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Differential operators and the wheels power series

ANDREW KRICKER

An earlier work of the author’s showed that it was possible to adapt the Alekseev–
Meinrenken Chern–Weil proof of the Duflo isomorphism to obtain a completely
combinatorial proof of the wheeling isomorphism. That work depended on a certain
combinatorial identity, which said that a particular composition of elementary com-
binatorial operations arising from the proof was precisely the wheeling operation.
The identity can be summarized as follows: The wheeling operation is just a graded
averaging map in a space enlarging the space of Jacobi diagrams. The purpose of
this paper is to present a detailed and self-contained proof of this identity. The proof
broadly follows similar calculations in the Alekseev–Meinrenken theory, though the
details here are somewhat different, as the algebraic manipulations in the original are
replaced with arguments concerning the enumerative combinatorics of formal power
series of graphs with graded legs.

17B99, 57M25; 05E99

The Duflo isomorphism is a Lie theoretic result from the 1970s which says that if g is a
finite-dimensional Lie algebra then .Sg/g , the ring of g–invariants in the symmetric
algebra on g, and .Ug/g , the ring of g–invariants in the universal enveloping algebra
of g, are isomorphic as rings. Duflo explicitly constructed the isomorphism to be the
result of applying a certain infinite order differential operator to .Sg/g followed by an
application of the averaging map .Sg/g! .Ug/g .

The wheeling isomorphism is a combinatorial strengthening of the Duflo isomorphism.
The algebras .Ug/g and .Sg/g are replaced by A and B , combinatorially constructed
algebras generated by certain abstract unitrivalent graphs known as Jacobi diagrams.
Duflo’s infinite differential operator is replaced by the wheeling operation, @�W B! B ,
in which one glues a certain formal power series of “Wheel” graphs into the given
element, in “all possible ways”.

Wheeling was discovered at the end of the last century in the study of the Kontsevich
integral knot invariant; see Bar-Natan, Garoufalidis, Rozansky and Thurston [4] and
Bar-Natan, Le and Thurston [6]. It has since found many applications beyond those
already covered by the Duflo isomorphism, not only in quantum topology (such as
Garoufalidis and Kricker [8]), but, for example, to such surprising topics as the theory of
hyper-Kahler manifolds (as in Roberts and Willerton [13] and Nieper-Wißkirchen [12]).
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At first glance, the operation which appears in the statement of the wheeling isomor-
phism – �B ı @�W B!A – does not seem to be a particularly natural operation. The
purpose of this paper is to provide a detailed proof of an identity which says that �Bı@�
can be factored into a sequence of elementary combinatorial operations. In summary:
wheeling is just a graded averaging map in a space which enlarges A.

1 The main identity and the spaces and maps involved in it

First we’ll state the identity in question. After that (beginning in Section 1.1) we’ll go
through the definitions of the various spaces and maps that are involved in the identity.
In Section 2 we’ll outline the organization of the proof.

Main Theorem Consider �B ı @�W B!A, the operation which appears in the state-
ment of the wheeling isomorphism. This map can be factored into a sequence of
elementary combinatorial operations. To be precise, the composition of maps

B
@� // B

�B // A
�A // �W^ ;

is equal to the composition

B ‡ // W
�W // �W � // �W B�!F // �WF

� // �W^ :
Each of the spaces in the above theorem will be defined as a certain “space of diagrams”:
a Q–vector space consisting of formal, finite Q–linear combinations of abstract graphs
with vertices of degree 1 and degree 3, modulo certain relations which depend on
the specific space. In this precise form such spaces first emerged in the theory of
finite-type knot invariants (see Birman and Lin [7], Kontsevich [9] and Bar-Natan [3]),
though their roots go much deeper. From different points of view they can been seen as
developing from the Feynman diagrams of Quantum Field Theory, from the universal
combinatorics of commutator expressions in the theory of metrized Lie algebras, and
from the combinatorics of the finite-type filtration of the space of knots.

The specific context of the identity is its application in the paper [11] of the author to a
combinatorial proof of wheeling.

More generally, this identity is interesting for the following reason: The wheeling
operation (to be recalled shortly) is a bit mysterious as it requires a nontrivial power
series (the Duflo series .1=2/ log .sinh.h=2/=.h=2//) to be inserted “by hand” into the
definition, and because it uses wheels, which are relatively complicated subgraphs to
be working with. On the other hand, each of the operations that this identity factors
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it into – ‡ , �W and � are the nontrivial steps – has a natural definition in terms of
some simple combinatorial operation you can perform on the generating graphs, “in all
possible ways”.

1.1 The space B of symmetric Jacobi diagrams

Each of the spaces involved in the statement of the main theorem is constructed in a
similar way, as a “space of diagrams”. We’ll take the first space B as our model, and
describe its construction in detail.

A symmetric Jacobi diagram is a finite multigraph with vertices of degree 1 and degree
3. By “multigraph” we are formally allowing parallel edges and “loops” (ie edges
whose endpoints coincide). Each trivalent vertex with three distinct incident edges is
“oriented”, which means that the set of incident edges is given a cyclic ordering. When
we draw a symmetric Jacobi diagram in the plane, we give the trivalent vertices the
counterclockwise orientation induced by the drawing.

The space B is defined to be the space of formal finite Q–linear combinations of
symmetric Jacobi diagrams, modulo two classes of relations, the “AS relations”, and
the “IHX relations”. The AS relations (for antisymmetry) say that when we change the
orientation of a trivalent vertex we pick up a minus sign. For example,

D� :

The relation which sets a Jacobi diagram with a “loop” (in the sense just referred to) to
be zero will also be regarded as an AS relation.

The IHX relation is as follows:

D C :

Here we are referring to three diagrams which are exactly the same, except that they
differ in the shown subgraph.

The connection with the theory of metrized Lie algebras via “weight systems” is the
most direct way to get some intuition for these relations (see eg Bar-Natan [3]).
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1.2 The space A of ordered Jacobi diagrams

In the definition of the space A, symmetric Jacobi diagrams are replaced with ordered
Jacobi diagrams. In an ordered Jacobi diagram the degree 1 vertices are given a total
ordering. This ordering is recorded in drawings by lining up the degree 1 vertices along
an ordering line which is drawn at the bottom of the diagram. In this paper we will
frequently refer to the degree 1 vertices as the legs of the diagram.

In the space A, we take Q–linear combinations of ordered Jacobi diagrams modulo AS,
IHX and an extra relation which concerns the legs, the “STU” relation, which is as
follows:

D � :

1.3 The averaging map �BW B ! A

The averaging map �B is the linear extension of the map which maps a symmetric
Jacobi diagram in B to the average of all the possible ordered Jacobi diagrams obtained
by ordering the degree 1 vertices. For example,

�B

0B@
1CAD 1

6!

X
� σ�

2A:

It turns out that while this map is an isomorphism of vector spaces (this is the formal
Poincaré–Birkhoff–Witt theorem described in [3]), it is not an isomorphism of algebras.
In other words, if u and v are elements of B then it is not in general true that �B.ut
v/ D �B.u/#�B.v/, where t is the “disjoint-union” product on B , and # is the
“juxtaposition” product on A.1

1.4 The wheeling map @�W B ! B

The wheeling operation @�W B! B is a linear isomorphism of B which promotes �B
to an algebra isomorphism:

.�B ı @�/ .ut v/D .�B ı @�/ .u/# .�B ı @�/ .v/

for all u; v 2 B .
1 A comment on notation: In situations like this, where we have a map, like the averaging map, which

we use several different versions of, we’ll distinguish the different versions by writing the domain of the
map as a subscript. Hence: �B .
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Bar-Natan, Le and Thurston’s [6] proof of wheeling shows that it is deeply bound up
with the theory of the Kontsevich integral, and such things as the theory of associators,
the monodromy of the Knizhnik–Zamolodchikov equations, and the theory of quantum
groups. The aim of this paper, together with its companion [11], is to describe a
completely combinatorial proof of the wheeling isomorphism, with the goal of discov-
ering new approaches to these topics. This proof derives from work of Alekseev and
Meinrenken [1; 2], as is discussed in the author’s paper [11].

So, what is this map @�? First we must recall what is @X .Y /2B , the result of operating
on a symmetric Jacobi diagram Y with a symmetric Jacobi diagram X . The result is
the sum of all the possible symmetric Jacobi diagrams that you obtain by gluing all of
the legs of X to some (possibly all) of the legs of Y . This is extended linearly to define
@u.v/, for arbitrary u; v 2 B .

In the case that X has more legs than Y , @X .Y / will be zero. This means that it is
meaningful to consider operations of the form @P W B ! B , where P is an infinite
combination of symmetric Jacobi diagrams (a “formal power series of diagrams”), as
long as for each b 2N , the piece of P consisting of the diagrams whose number of
degree 1 vertices is less than b is finite. (These issues are carefully discussed, from a
more general viewpoint, in Section 3.)

To recall �, the power series appearing in wheeling, we’ll use the following convenient
notation for generating a formal power series of symmetric Jacobi diagrams:

c0C c1aC c2a2
C c3a3

C � � �

c0 C c1 C c2 C c3 C � � � :denotes

The following precise statement uses Bn , which is the subspace of B generated by
diagrams with precisely n degree 1 vertices.

Definition 1.4.1 The wheels element, �, is the formal power series of symmetric
Jacobi diagrams defined by the expression

�D expt

�
1

2
ln
�

sinh a=2

a=2

��
2

1Y
nD0

Bn :
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1.5 The space W

In the earlier work [11], W was introduced as an “�–complex”, which was a pair of
cochain complexes equipped with a degree �1 map between them. In this work we
have no need for all this extra structure, and W just denotes the vector space underlying
the structure.

The diagrams which generate W , which will be called symmetric Weil diagrams in this
paper, have degree 1 vertices of two different types. There are “leg-grade 1” vertices,
which are drawn without any decoration, and “leg-grade 2” vertices, which are drawn
with a fat dot. The space W consists of formal finite Q–linear combinations of Weil
diagrams, modulo AS and IHX relations, and also relations which say that when we
transpose the position of two adjacent legs in the ordering, we pick up a sign .�1/xy ,
where x and y are the leg-grades of the involved legs.

So, for example, the following equations hold in W :

D D � in W .

Observe the arrow-head with which symmetric Weil diagrams are drawn.

1.6 The hair-splitting map ‡ W B ! W

Now we’ll recall the map ‡ which embeds B into the space W . On some symmetric
Jacobi diagram v , the map is just to choose an ordering of the degree 1 vertices of v
(sometimes called the “hair” of v ), and then to replace each degree 1 vertex according
to the rule

‡ W 7! �
1

2
:

So, for example,

‡

0@ 1AD �
1

2

�
1

2
C

1

4
2 W :
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1.7 The graded averaging map �W W W ! �W
The space �W is defined in exactly the same way as the space W , but without introducing
the leg transposition relations. So the relationship between W and �W is analogous to
the relationship between the symmetric algebra and the tensor algebra on some vector
space. The diagrams which generate this space will be called “noncommutative Weil
diagrams” in this paper.

We can embed W into �W by means of the graded averaging map �W W W! �W . This
is the linear extension of the map which takes a symmetric Weil diagram to the average
of all possible rearrangements of the legs of the diagram, accompanied by the sign that
arises when that permutation is performed in W . For example,

�W

0@ 1AD 1

3!

0@ C �

� � C

1A :
The reader can check that this map respects leg transposition relations.

1.8 The space �W and the map �W �W ! �W
Noncommutative Weil diagrams have no relations that relate different orderings of their
legs. But the space we are heading towards – A – has STU relations, so we had better
introduce them. As discussed in [11] (deriving from work of Alekseev and Meinrenken),
when we introduce STU relations amongst the leg-grade 2 legs, there are some other
classes of relations that we must introduce at the same time, so as to retain the algebraic
structure of an �–complex.

The complete set of relations that we introduce when we introduce STU is shown in
Figure 1.

Observe that the third class presented above is a formal analogue of the defining relation
of a Clifford algebra. The map � W �W! �W is just to introduce these relations, with no
other effect on a diagram (other than to change the style of the arrowhead).

1.9 Curvature legs and the map B�!FW �W ! �WF

Instead of the usual leg-grade 2 legs that have appeared in the discussion up to this
point (the legs drawn with a fat dot), it is possible to work with a different choice of
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� D

� D

C D

Figure 1: The relations amongst legs in �W
leg-grade 2 leg, which we’ll call curvature legs in this work. The relationship between
the two choices can be expressed by the equation (with arrow-head appropriate to the
space):

F
D �

1

2
:

In the algebraic theory, this is just a different choice of generators within a common
algebra. In the current work, from the combinatorial point of view, it is clearer to
view diagrams that are based on curvature legs as generators of a different, though
isomorphic, vector space, and the above equality should only be viewed heuristically.
Curvature legs are introduced into the theory to simplify the map �, though at the
expense of a more complicated differential.

If we base the space �W on curvature legs, instead of the usual leg-grade 2 legs, we are
led to the space �WF , which has the relations shown in Figure 2.

The “change of basis” map, B�!FW �W! �WF , is just to replace every leg-grade 2 leg
with a curvature leg, via the operation

7!
F

C
1

2
:

1.10 The space �W^

The final space to discuss is the space �W^ . This space consists of formal finite Q–
linear combinations of diagrams with leg-grade 1 legs and curvature legs (ie exactly
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F F � F F D F

F � F D 0

C D

Figure 2: The relations amongst legs in �WF

the same diagrams as is used by �WF ), taken modulo exactly the same relations as the
space �WF except that the “Clifford” relation (amongst the grade 1 legs) is replaced by
the following relation:

C D 0 :

Observe that in this space the leg-grade 1 legs can be moved about freely, up to sign. In
particular, this space is graded by the number of leg-grade 1 legs that a diagram has.

This space can be thought of as �WF viewed with respect to generators in which the
leg-grade 1 legs have been symmetrized. To be precise: we have a well-defined map,
�^W �W^! �WF , which graded averages the leg-grade 1 legs. An example is shown in
Figure 3.

Just like the case �B , which is the formal PBW isomorphism considered in [3], the map
�^ is a vector space isomorphism. However, something is true in this case which is not
true for �B : the inverse map has an elementary construction.

1.11 The map �W �WF ! �W^

Here we’ll recall the definition of the map � which inverts �^ . See [11] for proofs that
it is well-defined, and actually inverts �^ .

The definition can be summarized in the following way: Glue the grade 1 legs to each
other in all possible ways, with appropriate coefficients. To be precise, recall that a
pairing of the grade 1 legs of a diagram w is a collection, possibly empty, of disjoint
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�^

0@
F F

1AD 1

3!

0@
F F

�
F F

C
F F

�
F F

C
F F

�
F F

1CA :
Figure 3: An example of the computation of �^

2–element subsets of the set of grade 1 legs of w . Let P.w/ denote the set of pairings
of the diagram w . Then � is defined as the linear extension of the map which sends a
diagram w to a certain sum

�.w/D
X

}2P.w/

D}.w/;

where D}.w/ denotes w with its grade 1 legs glued together according to the pairing } ,
equipped with an appropriate coefficient. To recall the exact coefficient, we’ll follow
through the following example:

w D

F F
1 2 3 4 5 6 7 8

and } D ff1; 3g; f2; 4g; f5; 7gg:

Begin by introducing a second orienting line underneath the diagram, with a gap
separating the two orienting lines. Then, for every pair of legs in the pairing } , add
an arc, using a full line, between the corresponding legs of the diagram (such that
the introduced arc has no self-intersections and stays within the gap between the two
orienting lines). Finally, carry all the remaining legs straight down onto the bottom
orienting line, using a full line for the grade 1 legs and a dashed line for the grade 2 legs:

F F
:
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Let x denote the number of intersections between full lines displayed within the gap.
The term D}.w/ is this diagram (with the original orienting line forgotten and the
dashed lines filled in) multiplied by .�1/x and one factor of .1

2
/ for every pair of legs

glued together.

Thus, in the example at hand,

Dff1;3g;f2;4g;f5;7gg D .�1/2
�

1

2

�3

F F

:

Figure 4 gives an example of the result of a full calculation of �.

�

0BB@
F F

1CCA D

F F

C
1

2 F F
�

1

2 F F
C

1

2 F F

C
1

2 F F
�

1

2 F F
C

1

2 F F

C
1

4 F F
�

1

4 F F
C

1

4 F F

Figure 4: An example of the calculation of �

1.12 The map �AW A ! �W^

Observe that the space �W^ has no relations which involve the leg-grade 1 legs, except
relations which say that when we transpose an adjacent pair of such legs then we pick

Algebraic & Geometric Topology, Volume 11 (2011)



1118 Andrew Kricker

up a minus sign. This means that �W^ is graded by the number of leg-grade 1 legs that
a diagram has �W^ ŠM

iD0

�W i
^ ;

where �W i
^ denotes the subspace generated by diagrams with exactly i leg-grade 1 legs.

The space �W0
^ is clearly isomorphic to A, and �AW A! �W^ is the corresponding

embedding, whose action on an ordered Jacobi diagram is simply to make every leg a
curvature leg, for example,

�A

0BBBB@
1CCCCA D

F F F F

:

2 Outline of the contents of this paper

The fact that this sequence of elementary combinatorial operations is just the wheeling
operation �A ı �B ı @� may be a little surprising. Just how do these maps lead to
wheels being glued into legs?

In Figure 5 we illustrate the mechanism which produces wheels by taking a random
symmetric Jacobi diagram and following it as it maps through this composition. At
each stage in the composition we have drawn a diagram that is typical of the diagrams
appearing in the sum at that point. Observe that the last diagram is equal to the image
under �A of

;

the original diagram with two wheels glued into its legs and its remaining legs given
some ordering.

This shows that it is immediate that the composition � ıB�!F ı� ı�W ı‡ produces
the same sort of diagrams as the wheeling operation, �A ı�B ı @� , (as well as some
other diagrams). Showing that the diagrams are produced with the correct coefficients,
and that all other diagrams produced cancel, is the difficulty of the proof.

The paper is organized in the following way:

Algebraic & Geometric Topology, Volume 11 (2011)
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B

‡

��

W

�W

��eW
.B�!F/ı�

��bWF

�

��

F F

bW^
F F

Figure 5: An illustration of how “wheels" appear

In Section 3 we explain how formal power series of diagrams of various sorts operate
on each other. In the case that the legs are ungraded this is a familiar operation, being,
for example, the calculus in which the Århus 3–manifold invariant is constructed by
Bar-Natan et al [5].

In Section 4 we develop a certain expression (Theorem 4.1.1) for the composition
� ıB�!F ı� ı�W ı‡ in terms of these diagram operations. The key idea is that we
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can (graded) symmetrize a diagram by turning it into a differential operator and then
applying it to a suitable formal exponential (Proposition 4.3.2).

The remaining two sections (Sections 5 and 6) do a direct calculation of the expression
developed in Theorem 4.1.1. The key idea in these computations is that the result of
an exponential of connected diagrams operating on another exponential of connected
diagrams is the exponential of all the connected diagrams you can construct from the
logarithms of the pieces. This is a familiar story in the ungraded case – we provide
detailed proofs that it holds in certain cases of the graded setting as well. So all we
need to do is calculate all the possible connected diagrams that can be constructed. This
turns out to be a manageable combinatorial problem in the cases that arise.

Acknowledgements The author thanks Dror Bar-Natan and Eckhard Meinrenken for
their support of the author at the University of Toronto during the most important part
of this work.

3 Operating with diagrams on diagrams

3.1 Operator Weil diagrams

We’ll now begin to operate on Weil diagrams with other Weil diagrams. To introduce
this formalism we’ll build a vector space �WFŒŒa; b; @a; @b ��. (The constructions to follow
adapt in an unambiguous way to build spaces like �W^ŒŒa; b; @a; @b ��, etc.) Intuitively:
we are taking the vector space �WF , adjoining a formal grade 2 variable a and a formal
grade 1 variable b and their corresponding differential operators, and then taking power
series with respect to those introduced symbols.

Formally: this space will be built from diagrams which may have the usual legs for �WF ,
but which may have, in addition, two types of parameter legs and their corresponding
operator legs:

a

and

b

;

@a

and

@b

:

We require that the operator legs appear in a group at the far right-hand end of the
diagram. The parameter legs may appear amongst the usual legs in any order.

Let the parameter-grade of a diagram be the total grade of its parameter legs, where
a–labelled legs count for 2 and b–labelled legs count for 1. The diagram above has
parameter-grade 3. Similarly define the quantity operator-grade; the diagram above
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has operator-grade 4. If a diagram has parameter-grade i and operator-grade j then
we say that it is an .i; j /–operator Weil diagram. The pair .i; j / will be referred to as
the type of the diagram.

Definition 3.1.1 Define the vector space �WFŒa; b; @a; @b �
.i;j/ to be the space of formal

Q–linear combinations of operator Weil diagrams of type .i; j /, subject to the same
relations that the space �WF uses, together with relations that say that the parameter
and operator legs can be moved about freely (up to the appropriate sign), as long as the
operator legs all stay at the far-right hand end of the orienting line.

For example, the following equations hold in �WFŒa; b; @a; @b �
.3;2/ :

a b @b @b

F
D �

a b @b @b

F
D

a b @b @b

F

D

a b @b @b

F
D �

a b @b @b

F
C

a b @b @b

F
:

We will work with power series of operator Weil diagrams. Here is what we mean:

Definition 3.1.2 Define the space of formal power series of operator Weil diagrams in
the following way:�WFŒŒa; b; @a; @b ��D

Y
.i;j/2N0�N0

�WFŒa; b; @a; @b �
.i;j/;

where N0 denotes the set of nonnegative integers.

3.2 The operator pairing

We will now introduce a bilinear pairing on these power series:

` W �WFŒŒa; b; @a; @b ���
0 �WFŒŒa; b; @a; @b ��! �WFŒŒa; b; @a; @b ��:

The notation �0 is to record the fact that the pairing is only defined (only “converges”)
on certain pairs of power series:�WFŒŒa; b; @a; @b ���

0 �WFŒŒa; b; @a; @b ��� �WFŒŒa; b; @a; @b ��� �WFŒŒa; b; @a; @b ��:

The discussion below requires the projection map

pr.i;j/W �WFŒŒa; b; @a; @b ��! �WFŒa; b; @a; @b �
.i;j/:
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3.2.1 How to operate with a diagram The purpose of operator Weil diagrams, of
course, is to have them operate on each other. We’ll first define how individual diagrams
operate on each other, and then extend that action to power series. Consider, then, two
operator Weil diagrams:

a @a @b @b

`

b b @a

:

To operate with the first on the second, you begin by placing the two diagrams adjacent
to each other on the orienting line. Then you proceed to push the operator legs to the
far-right hand side of the resulting diagram by using substitution rules which declare
that the operator legs act as graded differential operators. To be precise: if the operator
leg encounters a parameter leg corresponding to the same parameter, then it operates on
that leg:

@b b

 �

@bb

C ;

@a a

 
@aa

C :or

If, on the other hand, the operator leg encounters any leg it is not matched to, then the
operator is just pushed past the leg, incurring the appropriate sign (.�1/g1g2 , where
g1 and g2 are the leg-grades of the two legs involved). Figure 6 illustrates such a
computation. The reader might like to check that they get the final result, which is
contained in Figure 7.

3.2.2 Checking relations We have just defined the operation ` on the level of
diagrams. The following proposition, whose proof is routine and easy-to-check dia-
grammatics, says that this operation respects the many different relations that exist
amongst the legs of diagrams.

Proposition 3.2.3 Let i , j , k and l be elements of N0 . The linear extension of the
above definition of ` gives a well-defined bilinear map

` W �WFŒa; b; @a; @b �
.i;j/
� �WFŒa; b; @a; @b �

.k;l/
! �WFŒŒa; b; @a; @b �� :

A detailed proof that the relations are respected appeared in the first version of this
paper [10].
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a @a @b @b

`

b b @a

 

a @a @b @b b b @a

 

a @a @b b @a

�

a @a@b b @b b @a

 

a @a@b b @a

�

a @a@b b @a

C

a @a@b b b @b @a

; etc.

Figure 6: An illustration of one diagram operating on another

3.2.4 The extension to power series Recall that we are working with “formal power
series” of Weil operator diagrams, which are a choice, for every pair .i; j / of nonnega-
tive integers, of a vector from �WFŒa; b�

.i;j/ :�WFŒŒa; b; @a; @b ��D
Y

.i;j/2N0�N0

�WFŒa; b; @a; @b �
.i;j/:

In this section we will extend the operation product ` to these power series in the
obvious way: to multiply two power series, do it term-by-term, then add up the results.
Because there is the possibility of infinite sums coming out of this, we must be careful
making statements in generality about this product.

For a power series v write
v D

X
.i;j/2N0�N0

v.i;j/;

where v.i;j/ D pr.i;j/.v/, the type .i; j / piece of v .
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a b b @a @b @b @a

C

a b @a @b @a

�

a b @a @b @a

�

a b @a @b @a

C

a b @a @b @a

C

a @a @a

�

a @a @a

Figure 7: The final result of the diagram operation started in Figure 6

Definition 3.2.5 Let v and w be power series from �WFŒŒa; b; @a; @b ��. If for every
pair .i; j / 2N0 �N0 it is true that

pr.i;j/
�
v.k;l/ ` w.m;n/

�
D 0

for all but finitely many pairs ..k; l/; .m; n//, then we say that the product v ` w is
convergent, in which case it is defined to beX

.k;l/;.m;n/2N0�N0

�
v.k;l/ ` w.m;n/

�
2 �WFŒŒa; b; @a; @b ��:

3.3 A convenient graphical method for doing diagram operations

In certain of the computations to come later in this paper, we’ll need to be able to
give a direct construction of all the terms that contribute to a diagram operation, all at
once, together with an easy way to determine the signs of those contributions. For this
purpose we’ll now introduce a convenient visual method for doing a diagram operation.

Definition 3.3.1 Consider two operator Weil diagrams v and w . Let Op.v/ denote
the set of operator legs of v , and let Par.w/ denote the set of parameter legs of w .
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A gluing of v onto w is an injection of a (possibly empty) subset of Op.v/ into Par.w/
that respects labels (so a @a –labelled leg of v will only be mapped to an a–labelled leg
of w , etc). Let G.v; w/ denote the set of gluings of v onto w .

Below we’ll explain how to associate a term t.v; w; �/ to each gluing � 2 G.v; w/,
and then we’ll define the operation of v on w to be: v ` w D

P
�2G.v;w/ t.v; w; �/:

This construction will obviously agree with the first definition of the operation that we
gave in Section 3.2.1.

In the discussion to follow, we’ll consider the example of the diagrams

v D

@b @b @a @b @a

1 2 3 4 5

and w D

b a b @b @a

F

1 2 3

:

For the purposes of the discussion, the operator legs of v have been numbered from
left to right, and so have the parameter legs of w , as displayed by the above diagrams.
Below, we’ll construct the term

t

�
v;w;

�
2 4 5

1 3 2

��
:

The term t.v; w; �/ corresponding to some gluing � 2 G.v; w/ will be constructed by
the following procedure. To begin, place the operator legs of v up the left-hand side of
a grid, and the nonoperator legs of w across the top of the grid, above an orienting line,
as shown in Figure 8.

@b @a

1 2 3

1
2

3

4

5
@a

@b

@a

@b

@b

b F a b

Figure 8: Arrange the diagrams around a grid
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Next, join up legs along the grid according to the gluing. Join up grade 1 legs using
a full line, and grade 2 legs using a dashed line (this is so that we will be able to
easily read off the sign of the term at the end of the construction). To finish: carry any
remaining legs on the top of the grid to the orienting line. For grade 1 legs use a full
line and for grade 2 legs use a dashed line. And carry any remaining operator legs lying
along the left-hand side of the grid to the right-hand side of the grid, and then place
them on the orienting line using nested right-angles. The result in this example is the
diagram displayed in Figure 9.

F

� D
�

2 4 5
1 3 2

�

@b @a@b @a

Figure 9: The gluing arising from the injection �

Let x denote the number of intersections between full lines displayed within the box.
The term t.v; w; �/ is just the diagram that has been constructed (with the dashed lines
now filled in), with a sign .�1/x out the front.

3.4 Associativity

It is an exercise in this graphical method to show that the operation product is associa-
tive:

Proposition 3.4.1 Let u, v and w denote operator Weil diagrams. Then

u ` .v ` w/D .u ` v/ ` w:

There is a nice way to organize the terms contributing to these triple-products. To
illustrate this, consider the case of

uD
F
@a @b @a

; vD

b b a @b @b @a

and wD

b a b @b @a

:

Algebraic & Geometric Topology, Volume 11 (2011)



Differential operators and the wheels power series 1127

We can assemble the three diagrams around the edges of a “step-ladder” grid, as shown
in Figure 10. To prove associativity you should:

F

@a

@b

@a

b b a

@b

@b

@a

b a b

@b @a

Figure 10: The diagram you use to prove associativity

� Observe how to express u ` .v ` w/ as a sum of diagrams built from this
step-ladder grid.

� Observe how to express .u ` v/ ` w in the same way.

� Observe that the terms of the two sums correspond.

A detailed proof appeared in the first version of this paper [10].

3.4.2 Associativity and power series We recommend this section for the second
reading; it consists of some unsurprising details about associativity and convergence.

In the computations that are the core of this work, we’ll need to re-bracket certain
products of power series. We’ve just shown that we can re-bracket products of the
generators; to re-bracket products of power series proves to be a more delicate affair
(because of convergence issues). To avoid getting bogged down by the logic of our
definitions, we’ll introduce a simple finiteness condition (Condition (§), below). When
Condition (§) holds, for a triple u, v and w of power series from �WFŒŒa; b; @a; @b ��,
then it will be true that

.u ` v/ ` w D u ` .v ` w/:

We’ll state the condition as a lemma:
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Lemma 3.4.3 Let u, v and w be power series from �WFŒŒa; b; @a; @b ��. Assume that:

� The product u ` v converges.

� The product v ` w converges.

� For all .i; j /, there are only finitely many triples ..k; l/; .m; n/; .p; q// with the
property that

(§) pr.i;j/
�
.u.k;l/ ` v.m;n// ` w.p;q/

�
¤ 0:

Then the products .u ` v/ ` w and u ` .v ` w/ converge, and

.u ` v/ ` w D u ` .v ` w/:

There is also a version for the other bracketting. It will be a straightforward matter to
check that this condition holds in any situation that we perform a re-bracketting.

Proof First, note that .u ` v/ ` w obviously converges. (Otherwise Condition (§)
would be violated.) Second, note that because we can re-bracket the generators, Con-
dition (§) implies its re-bracketted version: that for each .i; j / there are only finitely
many triples ..k; l/; .m; n/; .p; q// such that

(§0) pr.i;j/
�
u.k;l/ ` .v.m;n/ ` w.p;q//

�
¤ 0:

Thus u ` .v ` w/ converges as well. Thirdly, note that Condition (§) implies that the
expression X

.k;l/;.m;n/;.p;q/

�
u.k;l/ ` v.m;n/

�
` w.p;q/

makes sense. It is almost tautological that it is equal to .u` v/`w . And similarly, (§ 0 )
implies that

u ` .v ` w/D
X

.k;l/;.m;n/;.p;q/

u.k;l/ `
�
v.m;n/ ` w.p;q/

�
:

Associativity of products of generators gives the required equality.

The major reason we need such detail is that there are products .u` v/`w which don’t
satisfy Condition (§) but which nevertheless converge. This makes general statements
difficult.
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4 Expressing the composition as an operator product

4.1 How the proof of the main theorem is structured

The computation that is the subject of Main Theorem is based on an expression of the
value of the composition

B ‡
�!W

�W
�! �W �

�! �W B�!F
�! �WF

�
�! �W^

on some symmetric Jacobi diagram in terms of the operation product `.

The expression uses a linear map Bl 7!@a
W B! �W^ŒŒa; b; @a; @b �� which acts on a Jacobi

diagram v by first choosing an ordering of the legs of v and then labelling every leg
with a @a . For example,

Bl 7!@a

0BB@
1CCA D

@a @a @a @a @a @a

:

Theorem 4.1.1 Let v be an element of B , the space of symmetric Jacobi diagrams.
Then the element .� ıB�!F ı� ı�W ı‡/ .v/ is equal to�

Bl 7!@a
.v/ `

�
exp#

�
F

a

�
#X

��
a;b;@a;@bD0

where X is equal to

exp`

�
�

1

2
a @b @b

�
` �

 
exp#

 
1

2
a

C

b

!!
:

This section is devoted to the proof of this theorem. In the next section, Section 5, we
commence the computation of the b; @b D 0 piece of X by performing the � operation
in the second factor above. (Notice that computation of this piece of X is sufficient
because we immediately set b and @b to zero.) Section 6 takes that result and performs
the remaining operation product, while setting b; @b D 0.

To state the final computation of ŒX �b;@bD0 we’ll employ the following notation for the
a–labelled legs. Note that the a–labelled legs commute with every type of leg, and
so can be moved around freely. It proves clearer to avoid drawing them in explicitly.
We’ll record the a–labelled legs by (locally) orienting the edge they are incident to, and
labelling that edge with the appropriate power series in a.
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Section 6 completes the computation that:

Theorem 4.1.2

ŒX �b;@bD0 D exp#

0BB@
1

2
ln
�

sinh a=2

a=2

� 1CCA :
Substituting this computation into Theorem 4.1.1 completes the proof of the main
theorem, Main Theorem. It may take a few minutes of doodling to agree with this claim.
The point is that when you apply Bl 7!@a

.v/ to the exp.�/#X term, followed by setting
all parameters to zero, then every leg of v either becomes an F–leg, or is attached to a
leg of X , in “all possible ways”. The factorial appearing in the denominator (arising
from the exponential) exactly matches the factorial appearing in the denominator of the
averaging map �B .

4.2 The organization of this section

The remainder of this section is devoted to the proof of the expression presented above
in Theorem 4.1.1. We’ll build up to the theorem piece-by-piece. The sequence of steps
is as follows.
� Section 4.3 focuses on the following piece of the expression:

B ‡
�!W

�W
�! �W �

�! �W B�!F
�! �WF„ ƒ‚ … �

�! �W^:
This part contains the most important idea, that you can graded-average a diagram
by applying a corresponding formal differential operator to a formal exponential.

� Then, in Section 4.4, we derive an operator expression for the first step in the
composition, the “hair-splitting map”:

B ‡
�!W„ ƒ‚ … �W

�! �W �
�! �W B�!F

�! �WF
�
�! �W^:

� In Section 4.5 we immediately insert the expression we just derived for hair-
splitting into the expression developed in Section 4.3, and do some simple
rearrangements, to obtain a formula for most of the composition:

B ‡
�!W

�W
�! �W �

�! �W B�!F
�! �WF„ ƒ‚ … �

�! �W^:
� The final operation in the composition is to apply �. In Section 4.6 we explain

that � can be commuted through the operator expression so that the first step in
the construction is � operating on the formal exponential. That completes the
development of the expression in Theorem 4.1.1.
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4.3 Using operator diagrams to average

We begin by developing an expression for the graded-averaging map.

Definition 4.3.1 Define a linear map

B � 7!@a

?7!@b

W W! �W ŒŒa; b; @a; @b ��

by replacing legs according to the rules

7!

@a

and 7!

@b

:

The key proposition is the following one, which says that we can take the graded-
average of a diagram by changing it into an operator, applying the resulting operator
to an exponential of formal parameters, then setting all parameters to zero. The map
which sets all the parameters to zero, denoted Œ : �A;b;@a;@bD0 below, is precisely pr.0;0/ ,
the projection of the .0; 0/ factor out of the power series.

Proposition 4.3.2 Let v 2W . Then

(1) .� ı�W/.v/D

"
B � 7!@a

?7!@b

.v/ `

�
exp#

�
a

C

b

��#
a;b;@a;@bD0

:

Proof Both sides are linear maps, so it suffices to check this formula on generators.
So take some symmetric Weil diagram v , and assume that it has p grade 2 legs and q

grade 1 legs. We’ll evaluate the value that the right-hand side takes on v and observe
that it is precisely the signed average of v , as required.

For convenience, write
vop for B � 7!@a

?7!@b

.v/:

Consider, then, the exponential that vop is to be applied to. We’ll index its terms by the
set of words (including the empty word) that can be built from the symbols A and B .
Given some such word w , let fw denote the corresponding diagram. For example,

fBABBA D

b a b b a

:

We can expand the right-hand-side of Equation (1) to get

(2)
1

.pC q/!

X
words w built

from p copies of A
and q copies of B:

�
vop ` fw

�
a;b;@a;@bD0

:
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Fix such a word w and let’s proceed to calculate Œvop ` fw �a;b;@a;@bD0 . For example, if

v D

and w D BABBA, then we wish to calculate266664
@a @b @b @a @b

`

b a b b a

377775
a;b;@a;@bD0

:

To do such a computation directly, it helps to employ the graphical method for doing
diagram operations that was described in Section 3.3.

Let’s take a moment to recall this method. We begin by placing the operator legs of
vop up the left-hand side of a grid, and the legs of fw along the top of the grid. In
the case of this example, the diagram we draw is exhibited in Figure 11. According to

@a

@b

@b

@a

@b

b a b b a

1 2 3 4 5

1

2

3

4

5

Figure 11: The diagram which organizes the computation of the example

this method, we get precisely one contribution t.vop; fw; �/ to the operation for every
permutation � W f1; 2; 3; 4; 5g ! f1; 2; 3; 4; 5g which respects the parameters. (To be
precise, these are the contributions that will survive after the parameters get sent to zero
at the end of the operation.) So if we let Permn denote the set of all permutations on
f1; : : : ; ng and let PermpCq.v; w/�PermpCq denote the set of permutations respecting
the parameters, then we can write

(3)
�
vop ` fw

�
a;b;@a;@bD0

D

X
�2PermpCq.v;w/

t.vop; fw; �/;
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where t.vop; fw; �/ is determined by the usual graphical method. Recall that the sign

t
�
vop; fBABBA; �

�
D .�1/3

� D
�

1 2 3 4 5
2 4 3 5 1

�

Figure 12: The contribution corresponding to �

of the contribution is determined by counting the number of intersections between full
lines displayed within the box. For example, the contribution corresponding to the
permutation �

1 2 3 4 5

2 4 3 5 1

�
is displayed in Figure 12.

Here is what we need to notice: the diagram t.vop; fw; �/ put out by this operation is
(up to some to-be-determined sign) precisely what we get by permuting the legs of the
original diagram using the permutation � . To state this observation precisely: Given a
permutation � 2 PermpCq , let v� denote the diagram one gets by permuting (without
introducing signs) the legs of v according to � .

The required observation is:

Lemma 4.3.3 Let v be some diagram from W with p grade 2 legs and q grade 1

legs. Let w be some word which uses p copies of the symbol A and q copies of the
symbol B . Let � be some permutation from PermpCq.v; w/. Then

t.vop; fw; �/D '.�/v
� ;

where '.�/ is the product of a .�1/ for every pair of grade 1 legs of v which reverse
their order in v� .

We’ll leave the reader to see that this lemma is true. A detailed proof appeared in the
first version of this paper [10].
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Now we can put it all together. According to Equation (2) and Equation (3), the
right-hand side of the Equation (1) can be written

1

.pC q/!

X
words w built

from p copies of A
and q copies of B:

X
�2PermpCq.v;w/

t.vop; fw; �/:

Substituting the result of the lemma into this, we get

1

.pC q/!

X
words w built

from p copies of A
and q copies of B:

X
�2PermpCq.v;w/

'.�/v� :

This is just � ı�W , the required graded averaging map.

One step extends this proposition to give:

Corollary 4.3.4 Let v 2W . Then .B�!F ı� ı�W/ .v/ is given by the expression"
B � 7!@a

?7!@b

.v/ `

 
exp#

 
F

a

C
1

2
a

C

b

!!#
a;b;@a;@bD0

:

4.4 Hair-splitting with operator diagrams

We now turn our focus to the hair-splitting map.

Proposition 4.4.1 Let v 2 B . Then the equation

Bl 7!@a
.v/ ` exp`

�
�

1

2
a @b @b

�
D exp`

�
�

1

2
a @b @b

�
` B � 7!@a

?7!@b

.‡.v//

holds in �WFŒŒa; b; @a; @b ��.

Proof As the two sides of this equation are both linear maps, it suffices to show that
the equation holds for generators of B . So let v be a symmetric Jacobi diagram. We
begin by expanding the left-hand side of Proposition 4.4.1 in the following way:

1X
nD0

��
�

1

2

�n
1

n!

�
Bl 7!@a

.v/ `

 
a @b @b a @b @b

n‚ …„ ƒ !
:
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Now consider the diagram operation in the above sum. Recalling how to do diagram
operations (see Section 3.3), we get (letting L denote the set of the legs of v )

1X
nD0

��
�

1

2

�n
1

n!

� X
injections

�WL�S!f1;:::;ng

�
a @b @b a @b @b

n� jS j‚ …„ ƒ �
` vS ;

where, for example,

if v D

1 2 3 4

, then vf1;3;4g D

@b @b@a@b@b@b@b

:

Now for every subset S � L of legs there are n!=.n� jS j/! injections �W S !
f1; : : : ; ng. Thus the above expression may be rewritten

1X
nD0

��
�

1

2

�n
1

n!

� X
subsets S�Lwith jS j�n

n!

.n� jS j/!

�
a @b @b a @b @b

n� jS j‚ …„ ƒ �
` vS

D

0@ 1X
pD0

��
�

1

2

�p
1

p!

�
a @b @b a @b @b

p‚ …„ ƒ 1A `  X
subsets S�L

�
�

1

2

�jS j
vS

!
:

This is the right hand side of Proposition 4.4.1.

4.5 Putting the pieces together

Let v be an element of B . If we substitute ‡.v/ directly into Corollary 4.3.4 then we
are given the following expression for .B�!F ı� ı�W ı‡/ .v/:"

B � 7!@a

?7!@b

.‡.v// ` exp#

 
F

a

C
1

2
a

C

b

!#
a;b;@a;@bD0

:

We now wish to use Proposition 4.4.1 to re-express this as a direct function of v . To
this end, we begin by inserting the missing piece of that proposition into the front of
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this expression, giving"
exp`

 
�

1

2
a @b @b

!
`

 
B � 7!@a

?7!@b

.‡.v//

` exp#

 
F

a

C
1

2
a

C

b

!!#
a;b;@a;@bD0

:

We can do this because all operation products in the resulting expression converge and
because, when we set the parameter a to zero, all the introduced terms will vanish.

Then we perform an associativity rearrangement (an ultra-careful reader may wish to
read Lemma 3.4.3 and then check that Condition (§) holds before rearranging). Then
we apply Proposition 4.4.1 to replace ‡ . And finally we do another associativity
rearrangement to get"

Bl 7!@a
.v/ `

 
exp`

 
�

1

2
a @b @b

!

` exp#

 
F

a

C
1

2
a

C

b

!!#
a;b;@a;@bD0

:

Finally, observe that a–labelled legs commute with all other types of legs, and F-legs
commute with all other legs (except other F-legs), so some straightforward rearrange-
ments allow us to write (using fg instead of ./ only to make this equation easier on the
eye)

(4)

"
Bl 7!@a

.v/ `

(
exp#

 
F

a

!
# 

exp`

 
�

1

2
a @b @b

!
`

exp#

 
1

2
a

C

b

!!)#
a;b;@a;@bD0

:

4.6 Commuting � through the expression

The remaining step in the development of Theorem 4.1.1 is to apply � to the expres-
sion (4). In this section we’ll observe that we can commute � through the expression
so that it operates directly on the right-most exponential.
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For the purposes of this discussion we’ll refer to legs of the form

as ?–legs.

In Section 1.11 we recalled that � is a map �W �WF! �W^ basically defined by “glu-
ing ?–legs together in all possible ways (with coefficients)”. In this section we’ll
extend � to the situation where there are some parameter and operator legs present, to
�W �WFŒŒa; b; @a; @b ��! �W^ŒŒa; b; @a; @b ��. The purpose of this section is to prove the
following proposition.

Proposition 4.6.1 Let v and w be elements of �WFŒŒa; b; @a; @b �� such that the product
v ` w converges, and assume that v can be expressed without ?–legs. Then

�.v ` w/D v ` �.w/:

Before turning to the proof, let’s repeat the definition of � (in this more general context).
Consider some diagram w , a generator of �WFŒŒa; b; @a; @b ��. Let L?.w/ denote the
set of ?–legs of w . Recall that a pairing of w is a (possibly empty) set of disjoint
2–element subsets of L? . As before, P.w/ denotes the set of pairings of w . We then
define � by �.w/ D

P
}2P.w/D}.w/ where the term D}.w/ is constructed by the

graphical procedure described in Section 1.11. The only new detail that can occur in
this more general context is that when computing the sign of the contribution coming
from some pairing, one should pay attention also to the grades of the parameter legs.
For example, if

w D
F

b b b
1 2 3 4

;

Dff1;4g;f2;3gg.w/D .�1/3
�

1

2

�2

F
b b b

:then

Proof It suffices to show that

(5) �.v ` w/D v ` �.w/

is true for generators.
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So let v and w be operator Weil diagrams and assume that v has no ?–legs. It follows
from the construction of the operations � and ` that the two sides of Equation (5) are
sums indexed by the same set. Define that set PG to consist of pairs .}; �/, where }
is a pairing } 2 P.w/ and � is a gluing � 2 G.v; w/. Then:

(1) �.v ` w/D
P
.};�/2PG D} .t.v; w; �// ;

(2) v ` �.w/D
P
.};�/2PG t.v;D}.w/; �/,

where t.v; w; �/ is the notation used in Section 3.3 for the term that arises when v is
applied to w using the gluing � . The required equality is established by showing that
for every pair .}; �/ 2 PG ,

D} .t.v; w; �//D t
�
v;D}.w/; �

�
:

We’ll leave it as an exercise for the reader to understand, using the graphical construc-
tions of the two sides of the equation, why this equality holds. A simple example should
reveal the truth of the matter. A detailed discussion of this equality appears in the first
version of this paper [10].

5 Computing the operator product I: The inner-most piece

The remainder of this paper is occupied with the computation of the key term X
appearing in Theorem 4.1.1. We begin with the inner-most piece. The objective of this
section is to prove the following theorem.

Theorem 5.0.2 In �W^ŒŒa; b; @a; @b �� the expression

�

�
exp#

� a=2

C

b

��
is equal to

exp#

 
.1=2/

ln .cosh .a=2//

C

tanh .a=2/

�

tanh .a=2/
.a=2/

b

�

�
1

2

�2

tanh .a=2/� a=2

.a=2/2

b b

!
:

This section consists of two subsections. In Section 5.1 we show that the left-hand side
of the above equation can be expressed as an exponential of the series of terms with
connected diagrams that arise from the evaluation of �. In Section 5.2 we’ll perform a
detailed calculation of that series.
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5.1 An exponential of connected diagrams

Consider the terms that arise when you compute the first of the two expressions above.
We’ll index these terms with a certain set T . The set T is defined to be the set of pairs
.w; }/ consisting of a nonempty word w in the symbols A and B and a (possibly
empty) family } of disjoint 2–element subsets of the set f1; 2; 3; : : : ; 2#AC #Bg

(where #A and #B denote the number of appearances in the word w of the symbols A

and B respectively). If � D .w; }/ we’ll often write j� j for jwj, the length of the word
w .

Given such a pair .w; }/, the corresponding term T.w;}/ is constructed in two steps.
The first step is to replace each appearance in the word w of

A by

a=2

and of B by

b

;

so as to construct a single diagram along an orienting line in the order dictated by w .
The second step is to pair up (with appropriate coefficients) the ?–legs of this diagram
according to the pairing } . Some examples appearing shortly in Section 5.1.2 should
make this clear.

With this notation the main expression can be expanded as follows:

(6) �

�
exp#

� a=2

C

b

��
D 1C

X
�2T

1

j� j!
T� :

Our first task is to show that the right-hand-side of this equation can be organized into
an exponential of connected diagrams. To be precise: let TC � T denote the subset
consisting of those pairs .w; }/ whose corresponding term T.w;}/ is connected. (By
connected we mean that the graph is connected when the orienting line is ignored.)
Then:

Theorem 5.1.1 The following equation holds in �W^ŒŒa; b; @a; @b ��:

�

�
exp#

� a=2

C

b

��
D exp#

 X
�2TC

1

j� j!
T�

!
:

We’ll build up to this theorem with a number of combinatorial lemmas. The direct
computation of

P
�2TC .1=j� j!/T� is taken up in Section 5.2.
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5.1.2 The content of a pairing Consider some pair .w; }/. The corresponding
diagram T.w;}/ decomposes into a number a connected components. To each connected
component x we can associate some other pair .wx; }x/. For example, consider the
diagram corresponding to .AABAAA; ff2; 5g; f4; 6g; f3; 9g; f7; 11g; f8; 10gg /. It is

a=2 a=2 a=2 a=2 a=2

b

:

This diagram has 2 connected components. For example, one component corresponds
to the pair .AAAA; ff1; 6g; f2; 3g; f4; 8g; f5; 7gg /:

a=2 a=2 a=2 a=2 a=2

b

:

Define now the content of a pair .w; }/ to be the map c.w;}/W TC!N which counts the
different types of the connected components. For example, the diagram corresponding
to the pair

.w; }/D .AAAAABAA; ff1; 10g; f2; 9g; f3; 5g; f4; 6g; f7; 13g; f8; 12g; f11; 14gg/

a=2 a=2 a=2 a=2 a=2 a=2 a=2

b

;is

and its corresponding content is thus

c.w;}/..!; �//D

8̂̂̂̂
<̂
ˆ̂̂:

2 if .!; �/D .AA; ff1; 4g; f2; 3gg/;

1 if .!; �/D .AA; ff1; 3g; f2; 4gg/;

1 if .!; �/D .BA; ff1; 2gg/;

0 otherwise.

5.1.3 The “pairings factorize" lemma

Lemma 5.1.4 Consider some � 2 T . Then T� D
Q#
�2TC .T�/

#c� .�/ :
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The proof of this lemma will appear shortly, in Section 5.1.6. To illustrate it, consider
the case that � D .AAAAAB; ff2; 9g; f4; 5g; f8; 11gg /. In this case, the left hand side
of the above equation is equal to

.C1/

�
1

2

�3

a=2 a=2 a=2 a=2 a=2

b

;

and the right hand side is

0B@.C1/

�
1

2

� a=2 a=2 1CA
#2

#

0B@.�1/

�
1

2

� a=2

b

1CA :
The equality of these two expressions in �W^ŒŒa; b; @a; @b �� may be immediately ob-
served.

Applying this lemma to 1C
P
�2T .1=j� j!/T� , the right-hand-side of Equation (6), we

can rewrite the main expression we are computing as

(7) 1C
X

content functions
0¤cWTC!N0

0@ number of
pairs � 2 T

with content c

1A 1�P
�2TC c.�/j� j

�
!

#Y
�2TC

T #c.�/
� :

The combinatorial factor is computed by the next lemma, whose proof is left as an
elementary combinatorial exercise. A detailed proof appeared in the first version of this
paper [10].

Lemma 5.1.5 Consider some content function � W TC ! N0 . The number of pairs
.w; }/ with this content is �P

�2TC c .�/ j� j
�
!Q

�2TC .j�j!/
c.�/ .c.�//!

:

Substituting this computation into Equation (7), we obtain

1C
X

content functions
0¤cWTC!N0

#Y
�2TC

1

c.�/!

�
T�

j�j!

�#c.�/

:

This completes the proof of Theorem 5.1.1.
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5.1.6 The proof of Lemma 5.1.4 Our goal is to show that, for .w; }/ 2 T ,

(8) T.w;}/ D

#Y
�2TC

.T�/
#c.w;}/.�/ :

The right hand side of this equation is just the left hand side, factored into its connected
components. The equality is obvious, except for the possibility that the signs may differ.
To establish this equality we’ll begin by drawing the diagram representing the left-hand
side in a canonical way; then we’ll push the legs around (using the signed permutation
relations) until the diagram is separated into its constituent components. Our task is to
keep track of what happens to the sign out the front of the term during this process.

We’ll illustrate the discussion with .w; }/ D .AAAAAB; ff2; 9g; f4; 5g; f8; 11gg /.
We begin with the left-hand side. Construct the corresponding term T.w;}/ using the
graphical approach to � discussed in Section 1.11. In this example,

T.w;}/ D .�1/8
�

1

2

�3

a=2 a=2 a=2 a=2 a=2

b

:

Observe the crucial point:

(|)
If we draw the diagram in this fashion, then the sign out the front of the
term is precisely a product of a .�1/ for every intersection displayed by
the drawing.

To connect this with the expression on the right-hand side, we will now separate this
diagram into its connected components. To do this we have to perform permutations of
the legs. Every time we permute a pair of legs we pick up a .�1/, but also pick up an
extra intersection point in the drawing. So throughout this process observation (|) still
holds. Doing this to our example, we obtain

T.w;}/ D .�1/11

�
1

2

�3

a=2 a=2 a=2 a=2 a=2

b

:

We have now separated the legs of the diagram into disjoint groups corresponding to
the different connected components of the diagram.

We finish by fully separating the connected components in the drawing. To be precise,
it is clear that we can now do a combination of the following two moves to the drawing
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so as to separate the connected components without affecting the graphical structure of
the individual connected components. The moves are

• and • :

In these diagrams two line styles are used because there are two different connected
components involved. Note that these moves only change the number of displayed inter-
sections by an even number, so observation (|) still holds after separating components.

In this case we wind up with

T.w;}/ D .�1/1
�

1

2

�3

a=2 a=2 a=2 a=2 a=2

b

:

After this factorization procedure the sign that we are left with, then, is a .�1/ for every
intersection displayed by the drawing. Thus the sign is a .�1/ for every self-intersection
of the connected components, which exactly gives the right-hand side of Equation (8).

5.2 The computation of
P
�2TC

.1=j�j!/T�

Our task in this section is to write down the series of all possible terms that can arise by
the following procedure:

(1) Putting down a number of copies of the diagrams A and B in some order along a
line. If we use n factors in total then we multiply the diagram by 1=n!.

(2) Joining up (with signs) the ?–legs in such a way as to produce a connected
diagram (multiplying by a factor of 1=2 for every pair of legs joined up).

We begin by observing that the connected diagrams that can arise in this way fall into
exactly four groups:

� The resulting diagram has exactly two remaining legs, and they are both ?–legs.
For example,

a=2 a=2 a=2 a=2 a=2

:
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� The resulting diagram has exactly two remaining legs, and they are both b–legs.
� The resulting diagram has exactly two remaining legs, one ?–leg and one b–leg.
� The resulting diagram has no remaining legs. For example,

a=2 a=2 a=2 a=2 a=2

:

Denote these different contributions in the following way:X
�2TC

1

j� j!
T� D C??CC?bCCbbCCo:

We’ll compute these different contributions in turn, and observe that they correspond to
the four series appearing inside the exponential in Theorem 5.0.2.

5.2.1 The contribution C?? The goal of this subsection is the computation that

(9) C?? D

tanh .a=2/

:

So consider some n � 2 (the case nD 1 it is clearer to put in by hand). We wish to
compute the contributions from the connected diagrams with 2 legs that we can get by
doing signed pairings of the legs of the following term (where the blocks have been
numbered for convenience):

1

n!

a=2 a=2 a=2

1 2 n

:

To enumerate the pairings that contribute we’ll construct a certain set
�!
�n . An element

of the set
�!
�n is a word which uses each of the symbols f1; 2; : : : ; ng precisely once,

where, in addition, each symbol s is decorated by either an arrow pointing to the left �s
or an arrow pointing to the right �!s , for example,

�!
2
�!
3
 �
5
�!
1
�!
4 2
�!
� 5 . The set

�!
�n is

defined to be the set of words of this form subject to the single constraint that the first
symbol is less than the final symbol. To see that they agree with our definition the
reader might like to check that j

�!
�nj D n!2n�1 .

We’ll demonstrate how the different pairings correspond with the elements of the
sets
�!
�n by means of the following example:

a=2 a=2 a=2 a=2 a=2

1 2 3 4 5

:
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To write down the word corresponding to some pairing, begin at the base of the left-most
of the two remaining legs. Now traverse the graph by simply following the edge until
you reach the second of the two remaining legs. Write down the symbols f1; : : : ; ng in
the order in which you visit the different blocks. In this case, you should write down:
41235. Then decorate this word with arrows to record how you traverse each block
(whether from left to right, or from right to left). (Take care not to confuse this arrow
with the arrow which locally orients the edges around the a labels.) The decoration in
this example is

 �
4
 �
1
�!
2
�!
3
�!
5 .

This word contains sufficient instructions for uniquely reconstructing the pairing, so we
get precisely one of the relevant pairings for each element of

�!
�n .

Given some word w 2
�!
�n , let w denote the corresponding contribution to C?? (that

is, including the factorial out the front as well as the signs that arise from the gluing
and a factor of .1=2/ for every joined pair). For example,

 �
4
 �
1
�!
2
�!
3
�!
5
D
.�1/5

5!

�
1

2

�4

a=2 a=2 a=2 a=2 a=2

1 2 3 4 5

D�
1

245!
a=2

a=2

a=2
a=2

a=2

D
1

245!
a=2

a=2
a=2

a=2

a=2

D �
1

245!

.a=2/5

:

With this definition we can organize the contributions that we are seeking to compute in
the following way:

(10) C?? D

a=2

C

1X
nD2

X
w2
�!
�n

w:

Now observe that, for some fixed n, all the w , for w 2
�!
�n , are equal, up to sign:

w D˙
1

2n�1n!

.a=2/n

:

The only complication, then, in computing the piece
�P

w2
�!
�n
w
�

in Equation (10),
is to determine the signs of the various w . Those signs are determined by the next
lemma.

To state the lemma precisely, we need some notation. Let �n denote the set of words
in the symbols f1; : : : ; ng with the property that the right-most symbol in a word has
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greater value than the left-most symbol. There is an obvious 2n –to–1 forgetful map
f� W
�!
�n! �n . Define the descent of a word w 2 �n , denoted d.w/, to be the number

of times the value of the symbol decreases as you scan the word from left to right.

Lemma 5.2.2 Let n� 2 and let w 2
�!
�n . Then

w D .�1/d.f�.w//
1

2n�1n!

.a=2/n

:

The proof of this lemma is at the end of this subsection. Substituting the computation
into Equation (10), we find that

C?? D

a=2

C

1X
nD2

X
w2
�!
�n

�
.�1/d.f�.w//

1

2n�1n!

.a=2/n �

D

a=2

C

1X
nD2

 
2
P
w2�n

.�1/d.w/

n!

! .a=2/n

:

Note that when n is even the corresponding term is zero (because of AS relations). So
the result is

C?? D

‰.a=2/

;

where ‰.x/ is the formal power series defined by ‰.x/D
P1

nD1. .n/=n!/xn , with

 .n/D

8̂<̂
:

1 if nD 1,

2
P
w2�n

.�1/d.w/ if n> 1 and n is odd,

0 if n> 1 and n is even.

The required computation, Equation (9), is completed by the following proposition.

Proposition 5.2.3 ‰.x/D tanh.x/:

Proof We’ll begin by replacing  .n/ with a function that is easier to use. For every
n � 1 let †n denote the set of words that can be made using each of the symbols
f1; : : : ; ng exactly once (with no restrictions on order) and define

�.n/D
X
w2†n

.�1/d.w/:
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Let �W †n ! †n be the involution of †n which writes a word in its reverse order.
Define the descent d.w/ of a word in the obvious way. Notice that

(11) d.�.w//D

(
Cd.w/ if n is odd,

�d.w/ if n is even.

Thus

�.n/D

8̂<̂
:

1 if nD 1,

2
P
w2�n

.�1/d.w/ if n> 1 and n is odd,

0 if n> 1 and n is even.

In other words, �.n/D  .n/, and our task is to calculate the power series

‰.x/D

1X
nD1

�.n/

n!
xn:

We’ll calculate this power series by writing down a recursion relation which determines
the function �.n/=n!, and then we’ll identify a power series whose coefficients solve
the recursion relation.

To deduce the appropriate recursion relation we’ll partition the set †n according to
the position of the symbol n. Let †i

n �†n denote the subset consisting of the words
where the symbol n appears in position i . Then, for n� 3:

�.n/

n!
D

1

n!

nX
iD1

 X
w2†i

n

.�1/d.w/

!

D�
1

n!

n�1X
iD2

�
n� 1

i � 1

�
�.i � 1/�.n� i/

D�
1

n

n�1X
iD2

�.i � 1/

.i � 1/!

�.n� i/

.n� i/!
:

Now observe that this recursion relation, together with the initial conditions �.1/D 1

and �.2/D 0, completely determines the sequence �.n/. It follows from this recursion
relation that ‰.x/ is the unique power series satisfying the equation

d
dx

�
‰.x/

�
D 1�‰.x/2;

with initial terms ‰.x/D xC .terms of degree at least 3/. Thus, ‰.x/D tanh.x/.

Proof of Lemma 5.2.2 Consider the diagram arising from the pairing corresponding
to some word w 2

�!
�n . If we draw the pairing canonically (as described in Section
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1.11) then the sign of the resulting term is precisely .�1/ raised to the number of
intersections displayed in the drawing of the diagram. For example,

 �
2
 �
1
 �
5
�!
3
 �
4
D
.�1/4

5!

�
1

2

�4

a=2 a=2 a=2 a=2 a=2

:

We’ll put such a drawing into a standard form with two steps. The first step is to add
permutations to the top of the drawing so that the tops of the blocks appear in the same
order as they appear in the word w . Notice that a single such permutation introduces 4

intersections into the diagram, so it is still true, after such a move, that the sign of the
term is precisely .�1/ raised to the number of intersections displayed in the drawing of
the diagram. For example,

 �
2
 �
1
 �
5
�!
3
 �
4
D
.�1/16

5!

�
1

2

�4

a=2 a=2 a=2 a=2 a=2

:

Now the second step. Notice that as you traverse the edge from the base of the left leg
to the base of the right leg, then some factors are traversed from left to right (the 4–th
factor from the left, above), while some factors are traversed from right to left (the other
factors). The second and final step in the procedure to put the diagram into standard
form is to add twists to the maxima in order that every factor is traversed from left to
right. Because this move simultaneously introduces an extra intersection, and an extra
factor of .�1/ (from a use of an AS relation), it is still true that the sign of the term is
just .�1/ raised to the number of intersections displayed in the drawing. If we apply
this procedure to our example we obtain

 �
2
 �
1
 �
5
�!
3
 �
4
D
.�1/20

5!

�
1

2

�4

a=2 a=2 a=2 a=2 a=2

:

Notice that after these two steps, the initial diagram has been transformed into the
following standard form:
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a=2 a=2 a=2 a=2

:

The sign of the corresponding term, which is what we are calculating, is precisely .�1/

raised to the number of intersection points displayed within the box in the drawing that
we have just obtained.

To count the intersections: Notice that the dashed box cuts the edge up into pieces.
We’ll call the pieces inside the box the arcs. The arcs correspond directly to the arcs
that were introduced when this diagram was created in the operation �.

The number of intersections of two different arcs must be even (because of how their
boundary points are arranged around the outside of the box). It remains, then, to
count the number of self-intersection points of these arcs. Well, the arcs had no
self-intersections when they were added in by �, so we just have to trace how many
self-intersection points were created by our procedure. Self-intersections of the arcs
can only be created in the first step of our procedure, when a permutation is added to
the top of the diagram. There will be exactly one of these for every case of two factors
consecutive in w , with the factor appearing later in w having the smaller value. Thus
the sign is .�1/d.w/ .

5.2.4 The contribution Co The goal of this subsection is the computation that

Co DC
1

2

ln .cosh .a=2//

:

So consider some n� 2 (the nD 1 case is easily observed to be zero). In this subsection
we wish to compute the contributions from the connected diagrams with zero legs that
we can get by doing signed pairings of the legs of the term

1

n!

a=2 a=2 a=2

1 2 n

:

In this case, to enumerate the contributions we’ll employ a set
�!
„n . This set consists

of the words that can be made by using each of the symbols f1; : : : ; ng precisely once,
such that the left-most symbol is a 1, and where every symbol s except the initial 1

is decorated by either an arrow pointing to the right �!s or an arrow pointing to the
left  �s . For example, 1

�!
3
�!
5
�!
4
 �
2 2
�!
„5 . Let „n denote the set defined in the same

Algebraic & Geometric Topology, Volume 11 (2011)



1150 Andrew Kricker

way but without the arrow decorations and let f„W
�!
„n!„n denote the corresponding

2n�1 –to–1 forgetful map.

Consider, then, some pairing which uses all the available legs and results in exactly one
connected component. For example,

a=2 a=2 a=2 a=2 a=2

:

The word that corresponds to such a gluing is determined in the following way. To
begin, ignore the arc that terminates on the left-hand side of the left-most block:

a=2 a=2 a=2 a=2 a=2

1 2 3 4 5

:

Now traverse the graph, starting with the left-most block, writing down the order in
which blocks are visited together with the corresponding directions. The example
given leads to 1

�!
2
�!
4
 �
5
�!
3 . This word contains sufficient information to reconstruct the

pairing, so we have just set up a bijection between the set
�!
„n and the set of pairings

that contribute to this case.

Given some word w 2
�!
„n let �w denote the corresponding contribution.

Lemma 5.2.5 Let n� 2 and let w 2
�!
„n . Then

�w D .�1/d.f„.w//
1

2nn!

.a=2/n

:

This is proved in exactly the same way as the proof of Lemma 5.2.2. The one substantial
difference is that this term has an extra factor of 2 in the denominator (in comparison
with Lemma 5.2.2) because this term has an extra arc attached. (So � introduces an
extra factor of 1=2.)
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Now we can compute the contribution Co . To begin, note that the term that arises in
the nD 1 case is zero. We calculate

Co D

1X
nD2

 
2n�1

P
w2„n

.�1/d.w/

2nn!

! .a=2/n

D
1

2

1X
nD2

�
1

n

�.n� 1/

.n� 1/!

� .a=2/n

D
1

2

�R
‰
�
.a=2/

;

where
�R
‰
�
.x/ denotes

1X
nD2

1

n

�.n� 1/

.n� 1/!
xn:

This is the unique power series with zero constant term whose formal derivative is
‰.x/D tanh x . That power series is

�R
‰
�
.x/D ln cosh x , as claimed.

5.2.6 The contribution Cbb We now wish to compute the contribution of pairings
which lead to connected diagrams with exactly two b–legs. For example,

a=2 a=2 a=2

b b

:

The set which enumerates these gluings is the following
�!
�n . The elements of

�!
�n are

certain words that use each of the symbols f1; : : : ; ng precisely once and where each
symbol except the first and last symbols in the word is decorated by an arrow. The
set
�!
�n is defined to be all words of this type with the property that the last symbol is

greater than the first symbol.

To write down the word corresponding to some gluing, traverse the graph, starting
at the left-most of the 2 legs, writing down the order that blocks are encountered as
you traverse (decorating with the appropriate arrow). For example, the gluing above
corresponds with the word 3

 �
1
�!
2
�!
4 5 2

�!
�5 . Let �n be defined in exactly the same

way as
�!
�n , but without using the arrow decorations. Let f�W

�!
�n!�n denote the

2n�2 –to–1 forgetful map. Let !w denote the contribution corresponding to some word
w 2
�!
�n . We leave the proof of the following lemma as an exercise for the reader.
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Lemma 5.2.7 Let n� 2 and let w 2
�!
�n . Then

!w D�.�1/d.f�.w//
1

2n�1n!

.a=2/n�2

b b

:

With this lemma we can now compute, as required, that

Cbb D�

1X
nD2

0@ 2n�2

2n�1n!

X
w2�n

.�1/d.w/

1A .a=2/n�2

b b

D�

�
1

2

�2 1X
nD2

�
 .n/

n!

� .a=2/n�2

b b

D�

�
1

2

�2

‰ .a=2/� a=2

.a=2/2

b b

:

5.2.8 The contribution Cjb To enumerate these contributions the set we’ll use will
be
�!
�n , which we define to be the set of words which use each one of the symbols

f1; : : : ; ng exactly once, and where every symbol except the last symbol is decorated
by an arrow. For example,

 �
4
�!
2
 �
3 1 2

�!
�5 .

To write down the word that corresponds with a given pairing, traverse the diagram,
starting at the ?–leg and proceeding until you reach the b–leg As you traverse, record
the order in which you visit the different blocks and the directions in which you travel
as you visit the blocks. For example, the pairing

a=2 a=2 a=2 a=2

b

corresponds with the word
�!
1
�!
2
 �
5
 �
4 3 2

�!
�5 . For some w 2

�!
�n , let ıw denote the

corresponding term. Let f�W
�!
�n!†n denote the 2n�1 –to–1 forgetful map.

Lemma 5.2.9 Let n� 2 and let w 2
�!
�n . Then

ıw D�.�1/d.f�.w//
1

2n�1n!

.a=2/n�1

b

:
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We’ll leave this lemma as an exercise. With it we can calculate the claimed result:

Cjb D�

1X
nD1

X
w2
�!
�n

.�1/d.ı.w//
1

2n�1n!

.a=2/n�1

b

D�

1X
nD1

P
w2†n

.�1/d.w/

n!

.a=2/n�1

b

D�

.a=2/�1‰ .a=2/

b

:

6 Computing the operator product II

In this section we’ll complete the computation of the series ŒX �b;@bD0 . The final result
we’ll obtain was stated earlier as Theorem 4.1.2.

6.1 Proof of Theorem 4.1.2

A direct substitution of the previous section’s result (Theorem 5.0.2) into X (as defined
in Theorem 4.1.1) tells us that ŒX �b;@bD0 is equal to

(12) exp#

 �
1

2

�ln .cosh .a=2//

C

tanh .a=2/ !
#Y

where Y is equal to

24exp`

 
�

1

2
a @b @b

!
` exp#

0@�
tanh .a=2/
.a=2/

b

�

�
1

2

�2

tanh .a=2/� a=2

.a=2/2

b b

1A 35
b;@bD0

This series Y will be computed with the following lemma, whose proof occupies the
remainder of this section (following the proof we are in right now). Observe that the
minus that appears inside the first term has been removed by appropriately choosing
the orientation on the corresponding edge.

Lemma 6.1.1 Let Y .a/ be a power series containing only even powers of a and let
Z.a/ be a power series containing only odd powers of a. Then
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�
exp`

� a=2

@b @b

�
` exp#

� Y .a/

b

C

Z.a/=2

b b

��
b;@bD0

D exp#

0@�1

2

1X
nD1

1

n

.aZ.a//n

C
1

2

1X
nD0

Y .a/ .aZ.a//n aY .a/ 1A :
We’ll apply this lemma directly to the expression for Y given above. To specialize to
this case we set

Y .a/D�
tanh.a=2/

a=2
;

Z.a/D�
1

2

tanh .a=2/� .a=2/

.a=2/2
:

The expressions appearing in the right-hand-side of the lemma become

1X
nD1

1

n
.Z.a/a/n D

1X
nD1

1

n

�
1�

tanh .a=2/
a=2

�n

D� ln
�

tanh .a=2/
a=2

�
;

1

2

1X
nD0

Y .a/ .aZ.a//n aY .a/D

1X
nD0

tanh.a=2/
a=2

�
1�

tanh .a=2/
a=2

�n
a

2

tanh.a=2/
a=2

;and

D tanh .a=2/ :

Thus the conclusion of the lemma is that Y is equal to

exp#

 �
1

2

�ln
�

tanh .a=2/
.a=2/

�
�

tanh .a=2/ !
:

Substituting this computation into (12) completes the proof of Theorem 4.1.2.

6.2 Proof of Lemma 6.1.1

Our final task is the combinatorial computation of the following expression:

(13)
�

exp`

� a=2

@b @b

�
` exp#

� Y .a/

b

C

Z.a/=2

b b

��
b;@bD0

:

Algebraic & Geometric Topology, Volume 11 (2011)



Differential operators and the wheels power series 1155

To begin, note that, because we set b and @b to zero at the end of the calculation, there
will only be contributions from those terms arising from the expansion with the property
that the number of @b legs in the first factor is equal to the number of b legs in the
second factor. For example, a typical contributing term is

1

4!
@b @b @b @b @b @b @b @b

a=2 a=2 a=2 a=2

`

�
1

5!

Y .a/ Z.a/=2 Y .a/ Z.a/=2 Z.a/=2

b b b b b b b b

�
:

We’ll briefly recall how to compute such a product using the graphical method described
in Section 3.3. We begin by drawing a grid over an orienting line, placing the legs of
the first factor in order up the left-hand side of the grid, and the legs of the second factor
in order along the top of the grid. Because we are going to set b and @b to zero at the
end of the calculation, we will get exactly one contribution for every different way of
wiring all the @b –legs to all the b–legs. In other words, we get exactly one contribution
for every bijection �W f1; : : : ; 8g ! f1; : : : ; 8g.

Consider the example of the bijection�
1 2 3 4 5 6 7 8

1 5 2 7 4 6 8 3

�
:

To construct the corresponding contribution we, first of all, wire up the grid using
the bijection, and then multiply the resulting diagram by .1=4!/.1=5!/.�1/x , where x

denotes the number of intersections displayed within the grid. In this case x D 32. The
exact contribution is shown in Figure 13.

1

4!

1

5!
.�1/32

� D
�

1 2 3 4 5 6 7 8
1 5 2 7 4 6 8 3

�
a=2

a=2

a=2

a=2

Y .a/

Z.a/

2 Y .a/

Z.a/

2 Z.a/

2

Figure 13: The contribution corresponding to the bijection �
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6.2.1 The series is an exponential of connected terms We’ll begin by defining a
set r which will index the different terms that arise when Expression (13) is evaluated.
The elements of r are triples .n; w; �/, where n is a positive integer, where w is
a word in the symbols Y and Z such that .#Y /C 2.#Z/ D 2n, and where � is a
bijection � W f1; 2; : : : ; 2ng ! f1; 2; : : : ; 2ng. Given some triple .n; w; �/ 2 r , let
T.n;w;�/ denote the corresponding term. For example, the term we constructed in
Figure 13 is precisely

T�
4 ;Y Z Y ZZ ;

�
1 2 3 4 5 6 7 8
1 5 2 7 4 6 8 3

��:
Let rC � r denote the subset of elements of r whose corresponding diagram is
connected. (For example, the case just treated is not an element of this subset.) We’ll
omit the proof of the following proposition, which is a tedious combinatorial argument
closely analogous to the proof of Theorem 5.1.1.

Proposition 6.2.2 Expression (13) is equal to exp#
�P

�2rC
T�
�
.

6.2.3 The computation of
P
�2rC

T� We can group this sum into two contributionsP
�2rC

T� D C0CC2 , where:

� C0 denotes the series of terms T� whose underlying diagrams are connected and
have no legs.

� C2 denotes the series of terms T� whose underlying diagrams are connected and
have exactly 2 legs.

These classes are the only combinatorial possibilities. In the next section C0 will be
calculated to be

C0 D �
1

2

1X
nD1

1

n

.aZ.a//n

:

This fact, together with the fact that

C2 D
1

2

1X
nD0

Y .a/ .aZ.a//n aY .a/

;

completes the proof of the Lemma 6.1.1. The computation of C2 is closely analogous
to the computation of C0 , and will be omitted here. A detailed discussion appeared in
the first version of this paper [10].
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6.2.4 The contribution C0 We’ll begin by defining a set
�!
ˆn which will index

the terms (with #Z D n) which contribute to C0 . The elements of
�!
ˆn will be pairs

.w1; w2/ of words, the first word w1 using each of the symbols f1; : : : ; ng exactly once,
and the second word w2 using each of the symbols f2; : : : ; ng exactly once. In addition,
every symbol s of the first word w1 is decorated by either an arrow pointing to the
left  �s or an arrow pointing to the right �!s , and every symbol s of the second word w2

is decorated by either an arrow pointing up s" or an arrow pointing down s#. The set
�!
ˆn is defined to be the set of all such pairs. For example, .

�!
4
 �
1
 �
3
�!
2 ; 2" 3# 4#/2

�!
ˆ4 .

We’ll now explain how to write down the pair of words corresponding to some contri-
bution to C0 . The explanation will be illustrated by the example shown in Figure 14.
Start at the top-most factor a=2. The exact point referred to is decorated in the figure
with a bullet.

a=2

a=2

a=2

a=2

1

2

3

4

Z.a/

2

Z.a/

2

Z.a/

2
Z.a/

2

1 2 3 4

Figure 14: How a gluing determines a pair of words

Now traverse the diagram until you return to where you started (the arrow in the example
indicates how to begin this traverse). The first word records the order and direction
in which you encounter the factors written along the top line as you traverse (in this
example the corresponding word is

�!
4
 �
1
 �
3
�!
2 ), and the second word records the order

and direction in which you encounter the factors written down the left-hand side (in
this case, 2" 3# 4#).

Given some element .w1; w2/ 2
�!
ˆn , let �.w1;w2/ denote the corresponding contribu-

tion (including the appropriate factorials and signs) to C0 . The series to be calculated
can now be written

C0 D

1X
nD1

X
.w1;w2/2

�!
ˆ n

�.w1;w2/ :
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This calculation is greatly simplified by the observation that, for a fixed n, all the
�.w1;w2/ , for .w1; w2/ 2

�!
ˆn , are precisely equal. This fact is part of the following

lemma, whose proof appears later in this section.

Lemma 6.2.5 Consider some n� 1 and some .w1; w2/ 2
�!
ˆn . Then

�.w1;w2/ D�
1

n!n!

..a=2/.Z.a/=2//n

:

With this information in hand, C0 is easily computed:

C0 D .�1/

1X
nD1

j
�!
ˆnj

1

n!n!

..a=2/.Z.a/=2//n

D�
1

2

1X
nD1

1

n

.aZ.a//n

:

This is the computation we claimed at the start of this section.

Proof of Lemma 6.2.5 We’ll begin by introducing some notation. Given a gluing
datum .w1; w2/ 2

�!
ˆn , let D.w1;w2/ denote the series of diagrams represented by the

drawing you get when you wire up a grid according to .w1; w2/. Let x.w1; w2/ denote
the number of intersections displayed by that drawing. According to these definitions,
the corresponding contribution is written

�.w1;w2/ D
1

n!n!
.�1/x.w1;w2/D.w1;w2/:

This proof is based on two moves, which we’ll call R-moves (for tRansposition) and
W-moves (for tWist), that we can perform on gluing data:

.w1; w2/
R-move
����! .w01; w

0
2/ and .w1; w2/

W-move
�����! .w01; w

0
2/;

whose key property is that they have no effect on the corresponding term:

(14)
1

n!n!
.�1/x.w1;w2/D.w1;w2/ D

1

n!n!
.�1/x.w

0
1
;w0

2
/D.w0

1
;w0

2
/:

We’ll begin by introducing these two moves and establishing that the key property holds
for them.
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R-moves This move is transposition of adjacent columns or adjacent rows. Here is an
example of an R-move, (where the arcs which are unaltered by the move have not been
drawn in):

Z.a/=2 Z.a/=2

•

Z.a/=2 Z.a/=2

This move can only change the number of displayed intersections by an even number
(indeed, observe that the relative positions of the ends of all arcs down the left-hand
edge of the grid is unaltered by this move). Thus

1

n!n!
.�1/x.w1;w2/D.w1;w2/

D
1

n!n!
.�1/x.w1;w2/D.w0

1
;w0

2
/ (as D.w0

1
;w0

2
/ DD.w1;w2/)

D
1

n!n!
.�1/x.w

0
1
;w0

2
/D.w0

1
;w0

2
/ (as x.w01; w

0
2/D x.w1; w2/C an even number).

W-moves This move is a “half-twist” of a single column or row:
Z.a/=2

•

Z.a/=2

:

Note in this case that D.w0
1
;w0

2
/ D .�1/D.w1;w2/ , (using the fact that Z.a/ is assumed

to only have odd powers of a), so

1

n!n!
.�1/x.w1;w2/D.w1;w2/

D
1

n!n!
.�1/x.w1;w2/.�1/D.w0

1
;w0

2
/ (as D.w0

1
;w0

2
/ D .�1/D.w1;w2/)

D
1

n!n!
.�1/x.w

0
1
;w0

2
/D.w0

1
;w0

2
/ (as x.w01; w

0
2/D x.w1; w2/˙ 1),

as required.
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With these moves in hand, we can turn to the general argument. The simple idea is to
show that we can transform any gluing .w1; w2/ that we are given, via a sequence of
R- and W-moves, into a standard gluing:

.w1; w2/! .w01; w
0
2/! .w001 ; w

00
2/! � � � ! .

�!
1
�!
2 � � � �!n ; 2# 3# � � � n#/:

The explanation of why this is true will be illustrated by the example of the gluing
.
 �
1
 �
2
�!
3
 �
4 ; 4# 2# 3"/:

(15)

a=2

a=2

a=2

a=2

Z.a/

2

Z.a/

2

Z.a/

2
Z.a/

2

There are two steps in the procedure.

The first step Begin by doing R-moves to put the factors along the top and down the
side into the order in which they appear in the words w1 and w2 . Let’s go through this
in the case of the example shown in line (15). We’ll start by swapping row 3 and row 4,
to get

R-move
����!

a=21

a=22

a=24

a=23

Z.a/=2

1

Z.a/=2

2

Z.a/=2

3

Z.a/=2

4

:

Then we’ll swap row 2 and row 3 (ie this swaps factor 2 and factor 4), giving

(16)
R-move
����!

1

4

2

3

a=2

a=2

a=2

a=2

1 2 3 4

Z.a/

2

Z.a/

2

Z.a/

2
Z.a/

2

:
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This finishes the first step of the procedure. The thing to notice is that after this step the
factors along the top are visited in order from left to right, and the factors down the side
are visited in order from top to bottom.

The second step The second step of the procedure is to employ W-moves to arrange
it so that, as the drawing is traversed (in the sense indicated in Figure 14), the factors
along the top are traversed from left-to-right, and the factors up the side (except the
top-most) are traversed from top-to-bottom.

In our example, the diagram can be put in standard position by four such twists. In
general: it is clear that these two steps will transform any given .w1; w2/ into the
standard gluing, and so, by repeated application of Equation (14), for any .w1; w2/ 2
�!
ˆn , we have

�.w1;w2/ D
1

n!n!
.�1/x.w1;w2/D.w1;w2/ D

1

n!n!
.�1/x.w

s
1
;ws

2
/D.ws

1
;ws

2
/ ;

where .ws
1
; ws

2
/D .
�!
1
�!
2 � � � �!n ; 2# 3# : : : n#/, the standard gluing.

It remains to compute the contribution corresponding to the standard gluing. We’ll
illustrate the general answer by the specific case nD 4. The term we need to compute is

(17) �.ws
1
;ws

2
/ D

1

4!4!
.C1/

Z.a/

2

Z.a/

2

Z.a/

2
Z.a/

2

a=2

a=2

a=2

a=2

:

This series is equal to

D
1

4!4!
.C1/

a=2

a=2
a=2

a=2

Z.a/

2

Z.a/

2

Z.a/

2
Z.a/

2

D
1

4!4!
.�1/

..a=2/.Z.a/=2//4

;

as required. The case of general n follows in the same way. That completes the proof
of Lemma 6.2.5.
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