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Stein fillable Seifert fibered 3–manifolds

ANA G LECUONA

PAOLO LISCA

We characterize the closed, oriented, Seifert fibered 3–manifolds which are oriented
boundaries of Stein manifolds. We also show that for this class of 3–manifolds the
existence of Stein fillings is equivalent to the existence of symplectic fillings.

57R17; 53D10

1 Introduction and statement of results

The most important dichotomy in 3–dimensional contact topology is the one introduced
by Eliashberg between tight and overtwisted contact structures (see eg Etnyre [5] and
Geiges [6]). Nowadays there are several different ways to prove that a contact structure
is tight, but for a long time the only systematic way to construct tight contact structures
on a closed 3–manifold Y was to show Y to be orientation preserving diffeomorphic to
the oriented boundary of a Stein manifold and then appeal to a theorem of Eliashberg [3]
and Gromov [10]. This naturally led to the question of which 3–manifolds carry tight
contact structures, as well as to the related question of which 3–manifolds admit Stein
fillings, ie are orientation preserving diffeomorphic to the boundary of a Stein manifold.
The first example of an oriented 3–manifold admitting no Stein fillings was provided
by the second author in [12], and infinitely many examples were found by the second
author and Stipsicz in [16, Theorem 4.2] and [19, Proposition 4.1]. While the second
author and Stipsicz [20] recently achieved the classification of the closed, Seifert fibered
3–manifolds carrying tight contact structures, the classification of the Stein fillable
ones was still missing. The purpose of the present paper is to fill this gap. Our main
result, Theorem 1.5 below, identifies explicitly the family of closed, oriented, Seifert
fibered 3–manifolds which are orientation preserving diffeomorphic to the boundary
of a Stein manifold.

We need some preliminaries in order to state our results. Eliashberg [4] proved that
smooth, even-dimensional manifolds carrying Stein structures can be characterized
as having suitable handle decompositions. Gompf [9, Theorem 5.4] elaborated on
Eliashberg’s result to show that a closed, oriented, Seifert fibered 3–manifold Y

Published: 24 February 2011 DOI: 10.2140/agt.2011.11.625



626 Ana G Lecuona and Paolo Lisca

admits a Stein filling unless Y is orientation preserving diffeomorphic to the oriented
3–manifold Y .e0I r1; : : : ; rk/ given by the surgery description of Figure 1, where

e0 D�1; k � 3 and 1> r1 � � � � � rk > 0:

. . .�1=r1 �1=r2
�1=rk

e0

Figure 1: The Seifert 3–manifold Y .e0I r1; : : : ; rk/

Gompf also discovered a sufficient condition for the existence of Stein fillings of a
3–manifold of the form Y .�1I r1; : : : ; rk/. We describe and use this condition in
Section 2.

Definition 1.1 A k –tuple .r1; : : : ; rk/2 .Q\.0; 1//k with k�3 and r1�r2�� � ��rk

is realizable if there exist coprime integers n> h> 0 such that

h

n
> r1;

n� h

n
> r2 and

1

n
> r3; : : : ; rk :

Definition 1.2 A closed, oriented, Seifert fibered 3–manifold is of special type if it
is orientation preserving diffeomorphic to Y .�1I r1; : : : ; rk/, where k � 3, 1> r1 �
r2 � � � � � rk > 0 and the following conditions both hold:

(1) .r1; : : : ; rk/ is not realizable.

(2) r1C r2 < 1.

In Section 2 we use Gompf’s sufficient condition for the existence of Stein fillings of
Y .�1I r1; : : : ; rk/ to establish the following:

Theorem 1.3 Let Y be a closed, oriented, Seifert fibered 3–manifold which is not
of special type. Then, Y is orientation preserving diffeomorphic to the boundary of a
Stein surface.

Recall (see eg Geiges [6]) that a symplectic filling of a contact 3–manifold .Y; �/ is a
pair .X; !/, where X is a smooth 4–manifold with boundary oriented by a symplectic
form ! 2 �2.X /, and such that there is an orientation preserving diffeomorphism
'W Y ! @X with !jd'.�/¤ 0 at each point of @X . A Stein filling is a symplectic filling
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but the converse is not true, since there are examples of symplectically fillable contact
3–manifolds which are not Stein fillable; see Ghiggini [7]. Similarly, there exist several
examples of tight, contact Seifert fibered 3–manifolds which are not symplectically
fillable; see Ghiggini, Lisca and Stipsicz [8] and Lisca and Stipsicz [15; 16; 17]. In
Section 3 we apply Donaldson’s “Theorem A” on the intersection forms of definite
4–manifolds to prove the following:

Theorem 1.4 A closed, oriented, Seifert fibered 3–manifold of special type admits no
symplectic fillings.

Combining Theorems 1.3 and 1.4 immediately gives our main result:

Theorem 1.5 Let Y be a closed, oriented, Seifert fibered 3–manifold. Then, the
following conditions are equivalent:

(1) Y admits Stein fillings.

(2) Y admits symplectic fillings.

(3) Y is not of special type.

Proof A Stein filling is a symplectic filling, therefore (1) implies (2). By Theorem
1.4, (2) implies (3), and by Theorem 1.3, (3) implies (1).

Theorem 1.5 implies Corollary 1.6 below, which shows that the condition that a 3–
manifold is Seifert fibered of special type can be reformulated in terms of open book
decompositions. Recall that an open book decomposition of a closed 3–manifold is
called positive if its monodromy can be written as a product of right-handed Dehn
twists. Loi and Piergallini [21, Theorem 4] proved that a smooth, closed, oriented
3–manifold Y is the boundary of a Stein surface if and only if Y admits a positive
open book decomposition. Combining this result with Theorem 1.5 immediately yields
the following:

Corollary 1.6 A closed, oriented, Seifert fibered 3–manifold Y admits a positive
open book decomposition if and only if Y is not of special type.

We should perhaps say something about the history of the realizability condition of
Definition 1.1. Such condition originated in the literature on smooth foliations from
the early 1980’s. Indeed, the papers of Eisenbud, Hirsch and Neumann [2], Jankins
and Neumann [11] and Naimi [22] make use of the realizability condition to give
a classification of the closed, oriented, Seifert fibered 3–manifolds carrying smooth
foliations transverse to the Seifert fibration (see Lisca and Matić [14, Theorem 1.2]
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for a statement summarizing the results). Such classification was used in [14] to
characterize the closed, oriented, Seifert fibered 3–manifolds which carry positive
contact structures transverse to the fibration. The realizability condition also appears
in the characterizations of the Seifert fibered Heegaard Floer L–spaces in terms of
transverse contact structures, transverse foliations and taut foliations given by the
second author and Stipsicz in [18, Theorem 1.1].

We would like to end this introduction with a few remarks about Seifert 3–manifolds
of special type. It should be clear from the definition that there exist infinitely many
oriented Seifert 3–manifolds of special type. In fact, infinitely many examples of
closed, oriented Seifert fibered 3–manifolds without symplectic fillings are known
[16, Theorem 4.2; 19, Proposition 4.1]. According to Theorem 1.5 such examples must
be all of special type, and indeed this fact can be verified directly. The infinitely many
oriented Seifert 3–manifolds which do not carry tight contact structures [19; 20] are
also of special type. Moreover, if Y D Y .�1I r1; : : : ; rk/ is of special type then �Y is
not, because it is of the form Y .�1C kI 1� rk ; : : : ; 1� r1/. This is consistent with
the general fact that each oriented Seifert fibered 3–manifold admits a Stein filling
after possibly reversing its orientation [9, Corollary 5.5(a)]. Also, Condition (1) from
Definition 1.2 together with the results of [18] imply that an oriented Seifert fibered
3–manifold of special type is an L–space in the sense of Oszváth and Szabó [25,
Definition 1.1]. In fact, it follows from [18] that if Y is an oriented Seifert fibered
3–manifold which is an L–space, then after possibly reversing orientation Y is of the
form Y .e0I r1; : : : ; rk/, with k � 3, 1 > r1 � � � � � rk > 0 and either (i) e0 � 0 or
(ii) e0 D�1 and .r1; : : : ; rk/ is not realizable. Therefore, the oriented Seifert fibered
3–manifolds of special type are precisely the oriented, Seifert fibered L–spaces of the
form Y .�1I r1; : : : ; rk/ with k � 3, 1> r1 � � � � � rk > 0 and .r1; : : : ; rk/ satisfying
Condition (2) from Definition 1.2.

The organization of the paper is straightforward: in Section 2 we prove Theorem 1.3
and in Section 3 we prove Theorem 1.4.

2 Existence of Stein fillings

The purpose of this section is to prove Theorem 1.3. We start with recalling Gompf’s
sufficient condition from [9] for the existence of a Stein filling of Y .�1I r1; : : : ; rk/.

Given a rational number r 2 Q we can define an integer JrK 2 Z by setting r D
JrKC frac.r/, where frac.r/ 2 Œ0; 1/. Let

r 0i WD �
1

ri
; i D 1; : : : ; k;
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and s 2 .�1;�1/ be such that 1=s WD �1� 1=r 0
1

. If s ¤ r 0
2

then it is easy to check
that there is a map

AW Q[f1g!Q[f1g
of the form A.r/D .cC dr/=.aC br/ with a; b; c; d 2 Z, such that

ad � bc D˙1;(2-1)

A.s/ 2 .�1; 0�;(2-2)

A.r 02/ 2 Œ�1;�1/:(2-3)

Let

t WD

8̂<̂
:

0 if A.0/ 2 Œ0;C1�;
1=A.s/ if A.0/ 2 Œ�1; 0/;

A.r 0
2
/ if A.0/ 2 .�1;�1/:

Set M WDmax.jaj; jcj/, m WDmin.jaj; jcj/ and

nA.r
0
1; r
0
2/ WD �m.JtKC 1/�M:

Finally, let

n.r 01; r
0
2/ WD

(
0 if s D r 0

2
;

supA nA.r
0
1
; r 0

2
/ if s ¤ r 0

2
;

where the supremum is taken over the set of matrices A as above, satisfying Condi-
tions (2-1), (2-2) and (2-3). Gompf [9] shows that Y .�1I r1; : : : ; rk/ is the boundary
of a Stein surface if

(2-4) n.r 01; r
0
2/ > r 03; : : : ; r

0
k :

Observe that when s D r 0
2

Condition (2-4) is automatically satisfied.

In order to prove Theorem 1.3 we need two results. The first result is Theorem
2.1, which establishes the existence of a Stein filling for Y .�1I r1; : : : ; rk/ under the
assumption that the k –tuple .r1; : : : ; rk/ is realizable, that is to say that there exist
coprime integers n> h> 0 such that r1 < h=n, r2 < .n�h/=n and r3; : : : ; rk < 1=n.

Theorem 2.1 Suppose that k � 3, 1 > r1 � r2 � � � � � rk > 0 and .r1; : : : ; rk/

is realizable. Then, Y .�1I r1; : : : ; rk/ is orientation preserving diffeomorphic to the
boundary of a Stein surface.

Proof Recall that we defined r 0i WD �1=ri , i D 1; : : : ; k . We will prove that there is a
map AW Q[f1g!Q[f1g satisfying Properties (2-1), (2-2), (2-3) above, and such
that

nA.r
0
1; r
0
2/ > r 03; : : : ; r

0
k :
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In view of Gompf’s condition (2-4), this clearly suffices to prove the statement.

By the realizability assumption, there is a positive integer n0 such that, for some
integer h0 coprime with n0 and satisfying n0 > h0 > 0 we have

r 02 < �
n0

h0

< s and � n0 > r 03; : : : ; r
0
k :

Denote by n the smallest positive integer such that, for some integer h coprime with n

with n> h> 0, we have

n� n0 and r 02 < �
n

h
< s:

Notice that, since n� n0 , �n��n0 > r 0
3
; : : : ; r 0

k
. Moreover, n and h being coprime,

there exist a; b 2 Z such that

(2-5) ah� bnD 1:

If the pair .a; b/ solves Equation (2-5), so does the pair .aC zn; bC zh/ for each
z 2 Z. Therefore, we can choose a solution .a; b/ such that 0� a< n. Indeed, since
aD 0 would imply nD 1, which is not the case because n> h> 0, we can assume
0< a< n. From Equation (2-5) we get

b D ah

n
� 1

n
;

hence �1=n< b < h� 1=n, which is equivalent to

0� b < h:

Soon it will be convenient to have b > 0, therefore we deal now with the special case
bD 0. By Equation (2-5), bD 0 implies aD hD 1, therefore r 0

2
<�n< s . Moreover,

by the minimality of n we must have �.n� 1/� s . Define the map A by

A.r/ WD r C n� 1:

This map is of the form .c C dr/=.a C br/ with a D 1, b D 0, c D n � 1 and
d D 1, therefore ad � bc D 1. Clearly A is monotone increasing, A.�n/D�1 and
A.�nC 1/ D 0. Therefore A.r 0

2
/ 2 .�1;�1/ and A.s/ 2 .�1; 0�, thus A satisfies

the required Properties (2-1), (2-2) and (2-3). Since A.0/D n� 1 2 Œ0;C1� we have
t D 0, mD 1 and M D n� 1, therefore

nA.r
0
1; r
0
2/D�m�M D�1� nC 1D�n> r 03; : : : ; r

0
k :

From now on we assume 0< b < h. Observe that Equation (2-5) is equivalent to

a

b
D n

h
C 1

hb
;
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which implies
�a

b
< �n

h
:

In fact, by our choice of n we must have

�a

b
� r 02:

Now we define A by

A.r/ WD .n� a/C .h� b/r

aC br
D�1C nC hr

aC br
:

For this map we have c D n� a and d D h� b , therefore

ad � bc D a.h� b/� b.n� a/D ah� bnD 1:

The map A is monotone increasing for every r ¤�a=b , because

dA

dr
.r/D 1

.aC br/2
:

Equation (2-5) implies �.n� a/=.h� b/ > �n=h, thus by the choice of n we have
s � �.n� a/=.h� b/. We conclude

A

�
�a

b

�
D�1�A.r 02/ <A

�
�n

h

�
D�1<A.s/�A

�
�n� a

h� b

�
D 0:

Therefore A satisfies Properties (2-1), (2-2) and (2-3). Since

A.0/D�1C n

a
D n� a

a
2 .0;C1/

we have t D 0, thus

nA.r
0
1; r
0
2/D�m�M D�jaj � jcj D �a� .n� a/D�n> r 03; : : : ; r

0
k :

We can now move on to the second result needed for the proof of Theorem 1.3, that
is Theorem 2.5 below. This result will establish the existence of a Stein filling for
Y .�1I r1; : : : ; rk/ under the assumption r1C r2 � 1. The proof of Theorem 1.3 will
then follow combining Theorems 2.1 and 2.5.

Consider the standard Farey tessellation of the hyperbolic plane. Figure 2 illustrates
some of the arcs of the tessellation with both endpoints in the interval Œ�1;�1�. We
shall refer to any such arc with endpoints ˛ < ˇ as to the Farey arc

_
˛ˇ .

Observe that, given a Farey arc _̨ , there is a unique point ˇ such that ˛ < ˇ < 
and there exist Farey arcs

_
˛ˇ and

_
ˇ . In what follows, we shall refer to the unique

point ˇ as to the middle point of _̨ , and denote it by m.˛;  /.
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. .
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 . 

. .
 . 

. .
 . 

. .
 . 

�1 �4 �3 �5=2 �2 �5=3 �3=2 �4=3 �1

Figure 2: Arcs of the Farey tessellation

Lemma 2.2 Let s; r 0
2
2 .�1;�1/, with s < r 0

2
. Then, there exists a Farey arc _̨

with middle point ˇ Dm.˛;  / satisfying

�1� ˛ < s � ˇ � r 02 <  � �1:

In other words, there is a configuration of Farey arcs as in Figures 3(A), 3(B) or 3(C).

Proof We provisionally define ˛ D�1 and  D�1. If s � ˇ Dm.˛;  /� r 0
2

then
˛ , ˇ and  already satisfy the statement and the lemma is proved. Otherwise we have
either s > ˇ or r 0

2
< ˇ (but not both, because s < r 0

2
). If s > ˇ we redefine ˛ D ˇ ,

while if r 0
2
<ˇ we redefine  D ˇ , and in both cases we set ˇ equal to the new middle

point m.˛;  /. As before, if s�ˇDm.˛;  /� r 0
2

we are done, otherwise either s>ˇ

or r 0
2
< ˇ (but not both). Continuing in this fashion, after a finite number of steps we

necessarily arrive at a configuration satisfying the statement of the lemma.

˛ s ˇ r 02
 ˛ s D ˇ r 02

 ˛ s ˇ D r 02


(A) (B) (C)

Figure 3: The configurations of Farey arcs of Lemma 2.2

Lemma 2.3 Let
_
˛ˇ be a Farey arc with ˛; ˇ 2 Œ�1;�1�, and let s 2 .˛; ˇ/. Then,

there exist Farey arcs
_
˛ˇ0 and

_
˛0ˇ such that

m.˛; ˇ0/� s < ˇ0 � ˇ and ˛ � ˛0 < s �m.˛0; ˇ/:

In other words, there are configurations of Farey arcs as in Figures 4(A) and 4(B).
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˛ s ˇ0 ˇ ˛ ˛0 s ˇ

(A) (B)

Figure 4: The configurations of Farey arcs of Lemma 2.3

Proof We only prove the existence of the arc
_
˛ˇ0 – the existence of the arc

_
˛0ˇ can

be established in the same way. If m.˛; ˇ/� s we define ˇ0 D ˇ , and the statement
is proved. If s <m.˛; ˇ/, we define (temporarily) ˇ0 Dm.˛; ˇ/. If m.˛; ˇ0/� s the
arc
_
˛ˇ0 satisfies the statement. Otherwise s < m.˛; ˇ0/, we redefine ˇ0 D m.˛; ˇ0/

and we keep going in the same way. In a finite number of steps we are bound to find
the arc

_
˛ˇ0with the stated property.

Lemma 2.4 Let s; r 0
2
2 .�1;�1/, with s < r 0

2
. Then, there exist Farey arcs

_
˛ˇ ,

_
ˇ ,

_
 ı , _xy , with _xy 2 f_̨ ;_ˇıg, satisfying

�1� ˛ < s � ˇ <  � r 02 < ı � �1:

In other words, there is a configuration of Farey arcs as in Figures 5(A) or 5(B).

˛ s ˇ  r 02 ı ˛ s ˇ  r 0
2 ı

(A) (B)

Figure 5: The configurations of Farey arcs of Lemma 2.4

Proof By Lemma 2.2 there is a configuration of Farey arcs as in Figures 3(A), 3(B)
or 3(C). If Figure 3(A) holds we can apply Lemma 2.3 to the point s and the arc

_
˛ˇ

of Figure 3(A) to find a configuration as in Figure 4(B). If we set mDm.˛0; ˇ/, the
Farey arcs _̨0m,

_
mˇ ,

_
˛0ˇ and

_
ˇ provide a configuration as in Figure 5(B). If Figure

3(B) holds we can apply Lemma 2.3 to the point r 0
2

and the arc
_
ˇ of Figure 3(B) to

find a configuration as in Figure 4(A). In other words, there exists a Farey arc
_
ˇˇ0 such

that m.ˇ; ˇ0/� r 0
2
< ˇ0 . Setting mDm.ˇ; ˇ0/, the Farey arcs

_
˛ˇ ,

_
ˇm,

_
mˇ0 and

_
ˇˇ0

provide a configuration as in Figure 5(A). Finally, if Figure 3(C) holds we can apply
Lemma 2.3 to the point s and the arc

_
˛ˇ of Figure 3(C) to find a configuration as in

Figure 4(B). If we set mDm.˛0; ˇ/, the Farey arcs _̨0m,
_
mˇ ,

_
˛0ˇ and

_
ˇ provide a

configuration as in Figure 5(B).
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Theorem 2.5 Suppose that k � 3, 1> r1 � r2 � � � � � rk > 0 and r1C r2 � 1. Then,
Y .�1I r1; : : : ; rk/ is orientation preserving diffeomorphic to the boundary of a Stein
surface.

Proof The inequality r1C r2 � 1 is equivalent to s � r 0
2

. If s D r 0
2

Condition (2-4)
is automatically satisfied, therefore we may assume s < r 0

2
. By Lemma 2.4 there

is a configuration of Farey arcs as in Figures 5(A) or 5(B). Let us suppose that the
first case occurs. In view of the action of SL.2;Z/ on the Farey tessellation, there
is a unique map AW Q[ f1g ! Q[ f1g of the form A.r/ D .c C dr/=.aC br/

satisfying Condition (2-1) and such that A.ˇ/D 0, A. /D1 and A.ı/D�1. By
construction, A satisfies Conditions (2-2) and (2-3) as well, c=a D A.0/ 2 .�1; 0/

and A.s/ 2 .�1; 0/. According to Gompf’s condition (2-4), in order to prove that
Y .�1I r1; : : : ; rk/ carries Stein fillable contact structures it suffices to show that

nA.r
0
1; r
0
2/D�m.JtKC 1/�M � �1;

where t D 1=A.s/ 2 .�1;�1/, M D max.jaj; jcj/ and mD min.jaj; jcj/. Observe
that, since A.0/D c=a 2 .�1; 0/, M D jaj and mD jcj. Condition (2-1) implies that
if mD 0 then M D 1, therefore we may assume without loss of generality that m> 0.
An easy calculation shows that the condition �m.JtKC 1/�M � �1 is equivalent to

JtKC 1� 1

m
� �M

m
D 1

A.0/
:

In order to prove this inequality it suffices to show that there is an integer N strictly
greater than 1=A.s/ and less than or equal to 1=A.0/, ie such that

JtKC 1�N � 1

A.0/
:

This condition is satisfied if and only if there exists a Farey arc _1x with 1=A.s/ < x�
1=A.0/ or, equivalently, if and only if there exists a Farey arc

_
y0 with A.0/�y<A.s/.

Setting y WDA.˛/, such an arc is provided by the image under A of the Farey arc
_
˛ˇ

from Lemma 2.4, because by construction A.ˇ/D 0 and 0<1D�1� ˛ < s . This
concludes the proof under the assumption that when at the beginning of the argument
we apply Lemma 2.4 we end up with a configuration of Farey arcs as in Figure 5(A). In
case the configuration is the one given by Figure 5(B) we can argue in a similar way, so
we just describe the steps where there is a difference. We choose the unique map A so
that A.˛/D�1, A.ˇ/D 0 and A. /DC1D�1. Then, c=aDA.0/2 .�1;�1/,
t DA.r 0

2
/ 2 .�1;�1/, M D jcj, mD jaj and as before we may assume without loss

that m> 0. The same calculation as in the previous case shows that Gompf’s condition
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is equivalent to

JA.r 02/KC 1� 1

m
� �M

m
DA.0/:

As before, this condition is satisfied if there exists a Farey arc _�1z with A.r 0
2
/ < z �

A.0/. Setting z WDA.ı/, such an arc is provided by the image under A of the Farey arc
_
 ı from Lemma 2.4, because by construction A. /D�1 and r 0

2
< ı � �1< 0.

We are now ready to prove Theorem 1.3. We restate the result for the reader’s conve-
nience:

Theorem 2.6 Let Y be a closed, oriented, Seifert fibered 3–manifold which is not
of special type. Then, Y is orientation preserving diffeomorphic to the boundary of a
Stein surface.

Proof Gompf showed [9, Theorem 5.4] that a closed, oriented, Seifert fibered 3–
manifold Y admits a Stein filling unless it is of the form Y .�1I r1; : : : ; rk/ with k � 3

and 1> r1� r2� � � � � rk > 0. Thus, if Y is not of special type then it is diffeomorphic
to the boundary of a Stein surface unless Y is of the form Y .�1I r1; : : : ; rk/ with k�3,
1> r1� r2� � � �� rk > 0 and either (i) .r1; : : : ; rk/ is realizable or (ii) r1Cr2� 1. But
Conditions (i) and (ii) are the assumptions of, respectively, Theorem 2.1 and Theorem
2.5, therefore if Y is not of special type then Y is necessarily the boundary of a Stein
surface.

3 Nonexistence of symplectic fillings

The purpose of this section is to establish Theorem 1.4. We start with some preliminaries,
then we prove three auxiliary lemmas. After that we prove Theorem 1.4.

Let Y D Y .e0I r1; : : : ; rk/ denote the oriented, Seifert fibered 3–manifold given by the
surgery description of Figure 1, where e02Z, ri 2 .0; 1/\Q and r1� r2�� � �� rk . The
oriented 3–manifold Y is the oriented boundary of the 4–dimensional plumbing P�
of D2 –bundles over 2–spheres described by the star-shaped weighted graph � with k

legs illustrated in Figure 6.

The weights of the vertices in the leg Li , which form the string .ai
1
; : : : ; ai

hi
/, are given

by the unique continued fraction expansion such that ai
j ��2 for every j 2 f1; : : : ; hig:

� 1

ri
D Œai

1; : : : ; a
i
hi
� WD ai

1�
1

ai
2�

1

: : :
ai

hi�1�
1

ai
hi

; i D 1; : : : ; k:
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e0

a1
1 a1

2 a1
3� � � � � �

a1
h1

a2
1

a2
2

a2
3� � � � � �

a2
h2

ak
1

ak
2

ak
3

� � � � � �
ak

hk

L1

L2

Lk

:::
:::

:::
:::

:::
:::

Figure 6: The weighted star-shaped graph �

We can associate to � the intersection lattice .Zj�j;Q�/ of the plumbing P� . In
the proof of Theorem 1.4 we will show that if Y admits a symplectic filling then the
intersection lattice of the plumbing associated to �Y admits an isometric embedding
into a standard diagonal lattice. Our present aim will be to prepare the ground for
Lemma 3.3, which shows that under a certain assumption such an embedding does not
exist.

We shall need Riemenschneider’s point rule [26], which we now recall. Let p > q > 0

be coprime integers, and suppose

�p

q
D Œa1; : : : ; al �; ai � �2; � p

p� q
D Œb1; : : : ; bm�; bj � �2:

Then, the coefficients a1; : : : ; al and b1; : : : ; bm are related by a “point diagram” as
in Figure 7, where the i –th row contains jai j � 1 “points” for i D 1; : : : ; l , and the
first point of each row is vertically aligned with the last point of the previous row. The

� � �
� � �

: : : � � �
� � �

Figure 7: The point diagram underlying Riemenschneider’s point rule

point rule says that there are m columns, and the j –th column contains jbj j�1 points
for every j D 1; : : : ;m. For example if �7=5D Œ�2;�2;�3� and �7=2D Œ�4;�2�
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the corresponding diagram is given by

�
�
� �

Let � be either a star-shaped or a linear weighted graph. If .Zj�j;Q�/ admits an
embedding into a standard diagonal lattice .Zk ;�Id/ with basis e1; : : : ; ek , then we
will write, for every subset S of the set of vertices of � ,

US WD fei j ei � v ¤ 0 for some v 2 Sg:
We can now start to work towards Lemma 3.3 and Theorem 1.4.

Lemma 3.1 Suppose �1=r D Œa1; : : : ; an� and �1=sD Œb1; : : : ; bm� where rCsD 1.
Consider a weighted linear graph ‰ having two connected components, ‰1 and ‰2 ,
where ‰1 consists of n vertices v1; : : : ; vn with weights a1; : : : ; an and ‰2 of m

vertices w1; : : : ; wm with weights b1; : : : ; bm . Moreover, suppose that there is an
embedding of the lattice .ZnCm;Q‰/ into .Zk ;�Id/, with basis e1; : : : ; ek , such that
e1 2 Uv1

\Uw1
and U‰ D fe1; : : : ; ekg. Then,

(1) U‰1
D U‰2

and

(2) k D nCm.

Proof We start showing that .1/ implies .2/. In fact, since r C s D 1, by [13,
Lemma 2.6], we have

nX
iD1

.�ai � 3/C
mX

jD1

.�bj � 3/D�2

and therefore

(3-1) jtr.Q‰/j D
X
jai jC

X
jbj j D 3.nCm/� 2:

The matrix Q‰ is not singular [13, Remark 2.1] so we necessarily have k � nCm.
Let us write kD nCmCx for some x � 0. Since we are assuming .1/, each vector of
the basis e1; : : : ; ek satisfies ei 2U‰1

\U‰2
and therefore jtr.Q‰/j � 2k . Moreover,

since the graph ‰ has nCm� 2 edges, it follows that jtr.Q‰/j � 2kC nCm� 2D
3.nCm/� 2C 2x . Hence, by (3-1), x D 0 and .2/ holds.

We now assume that .1/ does not hold and show that this assumption leads to a
contradiction. Start by defining the sets E1 WD U‰1

nU‰2
, E2 WD U‰2

nU‰1
and

E12 WD U‰1
\U‰2

. Since we are assuming that .1/ does not hold, we have E1 ¤∅
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or E2 ¤∅. By symmetry, we may assume that E1 ¤∅. It follows that there exists a
smallest index n0 2 f1; : : : ; ng such that Uvn0

\E1 ¤∅. This condition allows us to
construct a new connected linear graph S‰1 with n0 vertices and associated string of
weights .a1; : : : ; an0�1; xan0

/, where

xan0
WD an0

C
X

e`2E1

.vn0
� e`/2:

Notice that since the intersection lattice associated with ‰ admits an embedding into a
diagonal lattice, there is a naturally induced analogous embedding of the intersection
lattice associated with S‰1 [‰2 . We claim that xan0

� �2. In fact, if n0 D 1 the
assumption e1 2 Uv1

\Uw1
and the equality v1 �w1 D 0 imply jE12\Uv1

j � 2 and
therefore in this case xa1 � �2. On the other hand, if n0 > 1 then, by definition of n0 ,
it holds that Uvn0�1

�E12 . The equalities vn0�1 � vn0
D 1 and vn0

�w` D 0 for every
` 2 f1; : : : ;mg force jE12\Uvn0

j � 2 and therefore xan0
� �2 as claimed.

Now, since �2 � xan0
> an0

we have, by standard facts on continued fractions, that
�1=xr WD Œa1; : : : ; an0�1; xan0

� satisfies xr C s > 1 (since r C s D 1). Let xr 0 be such
that xr Cxr 0 D 1. Using Riemenschneider’s point diagram it is not difficult to check
that r C s D 1 and �2� xan0

> an0
imply that there is some t <m such that �1=xr 0 D

Œb1; : : : ; bt �. Let us call S‰0
1
�‰2 the linear connected subgraph with associated string

of weights .b1; : : : ; bt /. There are two possibilities, either US‰1
DUS‰0

1
or US‰1

¤US‰0
1

.

Notice that by construction jS‰1j � j‰1j and jS‰0
1
j< j‰2j. Moreover, if jS‰1j D 1 [resp.

jS‰0
1
j D 1] then S‰0

1
[resp. S‰1 ] is a .�2/–chain and it is immediate to check that in this

case, since e1 2 Uv1
\Uw1

, it holds US‰1
D US‰0

1
. Since xr Cxr 0 D 1, if US‰1

¤ US‰0
1

we can repeat the above construction with S‰1 and S‰0
1

playing the role of ‰1 and ‰2 .
It follows that, after a finite number of steps, we necessarily obtain from ‰1 and ‰2

two linear weighted graphs, which we still call S‰1 and S‰0
1

, such that US‰1
DUS‰0

1
and

either S‰1 �‰1 or S‰0
1
�‰2 . By symmetry we may assume that S‰0

1
�‰2 .

Since the strings of weights associated to S‰1 and S‰0
1

are related to one another by
Riemenschneider’s point rule, we know, by the first part of this proof and using the same
notation, that jUS‰1

[US‰0
1
j D n0C t . Consider the vector wtC1 . Since US‰1

D US‰0
1

,
wt �wtC1 D 1 and wtC1 � v` D 0 for every ` 2 f1; : : : ; n0g, the vector

xwtC1 WD wtC1C
X

ei 62US‰1

.ei �wtC1/ ei

satisfies xwtC1 � xwtC1 � �2. It follows that the disconnected linear graph S‰1[S‰01[
fwtC1g, which has n0C t C 1 vertices admits an embedding into a diagonal lattice of
rank jU‰1

j D n0C t which contradicts [13, Remark 2.1].
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Lemma 3.2 Let �1=r D Œa1; : : : ; an� and �1=sD Œb1; : : : ; bm� be such that rCs> 1.
Then there exists n0 � n and m0 �m such that �1=r0 D Œa1; : : : ; an0

� and �1=s0 D
Œb1; : : : ; bm0

� satisfy r0C s0 D 1.

Proof Let r 0 be such that rCr 0D 1 and suppose �1=r 0D Œa0
1
; : : : ; a0n0 �. Since s> r 0 ,

by standard facts on continued fractions there are two possibilities: either bi D a0i for
all i 2 f1; : : : ; n0g and m> n0 or there is a smallest index k such that bk > a0

k
. In the

first case we set n0 D n and m0 D n0 . In the second case let us consider the first k

columns of dots in the Riemenschneider’s point diagram obtained from .a1; : : : ; an/.
Then, n0 equals the number of rows in this diagram minus bk � a0

k
and m0 D k .

Note that in this way Œa1; : : : ; an0
� and Œb1; : : : ; bm0

� are related to one another by
Riemenschneider’s point rule and therefore r0C s0 D 1.

Lemma 3.3 Suppose k � 3 and 1> r1 � � � � � rk > 0 and rk�1C rk > 1. Then, the
intersection lattice of the plumbing associated to Y WD Y .�kC 1I r1; : : : ; rk/ cannot
be embedded into a negative diagonal standard lattice.

Proof Let � be the plumbing graph of Figure 6 associated to Y , and suppose by
contradiction that there exists an embedding of .Zj�j;Q�/ into .Zd ;�Id/ with basis
e1; : : : ; ed for some d � j�j. We will use the following notation for the vertices of � :
v0 for the central vertex and vi

j for the vertices in the legs, where i indicates the leg
to which vi

j belongs and j the position in the leg, with j D 1 being the index of the
vertex connected to the central vertex.

Since � has k legs connected to the central vertex which has weight �kC 1, there
must exist some basis vector, say e1 , and two legs, say Li and Lj , such that the
products v0 � e1 , vi

1
� e1 and vj

1
� e1 are not 0.

Let �1=ri D Œai
1
; : : : ; ai

p � and �1=rj D Œaj
1
; : : : ; a

j
q �. Since riC rj > 1, by Lemma 3.2

there exist p0�p and q0� q such that the strings .ai
1
; : : : ; ai

p0
/ and .aj

1
; : : : ; a

j
q0
/ are

related to one another by Riemenschneider’s point rule. Moreover, since e1 2Uvi
1
\Uvj

1

Lemma 3.1 applies and therefore the disconnected subgraph ‰ � � consisting of the
vertices vi

1
; : : : ; vi

p0
; v

j
1
; : : : ; v

j
q0

satisfies jU‰j D p0C q0 . Furthermore, writing ‰ D
‰1[‰2 where ‰1 [resp. ‰2 ] consists of the vertices vi

1
; : : : ; vi

p0
[resp. vj

1
; : : : ; v

j
q0

]
we have, by Lemma 3.1(1), U‰1

D U‰2
.

Now, since ri C rj > 1 we have .p0; q0/ ¤ .p; q/ so we can assume without loss
of generality p > p0 . The vector vi

p0C1
satisfies vi

p0C1
� vi

p0
D 1 and the equality

U‰1
D U‰2

implies that jU‰ \Uvp0C1
j � 2. Consider the vector

xvp0C1 WD vp0C1C
X

ei 62U‰

.ei � vp0C1/ ei ;
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which by construction satisfies Uxvp0C1
� U‰ and xvp0C1 � xvp0C1 � �2. It follows that

the linear graph ‰[fvp0C1g, which has p0C q0C 1 vertices admits an embedding
into a diagonal lattice of rank jU‰j D p0C q0 which contradicts [13, Remark 2.1].

We are now ready to prove Theorem 1.4. We restate the result for the reader’s conve-
nience:

Theorem 3.4 A closed, oriented, Seifert fibered 3–manifold of special type admits no
symplectic fillings.

Proof Suppose that the oriented 3–manifold Y is orientation preserving diffeomorphic
to Y .�1I r1; : : : ; rk/, where k� 3, 1> r1� r2� � � �� rk > 0 and .r1; : : : ; rk/ satisfies
Conditions (1) and (2) of Definition 1.2. The fact that .r1; : : : ; rk/ is not realizable
implies that Y is an L–space [18]. Therefore, if Y admits a symplectic filling W then
bC

2
.W /D0 [24, Theorem 1.4]. Moreover, since by [2; 22] (see [22, pages 157–158]), if

r1C� � �Crk �1 then .r1; : : : ; rk/ is realizable, we must have r1C� � �Crk >1. Consider
the space �Y D Y .1�kI Sr1; : : : ; Srk/ where Sri WD 1�rk�iC1 for i 2 f1; : : : ; kg. Since

e.�Y / WD 1� kC
X

i

xri D 1�
X

i

ri < 0;

by [23, Theorem 5.2] there is a negative definite plumbing graph � such that �Y D@P� .
Consider the 4–manifold X obtained gluing together P� and W along their common
boundary. By construction X is smooth, closed and negative, therefore by Donaldson’s
celebrated “Theorem A” [1] its associated intersection form must be diagonalizable.
It follows that if Y admitted a symplectic filling then the intersection lattice of P�
would admit an embedding into a diagonal, negative standard lattice. The assumption
1 > r1C r2 for Y reads rk�1C Srk > 1 for �Y , which by Lemma 3.3 implies that
the intersection lattice of P� does not admit an embedding into a diagonal lattice.
Therefore we conclude that Y admits no symplectic fillings.
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