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The beta elements ˇtp2=r in the homotopy of spheres

KATSUMI SHIMOMURA

In [1], Miller, Ravenel and Wilson defined generalized beta elements in the E2 –term
of the Adams–Novikov spectral sequence converging to the stable homotopy groups
of spheres, and in [4], Oka showed that the beta elements of the form ˇtp2=r for
positive integers t and r survive to the homotopy of spheres at a prime p > 3 , when
r � 2p�2 and r � 2p if t > 1 . In this paper, for p > 5 , we expand the condition so
that ˇtp2=r for t � 1 and r � p2� 2 survives to the stable homotopy groups.

55Q45; 55Q10

1 Introduction

Let BP be the Brown–Peterson spectrum at a prime p , and consider the Adams–
Novikov spectral sequence converging to homotopy groups ��.X / of a spectrum X

with E2 –term E
s;t
2
.X /D Exts;tBP�.BP/.BP�;BP�.X //. Here,

BP� D Z.p/Œv1; v2; : : : � and BP�.BP/D BP�Œt1; t2; : : : �

for vi 2 BP2pi�2 and ti 2 BP2pi�2.BP/. In [1], Miller, Ravenel and Wilson defined
generalized Greek letter elements in the E2 –term of the Adams–Novikov spectral
sequence converging to the homotopy groups ��.S0/ of the sphere spectrum S0 at
each prime p . For the beta elements, we consider the mod p Moore spectrum M and
finite spectra Va for a> 0 defined by the cofiber sequences

.1:1/ S0 -p S0 -i M -j S1 and †aqM -̨
a

M -ia
Va
-ja
†aqC1M;

where p 2 �0.S
0/D Z.p/ , ˛ 2 ŒM;M �q is the Adams map, and

q D 2p� 2:

Since the maps j and ja induce trivial homomorphisms on the BP�–homologies, these
cofiber sequences yield short exact sequences

.1:2/
0 - BP� -

p
BP� -

i� BP� =.p/ -0;

0 - BP� =.p/ -
va

1 BP� =.p/ -
ia� BP� =.p;va

1/
- 0;
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2080 Katsumi Shimomura

where

.1:3/ BP�.M /D BP� =.p/ and BP�.Va/D BP� =.p; va
1/:

The beta elements of the E2 –terms are now defined by

x̌0
s=a�b D ıa.v

b
1v

s
2/ 2E

1;.spCs�aCb/q
2

.M /;

x̌
s=a�b D ı. x̌

0
s=a�b/ 2E

2;.spCs�aCb/q
2

.S0/
.1:4/

for s>0 and a>b�0, if vb
1
vs

2
2E

0;.spCsCb/q
2

.Va/, where ı and ıa are the connecting
homomorphisms associated to the short exact sequences (1.2). We abbreviate x̌s=1 to x̌s
as usual. Now assume that the prime p is greater than three. Then L Smith [7] showed
that every x̌s for s > 0 survives to a homotopy element ˇs 2 �.spCs�1/q�2.S

0/, and
S Oka showed the following beta elements survive:

ˇtp=r for t > 0 and r � p with .t; r/¤ .1;p/ in [2; 3],

ˇtp2=r for t > 0 and r � 2p� 2 in [2],

ˇtp2=r for t > 1 and r � 2p in [4].

Letting W denote the cofiber of the beta element ˇ1 2 �pq�2.S
0/, we have a cofiber

sequence

.1:5/ Spq�2 -ˇ1
S0 -iW

W -jW
Spq�1:

Then E
s;tq
2

.W ^Va/DE
s;tq
2

.Va/. In [6], we showed the following:

Theorem 1.6 [6, Theorem 1.4] Suppose that vs
2
2 E

0;s.pC1/q
2

.W ^Va/. If the
element vs

2
survives to ��.W ^Va/, then x̌st=r for t > 0 and 0< r < a� 1 survives

to ��.S0/.

In this paper, we show the following theorem:

Theorem 1.7 Let p be a prime greater than five. Then the element vp2

2
2E0

2
.W ^Vp2/

is a permanent cycle.

We work at a prime p greater than three throughout the paper except for Lemma 3.8,
which requires us to exclude the case p D 5.

Corollary 1.8 Let p be a prime greater than five. Then the beta elements x̌tp2=r 2

E
2;.tp2.pC1/�r/q
2

.S0/ for t > 0 and 0< r < p2� 1 are permanent cycles.
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2 Vanishing lines for Adams–Novikov E3–terms for W

Ravenel constructed a ring spectrum T .m/ for each integer m � 0 characterized
by BP�.T .m//D BP�Œt1; : : : ; tm� [5]. He then showed the change of rings theorem
E

s;t
2
.T .m/^U /DExts;t

�.mC1/
.BP�;BP�.U // for a spectrum U and the Hopf algebroid

�.mC 1/ D BP�.BP/=.t1; : : : ; tm/. It follows from the Cartan–Eilenberg spectral
sequence that

.2:1/ E
s;t
2
.T .1/^U / is a subquotient of BP�.U /˝

N
i�2; j�0

�
E.hi;j /˝P .bi;j /

�
;

where E.hi;j / and P .bi;j / denote an exterior and a polynomial algebras on the gener-
ators hi;j and bi;j , which have bidegrees .1; 2pj .pi � 1// and .2; 2pjC1.pi � 1//.
Ravenel further constructed a spectrum Xk , which is denoted by T .0/.k/ in [5],
characterized by BP�–homology BP�.Xk/DBP�Œt1�=.tpk

1
/ as a BP�.BP/–comodule,

and a diagram

.2:2/

Xk�1 †pk�1q xXk †pkqXk�1

Xk †pk�1qXk

?

�k

ppppppp��k

?

�0
k

pppp��0k
�
�
�
��3

�k �
�
�
��3

�0
k

in which each triangle is a cofiber sequence with inclusion �k or �0
k

. Hereafter, we abbre-
viate X1 to X . Since �k and �0

k
induce the zero homomorphisms on BP�–homologies,

applying the Adams–Novikov E2 –terms E�M .�/DE�
2
.�^M / to the diagram gives

rise to an exact couple .Ds
1
;Es

1
/ with D2s

1
DE�M .Xk�1/, D2sC1

1
DE�M . xXk/ and

Es
1
DE�M .Xk/, which defines the small descent spectral sequence (see [5, 7.1.13]

with k D1):

.2:3/ SDE
�

1 DE.hk�1/˝P .bk�1/˝E�M .Xk/H)E�M .Xk�1/;

where hk�1 2
SDE

1;0;pk�1q
1 and bk�1 2

SDE
2;0;pkq
1 are represented by the cocycles

tpk�1

1
and

yk�1 D

p�1X
kD1

1

p

�
p

k

�
tkpk�1

1
˝ t .p�k/pk�1

1
;

respectively, of the cobar complex

�� D��BP�.BP/ BP� =.p/

for computing E�M .S0/DE�
2
.M /. Note that

.2:4/ xı0k
xık.x/D bk�1x for x 2E�M .Xk�1/,
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where xık and xı0
k

denote the connecting homomorphisms corresponding to �k and �0
k

,
respectively. Besides,

.2:5/ b0 D
x̌

1:

Hereafter, we abbreviate E�M .S0/ to E�M .

Lemma 2.6 The homomorphism x̌1W E
s�2;t�pq
M !E

s;t
M is a monomorphism if

E
s�1;t
M .X /D 0 and E

s�2;t�q
M .X /D 0;

and an epimorphism if

E
s;t
M .X /D 0 and E

s�1;t�q
M .X /D 0:

Proof This follows immediately from the exact sequences

.2:7/
E

s�1;t
M .X / -

�1�
E

s�1;t�q
M . xX / -

xı1
E

s;t
M
-�1� E

s;t
M .X /;

E
s�2;t�q
M .X / -

�0
1�

E
s�2;t�pq
M

-
xı0

1
E

s�1;t�q
M . xX / -

�0
1�

E
s�1;t�q
M .X /

associated to the cofiber sequences in (2.2) for k D 1.

For a non-negative integer s , we consider the integer �.s/ defined by

.2:8/ �.s/D �.s/p2
C ".s/p D

(
.s=2/p2 if s is even;

..s� 1/=2/p2Cp if s is odd,

where ".s/ and �.s/ are the integers given by

.2:9/ 2".s/D 1� .�1/s and 2�.s/D s� ".s/:

Lemma 2.10 E
s;t
M .X /D 0 if t < �.s/q .

Proof By an iterate use of the small descent spectral sequences (2.3) for k , we see
that E

s;t
M .X / is a subquotient of E.hj W j > 0/˝ P .bj W j > 0/˝E�M .T .1//. For

each dimension s , minding (2.1), the (additive) generator with the smallest internal
degree is h

".s/
1

b
�.s/
1

, whose bidegree is .s; �.s/q/.

Let zEs;t
M .U / denote the Adams–Novikov E3 –term E

s;t
3
.U ^M /. Since the Adams–

Novikov spectral sequence has the sparseness: E
s;t
M D 0 unless q j t , we see that

zE
s;t
M .S0/DE

s;t
M .
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Lemma 2.11 zE
s;t
M .W /D 0 if one of the following conditions holds:

(1) q − t.t C 1/.

(2) q j t and t < .�.s� 1/C 1/q .

(3) q j .t C 1/ and t C 1< .�.s/C 1/q .

Proof The cofiber sequence (1.5) induces the short exact sequence

0 - E
s;t
M
-iW �E

s;t
M .W / -

jW �E
s;t�pqC1
M

- 0

of the E2 –terms. Therefore, E
s;t
M .W / D E

s;t
M ˚ gE

s;t�pqC1
M for an element g 2

E
0;pq�1
M .W /. Since d2.g/D iW �.

x̌
1/ in the Adams–Novikov spectral sequence, we

have the long exact sequence

.2:12/ E
s�2;t�pq
M

-
x̌

1
E

s;t
M
-iW � zE

s;t
M .W / -

jW �E
s;t�pqC1
M

-
x̌

1
E

sC2;tC1
M

of the E3 –terms. The sparseness of the spectral sequence implies that iW � and jW �

in (2.12) are zero if q − t and q − .t C 1/, respectively. This immediately shows the
lemma under the first condition. If the second (resp. third) condition holds, then Lemma
2.10 and Lemma 2.6 imply that the left (resp. right) x̌1 in (2.12) is an epimorphism
(resp. a monomorphism).

Remark Lemma 2.10 and Lemma 2.6 hold by the same proof after replacing EM .�/

and zEM .�/ by E2.�/ and E3.�/.

We state here relations in the E2 –term E�M DE�
2
.M /:

Lemma 2.13 In the Adams–Novikov E2 –term E2
M , v2

1
b0 D 0 and vp�1

1
b1 D 0.

Proof Note that d.t2/ D �t1 ˝ t
p
1
C v1y0 in �2 (see [5, 4.3.15]). Then v2

1
y0

cobounds c0 D �t1�R.v2/C v1t2 � .1=2/v
p
1

t2
1

, since v1 and t1 are primitive, and
�R.v2/� v2C v1t

p
1
� v

p
1

t1 mod .p/ in BP� BP (see [5, 4.3.21]).

Consider the cobar complex ��
2
D��BP�.BP/BP�=.p2/. We define the element w2�1 by

.2:14/ d.v
p
2
/D v

p
1

tp2

1
� vp2

1
t
p
1
Cpv1w 2�

1
2:

It is well defined, since pv1W �
s!�s

2
is a monomorphism. Noticing that d.tpiC1

1
/D

�pyi and d.v1/Dpt1 in ��
2

, send the equation (2.14) to �2
2

under the differential d ,
and we obtain 0D�pv

p
1

y1Cpvp2

1
y0Cpv1d.w/ 2�2

2
, which is pulled back to �2

under pv1 to give d.w/D v
p�1
1

y1�v
p2�1
1

y0 2�
2 . It follows that vp�1

1
y1 cobounds

wC vp2�3
1

c0 .
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3 Adams–Novikov E2–terms for X ^M

Ravenel computed the small descent spectral sequences to determine E
s;t
2
.T .m// in

[5, 7.2.6, 7.2.7] below internal degree 2.pmC3 � p2/. In particular, below internal
degree .p3Cp2/q ,

.3:1/
M
s�2

E
s;�
2
.T .1//D k.2/�

˚
vs

3b20 W s � 0
	
˝E.h20/˝P .b20/:

Here, E and P denote an exterior and a polynomial algebras over Z=p ,

.3:2/ k.m/� D Z=pŒvm�

and vs
3
b20 denotes the element corresponding to yvsC1

2
=pv1 in [5, 7.2.6]. We here read

off the following formulas on the differential of the cobar complex C �
2
D��

�.2/
BP�

from the Hazewinkel and the Quillen formulas (see [1, (1.1), (1.2), (1.3)]):

.3:3/
d.v1/D 0; d.v2/D pt2;

d.v3/D v1t
p
2
� vp2

1
t2Cpt3�p�1v1d.v

p
2
/; d.t2/D 0:

By virtue of these, we see that the generators v1 , h20 and vs
3
b20 are represented by

v1 , t2 and y2;s D p�1d.xy2;s/ for

xy2;s D�

sC1X
iD1

�
sC 1

i

�
vi�1

1 vsC1�i
3

.t
p
2
� vp2�1

1
t2/

i ;

respectively, in the cobar complex C �
2

for computing E�
2
.T .1//.

Corollary 3.4 The Adams–Novikov E2 –terms E
s;t
M .T .1// below internal degree

.p3Cp2/q are given as follows:M
s�2

E
s;�
M .T .1//D b20k.2/�Œv3�˝E.h20; h21/˝P .b20/

Here, the generators have the following bidegrees:

jv2j D .0; .pC 1/q/; jv3j D .0; .p
2
CpC 1/q/;

jh20j D .1; .pC 1/q/; jh21j D .1; .p
2
Cp/q/ and jb20j D .2; .p

2
Cp/q/:

Proof Consider the long exact sequence

E
s;t
2
.T .1// -

p
E

s;t
2
.T .1// -

i�
E

s;t
M .T .1// -

ı
E

sC1;t
2

.T .1// -
p

E
sC1;t
2

.T .1//

associated to the first cofiber sequence in (1.1). Note that this is a sequence of ZŒv1�–
modules.
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The s–th line E
s;�
M .T .1// for s � 2 is the direct sum of the image i�E

s;�
2
.T .1//DEs

of i� and the module isomorphic to the image of ı . Here Es D h
".s/
20

b
�.s/
20

k.2/�Œv3�

for the integers of (2.9). Since v1 xy2;s D d.vsC1
3

/ 2��
�.2/

BP� =.p/, we see that xy2;s

is a cocycle that represents vs
3
h21 , and ı.vs

3
h21/D v

s
3
b20 by definition. Therefore, the

image of ı is b20Es�1 DE
sC1;�
2

.T .1//, which is isomorphic to h21Es�1 .

By (2.4) for k D 2, we have a homomorphism b1W E
s�2;t�p2q
M .X /!E

s;t
M .X /. As

Lemma 2.6, the following lemma follows from the exact sequences

E
s�1;t�pq
M . xX2/ -

xı2
E

s;t
M .X / -

�2�
E

s;t
M .X2/;

E
s�2;t�p2q
M .X / -

xı0
2

E
s�1;t�pq
M . xX2/ -

�0
2�

E
s�1;t�pq
M .X2/

associated to the cofiber sequences in (2.2):

Lemma 3.5 The homomorphism b1W E
s�2;t�p2q
M .X /!E

s;t
M .X / is an epimorphism if

E
s;t
M .X2/D 0 and E

s�1;t�pq
M .X2/D 0:

For each integer s and t , we consider the set

.3:6/ S.s; t/D
˚
.s; t/; .s� 1; t �pq/; .s� 1; t C .p� 2/q/; .s� 2; t � 2q/

	
Corollary 3.7 If E

s;t
M .X2/D 0 for .s; t/ 2 S.a; b/, then (see (2.5))

v
2p�2
1

E
a;b
M � x̌1E

a�2;bC.p�2/q
M :

Proof Consider the diagram (2.2) for k D 1 smashing with M . Then for any element
x 2E

a;b
M ,

�1�.x/D b1x1 2E
a;b
M .X / for some x1 2E�M .X /

by Lemma 3.5. Since
�1�.v

p�1
1

x/D v
p�1
1

b1x1 D 0

by Lemma 2.13, there is an element x2 2E
a�1;bC.p�2/q
M . xX / such that

xı1.x2/D v
p�1
1

x:

In the same manner, we have an element x3 2E
a�2;bC.p�2/q
M such that

xı01.x3/D v
p�1
1

x2:

It follows that
v

2p�2
1

x D v
p�1
1
xı1.x2/D xı1xı

0
1.x3/D x̌1.x3/:

Algebraic & Geometric Topology, Volume 10 (2010)
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We now consider the integer

uD p3
Cp2

� 2pC 2:

Lemma 3.8 If p> 5, then the E2 –terms E
s;t
M .X2/D 0 for .s; t/2S.qC1; .uC1/q/.

Proof By use of the small descent spectral sequences (2.3) for k � 2, we see that our
E

s;t
M .X2/ is a subquotient of the module As;t DE

s;t
M .T .1//˚ h2E

s�1;t�pq
M .T .1// by

degree reason. It suffices to show that As;t D 0 for .s; t/ 2 S.qC 1; .uC 1/q/. The
integers t fit in the table:

t=q uC 1 uC 1�p uCp� 1 u� 1

t=q mod .pC 1/ 5 6 2 3

t=q mod .p/ 3 3 1 1

Corollary 3.4 implies that the module As;t is generated by elements of the form
vi

2
v

j
3
hk

2
hl

20
hm

21
bn

20
with k; l;m 2 f0; 1g and i; j ; n� 0. The internal degree of it is q

times

.3:9/ aD .p2
CpC 1/j Cp2kC .pC 1/.i C l Cp.mC n//;

which is congruent to jCk modulo .pC1/ and iCjCl modulo .p/. Since s� q�1

and sDkClCmC2n, we see that n�p�3. Then a� .p2CpC1/jCp3�2p2�3p>

uCp�1 if j � 3. It follows that j Ck � 3, and the first two cases in the above table
are excluded if p > 5. The last case is also excluded. Indeed, in this case, j D 2 and
k D 1, which shows a� 3p2C 2pC 2Cp3� 2p2� 3p > u� 1.

In the third case, j C k D 2, and i C j C l D rp C 1 for some r � 0. Then
aD 2p2C .pC1/.rpC1Cp.mCn//, which equals uCp�1 if and only if r D 0,
m D 0 and n D p � 2, since n � p � 2 in this case. The solution m D 0 implies
k D l D 1 and so j D 1. Then 1D i C j C l D i C 2, which contradicts to i � 0.

Remark If p D 5, we have elements v3
2
b4

20
and v2

2
h20h21b3

20
in Aq;uC1�5 .

Lemma 3.10 Suppose that � 2 �uq�1.M / is detected by an element of E
qC1;.uC1/q
M .

Then iW �.˛
2p�2�/D 0 2 �.uC2p�2/q�1.W ^M /.

Proof Let x be an element that detects � . Then by Corollary 3.7 with Lemma 3.8,
we see that v2p�2

1
xD x̌1y for some y 2E

q�1;.uCp�1/q
M , and so iW �.v

2p�2
1

x/D 02
zE

qC1;.uC2p�1/q
M .W /. The lemma now follows from Lemma 2.11.

Algebraic & Geometric Topology, Volume 10 (2010)



The beta elements ˇtp2=r in the homotopy of spheres 2087

4 The beta element ˇ 0p2=p2 2 �p3q�1.W ^M /

Consider the set

S 0.s; t/D
˚
.sC 1; t/; .s; t/; .s; t � q/; .s� 1; t � q/

	
:

Lemma 4.1 If E
s;t
2
.X /D 0 for .s; t/ 2 S 0.a; b/, then x̌1W E

a�2;b�pq
M !E

a;b
M is an

epimorphism.

Proof The condition on .s; t/ implies that E
a;b
M .X / D 0 D E

a�1;b�q
M .X / by the

exact sequence associated to the first cofiber sequence (1.1). The lemma follows from
Lemma 2.6.

In [5, 7.5.1], Ravenel determined E
s;t
2
.X / for t < .p3Cp/q . In particular, he showed

.4:2/
E

s;t
2
.X /D 0 for .s; t/ 2 S 0.qC 2; .p3

C 1/q/;

E
s;t
2
.X /D 0 for .s; t/ 2 S 0.q; .p3

�pC 2/q/:

Remark A preferable condition for the second equation is .s; t/2S 0.q; .p3�pC1/q/,
but h1b

p�3
20

2 2E
q;.p3�p/q
2

.X /.

Proposition 4.3 The element iW �.
x̌0
p2=p2/ 2E

1;p3q
2

.W ^M / for the beta element
x̌0
p2=p2 2E

1;p3q
2

.M / survives to a homotopy element ˇ0p2=p2 2 �p3q�1.W ^M /.

Proof The E3 –terms zErqC2;.p3Cr/q
M .W / are all trivial by Lemma 2.11 for r > 1.

We also see that dqC1.iW �.
x̌0
p2=p2//D iW �dqC1. x̌

0
p2=p2/D 0 2 zE

qC2;.p3C1/q
M .W /

by Lemma 4.1 with the first equation of (4.2).

Hereafter, for an element f 2 ŒX;Y �t , we abbreviate f ^Z 2 ŒX ^Z;Y ^Z�t to f .
Since ˛2ˇ1 D 0 2 ŒM;M �.pC2/q�2 [8], we have elements � 2 ŒW ^M;M �2q and
�� 2 ŒM;W ^M �.pC2/q�1 such that � iW D ˛

2 D jW �
� .

Lemma 4.4 (a) ŒW ^M;W ^M; �2q D Z=pf˛2; ıW ı˛
pC2; ıW ˛

pC2ı; ��jW g,
where ıW D iW jW .

(b) ŒW ^M;M �.2�p/qC1 D Z=pf˛2jW g.

(c) ŒM;W ^M �2q D Z=pf˛2iW g.
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Proof The homotopy groups ŒM;M �t for t < p2q � 4 are given in [8, Th.I]. In
particular, the generators are given in the table:

t 2q 2qC 1 .pC 2/q� 2 .pC 2/q� 1

ŒM;M �t ˛2 0 ı˛pC2ı ˛pC2ı; ı˛pC2

We have the exact sequence

ŒM;M �t�pqC2
-ˇ1
ŒM;M �t -

iW � ŒM;W ^M �t -
jW � ŒM;M �t�pqC1

-ˇ1
ŒM;M �t�1

associated to the cofiber sequence (1.5). From this sequence and the previous table, we
obtain the following:

t 2q 2qC 1 .pC 2/q� 1

ŒM;W ^M �t iW ˛
2 0 iW ı˛

pC2; iW ˛
pC2ı; ��

In particular, we have part (c). The cofiber sequence (1.5) also induces the exact
sequence

ŒM;W ^M �2qC1
-
ˇ�

1
ŒM;W ^M �.pC2/q�1

-
j�

W
ŒW ^M;W ^M �2q

-
i�
W
ŒM;W ^M �2q

-
ˇ�

1
ŒM;W ^M �.pC2/q�2;

from which we obtain part (a).

Part (b) is the Spanier–Whitehead dual of (c).

Lemma 4.5 iW � C �
�jW � ˛

2 modulo Z=pfıW ı˛
pC2; ıW ˛

pC2ıg. In particular,
iW � D ˛

2C'jW for some ' .

Proof By virtue of Lemma 4.4 (a), we put

iW � D a1˛
2
C a2ıW ı˛

pC2
C a3ıW ˛

pC2ıC a4�
�jW 2 ŒW ^M;W ^M �2q

for ai 2 Z=p . Send this to ŒW ^M;M �.2�p/qC1 by jW to obtain

0D jW iW � D a1jW ˛
2
C a4jW �

�jW D a1˛
2jW C a4˛

2jW

Since ˛2jW is a generator by Lemma 4.4 (b), we have a1D�a4 . Next send the above
equality to ŒM;W ^M �2q by iW , and we have

iW � iW D a1˛
2iW :

It follows that a1 D 1 by Lemma 4.4 (c).
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Proposition 4.6 The element

�ˇ0p2=p2 2 �.p3C2/q�1.M /

for ˇ0p2=p2 2 �p3q�1.W ^M / in Proposition 4.3 is detected by the beta element

x̌0
p2=p2�2 2E

1;.p3�2/q
M :

Proof The homomorphism on the E2 –term induced from � iW D ˛
2 is multiplication

by v2
1

, so �� x̌0p2=p2 D ��iW �
x̌0
p2=p2 D v2

1
x̌0
p2=p2 D x̌0p2=p2�2 in the E2 –term.

Lemma 4.7 ˛5iW �.�ˇ
0
p2=p2/D ˛7ˇ0p2=p2 2 ��.W ^M /.

Proof Since jW �.
x̌0
p2=p2/D 0 in the E2 –term, the homotopy element jW �.ˇ

0
p2=p2/

is detected by an element x of E
rq;.p3�pCr/q
M for some r > 0. If r D 1, then v1x D

x̌
1x0 for some x0 by Lemma 4.1 with the second equation of (4.2). Therefore, v3

1
x D

v2
1
x̌

1x0 D 0 by Lemma 2.13. It follows that, in any case, ˛3jW �.ˇ
0
p2=p2/ is detected

by an element of E
rq;.p3�pCr/q
M for some r > 1. Then iW �.˛

3jW �.ˇ
0
p2=p2//D 0 by

Lemma 2.11, and ˛3jW �.ˇ
0
p2=p2/D ˇ1�

0 for some homotopy element � 0 . Now, we
compute

˛5iW �.�ˇ
0
p2=p2/D ˛7ˇ0p2=p2 C'�.˛

5jW �.ˇ
0
p2=p2//

D ˛7ˇ0p2=p2 C'�.˛
2ˇ1�

0/D ˛7ˇ0p2=p2

by Lemma 4.5 and Lemma 2.13.

Lemma 4.8 ˛p2

ˇ0p2=p2 D 0 2 �.p3Cp2/q�1.W ^M /.

Proof Oka [2] constructed the beta element ˇ0p2=2p�22�uq�1.M / such that ˛2p�2�

ˇ0p2=2p�2 D 0 in homotopy, which is detected by vp2�2pC2
1

x̌0
p2=p2 in the E2 –term.

Consider an element � D ˛p2�2p�ˇ0p2=p2 �ˇ0p2=2p�2 2 �uq�1.M /. Then it goes to
zero in the E2 –term, and is detected by an element of E

rqC1;.uCr/q
M for r > 0. If

r > 1, iW �.�/ is zero by Lemma 2.11. If r D 1, then it satisfies the condition of
Lemma 3.10, and so ˛2p�2iW �.�/D 0. Therefore, by Lemma 4.7,

˛p2

ˇ0p2=p2 D ˛p2�2iW �.�ˇ
0
p2=p2/D ˛2p�2iW �.�Cˇ

0
p2=2p�2/D 0:

Proof of Theorem 1.7 Consider the second cofiber sequence (1.1) for aD p2 . Then,
by Lemma 4.8, we have an element v 2 ��.W ^Vp2/ such that .jp2/�.v/D ˇ

0
p2=p2 .

As v is detected by an element of E
0;.p3Cp2/q
2

.W ^Vp2/, we see v D vp2

2
by degree

reasons.
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