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Braids inside the Birman–Wenzl–Murakami algebra

IVAN MARIN

We determine the Zariski closure of the representations of the braid groups that factor
through the Birman–Wenzl–Murakami algebra, for generic values of the parame-
ters ˛; s . For ˛; s of modulus 1 and close to 1, we prove that these representations
are unitarizable, thus deducing the topological closure of the image when in addition
˛; s are algebraically independent.

20F36; 20C99

1 Introduction

Let Bn denote the braid group on n strands, defined by the presentation with generators
�1; : : : ; �n�1 and relations �i�iC1�iD�iC1�i�iC1 , �i�j D�j�i for ji�j j�2 (which
imply that the generators are all conjugates of each other). We consider here the linear
representations of Bn afforded by the so-called Birman–Wenzl–Murakami algebras.
For a field K of characteristic 0 and ˛; s 2K with ˛; s; s� s�1 nonzero, the algebra
BMWn.s; ˛/ can be defined as the quotient of the group algebra KBn by the three
relations
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For generic values of ˛; s , the algebra BMWn.s; ˛/ is semisimple and its structure is
known, thus providing many representations of the braid groups.

The algebra BMWn.s; ˛/ is a deformation of Brauer’s centralizer algebra (see below),
which admits for quotient the so-called Iwahori–Hecke algebra of type An�1 , namely
the quotient Hn.s/ of KBn by the relation

.�1� s/.�1C s�1/D 0:

With this relation, rewritten as �1��
�1
1
D s�s�1 , the last two relations of BMWn.s; ˛/

are void, making Hn.s/ appear as a quotient of BMWn.s; ˛/.
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Besides the representations induced by this quotient, BMWn.s; ˛/ admits another
special representation, already singled out in Birman and Wenzl [3], which is known to
induce a faithful representation of Bn by work of Krammer [8; 9] and Bigelow [2].
We call it the Krammer representation RK W B! GLn.n�1/=2.K/.

Let RW Bn!GLN .K/ be a linear representation afforded by some linear representation
of BMWn.s; ˛/. We are interested here in the image R.Bn/� GLN .K/. Since R is
defined only up to conjugacy, the first natural question is: what is the closure of R.Bn/

for the Zariski topology?

Letting B0n D .Bn;Bn/ denote the commutator subgroup, we state some the re-
sults obtained in terms of R.B0n/, because the statements are simpler. Since B0n D

Ker.Bn� Z/ is defined by �1 7! 1, the corresponding statements for R.Bn/ are easy
to deduce from them.

For ˛; s generic (say, algebraically independent over Q�K ), this problem was solved
by the author in [13] for the Hecke algebra representations and in [14] for the Krammer
representation. The present paper is thus a sequel of these two previous works. In [13]
we proved that the Zariski closure of Bn inside the whole Hecke algebra had for Lie
algebra the Lie subalgebra of the group algebra of the symmetric group Sn generated
(for the bracket Œa; b�D ab� ba) by the transpositions, and decomposed this reductive
Lie algebra. We called this Lie algebra the infinitesimal Hecke algebra (of type An�1 ).
Here we exhibit a reductive Lie subalgebra of the Brauer centralizer algebra that plays a
similar role, and that we decompose accordingly. A consequence is the following, which
generalizes [14, Theorem 2]. Recall from [3] that BMWn.s; ˛/ is split semisimple
over K (see Birman and Wenzl [3, Theorem 3.7], the proof given there being valid
over Q.s; ˛/, not only C.s; ˛/).

Theorem 1.1 Let RW Bn! GLN .K/ a representation afforded by BMWn.s; ˛/ for
˛; s algebraically independent over Q, or for ˛ D sm with s transcendant over Q and
m outside a finite set of integer values.

(1) If R is irreducible and does not factor through Hn.s/, then R.Bn/ is Zariski-
dense in GLN .K/.

(2) If R D R0 ˚ R1 ˚ � � � ˚ Rk W Bn ! GLN .K/ with Ri W Bn ! GLNi
.Ki/

satisfying (1) when i � 1, N D N0CN1C � � � CNk , R0 a (not necessarily
irreducible) representation factoring through Hn.s/, and Ri 6' Rj for i ¤ j ,
then the image R.B0n/ of the commutator subgroup of Bn is Zariski-dense in
G0 �SLN1

.K/� � � � �SLNk
.K/, where G0 is the closure of R0.B

0
n/.

Another natural question is whether the representations of Bn obtained this way are
unitarizable, when K DC . In this case, the determination of the Zariski closure done
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above is more or less equivalent to the determination of the topological closure for the
usual topology of C .

This question makes sense only for j˛j D jsj D 1, because of the spectrum of the Artin
generator. Even in this case, it is known that the representations afforded by Hn.s/

are not unitarizable in general, but they are so if in addition s is close enough to 1.
This was first proved by H Wenzl, who exhibited in [16] explicit unitary matrix models
for these representations. For ˛; s close to 1 and some additional constraints, this was
also proved for the Krammer representation by R Budney, who followed the method of
C Squier (for the Burau representation) of constructing an explicit sesquilinear form
preserved in the usual matrix models of this representation.

We showed in previous works [12; 14] how to obtain new proofs of these two results by
making use of Drinfel 0d theory of associators. The idea is that all these representations
appear as monodromy of so-called KZ–systems, and that these KZ–systems have for
coefficients real matrices which are compatible with certain natural bilinear forms.
Then, from the choice of a Drinfel 0d associator with rational (or real) coefficients,
whose existence was proved by Drinfel 0d, one can built a representation of Bn over the
ring RŒŒh�� of formal series with image in some formal unitary group (with respect to the
automorphism f .h/ 7! f .�h/). By specializing the matrices in h a purely imaginary
complex number we then get unitary representations of Bn , and this provides a natural
path for explaining the unitarisability of this kind of representations. A technical
problem however is that we do not have (so far) any insurance that the series involved
have nonzero convergence radius. For the Hecke algebra representations [12], one
can explicitly compute the matrix models obtained this way, which turn out to be
the same than the ones obtained earlier by Wenzl, and check that they are indeed
convergent. Another way, that we already used in [14] for the Krammer representation,
is to approximate the representation over RŒŒh�� by equivalent representations over the
ring of convergent power series. This is the device we use here, giving in the above
spirit a new proof of the following result, which was originally proved by Wenzl [18]
by using the Jones construction.

Theorem 1.2 (Wenzl) Let S1 D fz 2 C j jzj D 1g. There exists an open subset U

of S1�S1 whose closure contains .1; 1/ such that, for .s; ˛/ 2U , the representations
of Bn induced by BMWn.s; ˛/ are unitarizable.

Putting the two theorems together, they determine up to isomorphism the topological
closure of all representations of Bn that factor through BMWn.s; ˛/ for .s; ˛/ 2 U

with s; ˛ algebraically independent over Q, since the compact Zariski-dense subgroups
of GLN .C/ are its maximal compact subgroups. This generalizes (part of) the work
of Freedman, Larsen and Wang in [6] on the representations of Hn.s/.
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Finally note that the open set U of Theorem 1.2 contains (a dense set of) couples .s; ˛/
which are algebraically independent. In particular, every irreducible representation R

as in Theorem 1.1 (not factorizing through Hn.s/) enables, when faithful, to embed Bn

in the corresponding unitary group as a dense subgroup.

Acknowledgements I thank H Wenzl for a useful discussion.

2 Brauer diagrams and Brauer algebra

We refer to Wenzl [17] or Goodman and Wallach [7] for the definition and basic
properties of the algebra Brn of Brauer diagrams (in short: Brauer algebra) as a
finite-dimensional algebra over QŒm�, and its specialization Brn.m/ over some field k
of characteristic 0, where m 2 k. They are algebras spanned by so-called Brauer
diagrams, where ab means composing the diagram b below the diagram a with
additional relations p2

ij D mpij . These algebras contain Sn , and in particular the
transpositions sij . In this section we assume k�R, and in particular m 2R.

We first define an involutive linear automorphism � , defined at the level of the diagrams
by reflecting the diagram “upside-down” (see Figure 1). For w 2Sn we have �.w/D
w�1 ; moreover �.pij /D pij . This antiautomorphism thus leaves the generators sij

and pij invariant, and can alternatively be defined from this property. For m> n or
m 62Q there exists a nondegenerate trace trM such that trM .b/D trM .�.b// for every
diagram b , for instance the Markov trace defined in [17]. We assume from now on
that trM is this Markov trace. We then let hD1;D2i D trM .D1�.D2// on the Brauer
diagrams and extend it by linearity. Consequences of the assumptions on trM are the
following:

� For all a; b we have

ha; bi D trM .a�.b//D trM .�.a�.b//D trM .b�.a//D hb; ai:

� For all a; b , and w 2Sn ,

hwa; wbi D trM .wa�.wb//D trM .wa�.b/�.w//

D trM .�.w/wa�.b//D trM .a�.b//D ha; bi:

� For all a; b , and pij ,

hpij a; bi D trM .pij a�.b//D trM .a�.b/�.pij //D trM .a�.pij b//D ha;pij bi:

In particular, the endomorphism sij �pij is selfadjoint with respect to h ; i and the
elements of Sn act orthogonally. For trM the Markov trace of [17], the bilinear form
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.a; b/ 7! trM .ab/ on Brn.m/ is nondegenerate for m > n or m 62 Q. The Brauer
algebra is then semisimple and decomposes as a sum of matrix algebras. The set Irrn

of irreducible representations of Brn is in 1-1 correspondence with the partitions of r

with n� r a nonnegative even integer. When no confusion can arise, we denote them
by the corresponding partition �D .�1 � �2 � : : : /, or by �n if the number of strands
is not implicit. We let j�j D �1C�2C � � � D r � n.

For � 2 Irrn , let tr�W x 7! tr.�.x// denote the matrix trace on the corresponding factor
of Brn.m/. By [17], we have

trM .b/D
X
�2Irrn

P�.m/

mn
tr�.b/:

for some rational polynomials P�.m/ of m. For m > n it is possible to choose the
representations � 2 Irrn defined over R and such that �.�.b//D t�.b/. Indeed, this
means that the generators sk;kC1 and p12 have real entries and are symmetric in some
basis, and it possible to find such a basis by [15, (3.11) (see the proof of Theorem 3.12)].
Actually, the argument in [15] proves this under the additional condition that m is an
integer. This additional condition can be readily dropped, as the symmetric formulas
obtained there make sense for a real number m> n hence define representations of the
corresponding Brn.m/, the defining relations of Brn.m/ being polynomial in m and
the matrix entries being (square roots of) rational fractions of m.

We then have

ha; bi D
X
�2Irrn

P�.m/

mn
tr.�.a�.b///

D

X
�2Irrn

P�.m/

mn
tr.�.a/�.�.b///D

X
�2Irrn

P�.m/

mn
tr.�.a/ t�.b//:

It follows that h ; i is positive definite, for m 62 Q or m > n, if and only if all the
P�.m/=mn are positive. From [17] we have an explicit combinatorial description of
P�.m/, and we know that P�.m/ coincides with the dimension of a representation
for m a sufficiently large integer. In particular, P�.m/ > 0 for m � 0. We let
Sn D fm j 9� ` r � n;P�.m/D 0g � Z.

3 Convergent approximation

In this section we prove a technical result concerning finitely generated subfields of the
field R.fhg/ of convergent Laurent series (ie the field of fractions of the ring Rffhgg
of formal power series with nonzero convergence radius), and apply it to the twisting
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Figure 1: The “upside-down” automorphism �

of representations by adequate field automorphisms. We denote by R..h// the field of
formal Laurent series, R.h/ the field of rational fractions.

Proposition 3.1 Let K D R..h//, K� D R.fhg/, � 2 Aut.K/ defined by f .h/ 7!
f .�h/, and L�K a finitely generated extension of R.h/. There exists L��K� such
that L�'L and an isomorphism �W L!L� with L\K��L� and �.L\RŒŒh��/�
L� \Rffhgg. If �.L/ D L, then L� can be chosen such that �.L�/ D L� and the
isomorphism � can be chosen such that � ı�D� ı � . Moreover, for any finite set
fu1; : : : ;utg �L and M > 0, � can be chosen such that �.ui/� ui modulo hM .

Proof Let L0 D L \K� and L1 a purely transcendental extension of L0 in L.
Since L is finitely generated, L=L0 has finite transcendence degree r , and L=L1 is
finite, that it LDL1Œ˛� for some ˛ 2L algebraic over L1 . Since L0 �R.h/ we can
assume ˛ 2 hRŒŒh�� and also choose a transcendence basis f1; : : : ; fr of L1=L0 with
fi 2RŒŒh��. Since L0 is finitely generated and R.fhg/ has infinite transcendence degree
over R.h/ (consider eg the family exp.hd /; d � 0), there exists g1; : : :gr 2 Rffhgg
algebraically independent over L0 . Since L0 �R.h/, for any P1; : : : ;Pr 2RŒh�, the
family g1CP1C � � �Cgr CPr is also algebraically independent over L0 , hence for
any given N we can choose gi�fi modulo hN . Let then L�

1
DL0.g1; : : : ;gr /'L1

and P 2L1ŒX � a minimal polynomial for ˛2L. By not requiring P to be monic, since
L0 �R.h/ we can assume that the coefficients of P belong to L0Œf1; : : : ; fr �\RŒŒh��.
Through L�

1
'L1 , we define Pg 2L0Œg1; : : : ;gr �. We have P .˛/D 0, P 0.˛/� ˇhs

modulo hsC1 for some s � 0 and ˇ 2 R� . By choosing N large enough, we get
P 0g.˛/ � ˇhs modulo hsC1 and Pg.˛/ � 0 modulo h2sC1 . In particular Pg.˛/ 2

P 0g.˛/
2hRŒŒh��. Hensel’s lemma then asserts (see eg Eisenbud [5, Theorem 7.3]) the

existence of  2 RŒŒh�� such that Pg. / D 0 and  � ˛ 2 P 0g.˛/hRŒŒh�� � hRŒŒh��.
It follows that  2 hRŒŒh��. Then M Artin’s approximation theorem [1] states that
there exists a root z 2Rffhgg of Pg that can be chosen arbitrarily close to  , hence
 2Rffhgg (since Pg admits finitely many roots), and L� DL1Œ �'L is a subfield
of K� that satisfies the wanted properties.
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For any finite subset u1; : : : ;ut 2 L D L0.f1; : : : ; fr /Œ˛�, by choosing N large
enough we can assume that s �M , hence  � ˛ modulo hM , and that �.ui/� ui

modulo hM .

Finally, assume that �.L/DL and let L� D ff 2L j �.f /D f g. We have R.h2/�

L� � K� D R..h2//, L D L� ˚ hL� ' L� ŒX �=.X 2 � h/. Let ˆW K� ! K be the
isomorphism defined by f .h2/ 7! f .h/ and ƒD ˆ.L�/. Clearly ˆ and ˆ�1 map
convergent series to convergent series. We have L ' ƒC D ƒŒX �=.X 2 � h/ and
Gal.ƒC=ƒ/'Z=2 is generated by the action of � on L'ƒC . We have already show
how to construct an extension R.h/�ƒ� �K� with ƒ� 'ƒ over ƒ\K� �R.h/.
Therefore, there exists an isomorphism between the extensions ƒC=ƒ and ƒ�C=ƒ

�

with ƒ�C D ƒŒX �=.X
2 � h/. Letting L�� D ˆ

�1.ƒ�/ and L� D L�
1
.h/ � K� this

defines �W L!L� with �ı�D �ı�. Moreover, if f 2L\K� , then f D f1Chf2

with fi 2L�\K� , hence ˆ.fi/2ƒ\K� , ˆ.fi/Dfi and �.f /Df . The verification
that � can be chosen with �.ui/ close to ui in this case too, is straightforward and
left to the reader.

For L a subfield of R..h// such that �.L/ D L, we let U �
N
.L/ D fX 2 GLN .L/ j

X�1 D t�.X /g.

Corollary 3.2 Let G be a finitely generated group, RW G! GLN .RŒŒh��/ be a linear
representation, g1; : : : ;gr 2 G such that R.g1/; : : : ;R.gr / have entries in Rffhgg,
and M > 0. Then there exists a linear representation R�W G ! GLN .Rffhgg such
that R�.gi/D R.gi/ and, for all g 2 G , R�.g/� R.g/ modulo hM . Moreover, if
R.G/� U �

N
.R..h///, then we can assume R�.G/� U �

N
.R.fhg//.

Proof Let u1; : : : ;un be generators of G , and L the subfield of R..h// generated over
R.h/ by the entries of the R.ui/ and R.u�1

i /. We have R.G/� GLN .L/ and L is
finitely generated over R.h/. Using an isomorphism �W L!L��R.fhg/ provided by
the proposition, we let R� D�ıR. If � is chosen so that R�.ui/�R.ui/ mod hM

and R�.u�1
i / � R.u�1

i / mod hM then R�.g/ � R.g/ mod hM for every g 2 G ,
which concludes the proof. In case R.G/ � U �

N
.R..h///, then L clearly satisfies

�.L/DL and the condition � ı � D � ı� implies R�.G/� U �
N
.R.fhg//.

Proposition 3.3 In the situation of the corollary, if R is absolutely irreducible, then
R� can be chosen absolutely irreducible.

Proof Since R is absolutely irreducible, the image of the group algebra R..h//G
inside MatN .R..h/// is full, that is there exists g1; : : : ;gN 2 2 RŒŒh��G such that
R.g1/; : : : ;R.gN 2/ is linearly independent over R..h//. The determinant of this
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family is thus congruent to ˇhs modulo hsC1 , for some ˇ 2R� and s � 0. Replacing
the coefficients of g1; : : : ;gN 2 by their approximation modulo hsC1 we can assume
that g1; : : : ;gN 2 have coefficients in RŒh�. Let u1; : : : ;ur denote the elements of G

that appear in the g1; : : : ;gr . Choosing R� such that R�.ui/�R.ui/ modulo hsC1

we get that R�.gi/�R.gi/ mod hsC1 , whence the family R�.g1/; : : : ;R
�.gN / is

also linearly independent over R.fhg/, which concludes the proof.

4 Unitarisability of the representations of the BMW algebras

We first construct representations of the braid groups over RŒŒh�� which are formally
unitary, then approximate these by convergent series. By an adequate specialization
this affords unitary representations which are shown to be equivalent to representations
of the BMW algebras.

Recall from eg Drinfel 0d [4] that the Lie algebra of (pure) infinitesimal braids Tn , or
horizontal chord diagrams, is defined by generators tij , 1 � i; j � n with relations
tii D 0; tij D tji , Œtij ; tik C tkj � D 0, and Œtij ; tkl � D 0 for #fi; j ; k; lg D 4. It is
endowed with an action of Sn by w:tij D tw.i/;w.j/ , and a grading given by deg tij D 1.
Drinfel 0d theory of associators [4] defines, for k a field of characteristic 0 and � 2 k� ,
a set M�.k/ of formal series in two noncommuting variables, such that any ˆ 2
M�.k/ provides an (injective) morphism Bn!Sn Ë exp yTn where yTn denotes the
completion of T with respect to its natural grading. Such a morphism maps �1 to
.1 2/ exp.�t12/ (our M�.k/ is Drinfel 0d’s M2�.k/). Drinfel 0d then exhibits a special
element ˆKZ 2Mi�.C/ and deduces abstractly from this that M�.k/¤∅ for every
� and k. We refer to [4] for the main properties of such elements.

Let �W Sn! GLN .R/ be a representation of the symmetric group Sn and 'W Tn!

glN .R/ be a representation of the Lie algebra of infinitesimal braids compatible
with � , ie �.w/'.tij /�.w/�1 D '.tw.i/;w.j//. We can extend ' into a representation
yTn ! glN .RŒŒh��/ through tij 7! h'.tij /. The choice of a real Drinfel 0d associator
ˆ 2 M1.R/ provides a representation RW Bn ! GLN .RŒŒh��/ whose image lies in
�.Sn/ exp h .'.T /˝RŒŒh��/. We let as before K DR..h//.

Proposition 4.1 If RN is endowed with its canonical Euclidean structure, �.Sn/�

ON .R/ and t'.tij /D '.tij /, then R.Bn/� U �
N
.K/.

Proof We only need to check that, for every Artin generator �i , we have R.�i/ �

U �
N
.K/. Recall from [4] that R.�i/ is conjugate to exp h'.ti;iC1/ 2U �

N
.K/ by some

element of the form ˆ.hx; hy/ where x;y are linear combination of the '.tij /, hence
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are symmetric matrices. Now ˆ is the exponential of a Lie series ‰ , and u 7! � tu

is an automorphism of glN .R/. We thus get � t‰.hx; hy/ D ‰.� thx;� thy/ D

�.‰.hx; hy//, hence tˆ.hx; hy/�1 D �.ˆ.hx; hy//. It follows that ˆ.hx; hy/ 2

U �
N
.K/ whence R.Bn/� U �

N
.K/.

We will also need the following.

Proposition 4.2 (1) If ' is absolutely irreducible, then R is absolutely irreducible.

(2) In general, the Lie algebra of the Zariski closure of R.Bn/ inside GLN .K/

contains '.T /˝R K .

Proof The proof of (1) basically follows from the fact that R.ij / is congruent to
1C 2h'.tij / modulo h2 , where ij denote the standard generator of the pure braid
group, and that '.UT / is generated by the '.tij /. Indeed, by Burnside theorem there
exists a basis of MatN .R/DRN 2

of noncommutative polynomials P1; : : : ;PN 2 in
the '.tij /, that is Pk DPk..'.tij /i;j /. Then the Pk...ij�1/=2h/ij / define elements
of KBn whose image under R is congruent modulo h to a basis of MatN .R/. It
follows that R.KBn/ generates MatN .K/, that is that R is absolutely irreducible.
This concludes the proof of (1).

With no assumption on ' , we have R.ij /D exp.hxij / for some xij 2 '.T /˝RŒŒh��,
such that xij � 2'.tij / mod h since R.ij /� 1C 2h'.tij / mod h2 . It follows that
the Lie subalgebra g of '.T /˝RŒŒh�� generated by the xij reduces to '.T / modulo h.
Thus dimK g˝K�dimR '.T / and, since g�'.T /˝RŒŒh��, we get g˝KD'.T /˝K .
The fact that g˝K is contained in the Lie algebra of the Zariski closure of R.Bn/

is then an elementary consequence of Chevalley’s formal exponentiation theory (see
Marin [13, Lemme 21]). This proves (2).

We then approximate R by a convergent R�W Bn ! GLN .K
�/ as in the previous

section. A first remark is that R� can be chosen such that R�.�i/ is conjugate to
R.�i/ in GLN .K/, at least when R.�i/ is diagonalizable with eigenvalues in K�.
Indeed, if this is the case, there exists a polynomial P 2 K�ŒX � with simple roots
in K� such that P .R.�i//D 0, hence P .R�.�i//D�.P /.�.R.�i///D�.0/D 0.
Moreover, the traces of the R.�i/

k , which belong to K� , equal the traces of the
R�.�i/

k , hence R.�i/ and R�.�i/ have the same spectrum with multiplicities. Notice
that this assumption is satisfied in our case as soon as '.t12/ is semisimple, since
R.�1/D �.s12/ exp.h'.t12//.

Let ˛ > 0 such that the entries of the R.�i/ and R.��1
i / all have convergence radius

at least ˛ . By specialization of h to a purely imaginary number iu of modulus less
than ˛ , we get unitary representations RiuW B! UN � GLN .C/.
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We now apply this to an irreducible representation of the Brauer algebra �2 Irrn , given
in matrix form over R such that �.�.b// D t�.b/ for all b . Recall from Section 2
that this is possible for m > n. Then � restricts to an orthogonal representation
of Sn , and '.tij /D �.sij /� �.pij / defines a compatible representation of Tn with
t'.tij /D '.tij /. We thus get representations R and R� of Bn .

Proposition 4.3 Assume m 62Q or m> n. For m outside a finite set of other values,
the representations R and R� factor through the Birman–Wenzl–Murakami algebra
BMWn.e

h; e.1�m/h/ and correspond to the same partition �.

Proof The assertion about R is well-known, and can be proved eg along the lines
of [11, Proposition 4]. Since the defining relations of the BMW algebra have coeffi-
cients in K� , then R� also factors through it. Introduce the elements ı2 D �2

1
; ı3 D

�2�
2
1
�2; : : : ; ın�1 D �n�1 � � � �2�

2
1
�2 � � � �n�1 . We have R.ık/D exp h'.Yk/, where

Y2D t12; : : : ;YnD t1nC� � �Ctn�1;n . We recall that, for m> n or m 62Q, and possibly
outside a finite set of other values of m, the values of '.Y2/; : : : ; '.Yn/ determine � [11,
Section 9]. Since the R.ık/ have entries in K� , we have R�.ık/D R.ık/ and the
conclusion follows.

We denote log z the determination of the complex logarithm over C nR� such that
log 1D 0. The following corollary proves Theorem 1.2, for U drawn in Figure 2.

y D x=A

Figure 2: s D ei�y ; ˛ D ei�x

Corollary 4.4 Assume s; ˛ 2C with j˛j D jsj D 1, and s; ˛ 62 f1;�1g. There exists
A<�1 and 0<�<2 such that, for 0< js�1j<�, 0< j˛�1j<� and log˛=log s<A,
all the representations of Bn originating from BMWn.s; ˛/ are unitarizable.

Proof Let m 2R defined by 1�mD .log˛/=.log s/. We can choose A and �0 such
that m> n and does not belong to the exceptions of the proposition for any � 2 Irrn ,
and such that, for 0 < js � 1j < �0 and 0 < j˛ � 1j < �0 , the algebra BMWn.s; ˛/

is split semisimple and has for irreducible representations the ones deduced from the
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generic algebras BMWn over R.zs; z̨/, where zs and z̨ are formal parameters. We
mean by that the given irreducible representation R0 of Bn over C factorizing through
BMWn.s; ˛/ is deduced from the corresponding representation Rg of Bn over R.zs; z̨/
by specialization of matrices, where the smallness of �0 ensures that s; ˛ , lie outside
the poles of the entries.

The representation R� of Bn over K� DR.fhg/ afforded by the proposition satisfies
R� ' R�g over K� where R�g denotes the specialization of Rg to zs D eh and
z̨ D e.1�m/h (here again we can change A so that eh , e.1�m/h lie outside the poles,
since eh and e.1�m/h are algebraically independent over R for m 62Q). It follows that
there exists P 2 GLN .K

�/ such that R�.b/D PR�g.b/P
�1 for all b 2 Bn . Let now

ˇ > 0 such that, for 0< jhj< ˇ , the entries of the matrices R�.�i/, Rg.�i/, P and
P�1 are convergent. We choose � such that 0< � < �0 and jeiu� 1j< �) juj< ˇ

for u 2 ���; �Œ. Then R0 is isomorphic to R�iu which is a unitary representation of
Bn . Since Irrn is finite we can choose A; � uniformly in � and this concludes the
proof.

5 Infinitesimal Brauer algebras

Let k be a field of characteristic 0, m 2 k and Brn.m/ be defined over k. In this
section we study the Lie subalgebra of Brn.m/, with bracket given by Œa; b�D ab�ba,
which is generated by the elements tij D sij �pij , that is the images of the generators
of Tn also denoted tij in Section 4. We call it the infinitesimal Brauer algebra and
denote it Bn.m/. The purpose of this section is to show that it is a reductive Lie algebra
for generic values of m and to determine its structure in this case. We recall from
Section 2 that Sn denotes the set of values of m for which Brn.m/ is not “generic”.
We have Sn � Z\ ��1; n�.

5.1 Reductiveness and center

We let t D t12 D s12 �p12 and s D s12 . A straightforward computation in Br2.m/

shows that t2 � 1 D .m� 2/p12 and .t2 � 1/.t C .m� 1// D 0. It follows that, for
m ¤ 2, sij and pij are polynomials of tij . Since these elements generate Brn.m/

as an algebra, it follows that every irreducible representation � of Brn.m/ induces
an irreducible representation �B of Bn.m/. In particular, when m 62 Sn , Bn.m/ is a
reductive Lie algebra, as it admits a faithful semisimple representation (take the direct
sum of all irreducible representations of Brn.m/).

For m 62Sn , Brn.m/ is reductive as a Lie algebra. We denote pW Brn.m/�Z.Brn.m//

the natural projection, with kernel ŒBrn.m/;Brn.m/�. Let T denote the subspace of
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Brn.m/ spanned by the tij , and T D
P

tij 2T . We have T 2Z.Bn.m//�Z.Brn.m//

for m ¤ 2. Let T 0 denote the subspace of T spanned by the tij � tkl . Since the
tij are linearly independent we have T D kT ˚T 0 . Since Sn is 2–transitive, there
exists � 2Sn with tkl D t�.i/�.j/ D � tij�

�1 . Now an explicit formula for p can be
given in terms of the primitive idempotents j� of Brn.m/ for � 2 Irrn , as p.x/ DP

d.�/t r�.x/j� where d.�/ is a scalar coefficient. Then p.sxs�1/D p.x/ for any
invertible s 2 Brn.m/, hence p.T 0/D 0. Finally, p acts by 1 on the center of Brn.m/

hence Z.Bn.m//D p.Z.Bn.m///� p.Bn.m//D p.kT CT 0C ŒBn.m/;Bn.m/�/D

p.kT /D kT . We thus proved the following.

Proposition 5.1 For m 62 Sn and m¤ 2, the Lie algebra Bn.m/ is reductive, and its
center is spanned by T .

Lemma 5.2 Let � 2 Irr0n . For m outside a finite set of rational values, ��.T /¤ 0.

Proof Since ��.T / is scalar, .dim�/��.T /D tr ��.T /D .n.n�1/=2/ tr �.t12/. But
Sp �.t12/ � f�1; 1; 1�mg and 1�m 2 Sp �.t12/ since � 2 Irr0n . The conclusion is
immediate.

5.2 Representations of Brn.m/

We will need a few technical results on the representations of Brn.m/ that we gather
here. We assume m 62 Sn .

1

2

3

4

Hecke

Krammer

Others

Figure 3: Bratteli diagram for the Brauer algebra

Lemma 5.3 Let n � 3 and � 2 Irrn . Either Sp �.t12/ � f�1; 1g or � 2 Irr0n and
Sp �.t12/D f�1; 1; 1�mg.
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Proof If � factors through Sn then clearly Sp �.t12/D Sp �.s12/� f�1; 1g. Other-
wise �.p12/¤ 0, which implies that the restriction of � to Br3.m/ contains Œ1�3 , over
which t12 acts with spectrum f�1; 1; 1�mg. This proves the statement.

Lemma 5.4 Let n� 5. If � 2 Irr.Sn/ and dim� > 1, then dim�� n�1. If � 2 Irr0n
then dim�� n.n� 1/=2.

Proof The first part is well-known (see eg [13, Lemme 8]) and easy to check, so we
leave it to the reader. We check the second inequality directly for nD 5 and proceed
by induction, assuming n� 6. We thus assume � 2 Irr0n , and denote �D .�1 � �2 �

� � � � �r > 0/ with j�j< n.

We first deal with the cases j�j � 2, proving dimŒ1�n � n.nC 1/=2 and dim� �

n.n� 1/=2 for � 2 f∅; Œ2�; Œ1; 1�g, by induction on n � 5. We have dimŒ1�5 D 15D

5� 6=2. Let then n � 6. If n is even, then � 2 f∅; Œ2�; Œ1; 1�g and the restriction to
Brn�1.m/ admits for component Œ1�n�1 ; it follows that dim��dimŒ1�n�1�n.n�1/=2.
If n is odd, then the restriction of � D Œ1�n is ∅n�1 C Œ2�n�1 C Œ1; 1�n�1 , hence
dimŒ1�n� 3.n�1/.n�2/=2� n.nC1/=2 for n� 10, and we check that dimŒ1�9D 945

and dimŒ1�7 D 105 also satisfy our assumption.

We now assume j�j D 2. Since �¤∅ there exists �1 2 Irr0n�1 such that �1%�. Let
�2D .�1C1� �2� � � � � �r > 0/n�1 and �3D .�1� �2� � � � � �r � 1> 0/n�1 . We
have �2; �3 2 Irrn�1 and �%�2 , �%�3 . If dim�2 D 1 then r D 1, and in this case
dim�3 D 1 implies �1 D �r D 1, that is �D Œ1� which has been excluded. It follows
that dim�2 > 1 or dim�3 > 1, hence dim�2C dim�3 � 1C .n� 2/D n� 1 (note
that .n�1/.n�2/=2� n�2), therefore dim�� n�1C.n�1/.n�2/=2D n.n�1/=2,
and this concludes the proof.

5.3 Isomorphic representations

Let XD f1;�1;m�1g. For every representation � , we have Sp �.t/�X. We assume
m 62 Sn and m¤ 2 in what follows.

Since Bn.m/ generates Brn.m/ as an algebra, for every two irreducible representations
�1; �2 2 Irrn , we have �1 ' �2 if and only if �1

B ' �
2
B .

For such irreducible representations, we denote �1
B0 , �

2
B0 the irreducible representations

of B0n.m/ D ŒBn.m/;Bn.m/� that they induce. If �1 ' �2 then �1
B0 ' �

2
B0 . We are

interested in the converse, and assume that we have �1
B0 ' �

2
B0 . We let

t 0ij D tij � 2T=n.n� 1/D
2

n.n� 1/

X
k;l

tij � tkl :
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We saw in Section 5.1 that p.t 0ij /D 0. Since p is a projector onto Z.Bn.m// whose
kernel contains B0n.m/, it induces the canonical projection of Bn.m/ onto its center,
whence t 0ij 2 B

0
n.m/. From this it is clear that B0n.m/D ŒBn.m/;Bn.m/� is generated

by the t 0ij .

Let t 0D t 0
12

, and assume without loss of generality that �1; �2 share the same underlying
vector space V . We have P 2GL.V / such that �1.t 0/DP�2.t 0/P�1 , that is �1.t/D

P�2.t/P�1C˛ , with ˛ D .1=N /.�1.T /� �2.T // 2 k and N D n.n� 1/=2. Since
Sp �i.t/� X we have ˛ 2 X�X, that is ˛ D 0 or ˛ 2 f2; 2�m;�m;�2;m� 2;mg.
This latter set has 6 elements, except when m2S Df�2; 0; 1; 2; 4g. We assume m 62S .
This imposes that, either ˛ D 0, or both �1.t/ and �2.t/ have a single eigenvalue.
Since the �i.t/ are semisimple endomorphisms, at least for m 62 f0; 2g, the �i.t/ have
then to be scalars. Through conjugation under Sn this has for consequence that all the
�i.tkl/ are scalars, that is dim �1 D dim �2 D 1, by irreducibility of �1 and �2 . This
proves the following.

Proposition 5.5 Let S D f�2; 0; 1; 2; 4g and assume m 62 Sn[S . For �1; �2 2 Irrn

with dim �i > 1, �1 ' �2 if and only if �1
B0 ' �

2
B0 .

We now assume that �2
B0 is isomorphic to the dual .�1

B0/
� of �1

B0 . Let P 2 GL.V / be
an intertwinner. We have � t�1.t 0/D P�2.t 0/P�1 hence � t�1.t/D P�2.t/P�1C˛

with ˛D .��1.T /��2.T //=N . Up to conjugation of the matrix model of �1 we can
assume that �1.t/ is diagonal, with eigenvalues �1; : : : ; �r 2 X. Then ˛��i D �i 2

Sp �2.t/� X and �2.t/ is diagonalizable with eigenvalues �1; : : : ; �r . In particular
˛ 2 XCX. We write down the addition table for X:

1 �1 m� 1

1 2 0 m

�1 0 �2 m� 2

m� 1 m m� 2 2.m� 2/

The values in the upper triangular corner of this table are distinct provided that m 62

S� D f0; 2;�2; 4; 3; 1g. In this case, ˛ 2 f2;�2; 2.m � 2/g implies that for all i ,
�i D �i D c is independent of i , namely that the �i.tkl/ are scalars and dim �i D 1.
Excluding that case (hence assuming n� 3), we thus have ˛ 2 f0;m;m� 2g, which
corresponds to Sp �i.t/ 2 ff1;�1g; f1;m � 1g; f�1;m � 1gg. By Lemma 5.3, we
have Sp �.t/ 62 ff1;m � 1g; f�1;m � 1gg (when m � 1 62 f1;�1g/. It follows that
Sp �1.t/ D Sp �2.t/ D f1;�1g, meaning that the �i factor through kSn , which is
the quotient of Brn.m/ by p12 (from �.t/2 D 1 and �.t2� 1/D .m� 2/�.p12/ we
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indeed get �.p12/ D 0 for m ¤ 2). But this case is known by [13, Proposition 2
and Section 5.1] (see also [10, Proposition 2.7]), so this concludes the proof of the
following proposition:

Proposition 5.6 Let S� D f�2; 0; 1; 2; 3; 4g and assume m 62 Sn[S� . For �1; �2 2

Irrn , �2
B0 ' .�

1
B0/
� if and only if, either dim �1 D dim �2 D 1, or �1 and �2 factor

through kSn and �2 D �1˝ � , where � is the sign character of Sn .

5.4 Infinitesimal Hecke algebra

Let Hn denote the Lie subalgebra of kSn generated by the transpositions. This Lie
subalgebra, which is a special case of the infinitesimal Hecke algebras dealt with in [10],
is reductive and has been decomposed in [13]. The quotient map Brn.m/! kSn

induces a Lie algebra morphism Bn.m/!Hn , that is onto and maps center to center
isomorphically. It thus induces B0n.m/� H0n . Let then Irr0n D f� 2 Irrn j j�j < ng,
where j�j denotes the number of boxes of the Young diagram associated to �. We still
assume m 62 Sn and consider the isomorphism Brn.m/

0!
L
�2Irrn

sl.V�/, where V�
is the underlying vector space of �. Since � 2 Irrn n Irr0n means that � factors through
kSn , this isomorphism can be written Brn.m/

0 ! .kSn/
0 �
L
�2Irr0n

sl.V�/, hence
induces an injective map

B0n.m/ ,!H0n �
M
�2Irr0n

sl.V�/

Our goal here is to show that this map is surjective, namely:

Theorem 5.7 Let m 62Sn[S[S� . Then Bn.m/ is a reductive algebra with 1–dimen-
sional center, whose derived Lie algebra is naturally isomorphic to H0n �

L
�2Irr0n

sl.V�/.

For the convenience of the reader, we recall from [13] the simple ideals of H0n . For
� 2 Irr.Sn/, identified with a partition of n or a Young diagram of size n, we denote
V� the underlying vector space and �H0 W H0n! sl.V�/ the induced representation of
H0n . Then the orthogonal H.�/ of Ker �H0 for the Killing form is a simple ideal of
H0n , and all simple ideals are obtained this way. A nonoverlapping list is given by
H.Œn� 1; 1�/ ' sln�1.C/ and, for � not a hook, letting �W Sn� f˙1g denote the
sign character:

� H.�/' so.V�/ when the symmetric square S2� contains � .

� H.�/'. V�/ when the symmetric square S2� contains � .

� H.�/DH.�˝ �/' sl.V�/ otherwise.
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For a given n, the decomposition of B0n.m/ given by the theorem is equivalent to the
property that ��.B0n.m//D sl.V�/ for all �2 Irr0n . Indeed, if we have this property, then
the semisimple Lie algebra B0n.m/ contains simple Lie ideals isomorphic to sl.V�/ for
every � 2 Irr0n , which do not intersect the simple Lie ideals inherited from H0n , and do
not intersect each other: indeed, if there was such an intersection this would mean that
this two simple ideals coincide, meaning that two �;� 2 Irr0n of the same dimension
would factor through the same ideal. Since slN .C/ admits at most two irreducible
representations of dimension N , this would imply �B0 ' �B0 or �B0 ' .�B0/

� , which
is excluded by the propositions above; the case � 2 Irr0n; � 2 Irrn n Irr0n is dealt with
similarly. This property for any given n thus implies the theorem for this n.

5.5 Induction step

We prove here that �.B0n.m//D sl.V�/ for every � 2 Irr0n by induction on n, assuming
the theorem true for n�1. Note that no confusion should arise in the notation between
Irrn and Irrn�1 as, if � 2 Irrn and � 2 Irr0n , then j�j and j� do not have the same
parity. We let V� denote the underlying space of � 2 Irrn or � 2 Irrn�1 . For two
partitions �;�, we use the notation �%� for j�j D j�j C 1 and �i D �i for all but
one i . When confusion could arise, we let �� denote the representation of Brn.m/ or
Brn�1.m/ associated to the partition �.

The branching rule for Bn�1.m/� Bn.m/ can be written as

Res �� D
X
�%�

��C
X
�%�

�� :

We consider several cases. First note that we can assume n � 5. Indeed, for n � 4,
an element of Irr0n is either the infinitesimal Krammer representation (or its trans-
formed under the automorphism sij 7! �sij , pij 7! �pij of Brn.m/), which has been
studied separately in [14], or Œ∅�4 (see Figure 3). In this last case, its restriction to
Br3.m/ is the irreducible representation Œ1�3 which is a Krammer representation, hence
�Œ∅�4.B04.m//� �Œ1�3.B

0
3
.m//D sl.VŒ1�3/.

5.5.1 j�j < n� 2 In this case, for every �%� or �%�, we have � 2 Irr0n�1 . By
the induction assumption, ��.B0n.m// contains M

�%�

sl.V�/

!
˚

 M
�%�

sl.V�/

!
which has (semisimple) rankX

�%�

.dim V�� 1/C
X
�%�

.dim V�� 1/:
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For � 2 Irr0n�1 and n� 1 � 3, that is n � 4, we have dim V� � 3 hence dim V� >

.1=2/ dim V� hence rk ��.B0n.m// > .1=2/ dim V� . This implies ��.B0n.m//D sl.V�/

(see [14, Proposition 3.8]).

5.5.2 j�j D n � 2 and no � with �%� is a hook In this section, the original
assumption n � 5 implies n � 6, because for n D 5 and j�j D 3 there is always a
hook � with �%�.

First notice that �%� and �%�0 , where �0 is the transposed partition of �, implies
that either �D �0 , in which case � is uniquely determined, or �D �0 and �%�)
�%�0 for every � . If there is no such �, for n � 6 we get again dim V� � 3 for all
irreducible component � of the restriction (as dim V� D 1 would imply that � is a
hook, and if � is a hook there is a hook � with �%�, contradicting the assumption),
and we conclude as in the previous case that ��.B0n.m//D sl.V�/.

If there is such a � with �D�0 , it is uniquely determined, we have rk ��.Bn�1.m/
0/D

.dim V�/=2, and the same computation as before shows rk ��.B0n.m// > .1=2/ dim V� .

So the only case that we have to deal with is � D �0 . Then �%�) � ¤ �0 and
�%�0 . Moreover,

rk ��.Bn�1.m/
0/D

X
�%�

.dim V�� 1/C
1

2

X
�%�

.dim V�� 1/:

If dim V�� 3 (always the case for n� 6), we have .1=2/.dim V��1/� .1=3/ dim V�
hence

r D rk ��.Bn�1.m/
0/ >

1

3

 X
�%�

dim V�C
X
�%�

dim V�

!
D

1

3
dim V� D d=3:

Then r > d=3 implies d < 3r < .r C 1/2 , because d � 3. This implies that ��.B0/ is
simple [10, Lemma 3.3 (I)]. Moreover rk ��.B0/>.dim V�/=3>.dim V�/=4. Note that,
for every �2 Irr0n�1 , in particular for every �%�, we have dim V�� .n�1/.n�2/=2.
If j�j � 1 we thus get rk ��.B0/ � .n� 1/.n� 2/=2� 1 � 9 for n � 6. These two
inequalities imply ��.B0/ D sl.V�/ [10, Lemma 3.4]. If j�j D 0, then ��.B0/ D
�Œ1�n�1

.B0/D sl.VŒ1�n�1
/D sl.V�/ by the induction assumption.

5.5.3 j�jD n�2 and there exists a hook � with �%� In that case � has the shape
of a hook Œn� k; 1k�2� and we can assume that k � 3, n� k � 2 � 2 (and n � 5).
Indeed, it is otherwise isomorphic to the infinitesimal Krammer representation (or its
transformed under the automorphism sij 7! �sij , pij 7! �pij of Brn.m/).
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We denote C.n; k/ the dimension of this representation. The � such that �%� are
the partitions AD Œn�k; 1k�1�, B D Œn�kC 1; 1k�2�, C D Œn�k; 2; 1k�3�. The �
such that �%� are the partitions E D Œn� k � 1; 1k�2�, F D Œn� k; 1k�3�. We have

dim AD

�
n� 2

k � 1

�
; dim B D

�
n� 2

k � 2

�
and, by [13, Section 6.3],

dim C D
k � 2

n� k

�
n� 3

n� k � 2

�
.n� 1/D

�
n� 1

k � 1

�
.n� k � 1/.k � 2/

n� 2
:

Moreover, dim E D C.n� 1; k/ and dim F D C.n� 1; k � 1/. We have

C.n; k/D dim V� D C.n� 1; k/CC.n� 1; k � 1/C

�
n� 2

k � 1

�
C

�
n� 2

k � 2

�
C dim C

C.n; k/ >

�
n� 1

k � 1

�
CC.n� 1; k/CC.n� 1; k � 1/:hence

We show by induction on n that C.n; k/ > .n� 2/
�

n�1
k�1

�
. This holds true for nD 5,

because C.5; 3/D dimŒ2; 1�5 D 20. Then�
n� 1

k � 1

�
CC.n�1; k/CC.n�1; k�1/ >

�
n� 1

k � 1

�
C.n�3/

��
n� 2

k � 1

�
C

�
n� 2

k � 2

��
and the last term is equal to .n� 2/

�
n�1
k�1

�
, which proves by induction the inequality,

except for k D 3. In that case, C.n; 3/ D
�
n�1

2

�
C C.n � 1; 3/C dimŒn � 3�n�1 C

dimŒn� 3; 2�n�1 and dimŒn� 3�n�1 D
�
n�1

2

�
. Then, by the induction assumption,

C.n; 3/ >

�
n� 1

2

�
C .n� 3/

�
n� 2

2

�
C

�
n� 1

2

�
C
.n� 1/.n� 4/

2

C.n; 3/ >
.n� 1/.n� 2/

2

�
n� 2C 1�

n2� 5nC 8

n2� 3nC 2

�
>
.n� 1/.n� 2/

2
.n� 2/:hence

In particular, we have

dim E D C.n� 1; k/ > .n� 3/

�
n� 2

k � 1

�
D .n� 3/ dim A

dim F D C.n� 1; k � 1/ > .n� 3/

�
n� 2

k � 2

�
D .n� 3/ dim B

if k � 4 (dim B D n� 2 if k D 3), and

dim EC dim F > .n� 3/

�
n� 1

k � 1

�
� 4 dim C
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if and only if .n�3/.n�2/� 4.n�k�1/.k�2/, which holds true. As a consequence,
for k � 4,

rk ��.B0/� dim E � 1C dim F � 1C .n� 2/C .dim C /=2

� dim EC dim F � 2C .n� 2/C .dim C /=2:

dim V� D dim EC dim F C dim AC dim BC dim CMoreover,

< .dim EC dim F /.1C 1=.n� 3/C 1=4/

hence dim V� < ..5n� 11/=.4n� 12//.dim EC dim F /. We thus have

rk ��.B0/> dim EC dim F >
4n� 12

5n� 11
dim V� >

1

2
dim V�

for n� 5, hence ��.B0/D sl.V�/ for n� 5 and k � 4.

The only remaining case is when kD 3, ie � corresponds to the partition Œn�3; 1�. We
still have dim E>.n�3/ dim A, but this time dim FD .n�1/.n�2/=2, dim BDn�2,

dim C D

�
n� 1

2

�
n� 4

n� 2
D
.n� 1/.n� 4/

2
:

We have dim AD .n� 2/.n� 3/=2 and dim E > .n� 3/ dim AD .n� 2/.n� 3/2=2.
Since n�3� .n�1/=2 when n� 5, we also have dim E > ..n�1/=2/ dim A. From
dim F D .n� 1/=2 dim B we then get

dim EC dim F >
n� 1

2
.dim AC dim B/

dim C <
n� 1

n� 2

n� 4

n� 3

1

n� 3
.dim EC dim F / <

1

n� 3
.dim EC dim F /:hence

We thus have

dim V� < .dim EC dim F /

�
1C

2

n� 1
C

1

n� 3

�
D .dim EC dim F /

n2� n� 4

.n� 1/.n� 3/

and rk ��.B0/� dim ECdim FCdim C �3C .n�2/ if n� 6, rk ��.B0/� dim EC

dim F C dim C=2� 2C .n� 2/ if nD 5 (in that case C 0 D C ). In both cases

rk ��.B0/ > dim EC dim F >
.n� 1/.n� 3/

n2� n� 4
dim V�:

Finally, .n� 1/.n� 3/=.n2� n� 4/� 1=2 for n� 5, and this again proves ��.B0/D
sl.V�/ by the same criterium [13, Proposition 3.8].
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6 Proof of Theorem 1.1

We first let KDC..h//. For �2 Irrn , m2C , we denote V� the underlying vector space
of �W Brn.m/! End.V�/ over C , and R

.m/

�
W Bn! GL.V�˝K/ the representation

constructed in Section 4 from � by using some associator. Let �� denote the algebraic
(Zariski) closure of R

.m/

�
.Bn/ inside GL.V�˝K/.

Assume � 2 Irr0n and m 62 Sn[S [S� . By Theorem 5.7 and Proposition 4.2, the Lie
algebra Lie�� of �� contains sl.V�/˝K . Recall from the proof of Lemma 5.2 that
�.T / is a (scalar) rational affine polynomial in m; we denote E�;n the set of rationals
m such that �.T / D 0. The generator n D .�1 � � � �n�1/

n of Z.Bn/ is mapped to
exp T through Bn!Sn Ë exp bTn ; thus Lie�� contains K as soon as m 62E�;n .

It follows that �� D GL.V�˝K/ if m 62E�;n , and �� � SL.V�˝K/. In particular
the algebraic closure of R

.m/

�
.B0n/ is equal to SL.V�˝K/.

We now consider BMWn.e
h; e.1�m/h/ as an algebra over K , and still assume m 62

Sn [ S [ S� . Then BMWn.e
h; e.1�m/h/ is the direct sum of the Hecke algebra

Hn.e
h/ and of

L
�2Irr0n

End.V� ˝K/. Let G0 denote the algebraic closure of B0n
inside Hn.e

h/. This closure has been described in full detail in [13]. We recall from
there that its Lie algebra is H0n˝K , and that it is a direct sum of SLN ;SPN and SON

with respect to some hyperbolic nondegenerate quadratic form. From Theorem 5.7 we
get similarly that the image of B0n inside BMWn.e

h; e.1�m/h/ is Zariski-dense inside
G0 �

Q
�2Irr0n

SL.V�˝K/, whose Lie algebra is B0n.m/.

When m 62Q, eh and e.1�m/h are algebraically independent over Q, so we get an
embedding Q.s; ˛/ ,!K through s 7! eh and ˛ 7! emh . Similarly, embedding Q.s/
into K through s 7! eh we get realizations of the representations of BMWn.s; s

m/˝K

for m 2 Z and m 62 Sn[S [S� , where BMWn.s; s
m/ is defined over Q.s/ through

the R
.m/

�
, � 2 Irrn . We know the Zariski closure of the R� DR

.m/

�
.B0n/ for � 62 Irr0n

from [13], provided we know that the orthosymplectic groups involved there when
�D �0 are defined over Q.s/. The bilinear form defining them span the subspace of
R�˝R� over which Bn acts by the sign character Bn� f˙1g, �i 7! �1. Since �
and the R� are defined over Q.s/, this subspace has nonzero points over Q.s/, so
these groups are indeed defined over Q.s/.

Theorem 1.1 is then an immediate consequence of the above for an arbitrary (character-
istic 0) field, by noticing that all the algebraic groups G involved here are defined over
Q.s/, satisfy that G.L1/ is Zariski-dense in G.L2/ for Q.s/�G.L1/�G.L2/, and
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browsing along the following pattern of field extensions.

C..h// K

Q.s; ˛/

Q.s/

One point that remains to be clarified is the type of the orthogonal groups possibly
appearing for � 62 Irr0n and � D �0 , when considered over Q.s/. We know that the
quadratic forms ˇ� involved here are hyperbolic over C..h//, but it was not proved
in [13] that they are hyperbolic over Q.s/. We prove this below.

Lemma 6.1 For n� 2, � ` n, �D �0 , if � ,! S2R� , then ˇ� is hyperbolic.

Proof We prove the lemma by induction on n, the cases nD 2 being clear. By Young
rule the restriction to Bn�1 of R� is the direct sum of the R� for �%�. Notice that
�%� implies �0%� under our assumptions. Let �; �%� and consider the restriction
ˇW V� ˝ V� ! Q.s/ of ˇ� . First assume � ¤ �0 . If ˇ ¤ 0 it would provide an
isomorphism R� ' R�� ˝ � ' R�0 where � is the sign character of Bn�1 and R��
is the dual representation of R� . Since � ¤ �0 we have ˇ D 0. If � D �0 D �, by
induction we know that ˇ is either 0 or hyperbolic, but the case ˇ D 0 is excluded
because ˇ� would then be degenerate. If �D�0¤�, we consider the restriction of ˇ�
to V�˚V�0 . If M W V�0 ! V� affords R�0 'RC� ˝ � , this restriction can be written
in matrix form as �

0 M
tM 0

�
and is therefore hyperbolic. The quadratic space .V�; ˇ�/ is thus isomorphic to a direct
sum of hyperbolic spaces, and is therefore hyperbolic.
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[12] I Marin, Caractères de rigidité du groupe de Grothendieck–Teichmüller, Compos.
Math. 142 (2006) 657–678 MR2231196
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