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Infinite generation of non-cocompact lattices
on right-angled buildings

ANNE THOMAS

KEVIN WORTMAN

Let � be a non-cocompact lattice on a locally finite regular right-angled building X .
We prove that if � has a strict fundamental domain then � is not finitely generated.
We use the separation properties of subcomplexes of X called tree-walls.

20E42, 20F05; 20F55, 57M07, 51E24

Tree lattices have been well-studied (see Bass and Lubotsky [2]). Less understood are
lattices on higher-dimensional CAT(0) complexes. In this paper, we consider lattices
on X a locally finite, regular right-angled building (see Davis [5] and Section 1 below).
Examples of such X include products of locally finite regular or biregular trees, or
Bourdon’s building Ip;q [3], which has apartments hyperbolic planes tesselated by
right-angled p–gons and all vertex links the complete bipartite graph Kq;q .

Let G be a closed, cocompact group of type-preserving automorphisms of X , equipped
with the compact-open topology, and let � be a lattice in G . That is, � is discrete and
the series

P
jStab�.�/j�1 converges, where the sum is over the set of chambers �

of a fundamental domain for � . The lattice � is cocompact in G if and only if the
quotient �nX is compact.

If there is a subcomplex Y � X containing exactly one point from each � –orbit
on X , then Y is called a strict fundamental domain for � . Equivalently, � has a strict
fundamental domain if �nX may be embedded in X .

Any cocompact lattice in G is finitely generated. We prove:

Theorem 1 Let � be a non-cocompact lattice in G . If � has a strict fundamental
domain, then � is not finitely generated.

We note that Theorem 1 contrasts with the finite generation of lattices on many
buildings whose chambers are simplices. Results of, for example, Ballmann and
Świ ,atkowski [1], Dymara and Januszkiewicz [6] and Zuk [13], establish that all lattices
on many such buildings have Kazhdan’s Property (T). Hence by a well-known result
due to Kazhdan [8], these lattices are finitely generated.
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Our proof of Theorem 1, in Section 3 below, uses the separation properties of sub-
complexes of X which we call tree-walls. These generalize the tree-walls (in French,
arbre-murs) of Ip;q , which were introduced by Bourdon in [3]. We define tree-walls
and establish their properties in Section 2 below.

The following examples of non-cocompact lattices on right-angled buildings are known
to us.

(1) For i D 1; 2, let Gi be a rank one Lie group over a nonarchimedean locally
compact field whose Bruhat–Tits building is the locally finite regular or biregular
tree Ti . Then any irreducible lattice in G DG1 �G2 is finitely generated, by
Raghunathan [10]. Hence by Theorem 1 above, such lattices on X D T1 �T2

cannot have strict fundamental domain.

(2) Let ƒ be a minimal Kac–Moody group over a finite field Fq with right-angled
Weyl group W . Then ƒ has locally finite, regular right-angled twin buildings
XCŠX� , and ƒ acts diagonally on the product XC�X� . For q large enough:
(a) By Theorem 0.2 of Carbone and Garland [4] or Theorem 1(i) of Rémy [11],

the stabilizer in ƒ of a point in X� is a non-cocompact lattice in Aut.XC/.
Any such lattice is contained in a negative maximal spherical parabolic
subgroup of ƒ, which has strict fundamental domain a sector in XC , and
so any such lattice has strict fundamental domain.

(b) By Theorem 1(ii) of Rémy [11], the group ƒ is itself a non-cocompact lattice
in Aut.XC/�Aut.X�/. Since ƒ is finitely generated, Theorem 1 above
implies that ƒ does not have strict fundamental domain in X DXC �X� .

(c) By Section 7.3 of Gramlich, Horn and Mühlherr [7], the fixed set G� of
certain involutions � of ƒ is a lattice in Aut.XC/, which is sometimes
cocompact and sometimes non-cocompact. Moreover, by [7, Remark 7.13],
there exists � such that G� is not finitely generated.

(3) In [12], the first author constructed a functor from graphs of groups to complexes
of groups, which extends the corresponding tree lattice to a lattice in Aut.X /
where X is a regular right-angled building. The resulting lattice in Aut.X /
has strict fundamental domain if and only if the original tree lattice has strict
fundamental domain.
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1 Right-angled buildings

In this section we recall the basic definitions and some examples for right-angled
buildings. We mostly follow Davis [5], in particular Section 12.2 and Example 18.1.10.
See also Kubena and Thomas [9, Sections 1.2–1.4].

Let .W;S/ be a right-angled Coxeter system. That is,

W D hS j .st/mst D 1i

where mss D 1 for all s 2 S , and mst 2 f2;1g for all s; t 2 S with s ¤ t . We will
discuss the following examples:

� W1 D hs; t j s
2 D t2 D 1i ŠD1 , the infinite dihedral group;

� W2 D hr; s; t j r
2 D s2 D t2 D .rs/2 D 1i Š .C2 �C2/ �C2 , where C2 is the

cyclic group of order 2; and

� The Coxeter group W3 generated by the set of reflections S in the sides of a
right-angled hyperbolic p–gon, p � 5. That is,

W3 D hs1; : : : ; sp j s
2
i D .sisiC1/

2
D 1i

with cyclic indexing.

Fix .qs/s2S a family of integers with qs � 2. Given any family of groups .Hs/s2S

with jHsj D qs , let H be the quotient of the free product of the .Hs/s2S by the normal
subgroup generated by the commutators fŒhs; ht � W hs 2Hs; ht 2Ht ;mst D 2g.

Now let X be the piecewise Euclidean CAT(0) geometric realization of the chamber
system ˆ D ˆ.H; f1g; .Hs/s2S /. Then X is a locally finite, regular right-angled
building, with chamber set Ch.X / in bijection with the elements of the group H . Let
ıW W Ch.X /�Ch.X /!W be the W –valued distance function and let lS W W !N be
word length with respect to the generating set S . Denote by dW W Ch.X /�Ch.X /!N
the gallery distance lS ı ıW . That is, for two chambers � and �0 of X , dW .�; �

0/ is
the length of a minimal gallery from � to �0 .

Suppose that � and �0 are s–adjacent chambers, for some s2S . That is, ıW .�; �0/Ds .
The intersection � \�0 is called an s–panel. By definition, since X is regular, each
s–panel is contained in qs distinct chambers. For distinct s; t 2 S , the s–panel and
t –panel of any chamber � of X have nonempty intersection if and only if mst D 2.
Each s–panel of X is reduced to a vertex if and only if mst D1 for all t 2 S �fsg.
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For the examples W1 , W2 , and W3 above, respectively:

� The building X1 is a tree with each chamber an edge, each s–panel a vertex
of valence qs , and each t –panel a vertex of valence qt . That is, X1 is the
.qs; qt /–biregular tree. The apartments of X1 are bi-infinite rays in this tree.

� The building X2 has chambers and apartments as shown in Figure 1 below. The
r – and s–panels are 1–dimensional and the t –panels are vertices.

Figure 1: A chamber (on the left) and part of an apartment (on the right) for
the building X2 .

� The building X3 has chambers p–gons and s–panels the edges of these p–gons.
If qs D q � 2 for all s 2 S , then each s–panel is contained in q chambers,
and X3 , equipped with the obvious piecewise hyperbolic metric, is Bourdon’s
building Ip;q .

2 Tree-walls

We now generalize the notion of tree-wall due to Bourdon [3]. We will use basic
facts about buildings, found in, for example, Davis [5]. Our main results concerning
tree-walls are Corollary 3 below, which describes three possibilities for tree-walls, and
Proposition 6 below, which generalizes the separation property 2.4.A(ii) of [3].

Let X be as in Section 1 above and let s 2 S . As in [3, Section 2.4.A], we define two
s–panels of X to be equivalent if they are contained in a common wall of type s in
some apartment of X . A tree-wall of type s is then an equivalence class under this
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relation. We note that in order for walls and thus tree-walls to have a well-defined type,
it is necessary only that all finite mst , for s ¤ t , be even. Tree-walls could thus be
defined for buildings of type any even Coxeter system, and they would have properties
similar to those below. We will however only explicitly consider the right-angled case.

Let T be a tree-wall of X , of type s . We define a chamber � of X to be epicormic
at T if the s–panel of � is contained in T , and we say that a gallery ˛D .�0; : : : ; �n/

crosses T if, for some 0� i < n, the chambers �i and �iC1 are epicormic at T .

By the definition of tree-wall, if � 2 Ch.X / is epicormic at T and �0 2 Ch.X / is
t –adjacent to � with t ¤ s , then �0 is epicormic at T if and only if mst D 2. Let
s? WD ft 2 S j mst D 2g and denote by hs?i the subgroup of W generated by the
elements of s? . If s? is empty then by convention, hs?i is trivial. For the examples
in Section 1 above:

� in W1 , both hs?i and ht?i are trivial;

� in W2 , hr?i D hsi Š C2 and hs?i D hri Š C2 , while ht?i is trivial; and

� in W3 , hs?i i D hsi�1; siC1i ŠD1 for each 1� i � p .

Lemma 2 Let T be a tree-wall of X of type s . Let � be a chamber which is epicormic
at T and let A be any apartment containing � .

(1) The intersection T \A is a wall of A, hence separates A.

(2) There is a bijection between the elements of the group hs?i and the set of
chambers of A which are epicormic at T and in the same component of A�T \A

as � .

Proof Part (1) is immediate from the definition of tree-wall. For Part (2), let w 2 hs?i
and let  D  w be the unique chamber of A such that ıW .�;  /Dw . We claim that
 is epicormic at T and in the same component of A� T \A as � .

For this, let s1 � � � sn be a reduced expression for w and let ˛ D .�0; : : : ; �n/ be the
minimal gallery from � D �0 to  D �n of type .s1; : : : ; sn/. Since w is in hs?i, we
have msi s D 2 for 1� i � n. Hence by induction each �i is epicormic at T , and so
 D �n is epicormic at T . Moreover, since none of the si are equal to s , the gallery
˛ does not cross T . Thus  D  w is in the same component of A� T \A as � .

It follows that w 7!  w is a well-defined, injective map from hs?i to the set of
chambers of A which are epicormic at T and in the same component of A� T \A

as � . To complete the proof, we will show that this map is surjective. So let  be
a chamber of A which is epicormic at T and in the same component of A� T \A

as � , and let w D ıW .�;  /.
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If hs?i is trivial then  D � and w D 1, and we are done. Next suppose that the
chambers � and  are t –adjacent, for some t 2 S . Since both � and  are epicormic
at T , either t D s or mst D 2. But  is in the same component of A � T \ A

as � , so t ¤ s , hence w D t is in hs?i as required. If hs?i is finite, then finitely
many applications of this argument will finish the proof. If hs?i is infinite, we have
established the base case of an induction on nD lS .w/.

For the inductive step, let s1 � � � sn be a reduced expression for w and let ˛ D
.�0; : : : ; �n/ be the minimal gallery from � D �0 to  D �n of type .s1; : : : ; sn/.
Since � and  are in the same component of A � T \ A and ˛ is minimal, the
gallery ˛ does not cross T . We claim that sn is in s? . First note that sn ¤ s since
˛ does not cross T and  D �n is epicormic at T . Now denote by Tn the tree-wall
of X containing the sn –panel �n�1 \ �n . Since ˛ is minimal and crosses Tn , the
chambers � D �0 and  D �n are separated by the wall Tn \A. Thus the s–panel
of � and the s–panel of  are separated by Tn\A. As the s–panels of both � and  
are in the wall T \A, it follows that the walls Tn \A and T \A intersect. Hence
msns D 2, as claimed.

Now let w0 D wsn D s1 � � � sn�1 and let  0 be the unique chamber of A such that
ıW .�;  

0/D w0 . Since sn is in s? and  0 is sn –adjacent to  , the chamber  0 is
epicormic at T and in the same component of A� T \A as � . Moreover s1 � � � sn�1

is a reduced expression for w0 , so lS .w
0/D n�1. Hence by the inductive assumption,

w0 is in hs?i. Therefore w D w0sn is in hs?i, which completes the proof.

Corollary 3 The following possibilities for tree-walls in X may occur.

(1) Every tree-wall of type s is reduced to a vertex if and only if hs?i is trivial.

(2) Every tree-wall of type s is finite but not reduced to a vertex if and only if hs?i
is finite but nontrivial.

(3) Every tree-wall of type s is infinite if and only if hs?i is infinite.

Proof Let T , � , and A be as in Lemma 2 above. The set of s–panels in the wall
T \A is in bijection with the set of chambers of A which are epicormic at T and in
the same component of A� T \A as � .

For the examples in Section 1 above:

� in X1 , every tree-wall of type s and of type t is a vertex;
� in X2 , the tree-walls of types both r and s are finite and 1–dimensional, while

every tree-wall of type t is a vertex; and
� in X3 , all tree-walls are infinite, and are 1–dimensional.
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Corollary 4 Let T , � , and A be as in Lemma 2 above and let

�D ��;AW X !A

be the retraction onto A centered at � . Then ��1.T \A/D T .

Proof Let  be any chamber of A which is epicormic at T and is in the same
component of A�T \A as � . Then by the proof of Lemma 2 above, w WD ıW .�;  /
is in hs?i. Let  0 be a chamber in the preimage ��1. / and let A0 be an apartment
containing both � and  0 . Since the retraction � preserves W –distances from � , we
have that ıW .�;  0/D w is in hs?i. Again by the proof of Lemma 2, it follows that
the chamber  0 is epicormic at T . But the image under � of the s–panel of  0 is the
s–panel of  . Thus ��1.T \A/D T , as required.

Lemma 5 Let T be a tree-wall and let � and �0 be two chambers of X . Let ˛ be a
minimal gallery from � to �0 and let ˇ be any gallery from � to �0 . If ˛ crosses T
then ˇ crosses T .

Proof Suppose that ˛ crosses T . Since ˛ is minimal, there is an apartment A of X

which contains ˛ , and hence the wall T \A separates � from �0 . Choose a chamber �0

of A which is epicormic at T and consider the retraction �D ��0;A onto A centered
at �0 . Since � and �0 are in A, � fixes � and �0 . Hence �.ˇ/ is a gallery in A

from � to �0 , and so �.ˇ/ crosses T \A. By Corollary 4 above, ��1.T \A/D T .
Therefore ˇ crosses T .

Proposition 6 Let T be a tree-wall of type s . Then T separates X into qs gallery-
connected components.

Proof Fix an s–panel in T and let �1; : : : ; �qs
be the qs chambers containing this

panel. Then for all 1� i < j � qs , the minimal gallery from �i to �j is just .�i ; �j /,
and hence crosses T . Thus by Lemma 5 above, any gallery from �i to �j crosses T .
So the qs chambers �1; : : : ; �qs

lie in qs distinct components of X � T .

To complete the proof, we show that T separates X into at most qs components. Let
� be any chamber of X . Then among the chambers �1; : : : ; �qs

, there is a unique
chamber, say �1 , at minimal gallery distance from � . It suffices to show that � and �1

are in the same component of X � T .

Let ˛ be a minimal gallery from � to �1 and let A be an apartment containing ˛ .
Then there is a unique chamber of A which is s–adjacent to �1 . Hence A contains �i

for some i > 1, and the wall T \A separates �1 from �i . Since ˛ is minimal and
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dW .�; �1/ < dW .�; �i/, the Exchange Condition (see [5, page 35]) implies that a
minimal gallery from � to �i may be obtained by concatenating ˛ with the gallery
.�1; �i/. Since a minimal gallery can cross T \A at most once, ˛ does not cross
T \A. Thus � and �1 are in the same component of X � T , as required.

3 Proof of Theorem

Let G be as in the introduction and let � be a non-cocompact lattice in G with strict
fundamental domain. Fix a chamber �0 of X . For each integer n� 0 define

D.n/ WD f� 2 Ch.X / j dW .�; ��0/� n g:

Then D.0/D ��0 , and for every n> 0 every connected component of D.n/ contains
a chamber in ��0 . To prove Theorem 1, we will show that there is no n> 0 such that
D.n/ is connected.

Let Y be a strict fundamental domain for � which contains �0 . For each chamber �
of X , denote by �Y the representative of � in Y .

Lemma 7 Let � and �0 be t –adjacent chambers in X , for t 2 S . Then either
�Y D �

0
Y

, or �Y and �0
Y

are t –adjacent.

Proof It suffices to show that the t –panel of �Y is the t –panel of �0
Y

. Since Y

is a subcomplex of X , the t –panel of �Y is contained in Y . By definition of a
strict fundamental domain, there is exactly one representative in Y of the t –panel
of � . Hence the unique representative in Y of the t –panel of � is the t –panel of �Y .
Similarly, the unique representative in Y of the t –panel of �0 is the t –panel of �0

Y
.

But � and �0 are t –adjacent, hence have the same t –panel, and so it follows that �Y

and �0
Y

have the same t –panel.

Corollary 8 The fundamental domain Y is gallery-connected.

Lemma 9 For all n > 0, the fundamental domain Y contains a pair of adjacent
chambers �n and �0n such that, if Tn denotes the tree-wall separating �n from �0n :

(1) the chambers �0 and �n are in the same gallery-connected component of Y �

Tn\Y ;

(2) minfdW .�0; �/ j � 2 Ch.X / is epicormic at Tng> n; and

(3) there is a  2 Stab�.�0n/ which does not fix �n .

Proof Fix n> 0. Since � is not cocompact, Y is not compact. Thus there exists a
tree-wall Tn with Tn\Y nonempty such that for every � 2Ch.X / which is epicormic
at Tn , dW .�0; �/ > n. Let sn be the type of the tree-wall Tn . Then by Corollary 8
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above, there is a chamber �n of Y which is epicormic at Tn and in the same gallery-
connected component of Y � Tn\Y as �0 , such that for some chamber �0n which is
sn –adjacent to �n , �0n is also in Y . Now, as � is a non-cocompact lattice, the orders
of the � –stabilizers of the chambers in Y are unbounded. Hence the tree-wall Tn and
chambers �n and �0n may be chosen so that jStab�.�n/j< jStab�.�0n/j.

Let �n , �0n , Tn , and  be as in Lemma 9 above and let s D sn be the type of the
tree-wall Tn . Let ˛ be a gallery in Y � Tn \ Y from �0 to �n . The chambers �n

and  � �n are in two distinct components of X � Tn , since they both contain the
s–panel �n\�

0
n � Tn , which is fixed by  . Hence the galleries ˛ and  �˛ are in two

distinct components of X � Tn , and so the chambers �0 and  ��0 are in two distinct
components of X � Tn . Denote by X0 the component of X � Tn which contains �0 ,
and put Y0 D Y \X0 .

Lemma 10 Let � be a chamber in X0 that is epicormic at Tn . Then �Y is in Y0 and
is epicormic at Tn\Y .

Proof We consider three cases, corresponding to the possibilities for tree-walls in
Corollary 3 above.

(1) If Tn is reduced to a vertex, there is only one chamber in X0 which is epicormic
at Tn , namely �n . Thus � D �n D �Y and we are done.

(2) If Tn is finite but not reduced to a vertex, the result follows by finitely many
applications of Lemma 7 above.

(3) If Tn is infinite, the result follows by induction, using Lemma 7 above, on

k WDminfdW .�;  / j  is a chamber of Y0 epicormic at Tn\Y g:

Lemma 11 For all n> 0, the complex D.n/ is not connected.

Proof Fix n> 0, and let ˛ be a gallery in X between a chamber in X0\��0 and
some chamber � in X0 that is epicormic at Tn . Let m be the length of ˛ .

By Lemma 7 and Lemma 10 above, the gallery ˛ projects to a gallery ˇ in Y be-
tween �0 and a chamber �Y that is epicormic at Tn \ Y . The gallery ˇ in Y has
length at most m.

It follows from (2) of Lemma 9 above that the gallery ˇ in Y has length greater than n.
Therefore m> n. Hence the gallery-connected component of D.n/ that contains �0

is contained in X0 . As the chamber  � �0 is not in X0 , it follows that the complex
D.n/ is not connected.

This completes the proof, as � is finitely generated if and only if D.n/ is connected
for some n.
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