The intersecting kernels of Heegaard splittings

Fengchun Lei
Jie Wu

Let $V \cup_{S} W$ be a Heegaard splitting for a closed orientable 3-manifold M. The inclusion-induced homomorphisms $\pi_{1}(S) \rightarrow \pi_{1}(V)$ and $\pi_{1}(S) \rightarrow \pi_{1}(W)$ are both surjective. The paper is principally concerned with the kernels $K=\operatorname{Ker}\left(\pi_{1}(S) \rightarrow\right.$ $\left.\pi_{1}(V)\right), L=\operatorname{Ker}\left(\pi_{1}(S) \rightarrow \pi_{1}(W)\right)$, their intersection $K \cap L$ and the quotient $(K \cap L) /[K, L]$. The module $(K \cap L) /[K, L]$ is of special interest because it is isomorphic to the second homotopy module $\pi_{2}(M)$. There are two main results.
(1) We present an exact sequence of $\mathbb{Z}\left(\pi_{1}(M)\right)$-modules of the form

$$
(K \cap L) /[K, L] \subset R\left\{x_{1}, \ldots, x_{g}\right\} / J \xrightarrow{T^{\phi}} R\left\{y_{1}, \ldots, y_{g}\right\} \xrightarrow{\theta} R \xrightarrow{\epsilon} \mathbb{Z},
$$

where $R=\mathbb{Z}\left(\pi_{1}(M)\right), J$ is a cyclic R-submodule of $R\left\{x_{1}, \ldots, x_{g}\right\}, T^{\phi}$ and θ are explicitly described morphisms of R-modules and T^{ϕ} involves Fox derivatives related to the gluing data of the Heegaard splitting $M=V \cup_{S} W$.
(2) Let \mathcal{K} be the intersection kernel for a Heegaard splitting of a connected sum, and $\mathcal{K}_{1}, \mathcal{K}_{2}$ the intersection kernels of the two summands. We show that there is a surjection $\mathcal{K} \rightarrow \mathcal{K}_{1} * \mathcal{K}_{2}$ onto the free product with kernel being normally generated by a single geometrically described element.

57M27, 57M99, 20F38; 57M05, 37E30

1 Introduction

Let $M=V \cup_{S} W$ be a Heegaard splitting, where V and W are handlebodies of genus g and S is a closed Riemann surface of genus g with $\partial V=S$ and $\partial W=S$. Consider an essential simple closed curve λ in S. If λ bounds a disk D_{1} in the manifold V and a disk D_{2} in W, then by gluing D_{1} and D_{2} together along λ, we obtain an embedding of the 2 -sphere S^{2} in the 3 -manifold M and so the splitting is reducible. Motivated from these observations, the purpose of this article is to study the intersecting subgroup of the kernels of $\pi_{1}(S) \rightarrow \pi_{1}(V)$ and $\pi_{1}(S) \rightarrow \pi_{1}(W)$. In other words, we investigate the (possibly singular) curves on the Riemann surface S that can be extended to (possibly singular) disks in V and W, respectively. Note that the intersecting subgroup addressed
here is the kernel of the splitting homomorphism introduced by Stallings [19] and studied by others, for example, Jaco [10] and Papkyriakopoulos [17].

The combinatorial problem of determining the intersecting subgroups is related to the classical Whitehead Asphericity Question in low dimensional topology; see Bogley [4]. Recent development on combinatorial determinations on the general homotopy groups of spheres in homotopy theory also concerns the intersecting subgroups of free groups or braid groups; see Berrick, Cohen, Wong and Wu [1], Cohen and $\mathrm{Wu}[7 ; 8]$, Li and Wu [13] and Wu [20]. In our cases, the intersection is given by an explicit subgroup of the fundamental group of the Riemann surface of genus g with its image under an automorphism. The investigation on intersecting subgroups in our special cases might help for searching the methods for attacking the Whitehead Asphericity Question and the homotopy groups of spheres.

We first consider the algebraic determination on the intersecting kernel of Heegaard splittings. Let V_{g} be the standard handlebody of genus g with $\partial V_{g}=S_{g}$ the Riemann surface of genus g. Given a diffeomorphism $\varphi: S_{g} \rightarrow S_{g}$, the resulting construction $M=V_{g} \cup_{\varphi} V_{g}$ with equivalence relation generated by $x \sim \varphi(x)$ for $x \in S_{g}$ gives a Heegaard splitting. Clearly any Heegaard splitting of 3 -manifolds is given in such a way. (See Section 2 for details.) Recall that $\pi_{1}\left(S_{g}\right)$ admits the standard presentation with generators $a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}$ and a single relation $\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1$. The fundamental group $\pi_{1}\left(V_{g}\right)$ is then the free group F_{g}^{a} of rank g with free basis a_{1}, \ldots, a_{g}. Let $i: S_{g} \rightarrow V_{g}$ be the canonical inclusion. Then $i_{*}: \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}\left(V_{g}\right)$ is the group homomorphism with $i_{*}\left(a_{j}\right)=a_{j}$ and $i_{*}\left(b_{j}\right)=1$ for $1 \leq j \leq g$. Let $\mathrm{KB}_{g}=\left\langle b_{1}, \ldots, b_{g}\right\rangle^{N}$ be the normal closure of b_{1}, \ldots, b_{g} in $\pi_{1}\left(S_{g}\right)$. Then $\operatorname{Ker}\left(i_{*}: \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}\left(V_{g}\right)\right)=\mathrm{KB}_{g}$. Observe that the inclusion of S_{g} to the second copy of V_{g} is given by the composite

$$
s_{g} \xrightarrow{\varphi} \cong S_{g} \xrightarrow{i} V_{g} .
$$

Thus the intersecting kernel is given by

$$
\mathrm{KB}_{g} \cap \varphi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)
$$

and so the algebraic problem is how to determine the intersecting kernel

$$
\mathrm{KB}_{g} \cap \phi^{-1}\left(\mathrm{~KB}_{g}\right)=\left\langle b_{1}, \ldots, b_{g}\right\rangle^{N} \cap\left\langle\left(\phi^{-1}\left(b_{1}\right), \ldots, \phi^{-1}\left(b_{g}\right)\right\rangle^{N}\right.
$$

for any automorphism ϕ of $\pi=\pi_{1}\left(S_{g}\right)$. Since both KB_{g} and $\phi^{-1}\left(\mathrm{~KB}_{g}\right)$ are normal subgroups of π, the commutator subgroup $\left[\mathrm{KB}_{g}, \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right]$ is contained in the subgroup $\mathrm{KB}_{g} \cap \phi^{-1}\left(\mathrm{~KB}_{g}\right)$. Assume that the words $\phi^{-1}\left(b_{1}\right), \ldots, \phi^{-1}\left(b_{g}\right)$ are given. Then a set of generators for the commutator subgroup $\left[\mathrm{KB}_{g}, \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right]$ can be listed
and so the algebraic problem is reduced to how to determine the quotient group

$$
\begin{equation*}
\left(\mathrm{KB}_{g} \cap \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right] \tag{1-1}
\end{equation*}
$$

which measures how far the intersecting subgroup is from the commutator subgroup. Observe that the above group is abelian because the commutator subgroup

$$
\left[\mathrm{KB}_{g} \cap \phi^{-1}\left(\mathrm{~KB}_{g}\right), \mathrm{KB}_{g} \cap \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right] \subseteq\left[\mathrm{KB}_{g}, \phi^{-1}\left(\mathrm{~KB}_{g}\right)\right] .
$$

Our determination of the group given in Equation (1-1) is as follows. For a ring R, let

$$
R\left\{x_{1}, \ldots, x_{n}\right\}=\bigoplus_{j=1}^{n} R x_{j}=R^{\oplus n}
$$

be the direct sum, where $R x_{j}$ is a copy of R labeled by x_{j}. For a group G, let $\mathbb{Z}(G)$ be the group ring of G and let $\epsilon: \mathbb{Z}(G) \rightarrow \mathbb{Z}$ be the augmentation. Recall that a derivation $\partial: \mathbb{Z}(G) \rightarrow \mathbb{Z}(G)$ means a linear map such that $\partial(v w)=\partial(v) \epsilon(w)+v \partial(w)$. Let F_{n} be the free group of rank n with a basis a_{1}, \ldots, a_{n}. Then there is a unique derivation $\partial_{j}=\partial / \partial a_{j}: \mathbb{Z}\left(F_{n}\right) \rightarrow \mathbb{Z}\left(F_{n}\right)$ such that $\partial_{j}\left(a_{i}\right)=\delta_{i, j}$, where $\delta_{i, j}$ is the Kronecker δ. For a homomorphism $\theta: \mathbb{Z}\left(F_{n}\right) \rightarrow \mathbb{Z}(G)$ and an element $w \in \mathbb{Z}\left(F_{n}\right)$, let $\partial_{j}^{\theta}(w)=$ $\theta\left(\partial_{j}(w)\right)$ be the image of $\partial_{j}(w)$ in the group ring $\mathbb{Z}(G)$. If the homomorphism θ is clear, we simply write $\partial_{j}(w)$ for $\partial_{j}^{\theta}(w)$ as an element in $\mathbb{Z}(G)$.

Theorem 1.1 Let $M=V_{g} \cup_{\phi} V_{g}$ be a Heegaard splitting given by a diffeomorphism $\phi: S_{g} \rightarrow S_{g}$. Let

$$
\pi_{1}\left(S_{g}\right)=\left\langle a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

be the standard presentation of $\pi_{1}\left(S_{g}\right)$ and let $q: \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}\left(V_{g}\right)=F_{g}^{a}$ be the canonical quotient homomorphism. Then the following hold:
(1) The group $\pi_{1}(M)$ admits a presentation with generators a_{1}, \ldots, a_{g} and the relations given by $q\left(\phi_{*}\left(b_{j}\right)\right)=1$ for $1 \leq j \leq g$.
(2) Let $R=\mathbb{Z}\left(\pi_{1}(M)\right)$. Then there is an exact sequence of R-modules

$$
\begin{aligned}
\left(\mathrm{KB}_{g} \cap \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right] \hookrightarrow & R\left\{x_{1}, \ldots, x_{g}\right\} / J \xrightarrow{T^{\phi}} \\
& R\left\{y_{1}, \ldots, y_{g}\right\} \xrightarrow{\theta} R \xrightarrow{\epsilon} \mathbb{Z},
\end{aligned}
$$

where J is the R-submodule of $R\left\{x_{1}, \ldots, x_{g}\right\}$ generated by $\sum_{j=1}^{g}\left(a_{j}-1\right) x_{j}$, T^{ϕ} is a morphism of R-modules with $T^{\phi}\left(x_{i}\right)=\sum_{j=1}^{g} \partial_{j}\left(\phi_{*}\left(b_{i}\right)\right) y_{j}$, and θ is a morphism of R-modules with $\theta\left(y_{i}\right)=a_{i}-1$.

By this result, the computation of the group $\left(\mathrm{KB}_{g} \cap \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right]$ depends on the presentation of the fundamental group $\pi_{1}(M)$ induced by the automorphism ϕ_{*} on $\pi_{1}\left(S_{g}\right)$. Consider the Jacobian of the automorphism ϕ_{*} :

$$
\left(\begin{array}{ll}
\left(\partial\left(\phi_{*}\left(a_{i}\right)\right) / \partial a_{j}\right)_{g \times g} & \left(\partial\left(\phi_{*}\left(b_{i}\right)\right) / \partial a_{j}\right)_{g \times g} \\
\left(\partial\left(\phi_{*}\left(a_{i}\right)\right) / \partial b_{j}\right)_{g \times g} & \left(\partial\left(\phi_{*}\left(b_{i}\right)\right) / \partial b_{j}\right)_{g \times g}
\end{array}\right)_{2 g \times 2 g}
$$

over $\mathbb{Z}\left(\pi_{1}(M)\right)$. Then T^{ϕ} is determined by the $\mathbb{Z}\left(\pi_{1}(M)\right)$-linear transformation

$$
R\left\{x_{1}, \ldots, x_{g}\right\} \longrightarrow R\left\{y_{1}, \ldots, y_{g}\right\}
$$

given by the matrix

$$
\left(\frac{\partial\left(\phi_{*}\left(b_{i}\right)\right)}{\partial a_{j}}\right)_{g \times g} .
$$

A direct consequence of Theorem 1.1 is to give an algebraic criterion for testing the irreducibility of Heegaard splittings.

Corollary 1.2 (Irreducibility criterion of Heegaard splittings) Let $M=V_{g} \cup_{\phi} V_{g}$ be a Heegaard splitting given by a diffeomorphism $\phi: S_{g} \rightarrow S_{g}$. Let

$$
\pi_{1}\left(S_{g}\right)=\left\langle a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1\right\rangle
$$

be the standard presentation of $\pi_{1}\left(S_{g}\right)$. Let

$$
T^{\phi}: R\left\{x_{1}, \ldots, x_{g}\right\} / J \longrightarrow R\left\{y_{1}, \ldots, y_{g}\right\}
$$

be the linear transformation defined as above. Then M is irreducible if and only if T^{ϕ} is a monomorphism.

Proof By Brown and Loday [6, Corollary 3.4], we have

$$
\pi_{2}(M) \cong\left(\mathrm{KB}_{g} \cap \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right] .
$$

According to Milnor [15, Theorem 2] together with the positive solution to Poincaré conjecture (see Morgan and Tian [16]), M is irreducible if and only if $\pi_{2}(M)=0$. The assertion follows directly from Theorem 1.1.

Our next result concerns the intersecting subgroups of the connected sums of the Heegaard splittings. For our convenience, we also use ($M ; V, W ; S$) to denote a Heegaard splitting $V \cup_{S} W$ for M. For a Heegaard splitting $\mathcal{M}=(M ; V, W ; S)$, let $K(\mathcal{M})=\operatorname{Ker}\left(i_{*}: \pi_{1}(S) \rightarrow \pi_{1}(V)\right) \cap \operatorname{Ker}\left(j_{*}: \pi_{1}(S) \rightarrow \pi_{1}(W)\right)$, where $i: S \rightarrow V$ and $j: S \rightarrow W$ are the inclusions. Let $\mathcal{M}_{i}=\left(M_{i} ; V_{i}, W_{i} ; S_{i}\right)$ with $i=1,2$ be two Heegaard splittings. Then there is a natural way to define the connected sum
$\mathcal{M}=\mathcal{M}_{1} \#_{S^{2}} \mathcal{M}_{2}=(M ; V, W ; S)$ of the splittings \mathcal{M}_{1} and \mathcal{M}_{2} (See Section 2 for details). The simple close curve $C=S^{2} \cap S$ determines an element $[C]$ in $\pi_{1}(S)$. Let $G_{1} * G_{2}$ denote the free product of the groups G_{1} and G_{2}. For a subset $A=\left\{g_{\alpha}\right\}$ of a group G, let $\langle A\rangle^{N}$ or $\left\langle g_{\alpha}\right\rangle^{N}$ denote the normal closure generated by the elements g_{α} in A.

Theorem 1.3 Let $\mathcal{M}_{1}=\left(M_{1} ; V_{1}, W_{1} ; S_{1}\right), \mathcal{M}_{2}=\left(M_{2} ; V_{2}, W_{2} ; S_{2}\right)$ be two Heegaard splittings, and $\mathcal{M}=\mathcal{M}_{1} \#_{S^{2}} \mathcal{M}_{2}=(M ; V, W ; S)$ the connected sum of \mathcal{M}_{1} and \mathcal{M}_{2}. Then there is a short exact sequence of groups

$$
\{1\} \longrightarrow\langle[C]\rangle^{N} \longrightarrow K(\mathcal{M}) \longrightarrow K\left(\mathcal{M}_{1}\right) * K\left(\mathcal{M}_{2}\right) \longrightarrow\{1\}
$$

where C is the intersecting curve of the $2-$ sphere S^{2} and the Heegaard surface S.
The article is organized as follows. In Section 2, we review some basic properties of Heegaard splittings. The proof of Theorem 1.1 is given in Section 3. In Section 4, we give the proof of Theorem 1.3.

2 Preliminaries

In this section we review some of the definitions and results which will be used in the paper, and fix some notation.

2.1 Fundamental facts on Heegaard splittings - brief review

Let S_{g} be a closed, connected, oriented surface, and let Diff ${ }^{ \pm} S_{g}$ (Diff ${ }^{+} S_{g}$, resp.) be the groups of diffeomorphisms (orientation-preserving diffeomorphisms, resp.) of S_{g}. The mapping class group Γ_{g} (extended mapping class group $\Gamma_{g}^{ \pm}$, resp.) of S_{g} is the group Diff $^{+} S_{g}$ (Diff ${ }^{ \pm} S_{g}$, resp.) modulo those diffeomorphisms which are isotopic to the identity.

Let H_{g} be a handlebody of genus g, and S_{g} the boundary of H_{g} with induced orientation. The handlebody subgroup $\mathcal{H}_{g}^{ \pm} \subset \Gamma_{g}^{ \pm}$is the (nonnormal) subgroup of all mapping classes that have representatives that extend to diffeomorphisms of H_{g}.

Let $H_{g}^{\prime}=\tau\left(H_{g}\right)$ be a diffeomorphic image of H_{g} with $\tau(x)=x$ for all $x \in S_{g}=\partial H_{g}$. For an element $\phi \in \operatorname{Diff}^{ \pm} S_{g}, \phi$ defines a 3 -manifold M in the following way: $M=H_{g} \cup_{\phi} H_{g}^{\prime}=H_{g} \cup H_{g}^{\prime} / x \sim \phi(x)$, for all $x \in S_{g}$, ie M is obtained by gluing H_{g} and H_{g}^{\prime} together via a diffeomorphism $\phi: \partial H_{g} \rightarrow \partial H_{g}^{\prime}$. The surface $S_{g}=\partial H_{g}=\partial H_{g}^{\prime}$ embedded in M is called a Heegaard surface, and $H_{g} \cup_{S_{g}} H_{g}^{\prime}$ is called a Heegaard
splitting for M. The Heegaard splitting is also denoted by $\mathcal{M}=\left(M ; H_{g}, H_{g}^{\prime} ; S_{g} ; \phi\right)$. Clearly, the topological type of M depends only on the mapping class Φ of ϕ, so we sometimes use $H_{g} \cup_{\Phi} H_{g}^{\prime}$ to denote the Heegaard splitting.

It is a well-known fact that every closed, connected, orientable 3-manifold can be obtained from a Heegaard splitting (see for example Scharlemann [18] for a proof).

Heegaard splittings are not unique in general. Suppose M admits Heegaard splittings $H_{g} \cup_{\Phi_{1}} H_{g}^{\prime}$ and $H_{g} \cup_{\Phi_{2}} H_{g}^{\prime}$ with defining maps $\phi_{1}, \phi_{2} \in \operatorname{Diff}^{ \pm} S_{g}$. We say the two splittings are equivalent if the two splitting surfaces are isotopic, or equivalently, there exists a diffeomorphism $M \rightarrow M$ which takes H_{g} to H_{g}, H_{g}^{\prime} to H_{g}^{\prime}, and so S_{g} to S_{g}.

Proposition 2.1 The Heegaard splittings ($M ; H_{g}, H_{g}^{\prime} ; S_{g} ; \phi$) and ($M ; V_{g}, V_{g}^{\prime} ; F_{g} ; \varphi$) for M defined by $\phi, \varphi \in \operatorname{Diff}^{ \pm} S_{g}$ are equivalent if and only if φ is in the double coset $\mathcal{H}_{g}^{ \pm} \phi \mathcal{H}_{g}^{ \pm} \subset \operatorname{Diff}^{ \pm} S_{g}$.

Proof It is essentially due to Birman [2]. Suppose there exists a diffeomorphism $h: M \rightarrow M$ with $h\left(H_{g}\right)=H_{g}, h\left(H_{g}^{\prime}\right)=H_{g}^{\prime}$. Let $h_{0}=h\left|H_{g}, h_{0}^{\prime}=h\right| H_{g}^{\prime}, h_{1}=$ $h_{0} \mid \partial H_{g}$, and $h_{1}^{\prime}=h_{0}^{\prime} \mid \partial H_{g}^{\prime}$. In order for h to be well-defined on $\partial H_{g}=\partial H_{g}^{\prime}$, we have the following commutative diagram:

Thus $\phi \circ h_{1}^{\prime}=h_{1} \circ \varphi$, so $\varphi=\left(h_{1}\right)^{-1} \circ \phi \circ h_{1}^{\prime}$, where $\left(h_{1}\right)^{-1}, h_{1}^{\prime} \in \mathcal{H}_{g}^{ \pm}$, as required.
Conversely, if φ is in the double coset $\mathcal{H}_{g}^{ \pm} \phi \mathcal{H}_{g}^{ \pm}$, we can construct a diffeomorphism from M to M which takes H_{g} to H_{g} and H_{g}^{\prime} to H_{g}^{\prime}.

In the category of oriented manifolds and orientation-preserving diffeomorphisms, we have an analogue of the correspondent description (see Birman [2; 3]).

2.2 Intersecting kernels of Heegaard splittings

From now on, when we do not need to stress the genus of a surface or a handlebody, we will omit the symbol g.

Definition 2.2 Let $\mathcal{M}=\left(M ; H, H^{\prime} ; S ; \phi\right)$ be a Heegaard splitting for a closed orientable 3-manifold M. Let $i: S \hookrightarrow H$ and $i^{\prime}: S \hookrightarrow H^{\prime}$ be the inclusions, and $i_{*}: \pi_{1}(S) \rightarrow \pi_{1}(H), i_{*}^{\prime}: \pi_{1}(S) \rightarrow \pi_{1}\left(H^{\prime}\right)$ the induced homomorphisms. Then $\operatorname{Ker} i_{*} \cap \operatorname{Ker} i_{*}^{\prime}=\operatorname{Ker} i_{*} \cap \phi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right)$ is called the intersecting kernel of the Heegaard splitting \mathcal{M}, and is denoted by $K(\mathcal{M})$.

Clearly $K(\mathcal{M})$ is a (normal) subgroup of $\pi_{1}(S)$. It is a well-known fact that every subgroup of $\pi_{1}(S)$ with finite index is an Fuchsian-group, and every subgroup of $\pi_{1}(S)$ with infinite index is free (refer to [14, Proposition 7.4]).

Example 2.3 Let $\mathcal{M}=\left(S^{3} ; H_{1}, H_{1}^{\prime} ; T\right)$ be a genus 1 Heegaard splitting for S^{3}. Let a, b be two essential simple closed curves on the torus T such that a bounds a disk in V, b bounds a disk in W, and a and b intersect in a single point P, which we choose as a base point. Then $\{[a],[b] \mid\}$ is a basis for the free abelian group $\pi_{1}(T)$. Clearly,

$$
\begin{aligned}
\operatorname{Ker}\left(i_{*}: \pi_{1}(T) \rightarrow \pi_{1}(V)\right) & =\{n[a]: n \in \mathbb{Z}\}, \\
\operatorname{Ker}\left(j_{*}: \pi_{1}(T) \rightarrow \pi_{1}(W)\right) & =\{n[b]: n \in \mathbb{Z}\} .
\end{aligned}
$$

Thus $K(\mathcal{M})=\{0\}$.
Similarly, for a genus 1 Heegaard splitting \mathcal{M}_{1} for a lens space $L(p, q)$ and \mathcal{M}_{2} for $S^{2} \times S^{1}$, we have $K\left(\mathcal{M}_{1}\right)=\{0\}$ and $K\left(\mathcal{M}_{2}\right) \cong \mathbb{Z}$.

Let V be a handlebody of genus $n \geq 2, \partial V=S, i: S \hookrightarrow V$ the inclusion, and $i_{*}: \pi_{1}(S) \rightarrow \pi_{1}(V)$ the induced homomorphism. Let $\left\{a_{i}, b_{i}, 1 \leq i \leq n\right\}$ be a canonical system of oriented simple closed curves on S, that is, $\left\{b_{i}, 1 \leq i \leq n\right\}$ is a collection of pairwise disjoint curves which bound a collection of n pairwise essential disks in V, the manifold obtained by cutting V open along the disks is a 3 -ball, and $\left\{a_{i}, 1 \leq i \leq n\right\}$ is a collection of pairwise disjoint curves with $a_{i} \cap b_{j}=\varnothing$ if $i \neq j$ and $a_{i} \cap b_{j}$ a single point if $i=j$, for each pair of i, j. Choose a base point P in $S-\left\{a_{i}, b_{i}, 1 \leq i \leq n\right\}$, and by ambiguity still use $\left[a_{i}\right],\left[b_{i}\right]$ to denote the path class of a_{i}, b_{i} in $\pi_{1}(S, P)=\pi_{1}(P), 1 \leq i \leq n$. Then $\operatorname{Ker} i_{*}=\left\langle\left[b_{i}\right], 1 \leq i \leq n\right\rangle^{N}$, the normal closure of $\left\{\left[b_{i}\right], 1 \leq i \leq n\right\}$ in $\pi_{1}(S)$, and the quotient group $\pi_{1}(S) / \operatorname{Ker} i_{*}$ is a free group of rank n with a basis $\left\{\left[a_{i}\right], 1 \leq i \leq n\right\}$.

The next proposition shows that for a Heegaard splitting \mathcal{M} of genus $\geq 2, K(\mathcal{M})$ is never trivial.

Proposition 2.4 Let $V \cup_{S} W$ be a Heegaard splitting of genus ≥ 2 for M. Let $i: S \hookrightarrow V, j: S \hookrightarrow W$ be the inclusions and $i_{*}: \pi_{1}(S) \rightarrow \pi_{1}(V), j_{*}: \pi_{1}(S) \rightarrow \pi_{1}(W)$
the induced homomorphisms. Then for any $\alpha \in \operatorname{Ker} i_{*}, \beta \in \operatorname{Ker} j_{*}$, we have $[\alpha, \beta] \in$ $K\left(V \cup_{S} W\right)$, where $[\alpha, \beta]$ is the commutator of α and β in $\pi_{1}(S)$. In the other words, $\left[\operatorname{Ker} i_{*}, \operatorname{Ker} j_{*}\right] \triangleleft K\left(V \cup_{S} W\right)$.

Proof By $i_{*}(\alpha)=1, i_{*}([\alpha, \beta])=i_{*}\left(\alpha \beta \alpha^{-1} \beta^{-1}\right)=i_{*}(\alpha) i_{*}(\beta) i_{*}\left(\alpha^{-1}\right) i_{*}\left(\beta^{-1}\right)=$ $i_{*}(\beta) i_{*}(\beta)^{-1}=1$. Similarly, $j_{*}([\alpha, \beta])=1$. Therefore, $[\alpha, \beta] \in \operatorname{Ker} i_{*} \cap \operatorname{Ker} j_{*}=$ $K\left(V \cup_{S} W\right)$.

Proposition 2.5 Suppose that two Heegaard splittings $\mathcal{M}_{1}=\left(M ; H_{g}, H_{g}^{\prime} ; S_{g} ; \phi\right)$ and $\mathcal{M}_{2}=\left(M ; V_{g}, V_{g}^{\prime} ; F_{g} ; \varphi\right)$ for M defined by $\phi, \varphi \in \mathrm{Diff}^{ \pm} S_{g}$ are equivalent. Then there exists a $f \in \mathcal{H}_{g}^{ \pm}$such that $f_{*}\left(K\left(\mathcal{M}_{1}\right)\right)=K\left(\mathcal{M}_{2}\right)$. In particular, the intersecting kernel is an invariant of Heegaard splittings.

Proof Use the notation as before. By assumption, there exist $h, h^{\prime} \in \mathcal{H}_{g}^{ \pm}$such that $\varphi=h \circ \phi \circ h^{\prime}$. By definition,

$$
\begin{aligned}
K\left(\mathcal{M}_{1}\right) & =\operatorname{Ker} i_{*} \cap \phi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
K\left(\mathcal{M}_{2}\right) & =\operatorname{Ker} i_{*} \cap \varphi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
K\left(\mathcal{M}_{2}\right) & =\operatorname{Ker} i_{*} \cap \varphi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
& =\operatorname{Ker} i_{*} \cap\left(h \circ \phi \circ h^{\prime}\right)_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
& =\operatorname{Ker} i_{*} \cap h_{*}^{-1} \circ \phi_{*}^{-1} \circ h_{*}^{-1}\left(\operatorname{Ker} i_{*}\right)
\end{aligned}
$$

Thus

Note that $h, h^{\prime} \in \mathcal{H}_{g}^{ \pm}$, so $h_{*}\left(\operatorname{Ker} i_{*}\right)=\operatorname{Ker} i_{*}$, and $h_{*}^{\prime}\left(\operatorname{Ker} i_{*}\right)=\operatorname{Ker} i_{*}$. Hence

$$
\begin{aligned}
K\left(\mathcal{M}_{2}\right) & =\operatorname{Ker} i_{*} \cap h_{*}^{\prime-1} \circ \phi_{*}^{-1} \circ h_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
& =\operatorname{Ker} i_{*} \cap h_{*}^{\prime-1} \circ \phi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right) \\
& =h_{*}^{\prime-1}\left(h_{*}^{\prime}\left(\operatorname{Ker} i_{*}\right) \cap \phi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right)\right) \\
& =h_{*}^{\prime-1}\left(\operatorname{Ker} i_{*} \cap \phi_{*}^{-1}\left(\operatorname{Ker} i_{*}\right)\right)
\end{aligned}
$$

Set $f=h^{\prime-1}$. The conclusion follows.

3 Algebraic determination on intersecting kernels and the proof of Theorem 1.1

Let $\pi=\pi_{1}\left(S_{g}\right)$. Recall π admits a presentation with generators $a_{1}, b_{1}, a_{2}, b_{2}, \ldots$, a_{g}, b_{g} and a single relation $\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \cdots\left[a_{g}, b_{g}\right]=1$, where the commutator $[a, b]=a b a^{-1} b^{-1}$. Let KB_{g} be the normal subgroup of π generated by $b_{1}, b_{2}, \ldots, b_{g}$
and let $\phi: \pi \rightarrow \pi$ be an automorphism. Then there is a commutative diagram of short exact sequences of groups

where q and q_{ϕ} are quotient homomorphisms and the top-right square is a pushout diagram. Since KB_{g} and $\phi\left(\mathrm{KB}_{g}\right)$ are normal subgroups of π, the commutator subgroup $\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right.$] is a normal subgroup of π with

$$
\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right] \subseteq \mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right) .
$$

Modulo the subgroup [$\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)$], Diagram (3-1) induces the following commutative diagram

For any group G, let $G^{\text {ab }}=H_{1}(G)$ denote the abelianization of G.

Proposition 3.1 There is a short splitting exact sequence of groups
$\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right] \hookrightarrow\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}} \longrightarrow q_{\phi}\left(\mathrm{KB}_{g}\right)^{\mathrm{ab}}$.

Proof By applying Hopf Exact Sequence to the short exact sequence in the left column of Diagram (3-2), there is an exact sequence

$$
\begin{align*}
& H_{2}\left(\mathrm{~KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right) \rightarrow H_{2}\left(q_{\phi}\left(\mathrm{KB}_{g}\right)\right) \rightarrow R \rightarrow \tag{3-3}\\
& H_{1}\left(\mathrm{~KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right) \rightarrow H_{1}\left(q_{\phi}\left(\mathrm{KB}_{g}\right)\right) \rightarrow 0,
\end{align*}
$$

where R is the quotient group of $\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]$ by the commutator subgroup

$$
\left[\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right],\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right] .
$$

Since

$$
\left.\left[\mathrm{KB}_{g}, \mathrm{~KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right)\right] \subseteq\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right],
$$

the commutator subgroup $\left[\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right],\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right]$ is trivial and so

$$
R=\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right] .
$$

From the commutative diagram of short exact sequences of groups

the group $\pi / \phi\left(\mathrm{KB}_{g}\right)$ is isomorphic to $F\left(a_{1}, \ldots, a_{g}\right)$ and so $\pi / \phi\left(\mathrm{KB}_{g}\right)$ is a free group. It follows that the subgroup $q_{\phi}\left(\mathrm{KB}_{g}\right)$ is a free group. Thus

$$
H_{2}\left(q_{\phi}\left(\mathrm{KB}_{g}\right)\right)=0
$$

and so the exact sequence in Equation (3-3) induces a short exact sequence of abelian groups
$\left(\mathrm{KB}_{g} \cap \phi\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right] \hookrightarrow H_{1}\left(\mathrm{~KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right) \rightarrow H_{1}\left(q_{\phi}\left(\mathrm{KB}_{g}\right)\right)$.
Since $q_{\phi}\left(\mathrm{KB}_{g}\right)$ is a free group, $H_{1}\left(q_{\phi}\left(\mathrm{KB}_{g}\right)\right)$ is a free abelian group. Thus the above short exact sequence splits off and hence the result.

Now we are going to determine $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}$ and $q_{\phi}\left(\mathrm{KB}_{g}\right)^{\mathrm{ab}}$. Let

$$
N \subset G \longrightarrow G^{\prime}
$$

be a short exact sequence. Consider the (left) conjugation action of G on N given by $g \cdot x=g x g^{-1}$ for $g \in G$ and $x \in N$. Then $N^{\text {ab }}$ is a (left) module over the group algebra $\mathbb{Z}(G)$. Observe that $g^{-1} x g \equiv x \bmod [N, N]$ for $g, x \in N$. The $\mathbb{Z}(G)$-action on N^{ab} induces a $\mathbb{Z}\left(G^{\prime}\right)$-action on N^{ab}. From the short exact sequence $\mathrm{KB}_{g} \hookrightarrow \pi \longrightarrow F\left(a_{1}, \ldots, a_{g}\right)$, the abelian group $\mathrm{KB}_{g}^{\text {ab }}$ is a (left) module over $\mathbb{Z}(\pi)$. In particular, $\mathrm{KB}_{g}^{\mathrm{ab}}$ is a (left) module over $\mathbb{Z}\left(\phi\left(\mathrm{KB}_{g}\right)\right)$ because KB_{g} is a subgroup of π.

Proposition 3.2 There is an isomorphism of abelian groups

$$
\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}} \cong \mathbb{Z} \otimes_{\mathbb{Z}\left(\phi\left(\mathrm{KB}_{g}\right)\right.} \mathrm{KB}_{g}^{\mathrm{ab}} .
$$

Proof Let $p: \mathrm{KB}_{g} \rightarrow\left(\mathrm{~KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}$ be the quotient map. Since

$$
\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}
$$

is abelian, the homomorphism p factors through the quotient group $\mathrm{KB}_{g}^{\text {ab }}$. For $y \in$ $\phi\left(\mathrm{KB}_{g}\right)$ and $x \in \mathrm{~KB}_{g}$, the conjugation

$$
y x y^{-1} \equiv x
$$

in $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}$ because $[y, x]=y x y^{-1} x^{-1} \in\left[\mathrm{~KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]$. Thus the quotient homomorphism p factors through $\mathbb{Z} \otimes_{\mathbb{Z}\left(\phi\left(\mathrm{KB}_{g}\right)\right.} \mathrm{KB}_{g}^{\mathrm{ab}}$. Similarly the quotient homomorphism

$$
\mathrm{KB}_{g} \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}\left(\phi\left(\mathrm{KB}_{g}\right)\right)} \mathrm{KB}_{g}^{\mathrm{ab}} .
$$

factors through the quotient $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}$. The assertion follows.

Let $F_{2 g}^{a, b}$ be the free group of rank $2 g$ generated by $a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{g}, b_{g}$ and let F_{g}^{a} be the free group of rank g generated by $a_{1}, a_{2}, \ldots, a_{g}$. Let

$$
p: F_{2 g}^{a, b} \longrightarrow F_{g}^{a}
$$

be the group homomorphism such that $p\left(a_{j}\right)=a_{j}$ and $p\left(b_{j}\right)=1$ for $1 \leq j \leq g$. Let $\widetilde{\mathrm{KB}}_{g}$ be the kernel of p. Clearly $\widetilde{\mathrm{KB}}_{g}$ is the normal closure of b_{1}, \ldots, b_{g} in $F_{2 g}^{a, b}$.

Lemma 3.3 For each $g, \widetilde{\mathrm{~KB}_{g}}{ }^{\text {ab }}$ is a free module over $\mathbb{Z}\left(F_{g}^{a}\right)$ with a basis $\left\{b_{1}, b_{2}, \ldots, b_{g}\right\}$.

Proof From the short exact sequence,

$$
\widetilde{\mathrm{KB}}_{g} \hookrightarrow F_{2 g}^{a, b} \longrightarrow F_{g}^{a},
$$

the free group $\widetilde{\mathrm{KB}}_{g}$ has a basis $\left\{w b_{j} w^{-1} \mid w \in F_{g}^{a} 1 \leq j \leq g\right\}$ and hence the result.

Lemma 3.4 Let J be the sub- $\mathbb{Z}\left(F_{g}^{a}\right)$-module of $\widetilde{\mathrm{KB}_{g}^{a b}}$ generated by the element

$$
\begin{equation*}
\left(a_{1}-1\right) \cdot b_{1}+\left(a_{2}-1\right) \cdot b_{2}+\cdots+\left(a_{g}-1\right) \cdot b_{g} . \tag{3-4}
\end{equation*}
$$

Then there is an isomorphism of $\mathbb{Z}\left(F_{g}^{a}\right)$-modules

$$
\widetilde{\mathrm{KB}}_{g}^{\mathrm{ab}} / J \cong \mathrm{~KB}_{g}^{\mathrm{ab}} .
$$

Proof Consider the commutative diagram of short exact sequences of groups

The group KB_{g} is the quotient group of $\widetilde{\mathrm{KB}}_{g}$ by the normal closure generated by the element

$$
C=\left[a_{1}, b_{1}\right]\left[a_{2}, b_{2}\right] \cdots\left[a_{g}, b_{g}\right]=\left(a_{1} b_{1} a_{1}^{-1}\right) b_{1}^{-1}\left(a_{2} b_{2} a_{2}^{-1}\right) b_{2}^{-1} \cdots\left(a_{g} b_{g} a_{g}^{-1}\right) b_{g}^{-1} .
$$

Let C^{\prime} be the image of C in $\widetilde{\mathrm{KB}}_{g}^{\text {ab }}$. Then

$$
\begin{aligned}
C^{\prime} & =\left(a_{1} \cdot b_{1}-b_{1}\right)+\left(a_{2} \cdot b_{2}-b_{2}\right)+\cdots+\left(a_{g} \cdot b_{g}-b_{g}\right) \\
& =\left(a_{1}-1\right) \cdot b_{1}+\left(a_{2}-1\right) \cdot b_{2}+\cdots+\left(a_{g}-1\right) \cdot b_{g}
\end{aligned}
$$

in $\widetilde{\mathrm{KB}_{g}^{\mathrm{ab}}}$. Let $p: \widetilde{\mathrm{KB}}_{g}^{\mathrm{ab}} \rightarrow \mathrm{KB}_{g}^{\mathrm{ab}}$ be the quotient homomorphism. By the above commutative diagram of short exact sequences, p is a homomorphism of (right) $\mathbb{Z}\left(F_{g}^{a}\right)$-modules with

$$
p\left(C^{\prime}\right)=0
$$

It follows that the quotient homomorphism $p: \widetilde{\mathrm{KB}_{g}^{\mathrm{ab}}} \rightarrow \mathrm{KB}_{g}^{\mathrm{ab}}$ factors through $\widetilde{\mathrm{KB}_{g}^{\mathrm{ab}}} / J$. Let

$$
\bar{p}: \widetilde{\mathrm{KB}_{g}^{\mathrm{ab}}} / J \longrightarrow \mathrm{~KB}_{g}^{\mathrm{ab}}
$$

be the resulting homomorphism of (left) $\mathbb{Z}\left(F_{g}^{a}\right)$-modules.
Now consider the quotient homomorphism

$$
p^{\prime}: \widetilde{\mathrm{KB}}_{g} \longrightarrow \widetilde{\mathrm{~KB}}_{g}^{\mathrm{ab}} \longrightarrow \widetilde{\mathrm{~KB}}_{g}^{\mathrm{ab}} / J .
$$

Since $p^{\prime}(C)=0$, the group homomorphism p^{\prime} factors through the quotient group $\mathrm{KB}_{g}=\widetilde{\mathrm{KB}}_{g} /\langle C\rangle^{N}$. Moreover, since $\widetilde{\mathrm{KB}}_{g}^{\text {ab }} / J$ is abelian, the resulting homomorphism $\mathrm{KB}_{g} \rightarrow \widetilde{\mathrm{~KB}}_{g}^{\mathrm{ab}} / J$ factors through the quotient group $\mathrm{KB}_{g}^{\mathrm{ab}}$ which gives the inverse of \bar{p}. The proof is finished.

Let \hat{a}_{j} denote the image of a_{j} in $\hat{\pi}$ under the quotient homomorphism $F_{g}^{a} \rightarrow \hat{\pi}$. Since the conjugation action of the subgroup $\phi\left(\mathrm{KB}_{g}\right)$ of π on $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\text {ab }}$ is trivial, the conjugation action of $\pi\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\text {ab }}$ induces an action of $\hat{\pi}$ and so $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\text {ab }}$ is a module over $\mathbb{Z}(\hat{\pi})$.

Proposition 3.5 As a $\mathbb{Z}(\hat{\pi})$-module, $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\text {ab }}$ admits a presentation that is generated by letters $b_{1}, b_{2}, \ldots, b_{g}$ with the single defining relations given by the equation

$$
\sum_{j=1}^{g}\left(\hat{a}_{j}-1\right) \cdot b_{j}=0 .
$$

Proof Consider the quotient homomorphism $F_{2 g}^{a, b} \rightarrow \pi$. By Lemma 3.3,

$$
\widetilde{\mathrm{KB}}_{g}^{\mathrm{ab}}=\mathbb{Z}\left(F_{g}^{a}\right) \otimes \mathbb{Z}\left\{b_{1}, b_{2}, \ldots, b_{g}\right\}
$$

By Proposition 3.2,

$$
\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}} \cong \mathbb{Z} \otimes_{\mathbb{Z}\left(\phi\left(\mathrm{KB}_{g}\right)\right)} \mathrm{KB}_{g}^{\mathrm{ab}}=\mathbb{Z} \otimes_{\mathbb{Z}\left(q\left(\phi\left(\mathrm{~KB}_{g}\right)\right)\right)} \mathrm{KB}_{g}^{\mathrm{ab}}
$$

as modules over $\mathbb{Z}\left(F_{g}^{a}\right)$. Together with Lemma 3.4, $\left(\mathrm{KB}_{g} /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\text {ab }}$ is the quotient left $\mathbb{Z}\left(F_{g}^{a}\right)$-module of $\widetilde{\mathrm{KB}}_{g}^{\text {ab }}$ modulo the following relations:
(1) The action of the subgroup $q\left(\phi\left(\mathrm{~KB}_{g}\right)\right)$ becomes trivial.
(2) The element $C^{\prime}=\sum_{j=1}^{g}\left(a_{j}-1\right) \cdot b_{j}=0$.

By taking the first type relations, we obtain

$$
\begin{aligned}
\mathbb{Z} \otimes_{\mathbb{Z}\left(q\left(\phi\left(\mathrm{~KB}_{g}\right)\right)\right)} \widetilde{\mathrm{KB}_{g}^{\mathrm{ab}}} & \cong \mathbb{Z} \otimes_{\mathbb{Z}\left(q\left(\phi\left(\mathrm{~KB}_{g}\right)\right)\right)}\left(\mathbb{Z}\left(F_{g}^{a}\right) \otimes \mathbb{Z}\left\{b_{1}, b_{2}, \ldots, b_{g}\right\}\right) \\
& \cong \mathbb{Z}(\hat{\pi}) \otimes \mathbb{Z}\left\{b_{1}, b_{2}, \ldots, b_{g}\right\}
\end{aligned}
$$

because $\hat{\pi}=F_{g}^{a} / q\left(\phi\left(\mathrm{~KB}_{g}\right)\right)$. The second type relation gives the equation in the statement and hence the result.

The following lemma is a well known fact; see Brown [5, Proposition II 5.4]. For readers' convenience, we include a proof here.

Lemma 3.6 Let $N \hookrightarrow F \longrightarrow G$ be a short exact sequence of groups such that F is a free group. Then there is an exact sequence of modules over $\mathbb{Z}(G)$

$$
0 \longrightarrow N^{\mathrm{ab}} \longrightarrow \mathbb{Z}(G) \otimes F^{\mathrm{ab}} \longrightarrow \mathbb{Z}(G) \xrightarrow{\epsilon} \mathbb{Z},
$$

where ϵ is the augmentation and $\mathbb{Z}(G)$-action on $N^{\text {ab }}$ is induced by the conjugation action of G on N^{ab}.

Proof Let $I G=\operatorname{Ker}(\epsilon: \mathbb{Z}(G) \rightarrow \mathbb{Z})$ be the augmentation ideal. Since F is a free group, its classifying space $B F \simeq \Sigma X$ for a pointed set X (as a discrete topological space), where each nonbasepoint $x_{\alpha} \in X$ determines a loop in ΣX and $F=\pi_{1}(\Sigma X)$ has a basis $\left\{x_{\alpha} \mid x_{\alpha}\right.$ nonbasepoint in $\left.X\right\}$. Let $V=\mathbb{Z}\left\{x_{\alpha} \mid x_{\alpha}\right.$ nonbasepoint in $\left.X\right\}$. From the short exact sequence of groups

$$
N \hookrightarrow F \longrightarrow G,
$$

there is a principal G-bundle

$$
G \hookrightarrow B N \xrightarrow{p} \Sigma X .
$$

Let $C_{+} X=\operatorname{IM}\left([0,1 / 2] \times X \rightarrow \Sigma X=S^{1} \wedge X\right)$ and $C_{-} X=\operatorname{IM}([1 / 2,1] \times X \rightarrow$ $\left.\Sigma X=S^{1} \wedge X\right)$. Then the restricted bundles

$$
G \subset p^{-1}\left(C_{+} X\right) \xrightarrow{p \mid} C_{+} X \quad \text { and } \quad G \subset p^{-1}\left(C_{-} X\right) \xrightarrow{p \mid} C_{-} X
$$

are trivial bundles because the cones $C_{+} X$ and $C_{-} X$ are contractible. It follows that

$$
p^{-1}\left(C_{+} X\right) \cong G \times C_{+} X \quad \text { and } \quad p^{-1}\left(C_{-} X\right) \cong G \times C_{-} X
$$

with $B N=p^{-1}\left(C_{+} X\right) \cup p^{-1}\left(C_{-} X\right)$ and $p^{-1}\left(C_{+} X\right) \cap p^{-1}\left(C_{-} X\right)=G \times X$. Thus there is a cofibre sequence of G-spaces

$$
G \simeq G \times C_{+} X \hookrightarrow B N \longrightarrow B N / p^{-1}\left(C_{+} X\right) \cong\left(G \times C_{-} X\right) /(G \times X) \cong G \rtimes \Sigma X
$$

By applying the homology to the above cofibre sequence, there is a short exact sequence of $\mathbb{Z}(G)$-modules

$$
\begin{equation*}
H_{1}(B N)=N^{\mathrm{ab}} \longleftrightarrow H_{1}(G \rtimes \Sigma X)=\mathbb{Z}(G) \otimes V \xrightarrow{\partial} \bar{H}_{0}(G) \cong I G . \tag{3-5}
\end{equation*}
$$

For each nonbasepoint $x_{\alpha} \in X$, the corresponding loop in $\Sigma X=\bigvee_{\alpha} S_{\alpha}^{1}$ lifts to a path $\tilde{\lambda}:[0,1] \rightarrow B N$ such that $\tilde{\lambda}(0)=*$. Then $\tilde{\lambda}(1)$ defines an element in G. Regard x_{α} as an element in $F=\pi_{1}(\Sigma X)$. By applying the singular chain complexes to the above cofibre sequence, $\partial\left(x_{\alpha}\right)=\hat{x}_{\alpha}-1$, where \hat{x}_{α} is the image of x_{α} in G under the quotient homomorphism $F \rightarrow G$.

To see that the $\mathbb{Z}(G)$-module structure in Equation (3-5) coincides with the conjugation action of $\mathbb{Z}(G)$ on N^{ab}, let K be the kernel of $I F \rightarrow I G$. Then K is the (left) ideal
of $\mathbb{Z}(F)$ generated by $I N$. Then there is a commutative diagram

where the rows are exact. Now the composite

$$
I N \hookrightarrow K \longrightarrow K /(K \cdot V)=K /(K \cdot I F)
$$

is an epimorphism as K is the left ideal generated by $I N$. Moreover the above composite factors through $I N / I^{2} N$ because $I^{2} N=I N \cdot I N \subseteq K \cdot I F$. Thus there is a commutative diagram

From Equation (3-5), the resulting homomorphism $N^{\mathrm{ab}} \rightarrow K /(K \cdot V)$ is an isomorphism. Now let $x \in N$ and $y \in F$. In the group algebra $\mathbb{Z}(F)$, write $x=1+\bar{x}$ and $y=1+\bar{y}$ with $\bar{x} \in I N$ and $\bar{y} \in I F$. Then, in $I F$,

$$
\begin{aligned}
y x y^{-1}-1 & =\left(y(1+\bar{x}) y^{-1}-1\right. \\
& =y \bar{x}\left(1+\overline{y^{-1}}\right) \\
& =y \cdot \bar{x}+y \bar{x} \overline{y^{-1}}
\end{aligned}
$$

Since

$$
y \bar{x} \overline{y^{-1}} \in K \cdot I F
$$

we have

$$
\overline{y x y^{-1}} \equiv y \cdot \bar{x}
$$

in $K /(K \cdot V)=K /(K \cdot I F) \cong N^{\mathrm{ab}}$. It follows that the conjugation action of $\mathbb{Z}(G)$ on N^{ab} coincides with $\mathbb{Z}(G)$-module structure on $N^{\mathrm{ab}} \cong K /(K \cdot V)$ and hence the result.

Proof of Theorem 1.1 (1) Let $i: S_{g} \rightarrow V_{g}$ be the canonical inclusion. By Seifertvan Kampen Theorem, there is a push-out diagram of groups

and hence assertion (1).
(2) Let $\pi=\pi_{1}\left(S_{g}\right)$. Observe that the automorphism $\phi_{*}: \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}\left(S_{g}\right)$ sends $\phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)$ and KB_{g} to KB_{g} and $\phi_{*}\left(\mathrm{~KB}_{g}\right)$, respectively. There is an isomorphism

$$
\left(\mathrm{KB}_{g} \cap \phi_{*}^{-1}\left(\mathrm{~KB}_{g}\right)\right)\left[\mathrm{KB}_{g}, \phi_{*}^{-1} \mathrm{~KB}_{g}\right] \xrightarrow{\phi_{*}}\left(\mathrm{~KB}_{g} \cap \phi_{*}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi_{*}\left(\mathrm{~KB}_{g}\right)\right] .
$$

Consider Diagram (3-1). By applying Lemma 3.6 to the short exact sequence

$$
q\left(\phi_{*}\left(\mathrm{~KB}_{g}\right)\right) \hookrightarrow F_{g}^{a} \longrightarrow \hat{\pi}=\pi_{1}(M)
$$

in the right column of Diagram (3-1), there is an exact sequence of $\mathbb{Z}\left(\pi_{1}(M)\right)$-modules

$$
0 \longrightarrow q\left(\phi_{*}\left(\mathrm{~KB}_{g}\right)\right)^{\mathrm{ab}} \longrightarrow \mathbb{Z}\left(\pi_{1}(M)\right) \otimes\left(F_{g}^{a}\right)^{\mathrm{ab}} \xrightarrow{\theta} \mathbb{Z}\left(\pi_{1}(M)\right) \xrightarrow{\epsilon} \mathbb{Z} .
$$

Note that the group F_{g}^{a} is the free group with a basis $a_{1}, a_{2}, \ldots, a_{g}$. We have

$$
\mathbb{Z}\left(\pi_{1}(M)\right) \otimes\left(F_{g}^{a}\right)^{\mathrm{ab}}=\mathbb{Z}\left(\pi_{1}(M)\right)\left\{y_{1}, \ldots, y_{g}\right\}
$$

where y_{i} is the image of a_{i} in $\left(F_{g}^{a}\right)^{\mathrm{ab}}$. By the proof of Lemma 3.6, $\theta\left(y_{i}\right)=a_{i}-1$ as an element in $\mathbb{Z}\left(\pi_{1}(M)\right)$ for $1 \leq i \leq g$.

By Proposition 3.1, there is a short exact sequence
$\left(\mathrm{KB}_{g} \cap \phi_{*}\left(\mathrm{~KB}_{g}\right)\right) /\left[\mathrm{KB}_{g}, \phi_{*}\left(\mathrm{~KB}_{g}\right)\right] \hookrightarrow\left(\phi_{*}\left(\mathrm{~KB}_{g}\right) /\left[\mathrm{KB}_{g}, \phi_{*}\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}$

$$
\xrightarrow{f^{\prime}} \sim q\left(\phi_{*}\left(\mathrm{~KB}_{g}\right)\right)^{\mathrm{ab}} .
$$

According to Proposition 3.5,

$$
\left(\phi_{*}\left(\mathrm{~KB}_{g}\right) /\left[\mathrm{KB}_{g}, \phi\left(\mathrm{~KB}_{g}\right)\right]\right)^{\mathrm{ab}}=\mathbb{Z}\left(\pi_{1}(M)\right)\left\{x_{1}, \ldots, x_{g}\right\} / J,
$$

where x_{i} is the letter $\phi_{*}\left(b_{i}\right)$. By identifying the image $q_{\phi}\left(\mathrm{KB}_{g}\right)^{\text {ab }}$ as a subgroup of $\mathbb{Z}\left(\pi_{1}(M)\right) \otimes\left(F_{g}^{a}\right)^{\mathrm{ab}}=\mathbb{Z}\left(\pi_{1}(M)\right)\left\{y_{1}, \ldots, y_{g}\right\}, f^{\prime}\left(x_{i}\right)$ is the image of $q\left(\phi_{*}\left(b_{i}\right)\right)-1 \in$ $I F_{g}^{a}$ in its quotient group $\mathbb{Z}\left(\pi_{1}(M)\right) \otimes\left(F_{g}^{a}\right)^{\mathrm{ab}}$. From the fundamental theorem of free calculus,

$$
q\left(\phi_{*}\left(b_{i}\right)\right)-1=\sum_{j=1}^{g} \frac{\partial q\left(\phi_{*}\left(b_{i}\right)\right)}{\partial a_{j}}\left(a_{j}-1\right) \in I F_{g}^{a}
$$

Thus f^{\prime} is the same as the $\mathbb{Z}\left(\pi_{1}(M)\right)$-morphism

$$
T^{\phi}: \mathbb{Z}\left(\pi_{1}(M)\right)\left\{x_{1}, \ldots, x_{g}\right\} / J \longrightarrow \mathbb{Z}\left(\pi_{1}(M)\right)\left\{y_{1}, \ldots, y_{g}\right\}
$$

with $T^{\phi}\left(x_{i}\right)=\sum_{j=1}^{g} \partial_{j}\left(\phi_{*}\left(b_{i}\right)\right) y_{j}$. The proof is finished.

4 Intersecting kernel of the connected sum of Heegaard splittings and the proof of Theorem 1.3

A Heegaard splitting $\mathcal{M}=(M ; V, W ; S)$ is reducible if there exist essential disks $D \subset V$ and $E \subset W$ with $\partial D=\partial E$.

It is a well-known result by Haken (see Jaco [11]) that any Heegaard splitting of a reducible $3-$ manifold is reducible.

Proposition 4.1 A Heegaard splitting $\mathcal{M}=(M ; V, W ; S)$ is reducible if and only if there exists an essential simple closed curve C in S such that $[C] \in K(\mathcal{M})$.

Proof One direction follows from the definition, the other direction follows from Dehn's Lemma (refer to Hempel [9] or Jaco [11]).

Let $\mathcal{M}_{1}=\left(M_{1} ; V_{1}, W_{1} ; S_{1}\right), \mathcal{M}_{2}=\left(M_{2} ; V_{2}, W_{2} ; S_{2}\right)$ be two Heegaard splittings with $M_{1}=V_{1} \cup_{S_{1}} W_{1}, M_{2}=V_{2} \cup_{S_{2}} W_{2}$. Define the connected sum $\mathcal{M}_{1} \# \mathcal{M}_{2}$ of \mathcal{M}_{1} and \mathcal{M}_{2} in a natural way as follows: take a small 3-ball B_{i} in M_{i} such that $B_{i} \cap S_{i}$ is a properly embedded disk in $B_{i}, i=1,2$. Let $h: \partial B_{1} \rightarrow \partial B_{2}$ be a homeomorphism which takes the disk $D_{1}=\left(\partial B_{1}\right) \cap V_{1}$ to the disk $D_{2}=\left(\partial B_{2}\right) \cap V_{2}$ and $E_{1}=\left(\partial B_{1}\right) \cap W_{1}$ to $E_{2}=\left(\partial B_{2}\right) \cap W_{2}$. Thus when we set $V_{1}^{\prime}=\overline{V_{1}-B_{1}}, W_{1}^{\prime}=\overline{W_{1}-B_{1}}, S_{1}^{\prime}=V_{1}^{\prime} \cap W_{1}^{\prime}$, and $V_{2}^{\prime}=\overline{V_{2}-B_{2}}, W_{2}^{\prime}=\overline{W_{2}-B_{2}}, S_{2}^{\prime}=V_{2}^{\prime} \cap W_{2}^{\prime}$, we have $V=V_{1}^{\prime} \cup_{D_{1}=D_{2}} V_{2}^{\prime}$, $W=W_{1}^{\prime} \cup_{E_{1}=E_{2}} W_{2}^{\prime}$, and $S=\overline{\left(S_{1}-B_{1} \cap S_{1}\right)} \cup \overline{\left(S_{2}-B_{2} \cap S_{2}\right)}=S_{1} \# S_{2}$. Then we have a Heegaard splitting $\left(M_{1} \# M_{2} ; V, W ; S\right)$, which is called the connected sum of \mathcal{M}_{1} and \mathcal{M}_{2} and is denoted by $\mathcal{M}_{1} \# \mathcal{M}_{2}$.

Set $C=\partial S_{1}^{\prime}=\partial S_{2}^{\prime}$. Then it is clear that $[C] \in K\left(\mathcal{M}_{1} \# \mathcal{M}_{2}\right)$.
Remark The following construction shows that once there exists an essential separating simple closed curve $C \subset S$ with $[C] \in K(M ; V, W ; S)$, then there exist infinitely many such curves in S.

Construction [12] Use the notation as above. Choose a pair of parallel essential disks Δ_{1}, Δ_{2} in V_{1}^{\prime}, such that $\Delta_{i} \cap S_{1}^{\prime}=\partial \Delta_{i} \cap S_{1}^{\prime}=d_{i}$ and $\Delta_{i} \cap D=\partial \Delta_{i} \cap D=d_{i}^{\prime}$ are two arcs in $\partial \Delta_{i}$, and $\partial \Delta_{i}=d_{i} \cup d_{i}^{\prime}, i=1,2$. Denote $\partial d_{i}=\partial d_{i}^{\prime}=\left\{p_{i 1}, p_{i 2}\right\}$,
$i=1,2$. Similarly, choose a pair of parallel essential disks Σ_{1}, Σ_{2} in W_{2}^{\prime}, such that $\Sigma_{i} \cap S_{2}^{\prime}=\partial \Sigma_{i} \cap S_{2}^{\prime}=e_{i}$ and $\Sigma_{i} \cap E=\partial \Sigma_{i} \cap E=e_{i}^{\prime}$ are two arcs in $\partial \Sigma_{i}$, and $\partial \Sigma_{i}=e_{i} \cup e_{i}^{\prime}, i=1,2$. Furthermore, assume $\partial e_{i}=\partial e_{i}^{\prime}=\left\{p_{1 i}, p_{2 i}\right\}, i=1,2$; see Figure 1 below.

Figure 1: From C with $[C] \in K(K ; V, W ; S)$ to get C^{\prime}
Let $C^{\prime}=d_{1} \cup e_{1} \cup d_{2} \cup e_{2}$, then C^{\prime} is a simple closed curve on S. It is easy to see that C^{\prime} is essential and separating on S. Since e_{1} and e_{2} are parallel on S_{2}^{\prime}, we can find a proper disk Σ^{\prime} in V_{2}^{\prime} such that $\partial \Sigma^{\prime}=d_{1}^{\prime} \cup e_{1} \cup d_{2}^{\prime} \cup e_{2}$. Thus C^{\prime} bounds a disk $\Delta_{1} \cup \Sigma^{\prime} \cup \Delta_{2}$ in V. Similarly, C^{\prime} also bounds a disk in W. So $\left[C^{\prime}\right] \in K\left(\mathcal{M}_{1} \# \mathcal{M}_{2}\right)$. Clearly, C^{\prime} and C are not isotopic on F, and there are infinitely many such ways to construct such curves.

Next we consider how the intersecting kernel of the connected sum of two Heegaard splittings are related to those of its two factors. Suppose $\mathcal{M}_{1}=\left(M_{1} ; V_{1}, W_{1} ; S_{1}\right)$, $\mathcal{M}_{2}=\left(M_{2} ; V_{2}, W_{2} ; S_{2}\right)$, and $\mathcal{M}_{1} \# \mathcal{M}_{2}=(M ; V, W ; S)$, where $M=M_{1} \# M_{2}$. Use the notation as before.

Let $i_{1}: S_{1} \hookrightarrow V_{1}, j_{1}: S_{1} \hookrightarrow W_{1}$ and $i_{2}: S_{2} \hookrightarrow V_{2}, j_{2}: S_{2} \hookrightarrow W_{2}$ be inclusions. Let $K=K(\mathcal{M}), K_{1}=K\left(\mathcal{M}_{1}\right)$ and $K_{2}=K\left(\mathcal{M}_{2}\right)$. By contracting the 2 -sphere $F=\partial B_{1}=\partial B_{2}$ in M to a point, we get a continuous map $f: M \rightarrow M_{1} \vee M_{2}$ and $g=\left.f\right|_{S}: S \rightarrow S_{1} \vee S_{2}$. Clearly, $g_{*}: \pi_{1}(S) \rightarrow \pi_{1}\left(S_{1} \vee S_{2}\right)=\pi_{1}\left(S_{1}\right) * \pi_{1}\left(S_{2}\right)$ is surjective. Now consider $\rho=\left.g_{*}\right|_{K}: K \rightarrow \pi_{1}\left(S_{1}\right) * \pi_{1}\left(S_{2}\right)$.

Lemma 4.2 $\rho=\left.g_{*}\right|_{K}: K \rightarrow K_{1} * K_{2}$ is surjective.

Proof By contracting $V_{2}^{\prime} \cup W_{2}^{\prime}$ in M to a point, we get a continuous onto map $f_{1}: M \rightarrow V_{1} \cup_{S_{1}} W_{1}$ which induces an epimorphism $f_{1 *}: \pi_{1}(M) \rightarrow \pi_{1}\left(M_{1}\right)$. Let $g_{1}=\left.f_{1}\right|_{S}: S \rightarrow S_{1}$, and $g_{1 *}: \pi_{1}(S) \rightarrow \pi_{1}\left(S_{1}\right)$. Let $i: S \hookrightarrow V, j: S \hookrightarrow W$, and $i_{1}: S_{1} \hookrightarrow V_{1}, j_{1}: S_{1} \hookrightarrow W_{1}$ be inclusions. Then $K=\operatorname{Ker} i_{*} \cap \operatorname{Ker} j_{*}$ and
$K_{1}=\operatorname{Ker} i_{1 *} \cap \operatorname{Ker} j_{1 *} . \operatorname{Set} g_{1}{ }^{\prime}=\left.g_{1 *}\right|_{K}: K \rightarrow \pi_{1}\left(S_{1}\right)$. We have the commutative graph as follows:

For any $\alpha \in \operatorname{Ker} i_{*}$, we have $i_{*}(\alpha)=1$, so $i_{1 *} g_{1 *}(\alpha)=\left.i_{*} f\right|_{V *}(\alpha)=1, g_{*}(\alpha) \in$ $\operatorname{Ker} i_{1 *}$, thus $g_{1 *}\left(\operatorname{Ker} i_{*}\right) \subset \operatorname{Ker} i_{1 *}$. Similarly, $g_{1 *}\left(\operatorname{Ker} j_{*}\right) \subset \operatorname{Ker} j_{1 *}$. Therefore $g_{1 *} K=g_{1 *}\left(\operatorname{Ker} i_{*} \cap \operatorname{Ker} j_{*}\right)=g_{1 *}\left(\operatorname{Ker} i_{*}\right) \cap g_{1 *}\left(\operatorname{Ker} j_{*}\right) \subset \operatorname{Ker} i_{1 *} \cap \operatorname{Ker} j_{1 *}=K_{1}$. Hence $\left.g_{1 *}\right|_{K}=g^{\prime}: K \rightarrow K_{1}$ is well-defined.

We show that $g^{\prime}: K \rightarrow K_{1}$ is surjective.
Observe that the inclusion $S_{1}^{\prime} \hookrightarrow S_{1}$ induces an epimorphism $\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(S_{1}\right)$. Note that the inclusions $V_{1}^{\prime} \hookrightarrow V_{1}$ and $W_{1}^{\prime} \hookrightarrow W_{1}$ are homotopy equivalence. Thus there is a commutative diagram

It follows that

$$
\operatorname{Ker}\left(\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(S_{1}\right)\right) \subseteq \operatorname{Ker}\left(\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(V_{1}^{\prime}\right)\right) \cap \operatorname{Ker}\left(\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(W_{1}^{\prime}\right)\right)
$$

Let $K_{1}^{\prime}=\operatorname{Ker}\left(\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(V_{1}^{\prime}\right)\right) \cap \operatorname{Ker}\left(\pi_{1}\left(S_{1}^{\prime}\right) \rightarrow \pi_{1}\left(W_{1}^{\prime}\right)\right)$. Then, from the above commutative diagram, one can easily check that

$$
K_{1}^{\prime} \longrightarrow K_{1}
$$

is an epimorphism. From the commutative diagram

where the composites in the columns are inclusions, the epimorphism $K_{1}^{\prime} \rightarrow K_{1}$ admits a decomposition $K_{1}^{\prime} \rightarrow K \rightarrow K_{1}$. It follows that $g^{\prime}: K \rightarrow K_{1}$ is an epimorphism.

Similarly, $g^{\prime \prime}=\left.g_{2 *}\right|_{K}: K \rightarrow K_{2}$ is surjective, where $g_{2}=f_{2} \mid s: S \rightarrow S_{2}$, and $f_{2}: M \rightarrow V_{2} \cup_{S_{2}} W_{2}$ is a continuous onto map obtained by contracting $V_{1}^{\prime} \cup W_{1}^{\prime}$ in M to a point. The assertion follows.

Proof of Theorem 1.3 By Lemma 4.2, $\rho: K \rightarrow K_{1} * K_{2}$ is surjective. To show

$$
\{1\} \longrightarrow\langle[C]\rangle^{N} \longrightarrow K(\mathcal{M}) \xrightarrow{\rho} K_{1} * K_{2} \longrightarrow\{1\}
$$

is a short exact sequence, it suffices to show the kernel of ρ is the normal closure of $[C]$ in $\pi_{1}(S)$. Denote the normal closure of $[C]$ in $\pi_{1}(S)$ by $\langle[C]\rangle^{N}$. Then by the definition of $g: S \rightarrow S_{1} \vee S_{2}$, $\operatorname{Ker} g_{*}=\langle[C]\rangle^{N}$, and $\pi_{1}(S) /\langle[C]\rangle^{N} \cong \pi_{1}\left(S_{1}\right) * \pi_{1}\left(S_{2}\right)$.
For all $\alpha \in \operatorname{Ker} \rho, \rho(\alpha)=1 \in K_{1} * K_{2} \subset \pi_{1}\left(S_{1}\right) * \pi_{1}\left(S_{2}\right) \cong \pi_{1}(S) /\langle[C]\rangle^{N}, \alpha \in\langle[C]\rangle^{N}$, so $\operatorname{Ker} \rho \subset\langle[C]\rangle^{N}$.
On the other hand, for all $\beta \in\langle[C]\rangle^{N}, \beta$ can be expressed as

$$
\beta=y_{1}[C]^{n_{1}} y_{1}^{-1} y_{2}[C]^{n_{2}} y_{2}^{-1} \cdots y_{m}[C]^{n_{m}} y_{m}^{-1},
$$

where $y_{p} \in \pi_{1}(S), n_{p} \in \mathbb{Z}, 1 \leq p \leq m$. Note that $[C] \in \operatorname{Ker} i_{*} \cap \operatorname{Ker} j_{*}=K$, so $i_{*} \beta=1$ and $j_{*} \beta=1$. Thus $\beta \in K$. Clearly, $\rho(\beta)=1$, so $\beta \in \operatorname{Ker} \rho$, and $\langle[C]\rangle^{N} \subset \operatorname{Ker} \rho$. Hence $\operatorname{Ker} \rho=\langle[C]\rangle^{N}$.

This completes the proof of Theorem 1.3.
Example 4.3 Let $\mathcal{M}=(M ; V, W ; S)$ be a Heegaard splitting of genus 2 for $M=S^{3}$, $L(p, q)$, or $L(p, q) \# L(r, s)$, and let C be a simple closed curve on S so that C cuts S into two once-punctured tori and C bounds disks in both V and W. As a direct consequence of Theorem 1.3, we have $K(\mathcal{M})=\langle[C]\rangle^{N}$. If we choose another simple closed curve C^{\prime} on S with the same property, we also have $K(\mathcal{M})=\left\langle\left[C^{\prime}\right]\right\rangle^{N}$.

Acknowledgements The referee pointed out that the exact sequence in assertion (2) of Theorem 1.1 can also be obtained from the viewpoint of equivariant cellular homology. The authors are grateful to the referee for helpful and valuable comments and suggestions. The first author is partially supported by a key grant, NSFC number 10931005, and NSFC grant number 11028104. The second author is partially supported by the AcRF Tier 1 (WBS numbers R-146-000-101-112 and R-146-000-137-112) of MOE of Singapore and NSFC grant number 11028104.

References

[1] A J Berrick, F R Cohen, Y L Wong, J Wu, Configurations, braids, and homotopy groups, J. Amer. Math. Soc. 19 (2006) 265-326 MR2188127
[2] JS Birman, On the equivalence of Heegaard splittings of closed, orientable 3manifolds, from: "Knots, groups, and 3-manifolds (Papers dedicated to the memory of R H Fox)", (LP Neuwirth, editor), Ann. of Math. Studies 84, Princeton Univ. Press (1975) 137-164 MR0375318
[3] J S Birman, The topology of 3-manifolds, Heegaard distance and the mapping class group of a 2-manifold, from: "Problems on mapping class groups and related topics", (B Farb, editor), Proc. Sympos. Pure Math. 74, Amer. Math. Soc. (2006) 133-149 MR2264538
[4] W A Bogley, J H C Whitehead's asphericity question, from: "Two-dimensional homotopy and combinatorial group theory", (C Hog-Angeloni, W Metzler, A J Sieradski, editors), London Math. Soc. Lecture Note Ser. 197, Cambridge Univ. Press (1993) 309-334 MR1279184
[5] K S Brown, Cohomology of groups, Graduate Texts in Math. 87, Springer, New York (1982) MR672956
[6] R Brown, J-L Loday, Van Kampen theorems for diagrams of spaces, Topology 26 (1987) 311-335 MR899052 With an appendix by M Zisman
[7] F R Cohen, J Wu, On braid groups, free groups, and the loop space of the 2-sphere, from: "Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)", (G Arone, J Hubbuck, R Levi, M Weiss, editors), Progr. Math. 215, Birkhäuser, Basel (2004) 93-105 MR2039761
[8] F R Cohen, J Wu, On braid groups and homotopy groups, from: "Groups, homotopy and configuration spaces", (N Iwase, T Kohno, R Levi, D Tamaki, J Wu, editors), Geom. Topol. Monogr. 13, Geom. Topol. Publ., Coventry (2008) 169-193 MR2508205
[9] J Hempel, 3-Manifolds, Ann. of Math. Studies 86, Princeton Univ. Press (1976) MR0415619
[10] W Jaco, Heegaard splittings and splitting homomorphisms, Trans. Amer. Math. Soc. 144 (1969) 365-379 MR0253340
[11] W Jaco, Lectures on three-manifold topology, CBMS Regional Conference Ser. in Math. 43, Amer. Math. Soc. (1980) MR565450
[12] F Lei, Haken spheres in the connected sum of two lens spaces, Math. Proc. Cambridge Philos. Soc. 138 (2005) 97-105 MR2127230
[13] J Li, J Wu, Artin braid groups and homotopy groups, Proc. Lond. Math. Soc. (3) 99 (2009) 521-556 MR2551462
[14] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. und ihrer Grenzgebiete 89, Springer, Berlin (1977) MR0577064
[15] J Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962) 1-7 MR0142125
[16] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Math. Monogr. 3, Amer. Math. Soc. (2007) MR2334563
[17] C D Papakyriakopoulos, A reduction of the Poincaré conjecture to group theoretic conjectures, Ann. of Math. (2) 77 (1963) 250-305 MR0145496
[18] M Scharlemann, Heegaard splittings of compact 3-manifolds, from: "Handbook of geometric topology", (R J Daverman, R B Sher, editors), North-Holland, Amsterdam (2002) 921-953 MR1886684
[19] J Stallings, How not to prove the Poincaré conjecture, Ann. of Math. Study 60 (1966) 83-88
[20] J Wu, Combinatorial descriptions of homotopy groups of certain spaces, Math. Proc. Cambridge Philos. Soc. 130 (2001) 489-513 MR1816806

School of Mathematical Sciences, Dalian University of Technology
Dalian 116024, China
Department of Mathematics, National University of Singapore
S17-06-02, 10 Lower Kent Ridge Road, Singapore 119076, Singapore
fclei@dlut.edu.cn, matwuj@nus.edu.sg
http://www.math.nus.edu.sg/~matwujie

Received: 25 July 2010 Revised: 29 December 2010

