The beta elements $\boldsymbol{\beta}_{t p^{2} / r}$ in the homotopy of spheres

Katsumi Shimomura

Abstract

In [1], Miller, Ravenel and Wilson defined generalized beta elements in the E_{2}-term of the Adams-Novikov spectral sequence converging to the stable homotopy groups of spheres, and in [4], Oka showed that the beta elements of the form $\beta_{t p^{2} / r}$ for positive integers t and r survive to the homotopy of spheres at a prime $p>3$, when $r \leq 2 p-2$ and $r \leq 2 p$ if $t>1$. In this paper, for $p>5$, we expand the condition so that $\beta_{t p^{2} / r}$ for $t \geq 1$ and $r \leq p^{2}-2$ survives to the stable homotopy groups.

55Q45; 55Q10

1 Introduction

Let BP be the Brown-Peterson spectrum at a prime p, and consider the AdamsNovikov spectral sequence converging to homotopy groups $\pi_{*}(X)$ of a spectrum X with $E_{2}-\operatorname{term} E_{2}^{s, t}(X)=\operatorname{Ext}_{\mathrm{BP}_{*}(\mathrm{BP})}^{s, t}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}(X)\right)$. Here,

$$
\mathrm{BP}_{*}=\mathbb{Z}_{(p)}\left[v_{1}, v_{2}, \ldots\right] \quad \text { and } \quad \mathrm{BP}_{*}(\mathrm{BP})=\mathrm{BP}_{*}\left[t_{1}, t_{2}, \ldots\right]
$$

for $v_{i} \in \mathrm{BP}_{2 p^{i}-2}$ and $t_{i} \in \mathrm{BP}_{2 p^{i}-2}(\mathrm{BP})$. In [1], Miller, Ravenel and Wilson defined generalized Greek letter elements in the E_{2}-term of the Adams-Novikov spectral sequence converging to the homotopy groups $\pi_{*}\left(S^{0}\right)$ of the sphere spectrum S^{0} at each prime p. For the beta elements, we consider the $\bmod p$ Moore spectrum M and finite spectra V_{a} for $a>0$ defined by the cofiber sequences
(1.1) $\quad S^{0} \xrightarrow{p} S^{0} \xrightarrow{i} M \xrightarrow{j} S^{1} \quad$ and $\quad \Sigma^{a q} M \xrightarrow{\alpha^{a}} M \xrightarrow{i_{a}} V_{a} \xrightarrow{j_{a}} \Sigma^{a q+1} M$, where $p \in \pi_{0}\left(S^{0}\right)=\mathbb{Z}_{(p)}, \alpha \in[M, M]_{q}$ is the Adams map, and

$$
q=2 p-2
$$

Since the maps j and j_{a} induce trivial homomorphisms on the BP_{*}-homologies, these cofiber sequences yield short exact sequences

$$
\begin{gather*}
0 \rightarrow \mathrm{BP}_{*} \xrightarrow{p} \mathrm{BP}_{*} \xrightarrow{i_{*}} \mathrm{BP}_{*} /(p) \rightarrow 0, \\
0 \rightarrow \mathrm{BP}_{*} /(p) \xrightarrow{v_{1}^{a}} \mathrm{BP}_{*} /(p) \xrightarrow{i_{a *}} \mathrm{BP}_{*} /\left(p, v_{1}^{a}\right) \rightarrow 0, \tag{1.2}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathrm{BP}_{*}(M)=\mathrm{BP}_{*} /(p) \quad \text { and } \quad \mathrm{BP}_{*}\left(V_{a}\right)=\mathrm{BP}_{*} /\left(p, v_{1}^{a}\right) \tag{1.3}
\end{equation*}
$$

The beta elements of the E_{2}-terms are now defined by

$$
\begin{align*}
& \bar{\beta}_{s / a-b}^{\prime}=\delta_{a}\left(v_{1}^{b} v_{2}^{s}\right) \in E_{2}^{1,(s p+s-a+b) q}(M) \\
& \bar{\beta}_{s / a-b}=\delta\left(\bar{\beta}_{s / a-b}^{\prime}\right) \in E_{2}^{2,(s p+s-a+b) q}\left(S^{0}\right) \tag{1.4}
\end{align*}
$$

for $s>0$ and $a>b \geq 0$, if $v_{1}^{b} v_{2}^{s} \in E_{2}^{0,(s p+s+b) q}\left(V_{a}\right)$, where δ and δ_{a} are the connecting homomorphisms associated to the short exact sequences (1.2). We abbreviate $\bar{\beta}_{s / 1}$ to $\bar{\beta}_{s}$ as usual. Now assume that the prime p is greater than three. Then L Smith [7] showed that every $\bar{\beta}_{s}$ for $s>0$ survives to a homotopy element $\beta_{s} \in \pi_{(s p+s-1) q-2}\left(S^{0}\right)$, and S Oka showed the following beta elements survive:

$$
\begin{array}{ll}
\beta_{t p / r} & \text { for } t>0 \text { and } r \leq p \text { with }(t, r) \neq(1, p) \text { in }[2 ; 3], \\
\beta_{t p^{2} / r} & \text { for } t>0 \text { and } r \leq 2 p-2 \text { in [2], } \\
\beta_{t p^{2} / r} & \text { for } t>1 \text { and } r \leq 2 p \text { in [4]. }
\end{array}
$$

Letting W denote the cofiber of the beta element $\beta_{1} \in \pi_{p q-2}\left(S^{0}\right)$, we have a cofiber sequence

$$
\begin{equation*}
S^{p q-2} \xrightarrow{\beta_{1}} S^{0} \xrightarrow{i_{W}} W \xrightarrow{j_{W}} S^{p q-1} \tag{1.5}
\end{equation*}
$$

Then $E_{2}^{s, t q}\left(W \wedge V_{a}\right)=E_{2}^{s, t q}\left(V_{a}\right)$. In [6], we showed the following:
Theorem 1.6 [6, Theorem 1.4] Suppose that $v_{2}^{s} \in E_{2}^{0, s(p+1) q}\left(W \wedge V_{a}\right)$. If the element v_{2}^{s} survives to $\pi_{*}\left(W \wedge V_{a}\right)$, then $\bar{\beta}_{s t / r}$ for $t>0$ and $0<r<a-1$ survives to $\pi_{*}\left(S^{0}\right)$.

In this paper, we show the following theorem:
Theorem 1.7 Let p be a prime greater than five. Then the element $v_{2}^{p^{2}} \in E_{2}^{0}\left(W \wedge V_{p^{2}}\right)$ is a permanent cycle.

We work at a prime p greater than three throughout the paper except for Lemma 3.8, which requires us to exclude the case $p=5$.

Corollary 1.8 Let p be a prime greater than five. Then the beta elements $\bar{\beta}_{t p^{2} / r} \in$ $E_{2}^{2,\left(t p^{2}(p+1)-r\right) q}\left(S^{0}\right)$ for $t>0$ and $0<r<p^{2}-1$ are permanent cycles.

2 Vanishing lines for Adams-Novikov E_{3}-terms for W

Ravenel constructed a ring spectrum $T(m)$ for each integer $m \geq 0$ characterized by $\mathrm{BP}_{*}(T(m))=\mathrm{BP}_{*}\left[t_{1}, \ldots, t_{m}\right]$ [5]. He then showed the change of rings theorem $E_{2}^{s, t}(T(m) \wedge U)=\mathrm{Ext}_{\Gamma(m+1)}^{s, t}\left(\mathrm{BP}_{*}, \mathrm{BP}_{*}(U)\right)$ for a spectrum U and the Hopf algebroid $\Gamma(m+1)=\mathrm{BP}_{*}(\mathrm{BP}) /\left(t_{1}, \ldots, t_{m}\right)$. It follows from the Cartan-Eilenberg spectral sequence that
(2.1) $E_{2}^{s, t}(T(1) \wedge U)$ is a subquotient of $\mathrm{BP}_{*}(U) \otimes \bigotimes_{i \geq 2, j \geq 0}\left(E\left(h_{i, j}\right) \otimes P\left(b_{i, j}\right)\right)$, where $E\left(h_{i, j}\right)$ and $P\left(b_{i, j}\right)$ denote an exterior and a polynomial algebras on the generators $h_{i, j}$ and $b_{i, j}$, which have bidegrees $\left(1,2 p^{j}\left(p^{i}-1\right)\right)$ and $\left(2,2 p^{j+1}\left(p^{i}-1\right)\right)$. Ravenel further constructed a spectrum X_{k}, which is denoted by $T(0)_{(k)}$ in [5], characterized by $\mathrm{BP}_{*}-$ homology $\mathrm{BP}_{*}\left(X_{k}\right)=\mathrm{BP}_{*}\left[t_{1}\right] /\left(t_{1}^{p^{k}}\right)$ as a $\mathrm{BP}_{*}(\mathrm{BP})$-comodule, and a diagram

in which each triangle is a cofiber sequence with inclusion ι_{k} or ι_{k}^{\prime}. Hereafter, we abbreviate X_{1} to X. Since λ_{k} and λ_{k}^{\prime} induce the zero homomorphisms on BP_{*}-homologies, applying the Adams-Novikov E_{2}-terms $E_{M}^{*}(-)=E_{2}^{*}(-\wedge M)$ to the diagram gives rise to an exact couple $\left(D_{1}^{s}, E_{1}^{s}\right)$ with $D_{1}^{2 s}=E_{M}^{*}\left(X_{k-1}\right), D_{1}^{2 s+1}=E_{M}^{*}\left(\bar{X}_{k}\right)$ and $E_{1}^{s}=E_{M}^{*}\left(X_{k}\right)$, which defines the small descent spectral sequence (see [5, 7.1.13] with $k=\infty$):

$$
\begin{equation*}
{ }^{\mathrm{SD}} E_{1}^{*}=E\left(h_{k-1}\right) \otimes P\left(b_{k-1}\right) \otimes E_{M}^{*}\left(X_{k}\right) \Longrightarrow E_{M}^{*}\left(X_{k-1}\right) \tag{2.3}
\end{equation*}
$$

where $h_{k-1} \in{ }^{\mathrm{SD}} E_{1}^{1,0, p^{k-1} q}$ and $b_{k-1} \in{ }^{\mathrm{SD}} E_{1}^{2,0, p^{k} q}$ are represented by the cocycles $t_{1}^{p^{k-1}}$ and

$$
y_{k-1}=\sum_{k=1}^{p-1} \frac{1}{p}\binom{p}{k} t_{1}^{k p^{k-1}} \otimes t_{1}^{(p-k) p^{k-1}}
$$

respectively, of the cobar complex

$$
\Omega^{*}=\Omega_{\mathrm{BP}_{*}(\mathrm{BP})}^{*} \mathrm{BP}_{*} /(p)
$$

for computing $E_{M}^{*}\left(S^{0}\right)=E_{2}^{*}(M)$. Note that

$$
\begin{equation*}
\bar{\delta}_{k}^{\prime} \bar{\delta}_{k}(x)=b_{k-1} x \quad \text { for } x \in E_{M}^{*}\left(X_{k-1}\right) \tag{2.4}
\end{equation*}
$$

where $\bar{\delta}_{k}$ and $\bar{\delta}_{k}^{\prime}$ denote the connecting homomorphisms corresponding to λ_{k} and λ_{k}^{\prime}, respectively. Besides,

$$
\begin{equation*}
b_{0}=\bar{\beta}_{1} \tag{2.5}
\end{equation*}
$$

Hereafter, we abbreviate $E_{M}^{*}\left(S^{0}\right)$ to E_{M}^{*}.
Lemma 2.6 The homomorphism $\bar{\beta}_{1}: E_{M}^{s-2, t-p q} \rightarrow E_{M}^{s, t}$ is a monomorphism if

$$
E_{M}^{s-1, t}(X)=0 \quad \text { and } \quad E_{M}^{s-2, t-q}(X)=0
$$

and an epimorphism if

$$
E_{M}^{s, t}(X)=0 \quad \text { and } \quad E_{M}^{s-1, t-q}(X)=0
$$

Proof This follows immediately from the exact sequences

$$
\begin{gather*}
E_{M}^{s-1, t}(X) \xrightarrow{\kappa_{1 *}} E_{M}^{s-1, t-q}(\bar{X}) \xrightarrow{\bar{\delta}_{1}} E_{M}^{s, t} \xrightarrow{t_{1 *}} E_{M}^{s, t}(X), \\
E_{M}^{s-2, t-q}(X) \xrightarrow{\kappa_{1 *}^{\prime}} E_{M}^{s-2, t-p q} \xrightarrow{\bar{\delta}_{1}^{\prime}} E_{M}^{s-1, t-q}(\bar{X}) \xrightarrow{t_{1 *}^{\prime}} E_{M}^{s-1, t-q}(X) \tag{2.7}
\end{gather*}
$$

associated to the cofiber sequences in (2.2) for $k=1$.

For a non-negative integer s, we consider the integer $\tau(s)$ defined by

$$
\tau(s)=\mu(s) p^{2}+\varepsilon(s) p= \begin{cases}(s / 2) p^{2} & \text { if } s \text { is even } \tag{2.8}\\ ((s-1) / 2) p^{2}+p & \text { if } s \text { is odd }\end{cases}
$$

where $\varepsilon(s)$ and $\mu(s)$ are the integers given by

$$
\begin{equation*}
2 \varepsilon(s)=1-(-1)^{s} \quad \text { and } \quad 2 \mu(s)=s-\varepsilon(s) \tag{2.9}
\end{equation*}
$$

Lemma 2.10 $E_{M}^{s, t}(X)=0$ if $t<\tau(s) q$.
Proof By an iterate use of the small descent spectral sequences (2.3) for k, we see that $E_{M}^{s, t}(X)$ is a subquotient of $E\left(h_{j}: j>0\right) \otimes P\left(b_{j}: j>0\right) \otimes E_{M}^{*}(T(1))$. For each dimension s, minding (2.1), the (additive) generator with the smallest internal degree is $h_{1}^{\varepsilon(s)} b_{1}^{\mu(s)}$, whose bidegree is $(s, \tau(s) q)$.

Let $\widetilde{E}_{M}^{s, t}(U)$ denote the Adams-Novikov E_{3}-term $E_{3}^{s, t}(U \wedge M)$. Since the AdamsNovikov spectral sequence has the sparseness: $E_{M}^{s, t}=0$ unless $q \mid t$, we see that $\widetilde{E}_{M}^{s, t}\left(S^{0}\right)=E_{M}^{s, t}$.

Lemma 2.11 $\widetilde{E}_{M}^{s, t}(W)=0$ if one of the following conditions holds:
(1) $q \nmid t(t+1)$.
(2) $q \mid t$ and $t<(\tau(s-1)+1) q$.
(3) $q \mid(t+1)$ and $t+1<(\tau(s)+1) q$.

Proof The cofiber sequence (1.5) induces the short exact sequence

$$
0 \rightarrow E_{M}^{s, t} \xrightarrow{i_{W} *} E_{M}^{s, t}(W) \xrightarrow{j_{W} *} E_{M}^{s, t-p q+1} \rightarrow 0
$$

of the E_{2}-terms. Therefore, $E_{M}^{s, t}(W)=E_{M}^{s, t} \oplus g E_{M}^{s, t-p q+1}$ for an element $g \in$ $E_{M}^{0, p q-1}(W)$. Since $d_{2}(g)=i_{W *}\left(\bar{\beta}_{1}\right)$ in the Adams-Novikov spectral sequence, we have the long exact sequence

$$
\begin{equation*}
E_{M}^{s-2, t-p q} \xrightarrow{\bar{\beta}_{1}} E_{M}^{s, t} \xrightarrow{i_{W} *} \widetilde{E}_{M}^{s, t}(W)^{j_{W} *} E_{M}^{s, t-p q+1} \xrightarrow{\bar{\beta}_{1}} E_{M}^{s+2, t+1} \tag{2.12}
\end{equation*}
$$

of the E_{3}-terms. The sparseness of the spectral sequence implies that $i_{W *}$ and $j_{W *}$ in (2.12) are zero if $q \nmid t$ and $q \nmid(t+1)$, respectively. This immediately shows the lemma under the first condition. If the second (resp. third) condition holds, then Lemma 2.10 and Lemma 2.6 imply that the left (resp. right) $\bar{\beta}_{1}$ in (2.12) is an epimorphism (resp. a monomorphism).

Remark Lemma 2.10 and Lemma 2.6 hold by the same proof after replacing $E_{M}(-)$ and $\widetilde{E}_{M}(-)$ by $E_{2}(-)$ and $E_{3}(-)$.

We state here relations in the E_{2}-term $E_{M}^{*}=E_{2}^{*}(M)$:
Lemma 2.13 In the Adams-Novikov $E_{2}-$ term $E_{M}^{2}, v_{1}^{2} b_{0}=0$ and $v_{1}^{p-1} b_{1}=0$.
Proof Note that $d\left(t_{2}\right)=-t_{1} \otimes t_{1}^{p}+v_{1} y_{0}$ in Ω^{2} (see [5, 4.3.15]). Then $v_{1}^{2} y_{0}$ cobounds $c_{0}=-t_{1} \eta_{R}\left(v_{2}\right)+v_{1} t_{2}-(1 / 2) v_{1}^{p} t_{1}^{2}$, since v_{1} and t_{1} are primitive, and $\eta_{R}\left(v_{2}\right) \equiv v_{2}+v_{1} t_{1}^{p}-v_{1}^{p} t_{1} \bmod (p)$ in $\mathrm{BP}_{*} \mathrm{BP}($ see $[5,4.3 .21])$.
Consider the cobar complex $\Omega_{2}^{*}=\Omega_{\mathrm{BP}_{*}(\mathrm{BP})}^{*} \mathrm{BP}_{*} /\left(p^{2}\right)$. We define the element $w \in \Omega^{1}$ by

$$
\begin{equation*}
d\left(v_{2}^{p}\right)=v_{1}^{p} t_{1}^{p^{2}}-v_{1}^{p^{2}} t_{1}^{p}+p v_{1} w \in \Omega_{2}^{1} \tag{2.14}
\end{equation*}
$$

It is well defined, since $p v_{1}: \Omega^{s} \rightarrow \Omega_{2}^{s}$ is a monomorphism. Noticing that $d\left(t_{1}^{p^{i+1}}\right)=$ $-p y_{i}$ and $d\left(v_{1}\right)=p t_{1}$ in Ω_{2}^{*}, send the equation (2.14) to Ω_{2}^{2} under the differential d, and we obtain $0=-p v_{1}^{p} y_{1}+p v_{1}^{p^{2}} y_{0}+p v_{1} d(w) \in \Omega_{2}^{2}$, which is pulled back to Ω^{2} under $p v_{1}$ to give $d(w)=v_{1}^{p-1} y_{1}-v_{1}^{p^{2}-1} y_{0} \in \Omega^{2}$. It follows that $v_{1}^{p-1} y_{1}$ cobounds $w+v_{1}^{p^{2}-3} c_{0}$.

3 Adams-Novikov E_{2}-terms for $X \wedge M$

Ravenel computed the small descent spectral sequences to determine $E_{2}^{s, t}(T(m))$ in [5, 7.2.6, 7.2.7] below internal degree $2\left(p^{m+3}-p^{2}\right)$. In particular, below internal degree $\left(p^{3}+p^{2}\right) q$,

$$
\begin{equation*}
\bigoplus_{s \geq 2} E_{2}^{s, *}(T(1))=k(2)_{*}\left\{v_{3}^{s} b_{20}: s \geq 0\right\} \otimes E\left(h_{20}\right) \otimes P\left(b_{20}\right) \tag{3.1}
\end{equation*}
$$

Here, E and P denote an exterior and a polynomial algebras over \mathbb{Z} / p,

$$
\begin{equation*}
k(m)_{*}=\mathbb{Z} / p\left[v_{m}\right] \tag{3.2}
\end{equation*}
$$

and $v_{3}^{s} b_{20}$ denotes the element corresponding to $\widehat{v}_{2}^{s+1} / p v_{1}$ in [5, 7.2.6]. We here read off the following formulas on the differential of the cobar complex $C_{2}^{*}=\Omega_{\Gamma(2)}^{*} \mathrm{BP}_{*}$ from the Hazewinkel and the Quillen formulas (see [1, (1.1), (1.2), (1.3)]):

$$
\begin{array}{ll}
d\left(v_{1}\right)=0, & d\left(v_{2}\right)=p t_{2} \\
d\left(v_{3}\right)=v_{1} t_{2}^{p}-v_{1}^{p^{2}} t_{2}+p t_{3}-p^{-1} v_{1} d\left(v_{2}^{p}\right), & d\left(t_{2}\right)=0 \tag{3.3}
\end{array}
$$

By virtue of these, we see that the generators v_{1}, h_{20} and $v_{3}^{s} b_{20}$ are represented by v_{1}, t_{2} and $y_{2, s}=p^{-1} d\left(\bar{y}_{2, s}\right)$ for

$$
\bar{y}_{2, s}=-\sum_{i=1}^{s+1}\binom{s+1}{i} v_{1}^{i-1} v_{3}^{s+1-i}\left(t_{2}^{p}-v_{1}^{p^{2}-1} t_{2}\right)^{i}
$$

respectively, in the cobar complex C_{2}^{*} for computing $E_{2}^{*}(T(1))$.
Corollary 3.4 The Adams-Novikov E_{2}-terms $E_{M}^{s, t}(T(1))$ below internal degree $\left(p^{3}+p^{2}\right) q$ are given as follows:

$$
\bigoplus_{s \geq 2} E_{M}^{s, *}(T(1))=b_{20} k(2)_{*}\left[v_{3}\right] \otimes E\left(h_{20}, h_{21}\right) \otimes P\left(b_{20}\right)
$$

Here, the generators have the following bidegrees:

$$
\begin{gathered}
\left|v_{2}\right|=(0,(p+1) q), \quad\left|v_{3}\right|=\left(0,\left(p^{2}+p+1\right) q\right) \\
\left|h_{20}\right|=(1,(p+1) q), \quad\left|h_{21}\right|=\left(1,\left(p^{2}+p\right) q\right) \quad \text { and } \quad\left|b_{20}\right|=\left(2,\left(p^{2}+p\right) q\right)
\end{gathered}
$$

Proof Consider the long exact sequence

$$
E_{2}^{s, t}(T(1)) \xrightarrow{p} E_{2}^{s, t}(T(1)) \xrightarrow{i_{*}} E_{M}^{s, t}(T(1)) \xrightarrow{\delta} E_{2}^{s+1, t}(T(1)) \xrightarrow{p} E_{2}^{s+1, t}(T(1))
$$

associated to the first cofiber sequence in (1.1). Note that this is a sequence of $\mathbb{Z}\left[v_{1}\right]$ modules.

The s-th line $E_{M}^{s, *}(T(1))$ for $s \geq 2$ is the direct sum of the image $i_{*} E^{s, *}(T(1))=E^{s}$ of i_{*} and the module isomorphic to the image of δ. Here $E^{s}=h_{20}^{\varepsilon(s)} b_{20}^{\mu(s)} k(2)_{*}\left[v_{3}\right]$ for the integers of (2.9). Since $v_{1} \bar{y}_{2, s}=d\left(v_{3}^{s+1}\right) \in \Omega_{\Gamma(2)}^{*} \mathrm{BP}_{*} /(p)$, we see that $\bar{y}_{2, s}$ is a cocycle that represents $v_{3}^{s} h_{21}$, and $\delta\left(v_{3}^{s} h_{21}\right)=v_{3}^{s} b_{20}$ by definition. Therefore, the image of δ is $b_{20} E^{s-1}=E_{2}^{s+1, *}(T(1))$, which is isomorphic to $h_{21} E^{s-1}$.

By (2.4) for $k=2$, we have a homomorphism $b_{1}: E_{M}^{s-2, t-p^{2} q}(X) \rightarrow E_{M}^{s, t}(X)$. As Lemma 2.6, the following lemma follows from the exact sequences

$$
\begin{gathered}
E_{M}^{s-1, t-p q}\left(\bar{X}_{2}\right) \xrightarrow{\bar{\delta}_{2}} E_{M}^{s, t}(X) \xrightarrow{\iota_{2} *} E_{M}^{s, t}\left(X_{2}\right), \\
E_{M}^{s-2, t-p^{2} q}(X) \xrightarrow{\bar{\delta}_{2}^{\prime}} E_{M}^{s-1, t-p q}\left(\bar{X}_{2}\right) \xrightarrow{\iota_{2 *}^{\prime}} E_{M}^{s-1, t-p q}\left(X_{2}\right)
\end{gathered}
$$

associated to the cofiber sequences in (2.2):
Lemma 3.5 The homomorphism $b_{1}: E_{M}^{s-2, t-p^{2} q}(X) \rightarrow E_{M}^{s, t}(X)$ is an epimorphism if

$$
E_{M}^{s, t}\left(X_{2}\right)=0 \quad \text { and } \quad E_{M}^{s-1, t-p q}\left(X_{2}\right)=0
$$

For each integer s and t, we consider the set

$$
\begin{equation*}
S(s, t)=\{(s, t),(s-1, t-p q),(s-1, t+(p-2) q),(s-2, t-2 q)\} \tag{3.6}
\end{equation*}
$$

Corollary 3.7 If $E_{M}^{s, t}\left(X_{2}\right)=0$ for $(s, t) \in S(a, b)$, then (see (2.5))

$$
v_{1}^{2 p-2} E_{M}^{a, b} \subset \bar{\beta}_{1} E_{M}^{a-2, b+(p-2) q}
$$

Proof Consider the diagram (2.2) for $k=1$ smashing with M. Then for any element $x \in E_{M}^{a, b}$,

$$
\iota_{1 *}(x)=b_{1} x_{1} \in E_{M}^{a, b}(X) \quad \text { for some } x_{1} \in E_{M}^{*}(X)
$$

by Lemma 3.5. Since

$$
\iota_{1 *}\left(v_{1}^{p-1} x\right)=v_{1}^{p-1} b_{1} x_{1}=0
$$

by Lemma 2.13, there is an element $x_{2} \in E_{M}^{a-1, b+(p-2) q}(\bar{X})$ such that

$$
\bar{\delta}_{1}\left(x_{2}\right)=v_{1}^{p-1} x .
$$

In the same manner, we have an element $x_{3} \in E_{M}^{a-2, b+(p-2) q}$ such that

$$
\bar{\delta}_{1}^{\prime}\left(x_{3}\right)=v_{1}^{p-1} x_{2} .
$$

It follows that

$$
v_{1}^{2 p-2} x=v_{1}^{p-1} \bar{\delta}_{1}\left(x_{2}\right)=\bar{\delta}_{1} \bar{\delta}_{1}^{\prime}\left(x_{3}\right)=\bar{\beta}_{1}\left(x_{3}\right) .
$$

We now consider the integer

$$
u=p^{3}+p^{2}-2 p+2
$$

Lemma 3.8 If $p>5$, then the E_{2}-terms $E_{M}^{s, t}\left(X_{2}\right)=0$ for $(s, t) \in S(q+1,(u+1) q)$.

Proof By use of the small descent spectral sequences (2.3) for $k \geq 2$, we see that our $E_{M}^{s, t}\left(X_{2}\right)$ is a subquotient of the module $A^{s, t}=E_{M}^{s, t}(T(1)) \oplus h_{2} E_{M}^{s-1, t-p q}(T(1))$ by degree reason. It suffices to show that $A^{s, t}=0$ for $(s, t) \in S(q+1,(u+1) q)$. The integers t fit in the table:

t / q	$u+1$	$u+1-p$	$u+p-1$	$u-1$
$t / q \bmod (p+1)$	5	6	2	3
$t / q \bmod (p)$	3	3	1	1

Corollary 3.4 implies that the module $A^{s, t}$ is generated by elements of the form $v_{2}^{i} v_{3}^{j} h_{2}^{k} h_{20}^{l} h_{21}^{m} b_{20}^{n}$ with $k, l, m \in\{0,1\}$ and $i, j, n \geq 0$. The internal degree of it is q times

$$
\begin{equation*}
a=\left(p^{2}+p+1\right) j+p^{2} k+(p+1)(i+l+p(m+n)) \tag{3.9}
\end{equation*}
$$

which is congruent to $j+k$ modulo $(p+1)$ and $i+j+l$ modulo (p). Since $s \geq q-1$ and $s=k+l+m+2 n$, we see that $n \geq p-3$. Then $a \geq\left(p^{2}+p+1\right) j+p^{3}-2 p^{2}-3 p>$ $u+p-1$ if $j \geq 3$. It follows that $j+k \leq 3$, and the first two cases in the above table are excluded if $p>5$. The last case is also excluded. Indeed, in this case, $j=2$ and $k=1$, which shows $a \geq 3 p^{2}+2 p+2+p^{3}-2 p^{2}-3 p>u-1$.

In the third case, $j+k=2$, and $i+j+l=r p+1$ for some $r \geq 0$. Then $a=2 p^{2}+(p+1)(r p+1+p(m+n))$, which equals $u+p-1$ if and only if $r=0$, $m=0$ and $n=p-2$, since $n \geq p-2$ in this case. The solution $m=0$ implies $k=l=1$ and so $j=1$. Then $1=i+j+l=i+2$, which contradicts to $i \geq 0$.

Remark If $p=5$, we have elements $v_{2}^{3} b_{20}^{4}$ and $v_{2}^{2} h_{20} h_{21} b_{20}^{3}$ in $A^{q, u+1-5}$.
Lemma 3.10 Suppose that $\xi \in \pi_{u q-1}(M)$ is detected by an element of $E_{M}^{q+1,(u+1) q}$. Then $i_{W *}\left(\alpha^{2 p-2} \xi\right)=0 \in \pi_{(u+2 p-2) q-1}(W \wedge M)$.

Proof Let x be an element that detects ξ. Then by Corollary 3.7 with Lemma 3.8, $\underset{\sim}{\text { we see that }} v^{2 p-2} x=\bar{\beta}_{1} y$ for some $y \in E_{M}^{q-1,(u+p-1) q}$, and so $i_{W *}\left(v_{1}^{2 p-2} x\right)=0 \in$ $\widetilde{E}_{M}^{q+1,(u+2 p-1) q}(W)$. The lemma now follows from Lemma 2.11.

4 The beta element $\beta_{p^{2} / p^{2}}^{\prime} \in \pi_{p^{3} q-1}(W \wedge M)$

Consider the set

$$
S^{\prime}(s, t)=\{(s+1, t),(s, t),(s, t-q),(s-1, t-q)\} .
$$

Lemma 4.1 If $E_{2}^{s, t}(X)=0$ for $(s, t) \in S^{\prime}(a, b)$, then $\bar{\beta}_{1}: E_{M}^{a-2, b-p q} \rightarrow E_{M}^{a, b}$ is an epimorphism.

Proof The condition on (s, t) implies that $E_{M}^{a, b}(X)=0=E_{M}^{a-1, b-q}(X)$ by the exact sequence associated to the first cofiber sequence (1.1). The lemma follows from Lemma 2.6.

In [5, 7.5.1], Ravenel determined $E_{2}^{s, t}(X)$ for $t<\left(p^{3}+p\right) q$. In particular, he showed

$$
\begin{array}{ll}
E_{2}^{s, t}(X)=0 & \text { for }(s, t) \in S^{\prime}\left(q+2,\left(p^{3}+1\right) q\right) \tag{4.2}\\
E_{2}^{s, t}(X)=0 & \text { for }(s, t) \in S^{\prime}\left(q,\left(p^{3}-p+2\right) q\right)
\end{array}
$$

Remark A preferable condition for the second equation is $(s, t) \in S^{\prime}\left(q,\left(p^{3}-p+1\right) q\right)$, but $h_{1} b_{20}^{p-3} \quad \gamma_{2} \in E_{2}^{q,\left(p^{3}-p\right) q}(X)$.

Proposition 4.3 The element $i_{W *}\left(\bar{\beta}_{p^{2} / p^{2}}^{\prime}\right) \in E_{2}^{1, p^{3} q}(W \wedge M)$ for the beta element $\bar{\beta}_{p^{2} / p^{2}}^{\prime} \in E_{2}^{1, p^{3} q}(M)$ survives to a homotopy element $\beta_{p^{2} / p^{2}}^{\prime} \in \pi_{p^{3} q-1}(W \wedge M)$.

Proof The E_{3}-terms $\widetilde{E}_{M}^{r q+2,\left(p^{3}+r\right) q}(W)$ are all trivial by Lemma 2.11 for $r>1$. We also see that $d_{q+1}\left(i_{W *}\left(\bar{\beta}_{p^{2} / p^{2}}^{\prime}\right)\right)=i_{W *} d_{q+1}\left(\bar{\beta}_{p^{2} / p^{2}}^{\prime}\right)=0 \in \widetilde{E}_{M}^{q+2,\left(p^{3}+1\right) q}(W)$ by Lemma 4.1 with the first equation of (4.2).

Hereafter, for an element $f \in[X, Y]_{t}$, we abbreviate $f \wedge Z \in[X \wedge Z, Y \wedge Z]_{t}$ to f. Since $\alpha^{2} \beta_{1}=0 \in[M, M]_{(p+2) q-2}$ [8], we have elements $\sigma \in[W \wedge M, M]_{2 q}$ and $\sigma^{*} \in[M, W \wedge M]_{(p+2) q-1}$ such that $\sigma i_{W}=\alpha^{2}=j_{W} \sigma^{*}$.

Lemma 4.4 (a) $[W \wedge M, W \wedge M,]_{2 q}=\mathbb{Z} / p\left\{\alpha^{2}, \delta_{W} \delta \alpha^{p+2}, \delta_{W} \alpha^{p+2} \delta, \sigma^{*} j_{W}\right\}$, where $\delta_{W}=i_{W} j_{W}$.
(b) $[W \wedge M, M]_{(2-p) q+1}=\mathbb{Z} / p\left\{\alpha^{2} j_{W}\right\}$.
(c) $[M, W \wedge M]_{2 q}=\mathbb{Z} / p\left\{\alpha^{2} i_{W}\right\}$.

Proof The homotopy groups $[M, M]_{t}$ for $t<p^{2} q-4$ are given in [8, Th.I]. In particular, the generators are given in the table:

$$
\begin{array}{c||c|c|c|c}
t & 2 q & 2 q+1 & (p+2) q-2 & (p+2) q-1 \\
\hline[M, M]_{t} & \alpha^{2} & 0 & \delta \alpha^{p+2} \delta & \alpha^{p+2} \delta, \delta \alpha^{p+2}
\end{array}
$$

We have the exact sequence

$$
[M, M]_{t-p q+2} \xrightarrow{\beta_{1}}[M, M]_{t} \xrightarrow{i_{W} *}[M, W \wedge M]_{t} \xrightarrow{j_{W_{*}}}[M, M]_{t-p q+1} \xrightarrow{\beta_{1}}[M, M]_{t-1}
$$

associated to the cofiber sequence (1.5). From this sequence and the previous table, we obtain the following:

t	$2 q$	$2 q+1$	$(p+2) q-1$
$[M, W \wedge M]_{t}$	$i_{W} \alpha^{2}$	0	$i_{W} \delta \alpha^{p+2}, i_{W} \alpha^{p+2} \delta, \sigma^{*}$

In particular, we have part (c). The cofiber sequence (1.5) also induces the exact sequence
$[M, W \wedge M]_{2 q+1} \xrightarrow{\beta_{1}^{*}}[M, W \wedge M]_{(p+2) q-1} \xrightarrow{j_{W}^{*}}[W \wedge M, W \wedge M]_{2 q}$

$$
\xrightarrow{i_{W}^{*}}[M, W \wedge M]_{2 q} \xrightarrow{\beta_{1}^{*}}[M, W \wedge M]_{(p+2) q-2},
$$

from which we obtain part (a).
Part (b) is the Spanier-Whitehead dual of (c).

Lemma 4.5 $i_{W} \sigma+\sigma^{*} j_{W} \equiv \alpha^{2}$ modulo $\mathbb{Z} / p\left\{\delta_{W} \delta \alpha^{p+2}, \delta_{W} \alpha^{p+2} \delta\right\}$. In particular, $i_{W} \sigma=\alpha^{2}+\varphi j_{W}$ for some φ.

Proof By virtue of Lemma 4.4 (a), we put

$$
i_{W} \sigma=a_{1} \alpha^{2}+a_{2} \delta_{W} \delta \alpha^{p+2}+a_{3} \delta_{W} \alpha^{p+2} \delta+a_{4} \sigma^{*} j_{W} \in[W \wedge M, W \wedge M]_{2 q}
$$

for $a_{i} \in \mathbb{Z} / p$. Send this to $[W \wedge M, M]_{(2-p) q+1}$ by j_{W} to obtain

$$
0=j_{W} i_{W} \sigma=a_{1} j_{W} \alpha^{2}+a_{4} j_{W} \sigma^{*} j_{W}=a_{1} \alpha^{2} j_{W}+a_{4} \alpha^{2} j_{W}
$$

Since $\alpha^{2} j_{W}$ is a generator by Lemma 4.4 (b), we have $a_{1}=-a_{4}$. Next send the above equality to $[M, W \wedge M]_{2 q}$ by i_{W}, and we have

$$
i_{W} \sigma i_{W}=a_{1} \alpha^{2} i_{W}
$$

It follows that $a_{1}=1$ by Lemma 4.4 (c).

Proposition 4.6 The element

$$
\sigma \beta_{p^{2} / p^{2}}^{\prime} \in \pi_{\left(p^{3}+2\right) q-1}(M)
$$

for $\beta_{p^{2} / p^{2}}^{\prime} \in \pi_{p^{3} q-1}(W \wedge M)$ in Proposition 4.3 is detected by the beta element

$$
\bar{\beta}_{p^{2} / p^{2}-2}^{\prime} \in E_{M}^{1,\left(p^{3}-2\right) q}
$$

Proof The homomorphism on the E_{2}-term induced from $\sigma i_{W}=\alpha^{2}$ is multiplication by v_{1}^{2}, so $\sigma_{*} \bar{\beta}_{p^{2} / p^{2}}^{\prime}=\sigma_{*} i_{W *} \bar{\beta}_{p^{2} / p^{2}}^{\prime}=v_{1}^{2} \bar{\beta}_{p^{2} / p^{2}}^{\prime}=\bar{\beta}_{p^{2} / p^{2}-2}^{\prime}$ in the E_{2}-term.

Lemma $4.7 \alpha^{5} i_{W *}\left(\sigma \beta_{p^{2} / p^{2}}^{\prime}\right)=\alpha^{7} \beta_{p^{2} / p^{2}}^{\prime} \in \pi_{*}(W \wedge M)$.
Proof Since $j_{W}\left(\bar{\beta}_{p^{2} / p^{2}}^{\prime}\right)=0$ in the E_{2}-term, the homotopy element $j_{W}\left(\beta_{p^{2} / p^{2}}^{\prime}\right)$ is detected by an element x of $E_{M}^{r q,\left(p^{3}-p+r\right) q}$ for some $r>0$. If $r=1$, then $v_{1} x=$ $\bar{\beta}_{1} x^{\prime}$ for some x^{\prime} by Lemma 4.1 with the second equation of (4.2). Therefore, $v_{1}^{3} x=$ $v_{1}^{2} \bar{\beta}_{1} x^{\prime}=0$ by Lemma 2.13. It follows that, in any case, $\alpha^{3} j_{W *}\left(\beta_{p^{2} / p^{2}}^{\prime}\right)$ is detected by an element of $E_{M}^{r q,\left(p^{3}-p+r\right) q}$ for some $r>1$. Then $i_{W *}\left(\alpha^{3} j_{W}\left(\beta_{p^{2} / p^{2}}^{\prime}\right)\right)=0$ by Lemma 2.11, and $\alpha^{3} j_{W *}\left(\beta_{p^{2} / p^{2}}^{\prime}\right)=\beta_{1} \xi^{\prime}$ for some homotopy element ξ^{\prime}. Now, we compute

$$
\begin{aligned}
\alpha^{5} i_{W *}\left(\sigma \beta_{p^{2} / p^{2}}^{\prime}\right) & =\alpha^{7} \beta_{p^{2} / p^{2}}^{\prime}+\varphi_{*}\left(\alpha^{5} j_{W *}\left(\beta_{p^{2} / p^{2}}^{\prime}\right)\right) \\
& =\alpha^{7} \beta_{p^{2} / p^{2}}^{\prime}+\varphi_{*}\left(\alpha^{2} \beta_{1} \xi^{\prime}\right)=\alpha^{7} \beta_{p^{2} / p^{2}}^{\prime}
\end{aligned}
$$

by Lemma 4.5 and Lemma 2.13.
Lemma $4.8 \alpha^{p^{2}} \beta_{p^{2} / p^{2}}^{\prime}=0 \in \pi_{\left(p^{3}+p^{2}\right) q-1}(W \wedge M)$.
Proof Oka [2] constructed the beta element $\beta_{p^{2} / 2 p-2}^{\prime} \in \pi_{u q-1}(M)$ such that $\alpha^{2 p-2} \times$ $\beta_{p^{2} / 2 p-2}^{\prime}=0$ in homotopy, which is detected by $v_{1}^{p^{2}-2 p+2} \bar{\beta}_{p^{2} / p^{2}}^{\prime}$ in the E_{2}-term. Consider an element $\xi=\alpha^{p^{2}-2 p} \sigma \beta_{p^{2} / p^{2}}^{\prime}-\beta_{p^{2} / 2 p-2}^{\prime} \in \pi_{u q-1}(M)$. Then it goes to zero in the E_{2}-term, and is detected by an element of $E_{M}^{r q+1,(u+r) q}$ for $r>0$. If $r>1, i_{W *}(\xi)$ is zero by Lemma 2.11. If $r=1$, then it satisfies the condition of Lemma 3.10, and so $\alpha^{2 p-2} i_{W *}(\xi)=0$. Therefore, by Lemma 4.7,

$$
\alpha^{p^{2}} \beta_{p^{2} / p^{2}}^{\prime}=\alpha^{p^{2}-2} i_{W *}\left(\sigma \beta_{p^{2} / p^{2}}^{\prime}\right)=\alpha^{2 p-2} i_{W *}\left(\xi+\beta_{p^{2} / 2 p-2}^{\prime}\right)=0
$$

Proof of Theorem 1.7 Consider the second cofiber sequence (1.1) for $a=p^{2}$. Then, by Lemma 4.8, we have an element $v \in \pi_{*}\left(W \wedge V_{p^{2}}\right)$ such that $\left(j_{p^{2}}\right)_{*}(v)=\beta_{p^{2} / p^{2}}^{\prime}$. As v is detected by an element of $E_{2}^{0,\left(p^{3}+p^{2}\right) q}\left(W \wedge V_{p^{2}}\right)$, we see $v=v_{2}^{p^{2}}$ by degree reasons.

References

[1] H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams-Novikov spectral sequence, Ann. Math. (2) 106 (1977) 469-516 MR0458423
[2] S Oka, A new family in the stable homotopy groups of spheres, Hiroshima Math. J. 5 (1975) 87-114 MR0380791
[3] S Oka, A new family in the stable homotopy groups of spheres. II, Hiroshima Math. J. 6 (1976) 331-342 MR0418096
[4] S Oka, Realizing some cyclic $\mathrm{BP}_{*}-$ modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977) 427-447 MR0474290
[5] D C Ravenel, Complex cobordism and stable homotopy groups of spheres, second edition, AMS Chelsea Publ. 347, Amer. Math. Soc. (2004) MR860042
[6] K Shimomura, Note on beta elements in homotopy, and an application to the prime three case, Proc. Amer. Math. Soc. 138 (2010) 1495-1499 MR2578544
[7] L Smith, On realizing complex bordism modules. IV. Applications to the stable homotopy groups of spheres, Amer. J. Math. 99 (1977) 418-436 MR0433450
[8] N Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ. 14 (1963) 45-67 MR0157382

Department of Mathematics, Faculty of Science, Kochi University
2-5-1, Akebono, Kochi 780-8520, Japan
katsumi@kochi-u.ac.jp
Received: 21 August 2009 Revised: 26 March 2010

