1}^{-1}, f\left(c_{2}\right)=c_{2}^{-1}, f\left(c_{2}\right)=$ $c_{2}^{-1}, f_{*}(h)=h^{-1}$. By the isomorphism given in the last part, for the Seifert presentation, $f_{*}(a)=a^{-1}, f_{*}(x)=x^{3}, f_{*}(y)=y^{3}$; conjugating by $x y$, we have f_{*} is conjugated to $\phi(a)=a^{-1}, \phi(x)=x, \phi(y)=y$.

Suppose g, g^{\prime} are two homeomorphisms of type II where g exchanges l_{1}, l_{2}, fixes l_{3}, while g^{\prime} exchanges l_{2}, l_{3}, fixes l_{1}, and the type II homeomorphism that exchanges l_{1}, l_{3} and fixes l_{2} is equal to $g g^{\prime} g$. The group generated by the g, g^{\prime} actions on l_{1}, l_{2}, l_{3} acts as the permutation group S_{3}, so the corresponding subgroup of $\mathcal{M C \mathcal { G }}(G)$ is a quotient group of S_{3}.

Under the Seifert presentation, g, g^{\prime} are: $g_{*}\left(c_{1}\right)=c_{2}, g_{*}\left(c_{2}\right)=c_{1}, g_{*}\left(c_{3}\right)=$ $c_{1}^{-1} c_{3} c_{1}, g_{*}(h)=h ; g_{*}^{\prime}\left(c_{1}\right)=c_{2}^{-1} c_{1} c_{2}, g_{*}^{\prime}\left(c_{2}\right)=c_{3}, g_{*}^{\prime}\left(c_{3}\right)=c_{2}, g_{*}^{\prime}(h)=h$. On the classical presentation, we have $g_{*}(a)=a, g_{*}(x)=y, g_{*}(y)=x ; g_{*}^{\prime}(a)=$ $a, g_{*}^{\prime}(x)=x^{3}, g_{*}^{\prime}(y)=(x y)^{2 b-1}$. Conjugating by y or $x y$, we have g_{*}^{\prime} conjugates
to $\psi(a)=a, \psi(x)=x, \psi(y)=x y$. Comparing with Section 4, we have: the action of g_{*} and g_{*}^{\prime} on D_{8}^{*} generate the whole $\operatorname{Out}\left(D_{8}^{*}\right) \cong S_{3}$.
Considering f_{*}, we have: when $m=1, \mathcal{M C G}(M) \cong S_{3}$; when $m>1, \mathcal{M C G}(M) \cong$ $\mathbb{Z}_{2} \times S_{3}$.
Case $2 M=\left\{b ; 1 / 2,1 / 2, \beta_{3} / \alpha_{3}\right\}, m=(b+1) \alpha_{3}+\beta_{3}, m=2^{k} m^{\prime}, \pi_{1}(M) \cong$ $\mathbb{Z}_{m}^{\prime} \times D_{2^{k+2} \alpha_{3}}^{\prime}$.
Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_{*}(a)=a^{-1}, f_{*}(x)=x^{-1}, f_{*}(y)=y$.

Suppose g is the unique homeomorphism of type II. In the classical presentation, we have $g_{*}(a)=a, g_{*}(x)=x^{2^{k+1}+1} y, g_{*}(y)=y^{-1}$. Conjugating by $x y^{\left(1+\alpha_{3}\right) / 2}, g_{*}$ conjugates to $\phi(a)=a, \phi(x)=x^{2^{k+1}+1}, \phi(y)=y$.

Comparing with the presentation of $\operatorname{Out}\left(D_{2^{k+2} \alpha_{3}}^{\prime}\right)$ in Section 4, we have: id $\nsim f_{*} \nsim$ $g_{*} \nsim \mathrm{id}, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Case $3 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 3\right\}, m=6 b+3+2\left(\beta_{2}+\beta_{3}\right),(m, 12)=1$. We can assume $\beta_{2}=\beta_{3}=1, \pi_{1}(M) \cong \mathbb{Z}_{m} \times T_{24}^{*}$.

Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_{*}(a)=a^{-1}, f_{*}(x)=y^{-1} x^{-1} y, f_{*}(y)=y^{-1}$. Conjugating by y, f_{*} conjugates to $\phi(a)=a^{-1}, \phi(x)=x^{-1}, \phi(y)=y^{-1}$.
Suppose g is the unique homeomorphism of type II. In the classical presentation, we have $g_{*}(a)=a, g_{*}(x)=y^{-1} x y, g_{*}(y)=y^{-1} x^{-1}$. Conjugating by $y^{-1} x y^{2}, g_{*}$ conjugates to $\psi(a)=a, \psi(x)=x^{-1}, \psi(y)=y^{-1}$.
Comparing with the presentation of $\operatorname{Out}\left(T_{24}^{*}\right)$ in Section 4, we have: when $m=1$, $f_{*} \sim g_{*} \nsim \mathrm{id}, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} ;$ when $m>1$, id $\nsim f_{*} \nsim g_{*} \nsim \mathrm{id}, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Case $4 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 3\right\}, m=6 b+3+2\left(\beta_{2}+\beta_{3}\right),(m, 12) \neq 1$. We assume $\beta_{2}=1, \beta_{3}=2$, so $m=6 b+9=3^{k} m^{\prime}$, and we can still assume $m^{\prime}=3 n+1$, $\pi_{1}(M) \cong \mathbb{Z}_{m^{\prime}} \times T_{8 \cdot 3^{k+1}}^{\prime}$.
Here M does not admit a homeomorphism of type II. Suppose f is the homeomorphism of type I. In the classical presentation, we have $f_{*}(a)=a^{-1}, f_{*}(x)=y, f_{*}(y)=$ $x, f_{*}(z)=x z^{-1}$. Conjugating by z^{-1}, f_{*} is conjugate to $\phi(a)=a^{-1}, \phi(x)=$ $x, \phi(y)=x y, \phi(z)=z^{-1} x$.

Comparing with the presentation of $\operatorname{Out}\left(T_{8 \cdot 3^{k+1}}^{\prime}\right)$ in Section 4, we have $f_{*} \nsim \mathrm{id}$, $\mathcal{M C G}(M) \cong \mathbb{Z}_{2}$.

Case $5 \quad M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 4\right\}, m=12 b+6+4 \beta_{2}+3 \beta_{3}, \pi_{1}(M) \cong \mathbb{Z}_{m} \times O_{48}^{*}$.

Case $6 M=\left\{b ; 1 / 2, \beta_{2} / 3, \beta_{3} / 5\right\}, m=30 b+15+10 \beta_{2}+6 \beta_{3}, \pi_{1}(M) \cong \mathbb{Z}_{m} \times I_{120}^{*}$. In these two cases, M does not admit a homeomorphism of type II, so $\mathcal{M C G}(M) \cong \mathbb{Z}_{2}$ or is trivial. Suppose f is the homeomorphism of type I.
When $m>1$, then the fiber h corresponds with an element of type $(\overline{1}, u) \in \pi_{1}(M) \cong$ $\mathbb{Z}_{m} \times O_{48}^{*}$ or $\pi_{1}(M) \cong \mathbb{Z}_{m} \times I_{120}^{*}$. So we have $f_{*}(\overline{1}, u)=(-\overline{1}, g(u))$, and $f_{*} \nsim \mathrm{id}$, so $\mathcal{M C G}(M) \cong \mathbb{Z}_{2}$.
When $m=1$, by Section 4, we have $\operatorname{Out}\left(O_{48}^{*}\right) \cong \operatorname{Out}\left(I_{120}^{*}\right) \cong \mathbb{Z}_{2}$, and $U_{48}^{2} \cong U_{120}^{2} \cong$ \mathbb{Z}_{2}. But $|K(M)|=\left|\operatorname{Out}\left(\pi_{1}(M)\right)\right| /\left|U^{2}\left(\left|\pi_{1}(M)\right|\right)\right| \mid$, so we have $K(M)=\{\operatorname{id}\}$. Since f is a degree one self-map on M, f is homotopic to identity, thus $\mathcal{M C G}(M) \cong\{e\}$.

Bringing together the above results, we get the following:
Theorem 5.6 The mapping class groups of S^{3}-manifolds are shown as follows:
(i) $M=S^{3}, \mathcal{M C G}(M) \cong\{e\}$.
(ii) $M=L(p, q)$:
(a) $q= \pm 1$, or $p \nmid q^{2}-1, p \nmid q^{2}+1, \mathcal{M C G}(M) \cong \mathbb{Z}_{2}$.
(b) $p \mid q^{2}-1, q \neq \pm 1, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(c) $p \mid q^{2}+1, q \neq \pm 1, \mathcal{M C G}(M) \cong \mathbb{Z}_{4}$.
(iii) $\pi_{1}(M) \cong \mathbb{Z}_{m} \times D_{4 \alpha_{3}}^{*}$:
(a) $\alpha_{3}=2$: when $m=1, \mathcal{M C G}(M) \cong S_{3}$; when $m>1, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times S_{3}$.
(b) $\alpha_{3}>2$: when $m=1, \mathcal{M C \mathcal { G }}(M) \cong \mathbb{Z}_{2}$; when $m>1, \mathcal{M C \mathcal { G }}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(iv) $\pi_{1}(M) \cong \mathbb{Z}_{m}^{\prime} \times D_{2^{k+2} \alpha_{3}}^{\prime}, \alpha_{3}>1$ odd, $\mathcal{M C G}(M) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(v) $\pi_{1}(M) \cong \mathbb{Z}_{m}^{\prime} \times T_{24}^{*}$: when $m=1, \mathcal{M C G}(M) \cong \mathbb{Z}_{2} ;$ when $m>1, \mathcal{M C G}(M) \cong$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(vi) $\pi_{1}(M) \cong \mathbb{Z}_{m}^{\prime} \times T_{8 \cdot 3^{k+1}}^{\prime}, k>0, \mathcal{M C G}(M) \cong \mathbb{Z}_{2}$.
(vii) $\pi_{1}(M) \cong \mathbb{Z}_{m}^{\prime} \times O_{48}^{*}$: when $m=1, \mathcal{M C G}(M) \cong\{e\} ;$ when $m>1, \mathcal{M C G}(M) \cong$ \mathbb{Z}_{2}.
(viii) $\pi_{1}(M) \cong \mathbb{Z}_{m}^{\prime} \times I_{120}^{*}$: when $m=1, \mathcal{M C G}(M) \cong\{e\} ;$ when $m>1, \mathcal{M C G}(M) \cong$ \mathbb{Z}_{2}.

6 Conclusions

The computational results of $\operatorname{Out}\left(\pi_{1}(M)\right), \mathcal{M C G}(M), \operatorname{RC}(M)(M \neq L(p, q))$ are shown in Table 1. By elementary computation, we can get the part of Theorem 1.1 for $M \neq L(p, q)$ easily.

$\pi_{1}(M)$	$\left\|\operatorname{Out}\left(\pi_{1}(M)\right)\right\|$	$\|\mathcal{M C G}(M)\|$	$\mathrm{RC}(M)$
$\mathbb{Z}_{m} \times D_{8}^{*}$	$6\left\|U_{m}\right\|$	$6 m=1$ $12 m>1$	1 $\Psi(m) / 2 m>1$
$\mathbb{Z}_{m} \times D_{4 \alpha_{3}}^{*}$, $\alpha_{3}>2$	$\left\|U_{m}\right\|\left\|U_{4 \alpha_{3}}\right\| / 2$	$2 m=1$ $4 m>1$	$\Psi\left(4 \alpha_{3}\right) / 4 r m=1$ $\Psi(m) \Psi\left(4 \alpha_{3}\right) / 8 m>1$
$\mathbb{Z}_{m} \times D_{2^{k+2} \alpha_{3}}^{\prime}$, $\alpha_{3}>1$ odd	$2^{k}\left\|U_{m}\right\|\left\|U_{\alpha_{3}}\right\|$	4	$\Psi(m) \Psi\left(\alpha_{3}\right) / 2$
$\mathbb{Z}_{m} \times T_{24}^{*}$	$2\left\|U_{m}\right\|$	$2 m=1$ $4 m>1$	1 $\Psi(m) / 2 m>1$
$\mathbb{Z}_{m} \times T_{8 \cdot 3^{k+1}}^{\prime}$, $k>0$	$2 \cdot 3^{k}\left\|U_{m}\right\|$	2	$\Psi(m)$
$\mathbb{Z}_{m} \times O_{48}^{*}$	$2\left\|U_{m}\right\|$	$1 m=1$ $2 m>1$	1 $\Psi(m) / 2 m>1$
$\mathbb{Z}_{m} \times I_{120}^{*}$	$2\left\|U_{m}\right\|$	$1 m=1$ $2 m>1$	1 $\Psi(m) / 2 m>1$

Table 1

Acknowledgements Thanks to Professor Michel Boileau and Professor Hyam Rubinstein for introducing me to references and related results about mapping class groups of S^{3}-manifolds.

References

[1] M Boileau, J-P Otal, Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert, Invent. Math. 106 (1991) 85-107 MR1123375
[2] A Hatcher, Notes on basic 3-manifold topology Available at http:// www.math.cornell.edu/~hatcher/
[3] C Hayat-Legrand, E Kudryavtseva, S Wang, H Zieschang, Degrees of selfmappings of Seifert manifolds with finite fundamental groups, Rend. Istit. Mat. Univ. Trieste 32 (2001) 131-147 (2002) MR1893395 Dedicated to the memory of Marco Reni
[4] J Hempel, Residual finiteness of surface groups, Proc. Amer. Math. Soc. 32 (1972) 323 MR0295352
[5] J Hempel, 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976) MR0415619
[6] J Hempel, Residual finiteness for 3-manifolds, from: "Combinatorial group theory and topology (Alta, Utah, 1984)", (S M Gersten, J R Stallings, editors), Ann. of Math. Stud. 111, Princeton Univ. Press (1987) 379-396 MR895623
[7] J A Hillman, The algebraic characterization of geometric 4-manifolds, London Math. Soc. Lecture Note Ser. 198, Cambridge Univ. Press (1994) MR1275829
[8] C Hodgson, J H Rubinstein, Involutions and isotopies of lens spaces, from: "Knot theory and manifolds (Vancouver, B.C., 1983)", (D Rolfsen, editor), Lecture Notes in Math. 1144, Springer, Berlin (1985) 60-96 MR823282
[9] K Ireland, M Rosen, A classical introduction to modern number theory, second edition, Graduate Texts in Math. 84, Springer, New York (1990) MR1070716
[10] B Jiang, S Wang, Y-Q Wu, Homeomorphisms of 3-manifolds and the realization of Nielsen number, Comm. Anal. Geom. 9 (2001) 825-877 MR1868922
[11] J Kalliongis, D McCullough, π_{1}-injective mappings of compact 3 -manifolds, Proc. London Math. Soc. (3) 52 (1986) 173-192 MR812450
[12] D McCullough, Isometries of elliptic 3-manifolds, J. London Math. Soc. (2) 65 (2002) 167-182 MR1875143
[13] GD Mostow, Strong rigidity of locally symmetric spaces, Annals of Math. Studies 78, Princeton Univ. Press (1973) MR0385004
[14] P Olum, Mappings of manifolds and the notion of degree, Ann. of Math. (2) 58 (1953) 458-480 MR0058212
[15] P Olum, On mappings into spaces in which certain homotopy groups vanish, Ann. of Math. (2) 57 (1953) 561-574 MR0054250
[16] P Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer, Berlin (1972) MR0426001
[17] J H Rubinstein, On 3-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979) 129-137 MR531972
[18] J H Rubinstein, J S Birman, One-sided Heegaard splittings and homeotopy groups of some 3-manifolds, Proc. London Math. Soc. (3) 49 (1984) 517-536 MR759302
[19] P Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487 MR705527
[20] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982) 357-381 MR648524

Department of Mathmatics, Princeton University
Princeton, NJ 08544
hongbins@princeton.edu

Received: 16 September 2009 Revised: 4 February 2010

