
Algebraic & Geometric Topology 10 (2010) 1187–1219 1187

Field theory configuration spaces for connective ko–theory

ELKE K MARKERT

We describe a new �–spectrum for connective ko–theory formed from spaces infn of
operators which have certain nice spectral properties, and which fulfill a connectivity
condition. The spectral data of such operators can equivalently be described by certain
Clifford-linear, symmetric configurations on the real axis; in this sense, our model for
ko stands between an older one by Segal [20], who uses nonsymmetric configurations
without Clifford-structure on spheres, and the well-known Atiyah–Singer model for
KO using Clifford-linear Fredholm operators [1]. Dropping the connectivity condition
we obtain operator spaces Infn . These are homotopy equivalent to the spaces EFT n

of 1j1–dimensional supersymmetric Euclidean field theories of degree n which were
defined by Stolz and Teichner in [22; 23] and with Hohnhold in [9] (in terms of
certain homomorphisms of super semigroups). They showed that the EFT �n are
homotopy equivalent to KOn and gave the idea for the connection between EFT n

and Infn . We can derive a homotopy equivalent version of the �–spectrum inf in
terms of “field theory type” super semigroup homomorphisms. Tracing back our
connectivity condition to the functorial language of field theories provides a candidate
for connective 1j1–dimensional Euclidean field theories, eft, and might result in a
more general criterion for instance for a connective version of 2j1–dimensional such
theories (which are conjectured to yield a spectrum for TMF).

19L41, 55N15, 81Q60; 81T60, 81T08

1 Introduction

Our main motivation for this paper comes out of a project of Stolz and Teichner—
published works include [22; 23] as well as work with Hohnhold (referred to as
Hohnhold et al) [9]—who define 1j1–dimensional and 2j1–dimensional supersymmet-
ric Euclidean field theories as functors on certain (super) geometric bordism categories
in order to obtain new geometric models for K–theory and the “universal elliptic
theory” TMF of topological modular forms, respectively. This approach was initiated
by Segal [21] and Witten [25]. The less difficult field theory model of K–theory
should be considered a case study for 2j1–dimensional field theories and TMF. In this
simpler case, Stolz and Teichner define spaces SGOn , n 2 Z, of homomorphisms of
certain generalized super semigroups, or super semigroups of operators. Subspaces of
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these homomorphism spaces correspond directly to 1j1–dimensional, supersymmetric
Euclidean field theories (EFTs) of degree n in the sense that the homomorphisms
correspond to the evaluation of the field theory functors on a particular elementary
super moduli space (the super moduli space of super intervals). One can therefore
speak of a space EFTn of such field theories, namely the set with the topology inherited
from the subspace of SGOs. They show that the subspaces are homotopy equivalent to
SGOn themselves, and the latter form an �–spectrum for KO.

In the original paper by Stolz and Teichner [22], super semigroups of operators satisfying
a certain Hilbert–Schmidt condition are derived from the functorial definition of degree
n EFTs which is postulated there; the authors conclude that such a field theory is
already completely determined by this data. This determines a subspace SGOHS

n which
is homotopy equivalent to SGOn . Since [22], a lot of work has been done adjusting the
definitions of field theory functors; the main references so far are Stolz and Teichner
[23] and Hohnhold, Stolz and Teichner [9]. These are still incomplete concerning the
definition of degrees of field theories, but the constructions have been outlined by Stolz
and Teichner and are expected to appear in literature in the near future. We will not
attempt to include any descriptions of the functorial aspects here, however we note that
for 1j1–dimensional Euclidean field theories the results remain basically unchanged:
using the new definitions of [23; 9], one obtains again spaces of field theories, EFTn ,
topologized as subspaces SGOTC

n of SGOn satisfying a trace-class condition. These
slightly different subspaces are again homotopy equivalent to SGOn ; see Hohnhold
et al [9]. For the moment one can thus think of such super semigroups of operators as
defining EFTs.

The spaces SGOn themselves are quite well understood. In particular, elements in
SGOn have unique infinitesimal generators: these are Clifford-linear operators on a
Hilbert space Hn with Cn –module structure. This was done in [22; 8]. The operators
are in general unbounded, but they do have relatively nice spectral properties (for
example discrete, real spectra). One obtains homeomorphisms between SGOn and
spaces of such operators Infn . The operator spaces Infn are comparatively easy to deal
with; in fact, there are several equivalent descriptions of them in terms of configurations,
or C�–algebra homomorphisms. Configuration spaces, which basically describe the
spectral data of the operators in Infn , provide a very convenient graphic model. The
description in terms of C�–algebra homomorphisms and a model of KO in this language
(see Higson and Guenthner [7] and Joachim [11]) is used in the original work by Stolz
and Teichner [22] to prove the result on the homotopy type of EFTn . The result is
shown again in Hohnhold et al [9] for the more recent definitions of EFTs; here the
authors employ configuration spaces to connect the spaces Infn , SGOn and EFTn
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(the latter discussed only for degree 0) with other well-known models of KO such as
Fredholm operators.

In this paper we give a connectivity condition and provide Inf with a connective version
inf . To be precise, we define connective covers Inf k

n � Infnhki of the spaces in question
and set inf�n WD Inf n

�n . This is a new �–spectrum for ko, which also comes equipped
with the structure maps of an �–spectrum (the proofs in [22] and [9] for the periodic
case do not provide such maps explicitly). We work it out in terms of operator spaces
and configuration spaces, the condition can however be expressed strictly in terms of
super semigroups of operators, thus producing the connective version sgo .

In fact, the construction also provides an idea how to reformulate the definition of sgo
for field theories, that is, for 1j1–EFT functors, to obtain a connective spectrum eft
(see Remark 2.5). Moreover, this seems to be independent of the dimension and might
be useful as well to define “connective” d j1–EFT functors. We hope to be able to
specify this in the future.

We will start out with the definition of the spaces SGOn of super semigroup homo-
morphisms and the theorem of Stolz and Teichner relating them to KO. To do that we
explain shortly some of the terminology, before proceeding to define the connective
spaces sgo . In Section 3 we turn to generating operators and configurations and define
their connective versions. The proof of connectivity and spectrum properties follows in
Section 4. It is done by constructing quasifibrations with contractible total spaces (this
proof was inspired by a proof of Bott periodicity by M Behrens [2]).

Acknowledgements This work is based on my doctoral thesis [13] written under the
supervision of S Stolz at the University of Notre Dame in 2005. I would like to thank
my advisor S Stolz and the faculty at Notre Dame, in particular W Dwyer, L Taylor
and B Williams, for their teaching and their constant support. I would like to thank
F Dumitrescu, H Hohnhold, C Redden and particularly G Gaudens for so many helpful
comments, questions and discussions.

2 Super semigroups of operators

We begin with a short summary of the relevant definitions and facts from the theory
of super manifolds and super groups (we refer the interested reader to Deligne and
Morgan [4] and Varadarajan [24]).

The category of supermanifolds SM has as its objects ringed spaces Mmjn WD

.jMj;OM/ where jMj is an m–manifold and OM is a sheaf of Z=2–graded commu-
tative algebras, locally (in jMj) isomorphic to the sheaf C1.�/˝ƒRn , where ƒRn
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denotes the exterior algebra of Rn . Morphisms are morphisms of ringed spaces.
The fundamental examples are the supermanifolds Rmjn WD .Rm;ORmjn/ where
ORmjn.U / WD C1.U /˝ƒRn . Supermanifolds are locally isomorphic to these. For
convenience in calculating and describing supermanifolds and their morphisms one often
makes use of the so-called functor of points approach. This is nothing but an application
of Yoneda’s lemma to SM, by which there is an inclusion of SM as a full subcategory
into the category of functors and natural transformations Fun.SMop;Sets/DW GSM

SM! GSM; M 7! .S 7! SM.S;M//:

We call an object in GSM a generalized supermanifold; the set SM.S;M/DWM.S/
is called the set of S–points of the supermanifold M. In terms of S–points we have
local coordinates of a supermanifold given by the isomorphisms

Rmjn.S/Š
˚
.t1; : : : ; tmI �1; : : : ; �n/ ti 2 .�

1OS/
ev; �j 2 .�

1OS/
odd

	
:

One can also make sense of geometric constructions like tangent and cotangent bundles,
differential forms, super Lie groups and super Lie algebras, in a fashion quite analogous
to the nonsuper situation; see Deligne and Morgan [4]. In particular, a super Lie
group G is a group object in the category SM, and its multiplication can be described
in terms of S–points as a map

G.S/�G.S/! G.S/

which is functorial in S . Similarly, we can describe super semigroups, and generalized
versions of both. The examples important to us are the following.

Example Let V D V 0 ˚ V 1 be a Z=2–graded Banach space (possibly infinite-
dimensional). Then we define a generalized supermanifold by determining its values
on opens in Rmjn , m; n 2 N, ie U WD .jU j; C1.jU j/Œ�1; : : : ; �n�/ � Rmjn . On these
local models we set

V W U 7! .C1.jU jIV /Œ�1; : : : ; �n�/
ev

where the latter denotes the set of even elements. To turn this into a functor on the
category of supermanifolds, we define the functor on maps of such opens by Taylor
expansion (compare Deligne and Morgan [4] and Hohnhold et al [9]) and use gluing
to extend it to all supermanifolds. If V ŠRm˚Rn is finite-dimensional, this is the
functor representing Rmjn . We will apply this formalism to the algebra of bounded
operators on some graded Hilbert space. This produces a generalized super semigroup,
where the multiplication comes from multiplication of operators.

Example The following defines a super group structure on R1j1 :

R1j1.S/�R1j1.S/!R1j1.S/; .t; �/ ı .s; �/ 7! .t C sC ��; � C �/:

Algebraic & Geometric Topology, Volume 10 (2010)



Field theory configuration spaces for connective ko–theory 1191

It is easy to check that this defines in fact a group structure on R1j1.S/. We sometimes
refer to this as the “twisted” super group structure. Note that we can restrict it to
R1j1
>0
WD .R>0;OR1j1 jR>0

/, the subsupermanifold whose reduced part is the positive
real axis. The twisted super group structure makes R1j1

>0
into a super semigroup.

Let us now define the Hilbert universes mentioned in the introduction. We denote
by Cn , n > 0, the standard real Clifford algebra on generators e1; : : : ; en where
eiej C ej ei D�2ıij . For negative n, Cn denotes the real Clifford algebra with respect
to the negative definite inner product, ie with generators which anticommute pairwise
and square to C1.

In the following we are going to work with Hilbert spaces which come with Cn –module
structures. We call such a structure compatible with the inner product on the Hilbert
space, if the generators of Cn (C�n , respectively) act as skew-adjoint (self-adjoint)
operators. This implies in particular that orthogonal projections onto submodules along
the given inner product in the Hilbert space are linear with respect to the Clifford
algebra action. Clifford algebras are graded into even and odd elements; we distinguish
graded and ungraded modules over them. It is a well-known fact (see for example
Lawson and Michelson [12]) that the even part C0

n of Cn is isomorphic to Cn�1 as
ungraded algebras. We use this in the definition below to obtain a graded Cn –module
from an ungraded Cn�1 –module. We will further use right and left module structures;
note here that one can consider a right Cn –module structure as left C�n structure
by replacing the generators e1; : : : ; en of Cn acting from the right with generators
�e1; : : : ; �en of C�n acting from the left (� denotes the grading involution). We will
distinguish these actions also in the names of the generators; we will denote generators
acting from the left by fi , those acting from the right by ei . In particular, we will often
consider Hilbert spaces equipped with a CnCk –right module structure as bimodules
over C�k –Cn . This is then expressed accordingly in the notation of the generators
acting on it: we set fi WD �ei , i D nC 1; : : : ; nC k .

Definition 2.1 For each n 2 Z, we fix an infinite-dimensional separable real Hilbert
space Hn with compatible (ungraded) right Cn�1 –module structure, which contains all
irreducible Cn�1 –modules infinitely many times. We then set Hn WDHn˝Cn�1

Cn . This
is a Z=2–graded real Hilbert space (grading involution denoted by � ) with compatible
Cn –module structure, which contains all irreducible graded Cn –modules infinitely many
times.

We further denote by BCn
.Hn/ the algebra of bounded, Clifford-linear operators on Hn ,

equipped with the norm topology. This is an infinite-dimensional Z=2–graded Banach
algebra (the grading into even and odd operators is induced by the grading on Hn ).
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Recall that this can be interpreted as generalized super group by the functor from the
first example. As in [9], we define a super semigroup of operators of degree n as a
homomorphism of generalized super semigroups

� 2 Homssg.R
1j1
>0
;BCn

.Hn//;

where R1j1
>0

carries the twisted super semigroup structure. We define a topology on this
Hom–set by evaluating a homomorphism on the universal element id2R1j1

>0
.R1j1
>0
/. We

get two families of operators t 7!A.t/D e�tG2
E , t 7!B.t/D e�tG2

E GE for t 2R>0 .
The topology is given by uniform convergence on compact supports in both A and B

(see Hohnhold [8, 2.3] and Hohnhold et al [9]).

If a super semigroup of operators takes values in a subset A� BCn
.Hn/, ie if both its

families A.t/ and B.t/ take values in A, then we write � 2 SGO.A/ for the resulting
subspace of homomorphisms and refer to these as super semigroups of operators with
values in A. We set

SGOn WD SGO.KCn
.Hn//

where the latter stands for compact, self-adjoint, Cn –linear operators. In the field theory
context, there are two other interesting candidates for A, namely HS sa

Cn
.Hn/, the subset

of self-adjoint Hilbert–Schmidt operators with respect to the Hilbert–Schmidt norm,
and T C sa

Cn
.Hn/, the subset of self-adjoint trace-class or nuclear operators with respect

to the trace or nuclear norm (compare again Hohnhold et al [9]). The corresponding
spaces are denoted by SGOHS

n and SGOTC
n , respectively. In the latter reference the

authors prove that both inclusions below are homotopy equivalences:

SGOHS
n ,! SGOn SGOTC

n ,! SGOn

In the context of infinitesimal generators, or configurations respectively, these homotopy
equivalences are quite intuitive (see also Lemma 3.7).

As mentioned in the introduction, the paper [22] contains a preliminary definition of
supersymmetric field theories of degree n and an outline for proving a set bijection

EFTn$ SGOHS
n

which is then used to topologize EFTn . In the next theorem we collect the corresponding
results on the new version which has meanwhile appeared in [23; 9], and which provides
sound definitions for supersymmetric Euclidean field theories (in dimensions 0j1,
1j1 and 2j1) in degree 0. Note that these more recent definitions have not yet been
completed for general degree n (this will use the constructions in the original work [22],
but will be formulated as twists of field theories of degree 0). However we expect the
proposed result to hold for all degrees as claimed in the later manuscript [9]. In the
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following, EFT0 refers to the space of 1j1–EFT’s of degree 0 over a point as defined
in [23; 9]. The topology on this space is again derived from the one on SGO0 . In
degree n, the claim in (i) below can be taken as a definition, if so wished.

Theorem 2.2 (Hohnhold–Stolz–Teichner) (i) The space EFT0 of supersymmetric
1j1–dimensional Euclidean field theories of degree 0 is homeomorphic to SGOTC

0 . For
integer degree n, the correct notion of twisted field theories will produce a homeomor-
phism

EFTn � SGOTC
n :

(ii) A homomorphism E 2 SGOn can be written in the form

E.S/W R1j1
>0
.S/! BCn

.Hn/.S/; .t; �/ 7!E.S/.t; �/ WD e�tG2
E
C�GE

where the infinitesimal generator GE of E is a uniquely determined odd Cn –linear
operator with compact resolvent, defined on some domain D.GE/ � Hn . On the
orthogonal complement of this domain the operators E.S/.t; �/ are defined to be
zero. In particular, a field theory E 2 EFTn is uniquely determined by its infinitesimal
generator GE .

(iii) For every n, there are weak homotopy equivalences

EFT�n � SGO�n � KOn

where the latter is the n–th space in an �–spectrum associated to KO.

Our main result is that we can express the connective theory ko as well in this language.
We obtain a connective �–spectrum sgo by constructing connective covers SGOk

n of
the spaces SGOn .

To define SGOk
n , note that a homomorphism E of generalized super semigroups in

SGOn has a reduced part jEj WD E.R0j0/. One should think of the reduced part of
a generalized supermanifold M as M.R0j0/: in the case of a representable functor
this describes the points of the reduced manifold jMj while in the case of a super
semigroup this is a semigroup. It is a semigroup homomorphism of the form

jEjW R>0! BCn
.Hn/; t 7! e�tG2

E

and it takes values in KCn
.Hn/. Let now SGOn D SGO.KCn

.Hn// denote nonsuper
semigroups of operators with such values (note here that an element F 2 SGOn is
of the form F.t/ D e�tAF for some even infinitesimal generator AF , which need
not have an odd square root; thus it need not be the reduced part of some element in
SGOn ). Then for k > 0 we define

SGOk
n WD

˚
E 2 SGO.KCn

.HnCk// jEj 2 SGOnCk

	
:
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The Hilbert universe HnCk is a right CnCk –module which we want to think of in the
following as C�k –Cn –bimodule (we make this visible by writing Hk

n ). The gener-
ator GE of an element E 2 SGOk

n is then an operator on Hk
n which is itself only

Cn –linear, but whose square is C�k –Cn –linear. Now we have:

Theorem 2.3 For k > 0, there are weak homotopy equivalences

SGOk
n � SGOnhki:

Setting sgo�n WD SGOn
�n we obtain:

Theorem 2.4 There are weak homotopy equivalences

sgo�n � kon

and the spaces sgon form an �–spectrum for ko.

Remark 2.5 (Connective field theories) (i) In the definition of SGOk
n , if we re-

place compact operators KCn
.HnCk/ by trace-class operators TCsa

Cn
.HnCk/, we obtain

spaces .SGOk
n/

TC . We like to think of these as “connective covers of the field theory
spaces EFTk

n ”. By the same argument as used for k D 0 they are homotopy equivalent
to SGOk

n , and by the same arguments as in this exposition they satisfy

.SGOk
n/

TC
� SGOTC

n hki:

This can be used to define a connective �–spectrum eft WD sgoTC � sgo of “field
theory type super semigroups of operators”. More important though is the following
observation:

(ii) The definition of sgo suggests a similar condition for spaces of EFT functors. The
elements of SGOTC

n correspond to 1j1–dimensional susy EFT’s of degree n. Now as
with super-semi group homomorphisms, we can also obtain from each susy EFT an
underlying, or reduced, nonsusy EFT (which will a priori have the same degree as the
susy EFT). Then one could define a “k –connective susy EFT in degree n” as a susy EFT
of degree n whose state space comes with an action of CnCk and whose underlying,
nonsusy EFT is of degree nC k . The set EFTk

n of 1j1–dimensional k –connective
susy EFT’s should then correspond bijectively to .SGOk

n/
TC in the same manner as for

nonconnective EFT’s. Working this out would produce the honest version eft � sgoTC .

Next we give more convenient descriptions of the spaces SGOk
n in terms of operators

and configurations.
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3 Configurations and operators

Let Gr.H / denote the Grassmannian of finite-dimensional linear subspaces of an
infinite-dimensional Hilbert space H . A subspace in Gr.H / corresponds to the
orthogonal projection operator onto it, in this way the Grassmannian is equivalent to
the finite-rank projection operators on H . We equip it with the norm topology.

Definition 3.1 Let X be a compact topological Hausdorff space with basepoint �,
such that there is a homotopy on X which strongly retracts a neighbourhood of the
basepoint to � (in slight abuse of notation we refer to this property as being “well-
pointed”). Let H be an infinite-dimensional Hilbert space. Then a configuration on X

with labels (or coefficients) in H is a map

cW .X ��/! Gr.H /

where

� �.c/ WD
˚

x 2 .X ��/ c.x/¤ f0g
	

is a discrete set in .X � �/, called the
points or support of c ,

� c.x/? c.y/ for x ¤ y .

The space of such configurations is denoted by Conf .X IH / and carries the topology
given by the subbasis sets

U.W;L/ WD
˚

c 2 Conf .X IH /
L

x2W c.x/ 2L; �.c/\ @W D∅
	

for all pairs of open subsets W � .X ��/ and L� Gr.H /, where W �K � .X ��/

is contained in a compact set K .

This topology is quite intuitive: we can move configuration points with their attached
coefficients around in X and we can continuously change coefficients in the Grass-
mannian. When points meet, their coefficients add; when points run into the basepoint,
they disappear from the configuration.

Remark 3.2 In [9] the authors give a more general definition for configuration spaces
on the category of pairs of spaces. However, our spaces Conf .X IH / correspond
precisely to their configurations on the pair .X;�/ with coefficients in H . For general
pairs .X;A/, they allow the support �.c/ of a configuration c to be nondiscrete
on A, and there c can also take infinite-dimensional subspaces of H (or infinite-rank
projection operators, respectively) as values. However, they require that the Hilbert
space closure of the total sum of all coefficients of a configuration is H . Therefore our
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definition is equivalent on the pointed category: the coefficient of the basepoint � would
necessarily be the orthogonal complement of the sum of coefficients on .X ��/ which
is redundant information. We call the algebraic direct sum D.c/ WD

L
x2.X��/ c.x/

the domain of a configuration c 2 Conf .X IH /.

The basepoint c1 of Conf .X IH / is the trivial configuration with no points. A
configuration c 2 Conf .X IH / can be written as a formal sum †x2�.c/xc.x/. Note
however that the index set is not necessarily finite, ie the configuration points can
accumulate at �. Finite configurations form a subspace

Cbonf .X IH / WD
˚

c 2 Conf .X IH / �.c/ finite
	
:

Conf .�IH / and Cbonf .�IH / are covariant functors from the category of pointed
compact topological spaces with basepoint-preserving maps 'W X ! Y to the category
of pointed topological spaces and continuous maps

'�W Conf .X IH /! Conf .Y IH /; c 7! '�.c/W y 7!
M

x2'�1.y/

c.x/:

One can furthermore show that a basepoint-preserving homotopy on X induces a
continuous homotopy on the space of configurations on X . In particular, we have

Conf .X IH /� Cbonf .X IH /:

To see this choose a compact neighbourhood K of the basepoint � which retracts
to �. Then this retraction defines a continuous homotopy on configuration spaces
and the resulting configurations will have finitely many points since the only possible
accumulation point was the basepoint �.

The spaces Cbonf .X IH / can be filtered by the dimension of the domain of the con-
figurations. More precisely, let Cbonf .X IH /dim6m be the subspace of configurations
c 2 Cbonf .X IH / with dim.D.c//6 m. Then

colimm!1Cbonf .X IH /dim6m ,! Cbonf .X IH /

is a weak homotopy equivalence (compare the argument with the analogous one in
Hohnhold et al [9] for Confn ). This filtration is typically used to apply a criterion
for quasifibrations by Dold and Thom [5]. With this one obtains for example that
cofibrations in the category of pointed manifolds A!X !X=A for A closed and
�X 2A, induce quasifibrations in Cbonf .�IH /; see Bödigheimer [3].

Remark 3.3 Finite configurations of points with coefficients in a space X have been
defined and studied in more general context, in particular in terms of � –spaces (see
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for example Segal [19; 18], Bödigheimer [3] and McDuff [15; 14]). Set

C.X IH /.m/ WD

 a
k6m

X k
�†k

Ck.H /

!.
�

where Ck.H / consists of k –tuples of pairwise orthogonal elements of Gr.H /, †k

is the symmetric group acting by permutation of factors and the equivalence relation
identifies elements

.x1; : : : ;xk I .H1; : : : ;Hk//� .: : : ; yxi ; : : : ;xj ; : : : I .: : : ; yHi ; : : : ;Hi ˚Hj ; : : ://;

xi D xj

.: : : ;�; : : : I : : : ;H; : : :/� .: : : ; y�; : : : I : : : ; yH ; : : :/

where here �. � / means removing . � / from the tuple. Then the inclusion

colimm!1C.X IH /.m/ ,! Cbonf .X IH /

is a homotopy equivalence (compare Hohnhold et al [9]). This gives us another
filtration of the spaces Cbonf .X IH /, namely by number of configuration points. Note
that in general, � –spaces provide suitable coefficient spaces for the construction of
configuration spaces of our type.

Next we define symmetric, Clifford-linear configurations. Symmetric here means
Z=2–invariant (a good reference for equivariant configuration spaces is Hauschild [6]).
Assume H comes with a grading involution � and X comes with a Z=2–action ˛ ,
where ˛ preserves the basepoint � of X and where � again has a neighbourhood
which Z=2–equivariantly retracts to �. Then

Conf Z=2.X IH / WD
˚

c 2 Conf .X IH / � ı c ı˛ D c
	
:

The adjective Clifford-linear concerns the coefficients: Let Hn be an infinite-dimen-
sional, Z=2–graded Hilbert space with compatible graded right Cn –module structure.
Let GrCn

.Hn/ denote the Grassmannian of ungraded Cn –submodules of Hn . Then
a configuration c 2 Conf .X IHn/ is called Cn –linear, if it factors through GrCn

.Hn/,
ie if all coefficients of the configuration are Cn –submodules of Hn . We call the
space of such configurations ConfCn

.X IHn/. Note that for a symmetric configuration
c 2Conf Z=2

Cn
.X IHn/ the symmetric sums c.x/˚c.˛.x// of coefficients will be graded

Cn –modules.

Remark 3.4 The results stated above for Conf .�IH / hold true for Conf Z=2
Cn

.�IHn/,
as long as all maps are symmetry preserving (compare Markert [13, Theorem 2.2] and
Hohnhold et al [9]):
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(i) For any fixed Hn as above and n2Z, Conf Z=2
Cn

.�IHn/ (and also Cbonf Z=2
Cn

.�IHn/)
is a functor from well-pointed compact Hausdorff Z=2–spaces with Z=2–equivariant
maps to pointed topological spaces with continuous maps. We have again a homotopy
equivalence

Conf Z=2
Cn

.X IHn/� Cbonf Z=2
Cn

.X IHn/:

This is done as described above, contracting a Z=2–invariant compact neighbourhood K

of the basepoint �.

(ii) Cbonf Z=2
Cn

.�IHn/ takes Z=2–equivariant cofibrations of manifolds to quasifi-
brations. The proof works completely analogously as in Bödigheimer [3], using the
criterion of Dold and Thom where the filtration is given by the dimension of the domains.
Note however that we are now counting dimensions in the sense of irreducible graded
Cn –modules.

(iii) The filtration properties for finite configurations still hold: the inclusions

colimm!1Cbonf Z=2
Cn

.X IHn/dim6m ,! Cbonf Z=2
Cn

.X IHn/

colimm!1CZ=2
Cn

.X IHn/
.m/ ,! Cbonf Z=2

Cn
.X IHn/and

are homotopy equivalences.

(iv) Concerning the second input slot, Conf Z=2
Cn

.X I �/ is a homotopy functor (compare
Bödigheimer [3]). Composition of configuration maps with a Clifford-linear isometric
isomorphism of label spaces is an isomorphism of configuration spaces, independent
of symmetry. In fact, this depends continuously on the choice of such isomorphism:
For two label spaces Hn , �Hn , the map

 W ConfCn
.X IHn/� ISOCn

.Hn; �Hn/! ConfCn
.X I �Hn/; .c; ˇ/ 7! ˇ ı c

is continuous. Here ISOCn
.Hn; �Hn/ stands for isometric isomorphisms from Hn

to �Hn .

Let now SR WDR[f1g be the one-point compactification of R with basepoint f1g,
equipped with the symmetry involution ˛W SR!SR; t 7! �t . Recall the definition of
the Hilbert universes Hn . Then we set

Confn WD Conf Z=2
Cn

.SRIHn/; Cbonfn WD Cbonf Z=2
Cn

.SRIHn/:

It is shown in [9], that these spaces have the homotopy type of CW–complexes and can
be filtered using a filtration of the Hilbert universe by finite-dimensional submodules
� � � ,!Hn.i/ ,!Hn.i C 1/ ,! � � � . That is, we have a homotopy equivalence

colimi!1Confn.Hn.i// ,! Confn:
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Moreover these spaces have the special property that we can associate to a configuration
an operator on the Hilbert space whose spectral data is encoded in the configuration.
In general configuration spaces with suitable input variables (H a Hilbert space,
X D SR;SC; : : :) correspond in this way to certain classes of operators; however the
spaces Confn represent precisely the generators of super semigroup homomorphisms
in SGOn (see below, Lemma 3.7). Let us make this correspondence precise.

3.1 Generating operators

A configuration c 2 Confn can be thought of as describing an operator C with eigen-
values in R, defined on D.c/ � Hn , simply by taking the formal sum

P
x�c.x/

to be the spectral decomposition of C , ie the eigenvalues of C are the points of
the configurations, the eigenspaces are the coefficients. We sometimes call C the
infinitesimal generator of the configuration c . Since the configurations might have
points accumulating at ˙1, this might describe unbounded operators; however, thanks
to their discrete spectrum, these operators are still quite well-behaved.

We denote by Infn the set of odd self-adjoint operators C on a closed subspace
D.C / �Hn which have compact resolvent and are Cn –linear. The subspace D.C /
is part of the data, even though we do suppress its notation in the elements of Infn .
Note that a self-adjoint operator is in general only densely defined; in our case this
means that C 2 Infn is densely defined on D.C /. By the spectral theorem, an operator
C 2 Infn has discrete real eigenvalues which can accumulate at ˙1, and pairwise
orthogonal finite-dimensional eigenspaces. We denote by Esp.C I�/ the eigenspace of
C at �, and by �.C / the spectrum of C (the double use of � may be excused since
it is consistent in our setting). Note that the grading on Hn induces a grading on the
spaces of operators. Odd operators will have eigenvalue distributions symmetric with
respect to ˛W R 7!R; t 7! �t . So we have:

Lemma 3.5 For every n, there is a bijection Confn$ Infn .

This is immediate by sending C 2 Infn to the configuration cW � 7! Esp.C I�/. Obvi-
ously, c is of the correct type, with D.c/D D.C / and �.C /D �.c/. Conversely, a
configuration c 2 Confn maps to C WD

P
� ��c.�/ . This is an odd operator since we

started with a grading preserving configuration. Clearly the two maps are inverse to
each other.

We can topologize the spaces Infn by making the above bijection a homeomorphism.
Equivalently (see Markert [13]), define a norm topology on compact supports, ie the
coarsest topology which makes the functional calculus

#f W Infn! BCn
.Hn/; C 7! f .C /
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continuous with respect to the norm topology on BCn
.Hn/, for all compactly supported

continuous functions

f 2 Cc.R/ WD f f 2 C0.R/ supp.f /�R compact g:

The proof that this is equivalent is technically a bit involved, however intuitively quite
clear: the topology on Confn controls sums of labels on bounded open subsets W

of R, ie away from the basepoint. Functional calculus of an operator with a suitable
characteristic function of such an open set W produces precisely the orthogonal
projection onto the sum of eigenspaces with eigenvalues in W . One can compare
neighbourhood bases of the two topologies to see that they are equivalent.

Remark 3.6 (i) Obviously the homeomorphisms above restrict to homeomorphisms
on the subspaces of finite configurations and finite generators, respectively, ie

Cbonfn � Iynfn WD
˚

G 2 Infn dim.D.G// <1
	
:

(ii) Functional calculus with basepoint-preserving, Z=2–equivariant continuous func-
tions f W SR!SR induces continuous maps f�W Infn! Infn (the same holds of course
for Iynfn ). This follows directly since compositions s ıf of f with an s 2 Cc.R/ are
again in Cc.R/. In particular, we also have homotopy equivalences Infn � Iynfn for
each n, given by applying functional calculus with a homotopy as in Remark 3.4(i)
to the operators. Such a homotopy would push eigenvalues with absolute value larger
than some positive number out to ˙1.

(iii) The spaces Iynfn filter by dimension of domain; that is, the inclusions

colimm!1.Iynfn/dim6m ,! Iynfn

are homotopy equivalences [9], where .Iynfn/dim6m WD fG 2 Iynfnj dimCn
D.G/6 mg �

.Cbonfn/dim6m . Of course we also obtain, as in Remark 3.4, a filtration by the maximal
number of (pairs of) eigenvalues, ie a homotopy equivalence

colimm!1C.m/n ! Iynfn

where C.m/n WD CZ=2
Cn

.SRIHn/
.m/ . Again the spaces have the homotopy type of CW–

complexes, and we have a homotopy equivalence

colimi!1Iynfn.Hn.i// ,! Iynfn:

(iv) Remark 3.4(iv) can also be restated in terms of generating operators: let Infn.H /

denote the operators of type Inf (ie odd, compact resolvent, self-adjoint on closure of
domain and Clifford-linear) on a Hilbert space H with compatible Cn –structure. Then
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the conjugation of operators in Infn.H / with a Clifford-linear isomorphism ˇW H! zH

is a homeomorphism and depends continuously on the isomorphism:

 W Infn.H /� ISOCn
.H; zH /! Infn. zH /; .C; ˇ/ 7! ˇ ıC ıˇ�1

is continuous with fiber ISOCn
.H; zH /.

(v) The notation both of Infn and Confn suppresses the fact that the objects are odd
or symmetric, respectively. It would be more standard to define the operator class Infn

without the condition that the operators be odd, and then write Infodd
n and Infev

n . We
avoid the notation in the odd case, since this is almost exclusively what we use and we
keep the notation for the even part wherever we need it. Certainly, for every n one has
again

Conf ev
n � Inf ev

n � Iynf ev
n

where Conf ev
n consists of Z=2–equivariant configurations but now with respect to the

trivial symmetry involution ˛ev WD idSR and the grading involution � (in particular all
coefficients are graded Cn –modules).

(vi) We think of the configurations as a geometric—or combinatorial—model for
operators in Infn : it provides an intuitive idea of the topology on the spaces Infn .
In the following chapter containing the proofs of our statements we will use the
operator language since it is best to calculate with, but we will supply pictures of the
configurations where it seems helpful.

Now the following is an easy consequence of Theorem 2.2:

Lemma 3.7 For every n there are homeomorphisms SGOn � Infn and homotopy
equivalences:

EFTn � SGOTC
n

// Infn

Iynfn

�

==

�

ff

Proof By Theorem 2.2, every element E 2 SGOn has a uniquely determined infini-
tesimal generator GE . The properties of the spectrum of this generator follow from the
properties of the image operators e�tG2

E
C�GE De�tG2

E .1C�GE/ of the corresponding
generalized super semigroup. In particular, the family of operators e�tG2

E for t 2R>0

has to lie in KCn
.Hn/

ev . This in turn implies that GE has compact resolvent, is self-
adjoint on the closure of its domain and of course Cn –linear. In addition GE has to be
odd since e�tG2

E GE 2 KCn
.Hn/

odd . Thus GE is an element of Infn . This produces
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a set bijection between SGOn and Infn . Furthermore, if E 2 EFTn � SGOTC
n was

the generator of a field theory, then the only property distinguishing GE from an
operator in Infn is the fact that e�tG2

E has to be trace class for t 2 R>0 , ie that the
eigenvalues of GE have to converge “fast” to infinity. Thus the bijection takes the
subspace SGOTC

n �SGOn to the subspace InfTC
n � Infn which consists of operators G

such that e�tG2

is trace-class for t 2R>0 . The bijection is even a homeomorphism.
Now it is easy to check that a homotopy equivalence as in Remark 3.6(ii) above retracts
InfTC

n to the smaller subspace of finite-domain operators Iynfn (see Hohnhold et al [9];
compare Markert [13, Lemma 57] and Hohnhold [8]). This also proves the claims in
Remark 2.5(i).

Remark 3.8 Of course one can produce spaces S yGOn � Iynfn by setting S yGOn WD

SGO.FRCn
.Hn//, where the latter consists of self-adjoint Cn –linear finite-rank oper-

ators. Clearly then we have S yGOn
�
,!SGOn .

In Hohnhold et al [9] the spaces Infn are also related directly to various other models of
KO, among these in particular the Atiyah–Singer �–spectrum of Fredholm operators.
The original spaces Fn of Atiyah and Singer consist of skew-adjoint Cn�1 –antilinear
Fredholm operators on a Hilbert universe Hn with Cn�1 structure, satisfying an extra
condition in dimensions nD3 mod 4. These can equivalently be described as spaces Fgr

n

of odd self-adjoint Fredholm operators on a Z=2–graded Cn –Hilbert universe, which
are Cn –linear (and also satisfy a corresponding condition in the mentioned cases). The
authors give homotopy equivalences

ˆnW Fgr
n
�
! Infn

for positive n (depending on the model of the Hilbert universes, their proof works also
for negative n). The map ˆn breaks into two parts: the first one maps into graded Cn –
linear configurations on R WDR[f˙1g, Conf Z=2

Cn
.R; f˙1gIHn/ (compare Remark

3.2). The second part is the obvious map

Conf Z=2
Cn

.R; f˙1gIHn/! Confn Š Conf Z=2
Cn

.SR; f1gIHn/

which is a quasifibration with contractible fibers. Recall here that the spectrum of a
Fredholm operator T consists of two parts, the essential spectrum, and the discrete
spectrum, �.T /D �discrete.T /[ �ess.T /, where the first one comes from the operator
�.T / obtained from T under the quotient map to the Calkin algebra � W B.Hn/!

B.Hn/=K.Hn/. Since a Fredholm operator is invertible up to compact operators, this
essential part of the spectrum has a gap around 0 with the gap width �.T / depending
continuously on T . For odd self-adjoint Fredholm operators T 2 Fgr

n , �.T / is
contained in R, symmetric about 0, and bounded. That is, the spectral data of T is not

Algebraic & Geometric Topology, Volume 10 (2010)



Field theory configuration spaces for connective ko–theory 1203

a configuration in our usual sense: the essential spectrum can be continuous, therefore
we do not necessarily have a discrete configuration of points on R (however, within
the gap of �ess.T /, we do). Note also that the domain of T is all of Hn . However,
due to the gap in the essential spectrum we do have a configuration of the above type
up to homotopy. The first map above is simply given by functional calculus with a
homotopy contracting everything outside the gap of �ess.T / to the two points f˙1g.
Thus the information contained in a Fredholm operator T is reduced to a part of its
spectrum, namely the eigenvalues of the compact part of T which lie within the gap of
the essential spectrum of T .

We can write this as follows.

ˆnW Fgr
n ! Infn; T 7!

X
j�i j<�.T /

�i�.T /

�.T /2��2
i

�Esp.T I�i /:

This is particularly useful for describing the spectrum map for the spaces Infn . We
have a description of it for Fredholm operators (for n > 0) given by Atiyah–Singer
(see for example Lawson and Michelson [12, Chapter III.10]) as

bW Fgr
nC1
!�Fgr

n ; T 7! .t 7! b.T /t WD cos.t/�enC1C sin.t/T; t 2 Œ0; ��/ :

For our purposes we would like to rescale this using arccotW R! Œ0; �� to obtain

bW Fgr
nC1
!�Fgr

n ; T 7!

 
x 7! b.T /x WD

1p
1Cx2

.�x�enC1CT /; x 2R

!
:

Now we set

zbW InfnC1!�Infn; G 7!
�
x 7! b.G/x WD �x�enC1CG; x 2R

�
:

It is easy to check that these operators are elements of Infn ; in particular, they do not
commute with enC1 anymore. Note that the operators b.G/x have domain D.G/ for
x 2R and trivial domain for x 2 f˙1g, ie the images b.G/ are loops at the basepoint
of Infn . We do not particularly denote this subtlety in the following.

Lemma 3.9 The map zb is a homotopy equivalence fitting in the homotopy commuta-
tive diagram:

Fgr
nC1

b

�
//

ˆnC1�

��

�Fgr
n

�ˆn�

��
InfnC1

zb // �Infn
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Proof We can simply calculate the loops of configurations—or operators respectively—
resulting from zb.ˆnC1.T // and �ˆn.b.T // in terms of their points and labels. We
obtain

zb.ˆnC1.T //x D
X

�2<�.T /2

˙1

�.T /2��2

p
a.x;T; �/�V˙.T /;

�ˆn.b.T //x D
X

�2<�.T /2

˙1

�.T /2��2

p
b.x;T; �/�V˙.T /;

where V ˙.T / are the eigenspaces of .�enC1CT / at ˙
p

1C�2 and where

a.x;T; �/D x2�.T /2C�2�.T /2�x2�2;

b.x;T; �/D x2�.T /2C�2�.T /2Cx2�2
Cx4:

This shows that there is a homotopy Ht by functional calculus between the two maps
above, depending continuously on T , x and t .

Remark 3.10 For convenience in our presentation of the Bott map for Inf , we can
apply the isomorphism invW �Infn ! �InfnW  7! �1 . By abuse of notation we
denote the resulting map again by b

bW InfnC1!�Infn; G 7!
�
x 7! b.G/x D x�enC1CG; x 2R

�
:

Remark 3.11 The Bott map for Fredholm operators cited above is given in Lawson
and Michelson [12] for positive n. A translation of it for negative values of n can be
found in Joachim [10]. This can analogously be rewritten for the Inf–model.

3.2 Connective Covers

Recall that we can interpret the right CnCk –modules HnCk as C�k –Cn –bimodule
(denoted by Hk

n ) by replacing the last k generators of CnCk acting from the right by
generators of C�k acting from the left. Now let Infn.Hk

n/ denote Cn –linear operators
of type Inf defined on Hk

n .

Definition 3.12 For k > 0, we set

Inf k
n WD

˚
G 2 Infn.Hk

n/ G2 is C�k–Cn–linear
	
:

Analogously we define Conf k
n as a subset of Conf Z=2

Cn
.RIHk

n/ by the condition that
symmetric sums g.x/˚ g.�x/ of coefficients of a configuration g 2 Conf k

n will
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be graded C�k –Cn –bimodules. It is clear that Conf k
n � Inf k

n . Furthermore, Inf k
n �

Iynf k
n WD Inf k

n \ Iynfn.Hk
n/ by the usual argument.

Similarly as for Infn , the spaces Inf k
n and Iynf k

n are also homotopy equivalent to the
colimits of filtrations (compare Remark 3.6). We show here the more involved argument
concerning filtration by finite subspaces of the Hilbert universe:

Lemma 3.13 The spaces Iynf k
n have the homotopy type of CW–complexes. Moreover,

there is a filtration by subcomplexes

: : :! Iynf k
n .Hi/! Iynf k

n .HiC1/! : : : colimi!1Iynf k
n .Hi/

�
,! Iynf k

n

given by an increasing filtration of Hk
n by graded CnCk –submodules of Hi of Clifford

dimension i , such that in particular GrCnCk
.Hk

n/� colimi!1GrCnCk
.Hi/. The maps

in the colimit are the obvious ones induced by the inclusions of the Hi .

Proof We show that all spaces concerned have the homotopy type of CW–complexes
and that the inclusion

colimi!1Iynf k
n .Hi/ ,! Iynf k

n

is a homotopy equivalence. Both statements result from the fact that all the above
mentioned spaces are realizations of “good” simplicial spaces (in the sense of Segal [17])
which satisfy the requirements levelwise.

In [9] the authors show that the spaces Iynfn are homotopy equivalent to the classifying
spaces of certain internal space categories Cn . We will use the same idea, modified
for our purposes. Let Ck

n be the category consisting of finite-dimensional graded
CnCk –submodules of Hk

n as objects. This object set is topologized as the subspace
ProjCnCk

.Hk
n/ � BCnCk

.Hk
n/ of finite-rank, Clifford-linear, orthogonal projection

operators (recall that orthogonal projection onto some CnCk –submodule is a CnCk –
linear operator). Morphisms between W0 and W1 exist if and only if W0 �W1 , and
then they are defined as odd, orthogonal, Cn –linear involutions on the complement
W1�W0 of W0 in W1 , that is

Ck
n.W0;W1/D

˚
R 2O.W1�W0/ R2 D Id;R odd, Rei D eiR; i D 1; : : : ; n

	
:

The morphisms can be understood as a subspace of BCn
.Hk

n/�ProjCnCk
.Hk

n/
2 . For

simplicity we will denote this internal space category by C in the following. Using
the notation of Hohnhold et al [9], an m–simplex x D .Wi IRi/ in the nerve NC is
given by a chain of objects .W0 �W1 � : : :�Wm/ and involutions Ri as above on
Wi �Wi�1 , i D 1; : : : ;m. Roughly, a point .x; t/ in the corresponding simplex of
the geometric realization describes a finite configuration by making the submodules
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Wi �Wi�1 with their involutions correspond to pairs of labels sitting at pairs of points
in R given by the coordinates ˙ti of t 2�m . The proof that

BCD jNCj � Iynf k
n

works exactly as in [9]. Their category Cn differs from ours only in the fact that
the objects are Cn –submodules instead of CnCk –submodules. They show that the
m–skeleta BC

.m/
n of the geometric realization are homeomorphic to C.m/n (compare

again Remark 3.4). One can check that this goes through in our case (in each level m,
BC.m/ is homeomorphic to .Ck

n /
.m/ ).

Furthermore, the argument goes through as well after replacing Hk
n by the finite-

dimensional submodule Hi . Going through the proof in Hohnhold et al [9] we obtain
subcomplexes BC.Hi/D jNC.Hi/j of BC and see that these are homotopy equivalent
to the spaces Iynf k

n .Hi/.

To see that these spaces have the homotopy type of CW–complexes, we can look at the
structure of the simplicial space NC (or NC.Hi/, respectively): it suffices to see that
this is a simplicial object in the category of spaces of the homotopy type of CW–spaces
and that it is good in the sense of Segal [17]. This will imply (see Segal [19, Proposition
A.1]) that its geometric realization has the same property.

First we note that each level space NCm is the total space of a fiber bundle: let

F lagm WD F lagm.Hk
n/ WD

˚
.P0; : : : ;Pm/ 2 .ProjCnCk

.Hk
n//

mC1 PiPiCk D Pi

	
�
˚
.W0; : : : ;Wm/ 2 .GrCnCk

.Hk
n//

mC1 Wi �WiC1

	
Note here that F lagm is a disjoint union of components given by the dimension vectors
of length m

F lagm D

a
dD.d06d16:::6dn/2NmC1

F lagd
m

where m is the signatures of the flags and where the dimension di denotes the Clifford-
dimension dimCnCk

.Wi/. Denote by PWi�Wi�1
the orthogonal projections onto the

submodules Wi �Wi�1 . Then we can write

NCm D
˚
.W0; : : : ;WmIA/ 2 F lagm �Oodd

Cn
.Wm�W0/ˇ̌

A2
D Id;APWi�Wi�1

D PWi�Wi�1
A; i D 1; : : : ;m

	
where we have replaced the m involutions Ri on the subsequent complements in the
flag by one operator A on Wm�W0 which preserves the subspaces Wi �Wi�1 and
defines involutions there. Then we get a map NCm! F lagm taking an element in
NC to its flag.
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This is a subbundle of the Hom–bundle of the tautological bundle over F lagm . The
tautological bundle Em over it is clearly a fiber bundle over each component F lagd

m

whose fiber is a flag of finite-dimensional graded CnCk –modules (as vector spaces the
fibers are isomorphic to .Rd0dnCk ; : : : ;RdmdnCk /, where dnCk is the real dimension
of an irreducible CnCk –module). Its transition functions are maps into CnCk –linear
orthogonal operators which preserve the subspace structure. It is then easy to check that
NCm forms a fiber bundle over each component, where the fiber is the space of odd,
Cn –linear involutions on the flags (ie on Wm�W0 , keeping the subspaces Wi �Wi�1

invariant). The spaces F lagm have the homotopy type of CW–complexes, and so do
the fibers: therefore also the total spaces NCm .

Furthermore, the simplicial space NC is good, ie the inclusions of the degenerated
subspaces

si.NCm�1/DWNCm;i ,!NCm

are strict neighbourhood retracts in NCm . This can be easily seen by connectivity
arguments: the inclusion maps NCm;i surjectively onto those connected components
of NCm with dimension vectors of the form .d0; : : : ; di ; di ; : : : ; dm�1/.

Goodness of the simplicial space implies that the fat realization and the realization are
homotopy equivalent; the fat realization preserves homotopy type of CW–complexes
(see Segal [19]). Therefore the spaces have the homotopy type of CW–complexes.

Moreover, we obtain a homotopy equivalence

jcolimi!1NC.Hi/j ! jNCj

by levelwise considerations. In each level m the inclusion of Hilbert spaces induces a
homotopy equivalence

colimi!1F lagm.Hi/
�
,! F lagm

by classical arguments.1 In fact, we have pullback diagrams:

colimi!1NCm.Hi/

��

� � // NCm

��
colimi!1F lagm.Hi/

� � � // F lagm

Therefore the inclusion of the total spaces is a homotopy equivalence as well. Since
both NC and colimi!1NC.Hi/ are good, this induces a homotopy equivalence as

1In fact one can use a similar strategy as above and show the homotopy equivalence on the level of the
total spaces of GL–frame bundles over F lagd

m ; this homotopy then descends to the flag spaces. The idea
is in Milnor and Stasheff’s book [16].
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wanted, again by the quoted result of Segal. Finally, since realization commutes with
colim!1 , we see that also

colimi!1jNC.Hi/j
�
! jNCj

is a homotopy equivalence.

In the next section we will determine the homotopy type of the spaces Inf k
n . In some

sense, this easy first observation inspired the definition of Inf k
n :

Proposition 3.14 The spaces Inf k
n are connected for k > 1.

Proof Let G 2 Inf k
n where k > 1, and regard the first additional generator f1 of the

algebra C�k acting by left multiplication (here we use our standard names as defined
before). This generator f1 squares to C1 and commutes with G2 as well as with all
n generators e1; : : : ; en , of Cn . It acts as an odd operator on ker.G/D ker.G2/, with
eigenvalues .˙1/. The path

Ht .G/ WD

�
1

1� t

�
GC

�
t

1� t

�
�ker.G/f1; t 2 Œ0; 1�;

splits the kernel (ie the middle label of the configuration of G ) and then moves all
eigenvalues symmetrically out to infinity, where they disappear. One checks that for
all t , Ht .G/ is in Inf k

n , and that the summands commute with each other. In particular
Ht .G/

2 is C�k –Cn –linear since G2 is (and therefore also .�ker.G/f1/
2 D �ker.G2/ ).

In terms of configurations, this path does not change the symmetric sums of coefficients
(the eigenspaces of G2 ), only their distribution on the real axis. The operators Ht .G/

have eigenvalues

�t D

(
˙. t

1�t
/ on ker.G/;

. 1
1�t

/� on ker.G/?;

where the � are the eigenvalues of G . Hence this gives a path from G to the basepoint
in Inf k

n .

Remark 3.15 This argument does not imply that Inf k
n , k > 1, is contractible. The

paths connecting points G in the space with the basepoint do not depend continuously
on G . For instance (thinking in terms of configurations) one could easily imagine a
continuous path of configurations along which a symmetric pair of configuration points
runs into 0 where the two coefficient spaces are added; however, the homotopy we
chose above might split this label into two different parts.
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4 Proofs

4.1 Outline

The goal of this section is to prove the following.

Theorem 4.1 For k > 0 and all n, there are weak homotopy equivalences

Inf k
n

�
�!�Inf kC1

n�1
; G 7!

�
x 7! xfnCG; x 2R

�
:

Together with Proposition 3.14 this implies that Inf k
n is .k � 1/–connected, since for

i 6 k � 1, we have

�iInf k
n Š �0�

iInf k
n Š �0Inf k�i

nCi Š 0:

Note that for i D k we obtain that �kInf k
n Š �0Inf 0

nCk Š �0InfnCk (by definition
Inf 0

n is equal to Infn ). Moreover, we will show that the maps ck W Inf k
n ! Infn given

by simply forgetting the extra structure (ie conjugating the operators in Inf k
n with

a Cn –linear isomorphism between Hk
n and Hn ), induce isomorphisms under �i for

i > k . That is, �kck are weak homotopy equivalences. To see this we show:

Lemma 4.2 The map c1 fits into a diagram:

Infn

� ((

b

�
// �Infn�1

�Inf 1
n�1

�c1

OO

Proof Simply note that the operators b.G/x satisfy the condition for Inf 1
n�1 , namely:

b.G/2x Dx2IdCG2 commutes with all ei , i D 1; : : : ; n�1 and with fn (while b.G/x
itself does not commute with neither en nor fn ).

Summarizing, we see that the ck are higher covers and thus we obtain:

Corollary 4.3 For k > 0, the spaces Inf k
n are .k�1/–connected covers of the

spaces Infn ,
Inf k

n � Infnhki:

Using Lemma 3.7 which compares the spaces SGO and Inf we can reformulate this
in terms of SGO and obtain Theorem 2.3 and thus also Theorem 2.4.
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4.2 Construction of quasifibrations

We will show that for k > 0 and all n, there are quasifibrations with contractible total
space:

Iynf k
n !

�T k
n

p
! Iynf kC1

n�1

Using the inclusion of the fiber together with a suitable contraction of the total space,
we will obtain a map bpW Inf k

n
�
!�Inf kC1

n�1
W G 7! .t 7! ln.t/fnCG; t 2 Œ0;1�/: this

is clearly equivalent to b up to rescaling and homotopy. To define the total spaces,
let Iynf ev;pos

n;k
denote even, C�k –Cn –linear operators of type Iynf on Hk

n which have
positive spectrum, ie eigenvalues in Œ0;1/. The operators E 2 Iynf ev;pos

n;k
generate

finite, nonsymmetric configurations on SR>0 whose coefficients are graded C�k –Cn –
submodules of Hk

n . We want to pair operators of this type with operators of type Iynf k
n ,

to obtain a space configurations on the pointed cone SR^SR>0 D .R�R>0/[ f1g,
where the symmetry involution is given by

x̨W SR^SR>0!
SR^SR>0; .�; �/ 7! .��;�/:

These will be our total spaces. To be precise, we set�T k
n WD Cbonf Z=2

Cn
.SR^SR>0IHk

n/

where the symmetry involutions are given by x̨ and the grading involution � on Hk
n .

In terms of operators we can describe such a configuration as a triple .DIG;E/ where
D �Hk

n is a graded, finite-dimensional, C�k –Cn –linear closed subspace (the domain
of the configuration), G is an operator in Iynf k

n and E an operator in Iynf ev;pos
n;k

, such
that D.G/D D.E/D D and ŒG;E�D 0 on D . There is a set bijection between the
set of such triples and configurations as above: A pair of commuting operators .G;E/
with common domain D generates a symmetric configuration on the cone SR^SR>0 .
Simply note that one can apply the spectral theorem to both and obtain a decomposition
of D into simultaneous eigenspaces. Then let

c.DIG;E/W R�R>0! GrCn
.Hk

n/; .�; �/ 7! Esp.EI�/\Esp.GI�/ �D:

This produces a configuration in �T k
n (the Z=2–invariance of c.DIG;E/ follows easily

from the fact that G is odd and E even). Vice versa a configuration c determines
a pair of operators by setting E WD

P
�;� ��c.�;�/ and G WD

P
�;� ��c.�;�/ , with

common domain D.G/DD.E/DD.c/.

For convenience we will use the operator description of �T k
n and most of the times

suppress the notation of the domain as well.

Lemma 4.4 The spaces �T k
n are contractible.

Algebraic & Geometric Topology, Volume 10 (2010)



Field theory configuration spaces for connective ko–theory 1211

Proof Functional calculus with a contracting homotopy like

H W SR>0 � I !SR>0; .�; t/ 7!

�
.1� t/�C

t

1� t

�
induces a continuous contraction of Iynf ev;pos

n;k
by HtE WD H t .E/ (compare Remark

3.6(ii)). We obtain a well-defined continuous homotopy on �T k
n by setting Ht .G;E/ WD

.G;HtE/. Note that even though there is a jump in domains this is continuous as a
map of configurations. In Figure 1 we see how one can contract the configurations on
SR^SR>0 by moving the points along a vertical flow to the basepoint, without changing
the labels.

Figure 1: A contracting homotopy on �T k
n . The picture shows configurations

on R� Œ0;1/; the dashed boundary lines should be thought as collapsed to
obtain the cone SR^SR>0 . Configuration points are indicated as stars and the
symmetry axis is indicated by a dotted line. Labels at the points are not
shown.

For the definition of the map p , recall the notation concerning generators of the Clifford
action on HnCk (we use ei for a generator acting from the right, and fi WD �ei for
the corresponding generator acting from the left). We think of the operator pairs in �T k

n

as being compatible with the structure of Hk
n , while the operators in the image Iynf kC1

n�1

should be compatible with the structure of HkC1
n�1

. Now set

pW �T k
n ! Iynf kC1

n�1 ; .DIG;E/ 7!GC ln .E/fn DW PG;E

where the domain of PG;E is defined as D.PG;E/ WDD\ ker.E/? . One checks that
the map p is well-defined: for i D 1; : : : ; n� 1, PG;E commutes with ei since the ei

anticommute both with en and � and commute by definition with G and E . However
PG;E does not commute with en , since en anticommutes with ln .E/fn but commutes
with G . Therefore PG;E is Cn�1 –linear but not Cn –linear with respect to the given
generators, whereas P2

G;E
DG2C .ln .E//2 is C�.kC1/–Cn�1 –bilinear: It commutes
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with the fnC1; : : : ; fnCk by definition and with fn D �en as well since both parts
commute.

Furthermore, P2
G;E

has the eigenvalues r2 WD .�2C .ln�/2/ and eigenspaces

Esp.P2
G;E
I r2/D

M
�2C.ln�/2Dr2

Esp.GI�/\Esp.EI�/

where ˙�, � are eigenvalues of G and E , respectively. Thus PG;E itself has eigen-
values ˙r D ˙

p
�2C .ln�/2 . In particular, the spectrum of PG;E is discrete and

finite.

One can show that p is continuous. We have seen that the eigenvalues of the operators
in the image, PG;E DGC ln.E/fn depend continuously on the eigenvalues of G and
E . Furthermore, the eigenspaces of P2

G;E
depend continuously on the eigenspaces

of G and E . What is left to see is that the root PG;E has eigenspaces which depend
continuously on G and E . This requires some technical effort. We skip the precise
argument here, as it involves mainly detailed exercises with the topology of the spaces
(see Markert [13, Section 3.2.2]). To give an intuitive argument, consider what p does
in terms of configurations: as illustrated in Figure 2, p collects all configuration points
on a curve r2 D �2C .ln�/2 , adds up all coefficients, and splits this sum using the
involution fn to produce two new labels which will be distributed at ˙r . This process
depends continuously on the configurations on the cone.

Next let us analyze the preimage of an operator P in the image of p . Recall that
D.P /˚ ker.E/D D.G/D D.E/, for .G;E/ in the fiber p�1.P /. We can recover
certain parts of the data of .G;E/ by comparing P with fn . Calculating the graded
commutator of P and fn on D.P / returns ln.E/ and thus also GjD.P/ . However,
the subspace ker.E/ and its decomposition into eigenspaces of G cannot be recovered.
We obtain a bijection

Iynf k
n .D.P /?/ ! p�1.P /

where Iynf k
n .D.P /?/ is the subspace of Iynf k

n consisting of operators T with D.T /�
D.P /? . The bijection sends and operator T 2 Iynf k

n .D.P /?/ to the pair of operators
.EP .T /;GP .T // defined on D.T /˚D.P /, where both operators depend only on P

on the part D.P / of their domain and only on T on D.T /:

EP .T /jD.P/ WD exp.1
2
ŒP; fn�/ GP .T /jD.P/ WD P � 1

2
ŒP; fn�fn

EP .T /jD.T / WD 0 GP .T /jD.T / WD T

This is a homeomorphism; its inverse is given by sending a pair .G;E/ in the preimage
of P to Gjker.E/ D GjD.P/? . Clearly this depends continuously on G and E . It
follows immediately that p is surjective. In particular the preimage of the basepoint
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p

Figure 2: The map p on configuration spaces. The indicated curves sketch
the lines r2 D �2C .ln�/2 .

in Iynf kC1
n�1 is homeomorphic to Iynf k

n . In terms of configurations, the inclusion of this
fiber is induced by the inclusion of the line R� f0g ,!R�R>0 . Next we study the
homotopy type of general fibers.

Proposition 4.5 An inclusion i W H ,!H ˚V of infinite-dimensional graded C�k –
Cn –bimodules with finite codimension induces a weak homotopy equivalence

i�W Iynf k
n .H /

�
�! Iynf k

n .H ˚V /:

Corollary 4.6 Let P , S 2 Iynf kC1
n�1 , with D.P / � D.S/. Then there is a weak

homotopy equivalence of the fibers

p�1.S/
�
�! p�1.P /

induced by the inclusion D.S/? ,!D.P /? .

The corollary is immediate, since the domains of all operators P , S in Iynf kC1
n�1 differ

only by some finite-dimensional subspace V , ie

p�1.P /� Iynf k
n .D.P /?/; p�1.S/� Iynf k

n .D.P /?˚V /:
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Proof of Proposition 4.5 Roughly, we argue that there will be “enough room” to
deform domains which hit the finite-dimensional subspace V into ones which lie
outside V . As infinite-dimensional Clifford-modules the two label spaces H and
H ˚V are isomorphic. Choosing such an isomorphism  gives maps

Iynf k
n .H /

i� // Iynf k
n .H ˚V /:

 �

oo

We now want to show the weak homotopy equivalence by checking that for compact
CW–complexes K , the induced map

ŒK; Iynf k
n .H /�

i�
�! ŒK; Iynf k

n .H ˚V /�

is an isomorphism. Now note that—as a consequence of Lemma 3.13—each continuous
map cW K! Iynf k

n for K compact and C W , factors up to homotopy through Iynf k
n .Hm/

for some m. That is, for each such map c we can always find a finite-dimensional
subspace Hc of H such that there is a homotopy commutative diagram:

Iynf k
n .Hc/

i // Iynf k
n .H /

K

c

OO

zc

ii

This implies that a map c 2 ŒK; Iynf k
n .H /� is homotopic to its factorization

K
zc
�! Iynf k

n .Hc/
j�
�! Iynf k

n .H /:

This combination is itself homotopic to its composition with

Iynf k
n .H /

i� // Iynf k
n .H ˚V /

 � // Iynf k
n .H /:

The maps j and  ıiıj are homotopic since both are infinite-codimension embeddings
in Emb.Hc IH /� �. Therefore they induce homotopic maps j� �  � ı i� ı j� .

4.3 Quasifibration properties

In the following we show that for n, k > 0, the maps pW �T k
n ! Iynf kC1

n�1 are quasifibra-
tions with fiber Iynf k

n . A surjective map qW X ! Y is a quasifibration, if for all y 2 Y

and all x 2 q�1.y/ one has �i.X; q
�1.y/Ix/Š �i.Y Iy/ for all i > 0. The crucial

point is that a quasifibration q induces a long exact sequence in homotopy. To prove
that a map q is a quasifibration, one can use the well-known theorem of Dold and
Thom [5]:
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Theorem 4.7 (Dold–Thom) Let qW X ! Y be surjective. Then q is a quasifibration,
if there is an increasing filtration fFiY g of Y , where colimi!1FiY �Y is a homotopy
equivalence, such that the following holds:

� For every open subset U of Bi WD Fi �Fi�1 ,

p�1.U /! U

is a fibration.

� For every i , there exist neighbourhoods Ni � FiC1 of Fi and a contracting
homotopy hW Ni � I !Ni with h0 D idNi

and h1.Ni/� Fi .

� This deformation h is covered by a homotopy H W q�1.Ni/ � I ! q�1.Ni/,
H0 D idq�1.Ni /

, such that for each point x 2Ni ,

H1W q
�1.x/! q�1.h1.x//

is a weak homotopy equivalence.

We define the filtration on Iynf kC1
n�1 by

Fi WD
˚

P 2 Iynf kC1
n�1 dimCnCk

D.P /6 i
	
:

Here the dimension counts irreducible graded CnCk –modules (or respectively, C�k�1 –
Cn�1 –bimodules). Using the same argument as for Remark 3.6(iii), one can see that
the colimit over these spaces is homotopy equivalent to Iynf kC1

n�1 . Note that the inclusion
of the colimit is a set-bijection; it is not a homeomorphism since the colimit space
has more open sets based on open sets in SR around the basepoint. This can be helped
by a homotopy equivalence contracting a neighbourhood of the basepoint. All these
arguments have nothing to do with the additional Clifford-structure and all homotopy
equivalences can be made through the correct spaces. This clearly gives a filtration
with Fi � FiC1 , covering Iynf kC1

n�1 .

Proposition 4.8 The map p is a fiber bundle on

Bi D
˚

P 2 Iynf kC1
n�1 dimCnCk

D.P /D i
	
:

Proof We need to see that the map p�1.Bi/! Bi has local trivializations. We first
look at the domains of operators in p�1.Bi/. Let

Dom?i WD
˚
.P I v/ 2 Bi �Hk

n v 2D.P /?
	

�i W Dom?i ! Bi ; .P I v/ 7! P:and define the map
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Obviously �i is a pullback of the complementary tautological bundle over the Grass-
mannian Gri.Hk

n/

Dom?i ŠD�.E?i / //

�i

��

E?i

�?

��
Bi D

// Gri.Hk
n/

where D maps P to its domain D.P /. E?i is a fiber bundle by the usual argument
(extension of locally orthogonal sections; this works also in the Clifford-linear context).
Therefore �i is a fiber bundle for all i . But if Dom?i ! Bi is locally trivial, then
so is p�1.Bi/! Bi since we can construct local trivializations by conjugating the
operators in p�1.Bi/ with the isomorphisms of the Hilbert spaces given by the local
trivializations of Dom?i ! Bi (compare Remark 3.6(iv)).

Next we need to find neighbourhoods Ni � FiC1 � Iynf kC1
n�1 of Fi for every i , and

contracting homotopies. There is a standard way to do this for configuration spaces, and
we just rephrase it in terms of operators (to be consistent). We define neighbourhoods
Ni � FiC1 of Fi by

Ni WD
˚

P 2 FiC1 dimCnCk

�L
y2.�1;1/ Esp.P Iy/

�
6 i

	
:

This contains Fi and also those operators in FiC1 who have eigenvalues in .�1;�1�[

Œ1;C1/DWU1 . Now we contract the neighbourhood U1[f1g of the basepoint in SR.
This induces a continuous homotopy on Iynf kC1

n�1 (compare Remark 3.6(ii)), and in
particular we obtain a homotopy as wished

hW Ni � I !Ni

such that h1.Ni/� Fi and h0 D idNi
.

Lemma 4.9 This deformation h is covered by a homotopy

H W p�1.Ni/� I ! p�1.Ni/; H0 D idp�1.Ni /

such that for each point x 2Ni ,

H1W p
�1.x/! p�1.h1.x//

is a weak homotopy equivalence.

It is clear how to cover this deformation in the total space of our map p . We contract the
neighbourhood of the basepoint in SR^SR>0 given by .�; �/ with

p
�2C ln.�/2 > 1,
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by a homotopy H . In terms of configurations it is easy to see that we obtain a homotopy
on �T k

n . In terms of operators, we have to apply functional calculus with H t , only
since we have pairs of operators we need to do this carefully. For pairs of commuting
operators .G;E/ 2 �T k

n , we can write out their simultaneous spectral decompositions,
for instance

G D
P
.�;�/ pr1.�; �/�Esp.GI�/\Esp.EI�/:

HtG WD
P
.�;�/ pr1.H t .�; �//�Esp.GI�/\Esp.EI�/;Then we set

and analogously for E . This produces a covering homotopy on the preimages

H W p�1.Ni/� I ! p�1.Ni/:

Recall that elements of the fiber over an operator P are determined by operators
T 2 Iynf k

n .D.P /?/. Thus as long as the domain of htP does not change, ie for all
t 2 Œ0; 1/, we have

p�1.P /� Iynf k
n .D.P /?/D Iynf k

n .D.htP /
?/� p�1.htP /

p�1.htP /�Ht .p
�1.P //and so

for t ¤ 1. When t D 1, D.h1P /? jumps by the sum of all eigenspaces of P with
eigenvalues in U1 . Thus for all P 2Ni the map H1W p

�1.P /! p�1.h1P / is given
by inclusion of the fibers

Iynf k
n .D.P /?/ ,! Iynf k

n .D.h1P /?/D Iynf k
n

�
D.P /?˚

M
�2U1

Esp.P I�/
�
:

But this is a weak homotopy equivalence by Proposition 4.5. Hence we proved the last
condition of Dold–Thom.

Finally with this it is clear that there is a weak homotopy equivalence as required:

Iynf k
n

�
�!�.Iynf kC1

n�1 /

For this one compares a quasifibration with contractible total space F !E
q
!B like

the above with the path-loop fibration of B . There is a commutative diagram

F

b
��

// E

H
��

// B

�.B/ // P .E/ // B

where H is induced by a homotopy contracting the total space E (this gives a path to
the basepoint for every point of E , ie an element in the path space P .E/). Now both
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the quasifibration and the fibration induce long exact sequences in homotopy, and since
both total spaces are contractible, the map b induces an isomorphism in homotopy by
the five-lemma and is thus a weak homotopy equivalence F

�
�!�.B/. This completes

the proof of Theorem 4.1.
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