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On genus–1 simplified broken Lefschetz fibrations

KENTA HAYANO

Auroux, Donaldson and Katzarkov introduced broken Lefschetz fibrations as a gener-
alization of Lefschetz fibrations in order to describe near-symplectic 4–manifolds. We
first study monodromy representations of higher sides of genus–1 simplified broken
Lefschetz fibrations. We then completely classify diffeomorphism types of such
fibrations with connected fibers and with less than six Lefschetz singularities. In these
studies, we obtain several families of genus–1 simplified broken Lefschetz fibrations,
which we conjecture contain all such fibrations, and determine the diffeomorphism
types of the total spaces of these fibrations. Our results are generalizations of Kas’
classification theorem of genus–1 Lefschetz fibrations, which states that the total
space of a nontrivial genus–1 Lefschetz fibration over S2 is diffeomorphic to an
elliptic surface E.n/ for some n� 1 .

57M50; 32S50, 57R65

1 Introduction

Broken Lefschetz fibrations were introduced by Auroux, Donaldson and Katzarkov [1]
as a generalization of Lefschetz fibrations. Donaldson [4] proved that symplectic 4–
manifolds admit Lefschetz fibrations after blow-ups and Gompf [5] proved the converse,
ie, the total space of every nontrivial Lefschetz fibration admits a symplectic structure.
In [1], Auroux, Donaldson and Katzarkov extended these results to 4–manifolds with
near-symplectic structure, which is a closed 2–form symplectic outside a union of
circles where it vanishes transversely. In fact, they proved that a 4–manifold M is
near-symplectic if and only if M admits a broken Lefschetz pencil structure with
certain conditions. So it is quite natural to try to generalize various results about
Lefschetz fibrations to those for broken Lefschetz fibrations.

The classification of diffeomorphism types of total spaces M of nontrivial genus–1

Lefschetz fibrations over S2 has already been done by Kas [8] and Moishezon [12],
independently. They proved that M is diffeomorphic to an elliptic surface E.n/ for
some n � 1. Especially, the diffeomorphism type of M is determined only by the
Euler characteristic of M . Our main results generalize Kas and Moishezon’s theorem
to genus–1 simplified broken Lefschetz fibrations.
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Williams [14] proved that every closed connected oriented smooth 4–manifold admits a
simplified purely wrinkled fibration by using singularity theory (we will not mention the
definition of simplified purely wrinkled fibrations in this paper. For precise definition
of these fibrations, see [14]). Simplified purely wrinkled fibrations can be changed into
simplified broken Lefschetz fibrations by using Lemma 2.5 of Baykur [2] and Lekili’s
move in [9] which changes a single cusped indefinite folds into indefinite folds and
a Lefschetz singularity. As a result, it is known that every closed connected oriented
smooth 4–manifold admits a simplified broken Lefschetz fibration structure. So it is
natural to examine the minimal genus of all simplified broken Lefschetz fibrations
M ! S2 on a fixed 4–manifold M . As far as the author knows, there are few results
about the above question so far. This problem is another motivation of our study and
our main theorems give a partial answer to the question. Moreover, we will show that
the minimal genus of all simplified broken Lefschetz fibrations on # kCP2 is greater
than 1 for all k > 0 (cf Corollary 4.11).

Our main results is as follows.

Main Theorem A The following 4–manifolds admit genus–1 simplified broken
Lefschetz fibration structures with nonempty round singular locus.

� # kCP2 # `CP2 , where ` > 0 and k � 0.

� # kS2 �S2 , where k � 0.

� L # kCP2 , where k � 0 and L is either of the manifolds Ln and L0n defined
by Pao [13].

Main Theorem B Let M be a total space of a genus–1 simplified broken Lefschetz
fibration with nonempty round singular locus and with r Lefschetz singularities, where
r is a nonnegative integer. If r � 5, then M is diffeomorphic to one of the following
4–manifolds.

� # kCP2 # .r � k/CP2 , where 0� k � r � 1.

� # kS2 �S2 , where k D r=2 for even r .

� S1�S3 # S # rCP2 , where S is either of the manifolds S2�S2 and S2 z�S2 .

� L # rCP2 , where L is either of the manifolds Ln and L0n .

Remark 1.1 In private talks with R İ Baykur, he told the author about an alterna-
tive proof of a part of Main Theorem A. His proof depends on singularity theory,
while ours on Kirby calculus. The latter includes essential tools used in the proof of
Main Theorem B.
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While the author was writing this paper, Baykur and Kamada [3] posted a paper about
genus–1 simplified broken Lefschetz fibrations on the arXiv. They obtained some
results about genus–1 simplified broken Lefschetz fibrations independent of the author.
They classified genus–1 simplified broken Lefschetz fibrations up to blow-ups.

In Section 3, we examine monodromy representations of higher sides of genus–1

simplified broken Lefschetz fibrations by using a graphical method, called the chart
description, which is used by Kamada, Matsumoto, Matumoto and Waki [7] to determine
monodromy representations of genus–1 Lefschetz fibrations. Although our method is
similar to that of [7], the definition of our chart is slightly different from that in [7]. We
first give the definition of chart and review some basic techniques used in [7]. We then
prove that the monodromy of the higher side of a genus–1 simplified broken Lefschetz
fibration can be represented by a certain normal form after successive application of
chart moves.

In Section 4, we construct some families of genus–1 simplified broken Lefschetz
fibrations by giving monodromy representations of higher sides of such fibrations.
We then determine diffeomorphism types of total spaces of these fibrations by using
Kirby calculus. Main Theorem A will be proved at the end of this section. We will
also prove that 4–manifolds with positive definite intersection form cannot admit
genus–1 simplified broken Lefschetz fibration structures by using Kirby calculus.
Some examples obtained in this section are also used to prove Main Theorem B in the
last section.

We devote Section 5 to proving Main Theorem B. We prove that all genus–1 simplified
broken Lefschetz fibrations with less than six Lefschetz singularities are contained
in the families obtained in Section 4 by moving certain word sequences representing
monodromy representations. We end this section with explaining why the number of
Lefschetz singularities is limited in Main Theorem B.

Acknowledgments The author wishes to express his gratitude to Hisaaki Endo for
his encouragement and many useful suggestions. He would also like to thank Refik
İnanç Baykur, Seiichi Kamada and Osamu Saeki for commenting on the draft of this
paper and for helpful discussions. The author is supported by Yoshida Scholarship
“Master21” and he is deeply grateful to Yoshida Scholarship for their support.

2 Preliminaries

2.1 Broken Lefschetz fibrations

Let M and B be compact connected oriented smooth manifolds of dimension 4 and 2,
respectively.
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Definition 2.1 A smooth map f W M ! B is called a broken Lefschetz fibration if it
satisfies the following conditions:

(1) @M D f �1.@B/;

(2) there exist a finite set C D fp1; : : : ;png and a one dimensional submanifold Z

in intM such that dfp is surjective for all p 2M n .C [Z/;

(3) for each pi , there exist a complex local coordinate .z1; z2/ around pi and a
complex local coordinate � around f .pi/ such that z1.pi/D z2.pi/D 0 and
f is locally written as � D f .z1; z2/D z1z2 ;

(4) for each p 2Z , there exist a real local coordinate .t;x1;x2;x3/ around p and
a real local coordinate .y1;y2/ around f .p/ such that Z D f.t; 0; 0; 0/ j t 2Rg
and f is locally written as .y1;y2/D f .t;x1;x2;x3/D .t;x1

2Cx2
2�x3

2/;

(5) the restriction map of f to Z [ C is injective;

(6) for any q 2 B nf .Z/, f �1.q/ has no .�1/–spheres.

We call a smooth map f an achiral broken Lefschetz fibration if f satisfies conditions
(1), (2), (4), (5), (6) and the following condition:

(3) 0 for each pi , there exist a complex local coordinate .z1; z2/ around pi and a
complex local coordinate � around f .pi/ such that z1.pi/D z2.pi/D 0 and
f is locally written as � D f .z1; z2/D z1z2 or z1Sz2 .

Remark 2.2 The above definition is rather special one from the previous definitions
of broken Lefschetz fibrations. Indeed, all the definitions of broken Lefschetz fibrations
in previous papers do not contain condition (6). However, in this paper, we adopt the
above definition.

If Z D � , we call f simply a (achiral) Lefschetz fibration. A regular fiber of such a
fibration is a closed oriented connected surface. We call its genus the genus of f . For
simplicity, we will refer (achiral) broken Lefschetz fibrations and (achiral) Lefschetz
fibrations by (A)BLF and (A)LF, respectively.

We call a singularity locally written as f .z1; z2/ D z1z2 (resp. f .z1; z2/ D z1Sz2 ) a
Lefschetz singularity (resp. achiral Lefschetz singularity). Also, we call Z and f .Z/ in
the definition above the round singular locus and the round singular image, respectively.
An inverse image of �f .Z/ is called a round cobordism of f , where �f .Z/ is a
tubular neighborhood of f .Z/.

Let f W M ! S2 be a BLF. Suppose that f has a connected round singular locus.
Then the round singular image of f is an embedded circle and the circle divides S2

into two 2–disks D1 and D2 . Moreover, one of the following occurs:
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� a regular fiber of the fibration f �1.Di/!Di is connected, while a regular fiber
of the fibration f �1.Dj /!Dj is disconnected;

� any regular fibers are connected and a genus of a regular fiber of the fibration
f �1.Di/!Di is just one higher than a genus of a regular fiber of the fibration
f �1.Dj /!Dj ,

where fi; j g D f1; 2g. We call an inverse image of Di the higher side of f and an
inverse image of Dj the lower side of f .

Definition 2.3 A BLF f W M ! S2 is simplified if f satisfies the following condi-
tions:

(1) f has a connected round singular locus;

(2) every Lefschetz singularity of f is contained in the higher side of f ;

(3) all fibers of f are connected.

The genus of the higher side of f as an LF is called the genus of f .

We sometimes refer to simplified BLF as SBLF for short.

2.2 Monodromy representations

We review the definition of monodromy representations. For more details, see Gompf
and Stipsicz [6]. Let f W M ! B be a genus–g LF, C �M the set of critical points
of f and  0W f

�1.y0/!†g an orientation preserving diffeomorphism for a point
y0 2B nf .C/. For a loop  W .I; @I/! .B nf .C/;y0/, the pullback  �f D f.t;x/ 2
I �M j  .t/ D f .x/g of f by  is a trivial †g –bundle over I . Let ‰W  �f !
I � †g be a trivialization of this bundle which is equal to  0 on f0g � f �1.y0/

and ‰.t;x/ D .t;  t .x//. Then Œ 1 ı  
�1
0
� 2 Mg is independent of the choice

of a trivialization ‰ , where Mg is the mapping class group of †g . We define
�f W �1.B nf .C/;y0/!Mg as

�f .Œ �/D Œ 1 ı 
�1
0 �:

This map is well-defined and called a monodromy representation of f . If we define
the group multiplication of Mg as Œf � � Œg�D Œg ıf � for Œf �; Œg� 2Mg , then �f is a
homomorphism. In this paper, the group multiplication of Mg is always defined as
above. We remark that if we change the choice of a diffeomorphism  0 , we obtain
a new monodromy representation by composing an inner automorphism by a fixed
element  2Mg . Two monodromy representations �f W �1.B nf .C/;y0/!Mg and
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�f 0 W �1.B
0 nf 0.C0/;y0

0
/!Mg are equivalent if there exist an element g 2Mg and

an orientation preserving diffeomorphism hW .B; f .C/;y0/! .B0; f 0.C0/;y0
0
/ such

that
conj.g/ ı �f D �f 0 ı h�;

where h�W �1.B nf .C/;y0/! �1.B
0 nf 0.C0/;y0

0
/ is the isomorphism induced by h

and conj.g/ is the inner automorphism of Mg by the element g .

A monodromy representation of an LF over D2 is written by a sequence of elements of
the mapping class group as follows. We put f .C/D fy1; : : : ;yng. Let A1; : : : ;An be
embedded paths in D2 , beginning at y0 and otherwise disjoint, connecting y0 to the
respective critical values y1; : : : ;yn . We choose indices so that the paths A1; : : : ;An

are cyclically ordered by traveling counterclockwise around y0 . We obtain an ordered
basis a1; : : : ; an of �1.D

2nf .C/;y0/ by connecting a counterclockwise circle around
each yi to the base point y0 by using Ai . Then the element a1 � � � an represents
Œ@D2� in �1.D

2 n f .C/;y0/. We put Wf D .�f .a1/; : : : ; �f .an//. It is the sequence
of elements of the mapping class group of †g . We call this a Hurwitz system of f or
a monodromy factorization. We put w.Wf /D �f .a1/ � � � �f .an/ 2Mg .

We obtain a sequence of elements of Mg from an LF f over D2 by choosing an
identification  0 and paths A1; : : : ;An as above. However, this sequence depends on
these choices. We now review the effects of changing an identification and paths; see
also Gompf and Stipsicz [6] and Matsumoto [11]. First, if we change an identifica-
tion  0 , then all the elements of the sequence are conjugated by a fixed element  
of Mg , ie .�f .a1/; : : : ; �f .an//! . �1�f .a1/ ; : : : ;  

�1�f .an/ /. We call this
transformation a simultaneous conjugation by  . Second, if we change paths in D2

as Figure 1, then the pair of the elements .'i ; 'iC1/D .�f .ai/; �f .aiC1// in Wf is
replaced by the pair .'iC1; '

�1
iC1
�'i �'iC1/. These transformations and their inverse

are called elementary transformations. Lastly, if we change paths to other paths in D2

satisfying the conditions mentioned above, then the sequence is changed by successive
application of elementary transformations since any two paths satisfying the conditions
are connected by successive application of isotopies in D2nf .C/ and the moves shown
in Figure 1.

From the above arguments, we obtain:

Lemma 2.4 Let fi W Mi!D2 (i D 1; 2) be a genus–g LF and Wfi
a Hurwitz system

for i D 1; 2. If Wf1
is changed into Wf2

by successive application of simultaneous
conjugations and elementary transformations, then f1 and f2 are isomorphic. That is,
there exist orientation preserving diffeomorphisms ˆW M1!M2 and 'W D2!D2

such that ' ıf1 D f2 ıˆ.
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Figure 1

Let Œf � be an element of M1 . Œf � induces an isomorphism f�W H1.T
2IZ/ !

H1.T
2IZ/. We fix generators � and � of H1.T

2IZ/. Then f is represented by a
matrix A 2 SL.2;Z/ as follows:

.f�.�/; f�.�//D .�; �/
tA:

The correspondence Œf � 7!A induces an isomorphism between the groups M1 and
SL.2;Z/. We assume that � ��D 1, where � �� represents the intersection number
of � and �. In this paper, we always identify the group M1 with the group SL.2;Z/
via the above isomorphism.

Let p;q be a simple closed curve on T 2 representing the element p� C q� in
H1.T

2IZ/ for relatively prime integers p; q and Tp;q 2M1 the right-handed Dehn
twist along p;q . Then, by the Picard–Lefschetz formula,

T1;0 D

�
1 0

1 1

�
; T0;1 D

�
1 �1

0 1

�
:

X1 D

�
1 0

1 1

�
; X2 D

�
1 �1

0 1

�
;If we put

then SL.2;Z/ has the following finite presentation [10]:

SL.2;Z/D hX1;X2j.X1X2/
6;X1X2X1X�1

2 X�1
1 X�1

2 i:

Let f W M ! S2 be a genus–1 SBLF, then the higher side of f is a genus–1 LF
over D2 . So we can take a Hurwitz system of this fibration. We call this a Hurwitz
system of f .
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2.3 Kirby diagrams of broken Lefschetz fibrations

The technique of handle decomposition of BLFs was studied by Baykur [2]. We review
this technique in this subsection. The reader should turn to [2] for the details of this
technique and the examples of Kirby diagrams of BLFs. We begin with the definition
of (4–dimensional) round handles, which arises in the discussion of this subsection.

Definition 2.5 Let M be a smooth 4–manifold and we put

R˙i D I �Di
�D3�i=..1;x1;x2;x3/� .0;˙x1;x2;˙x3//;

where i D 1; 2. Let  W I � @Di � D3�i= �! @M be an embedding. We call
M [ R˙i a 4–manifold obtained by attaching a round i –handle and RCi (resp. R�i )
(4–dimensional) untwisted (resp. twisted) round i –handle.

Remark 2.6 In [2], round handles of arbitrary dimension are defined, but in this
paper, only 4–dimensional ones appear. Throughout this paper, we assume that round
handles are always 4–dimensional ones. Both untwisted and twisted round handles
are diffeomorphic to S1 �D3 , but these two round handles have different attaching
regions. The attaching region of an untwisted round i –handle is the trivial S i�1�D3�i –
bundle over S1 , while the attaching region of a twisted round i –handle is a nontrivial
S i�1 �D3�i –bundle over S1 .

The following lemma shows that a round handle attachment is described by attaching
two handles with consecutive indices:

Lemma 2.7 (Baykur [2]) For i 2 f1; 2g, round i –handle attachment is given by
i –handle attachment followed by .i C 1/–handle attachment whose attaching sphere
goes over the belt sphere of the i –handle geometrically twice, algebraically zero times
if the round handle is untwisted and twice if the round handle is twisted.

The next lemma shows relation between round handle attachment and handle decom-
position of broken Lefschetz fibrations:

Lemma 2.8 (Baykur [2]) Let W be a round cobordism of a BLF with connected
round singular locus Z �W and @�W � @W the union of connected components
of the boundary of W facing to the lower side. Then W is obtained by attaching an
untwisted or twisted round 1–handle to @�W � I . Moreover, the restriction of the
BLF to  .I � @D1�f0g=�/� @�W �f1g is a double cover of the image of this map,
where  is the attaching map of the round handle.
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Remark 2.9 We also obtain a round cobordism W by a round 2–handle attachment
via dual handle decomposition. More precisely, let @CW � @W be the union of
connected components of the boundary of W facing to the higher side, then W is
obtained by attaching an untwisted or twisted round 2–handle to @CW � I . Moreover,
as above lemma, when the BLF restricts to  .I � @D2 � f0g= �/ � @CW � I , this
map is S1 –bundle over the image of the map, which is trivial if the round handle is
untwisted and nontrivial if the round handle is twisted, where  is the attaching map
of the round handle.

This lemma says that a round cobordism is described by a round handle attachment.
Conversely, let f W M ! B be a BLF and �M the manifold obtained by attaching a
round handle whose attaching map satisfies the condition mentioned above, then we
can extend the map f to a BLF zf W �M !B which has connected round singular locus
in the round handle at the center of the core of the fiberwise attached 1–handle (resp.
2–handle) if the index of the round handle is 1 (resp. 2).

We are ready to discuss Kirby diagrams of BLF. We begin with discussion of diagrams
of round 1–handles. By Lemma 2.7, we can describe a diagram of a round 1–handle
as shown in Figure 2. Moreover, by Lemma 2.8, the bold curves in Figure 2 are double
covers if a round 1–handle describes a round cobordism of BLF.

Figure 2: The left diagram is the untwisted round handle, while the right
diagram is the twisted one.

A round cobordism can be also described by a round 2–handle attachment, which is
given by 2–handle attachment followed by 3–handle attachment. By the condition
mentioned in Remark 2.9, round 2–handle attachment to a BLF is realized as a fiberwise
2–handle attachment if the round handle describes a round cobordism of an extended
BLF. Let H2 (resp. H3 ) be a 2–handle (resp. 3–handle) of such a round 2–handle.
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Then the attaching circle of H2 is in a regular fiber of the surface bundle in the boundary
of the BLF and its framing is along the regular fiber. Moreover, the attaching circle
of H2 is preserved under the monodromy of the surface bundle up to isotopy. As
usual, we do not draw the 3–handle H3 , which is forced to be attached in a way that
it completes fiberwise 2–handle attachment. Thus we only draw the attaching circle
of the 2–handle when we draw the round 2–handle and the difference between the
untwisted and twisted cases is somewhat implicit. However, we can distinguish these
two cases by the action of the monodromy representation of the boundary surface
bundle; the round 2–handle is untwisted if this action preserves the orientation of the
attaching circle and twisted if this action reverses the orientation of the attaching circle.

3 Chart descriptions

In [7], chart descriptions were introduced to describe a monodromy representation of a
genus–1 ALF. We modify the definition of a chart description to describe a monodromy
representation of a higher side of a genus–1 SBLF and show that such a monodromy
representation satisfies a kind of condition in this section. We begin with the modified
definition of a chart.

Definition 3.1 Let � be a finite graph in D2 (possibly being empty or having hoops
that are closed edges without vertices). Then � is called a chart if � satisfies the
following conditions:

(1) the degree of each vertex is equal to 1, 6 or 12;

(2) each vertex in @D2 has degree–1;

(3) each edge in � is labeled 1 or 2 and oriented;

(4) for a degree–1 vertex which is in int D2 , the incident edge is oriented inward
(see Figure 3);

(5) for a degree–6 vertex, the six incident edges are labeled alternately with 1 and
2, and three consecutive edges are oriented inward and the other three edges are
oriented outward (see Figure 3, where fi; j g D f1; 2g);

(6) for a degree–12 vertex, the twelve incident edges are labeled alternately with 1

and 2, and all edges are oriented inward or all edges are oriented outward (see
Figure 3, where fi; j g D f1; 2g);

(7) an interior of each edge is in int D2 ;

(8) let fv1; : : : ; vng be the set of vertices in @D2 . We assume that the indices are
chosen so that v1; : : : ; vn appear in this order when we travel counterclockwise
on @D2 . We define a pair .ik ; "k/ by the following rules:
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(i) ik is a label of the edge e whose end is vk ;
(ii) "k is C1 if e is oriented away from v and �1 if e is oriented toward v .

Then, for some k , the sequence ..ik ; "k/; : : : ; .in; "n/; .i1; "1/; : : : ; .ik�1; "k�1//

consists of following subsequences:

(a) ..1; "//;
(b) ..i; "/; .j ; "/; .i; "/; .j ; "/; .i; "/; .j ; "// .fi; j g D f1; 2g/,

where " is equal to ˙1.

...
...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
....

...

... ...

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

...

degreeD 1
in int D2 degreeD 6 degreeD 12

i

i

i

j

j

j

i i i i i i i i i i i ij j j j j j j j j j j j

Figure 3: Vertices of a chart

Remark 3.2 In this paper, we will use ovals as vertices to make the diagrams easier
to understand as shown in Figure 3 and Figure 4, for example. The reader may confuse
these ovals with hoops. However, we can distinguish these two diagrams easily since
hoops have orientation and labels while ovals representing vertices do not. For example,
the chart in Figure 4 has two hoops and one oval representing degree–6 vertex.

An example of a chart is illustrated in Figure 4. For this chart, the sequence mentioned
in condition (8) of Definition 3.1 is as follows:

..1;�1/; .1;�1/; .1;�1/; .1;�1/; .2;C1/; .1;C1/; .2;C1/; .1;C1/; .2;C1/; .1;C1//;

which satisfies the condition mentioned in the definition.

For a chart � , we denote by V .�/ the set of all the vertices of � , and by S� the subset
of V .�/ consisting of the degree–1 vertices in int D2 . Let v be a vertex of � . An
edge e incident to v is called an incoming edge of v if e is oriented toward v and an
outgoing edge of v if e is oriented away from v .

A degree–1 or 12 vertex of a chart is positive (resp. negative) if all the edges incident
to the vertex is outgoing edge (resp. incoming edge) of the vertex. We remark that each
degree–1 vertex in int D2 is negative by the definition of charts.

Among the six edges incident to a degree–6 vertex v of a chart, three consecutive
edges are incoming edges of v and the other three edges are outgoing edges of v . We
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k1

1
1

1 1

1

1

2 2

2

2

2

Figure 4: An example of a chart

call the middle edge of the three incoming edges or the three outgoing edges a middle
edge and another edge a nonmiddle edge.

An edge in a chart is called a .d1; d2/–edge if its end points are a degree–d1 vertex
and a degree–d2 vertex, where d1; d2 2 f1; 6; 12g and d1 � d2 . An edge in a chart
is called a .@; d/–edge if one of its end points is in @D2 and the other is degree–d

vertex, where d 2 f1; 6; 12g, and we call an edge whose two end points are in @D2 a
.@; @/–edge. A .@;�/–edge is called a boundary edge, where � 2 f1; 6; 12; @g.

For a chart � , let ..i1; "1/; : : : ; .in; "n// be a sequence determined by the rule men-
tioned in condition (8) of Definition 3.1. We assume that indices are chosen so that
this sequence consists of the two subsequences ..1; "// and ..i; "/; .j ; "/; .i; "/; .j ; "/;
.i; "/; .j ; "//, where fi; j g D f1; 2g and " D ˙1. We call such a sequence a bound-
ary sequence of � and two subsequences above the unit subsequences. For a fixed
decomposition of the sequence into the unit subsequences, the union of six vertices
which corresponds to a subsequence ..i; "/; .j ; "/; .i; "/; .j ; "/; .i; "/; .j ; "// and the
six edges incident to the vertices is called a boundary comb of � with respect to the
fixed decomposition.

Let � be a chart in D2 . A path �W Œ0; 1�!D2 is said to be in general position with
respect to � if �.Œ0; 1�/ \ � is empty or consists of finite points in � n V .�/ and
� intersects edges of � transversely. Let � be such a path. We put �.Œ0; 1�/\ � D
fp1; : : : ;png. We assume that p1; : : : ;pn appear in this order when we go along �
from �.0/ to �.1/. For each pi , we define a letter wi DX "

k
by following rules:

(i) k is the label of the edge of � containing the point pi ;
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(ii) " is equal to C1 if the intersection number � � .the edge containing pi/ is C1

and �1 if the intersection number � � .the edge containing pi/ is �1.

We put w�.�/Dw1; : : : ; wn and call this word the intersection word of � with respect
to � . We assume that this word represents an element of SL.2;Z/ by regarding the
letters X1 , X2 as the matrices defined in Section 2.2.

Definition 3.3 Let � be a chart in D2 . We fix a point y0 2D2 nV .�/. We define a
homomorphism

�� W �1.D
2
nS� ;y0/! SL.2;Z/

as follows: For an element x 2 �1.D
2 nS� ;y0/, we choose a representative path

�W Œ0; 1�!D2
nS�

of x so that � is in general position with respect to � . Then we put ��.x/D w�.�/.
We call the homomorphism �� the monodromy representation associated with � .

We can prove the following lemma by an argument similar to that given in the proof of
Lemma 12 of [7].

Lemma 3.4 The homomorphism �� W �1.D
2 nS� ;y0/! SL.2;Z/ is well-defined.

Since the monodromy of the boundary of the higher side of a genus–1 SBLF fixes a
simple closed curve in a regular fiber, the monodromy is represented by an element
˙X m

1
, where m is an integer. So we can also prove the following lemma by the same

argument as that in the proof of Theorem 15 of [7].

Lemma 3.5 Let f W M ! S2 be a genus–1 SBLF. Then there exists a chart �
in D2 such that the monodromy representation of the higher side of f is equal to the
monodromy representation associated with � up to inner automorphisms of SL.2;Z/.

By Lemma 3.5, the monodromy representation of the higher side of a genus–1 SBLF is
represented by a chart. However, such a chart is not unique. We next introduce moves
of charts which do not change the associated monodromy representations.
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Lemma 3.6 Let �1 and �2 be charts and E�D2 a 2–disk. We assume the following
conditions:

(a) E \S�i
D∅ (i D 1; 2);

(b) �1 and �2 are identical outside of E ;

(c) D2 nE is path connected.

Then the monodromy representation associated with �1 is equal to the one associated
with �2 .

We can prove Lemma 3.6 similarly to the proof of Lemma 16 in [7].

Definition 3.7 When two charts �1 and �2 are in the situation of Lemma 3.6, we say
that �1 is obtained from �2 by a CI–move in E . In particular, a CI–move described
in Figure 5 is called a channel change.

...

...

...

... ......

......i i
i

i

Figure 5: A channel change

Lemma 3.8 Let �1 and �2 be charts and E � D2 a 2–disk. We assume that the
following conditions:

(a) �1 and �2 are differ by one of Figure 6 in E ;

(b) �1 and �2 are identical outside of E ;

(c) D2 nE is path connected.

Then the monodromy representation associated with �1 is equal to the one associated
with �2 up to an equivalence.

The proof of Lemma 3.8 is quite similar to that of Lemma 18 of [7]. So we omit it.

Definition 3.9 When two charts �1 and �2 are in the situation of Lemma 3.8, we say
that �1 is obtained from �2 by a CII–move in E .
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......
...

... ...

...

...i

i

i

i

i

i

i

i

i

i

j

j

j
j

j

j

j
j

Figure 6: CII–moves

Remark 3.10 CII–moves defined in [7] have four types of substitution (see Figure 6
of [7]), while CII–moves we defined have only two types of substitution illustrated in
Figure 6. This is because charts defined in [7] may have positive degree–1 vertices in
int D2 but our charts never have by the definition.

By a C-move, we mean a CI–move, CII–move or an isotopic deformation in D2 . Two
charts are C-move equivalent if they are related by a finite sequence of C-moves. The
monodromy representations associated with such charts is equivalent by Lemma 3.6
and Lemma 3.8.

Theorem 3.11 Let f W M ! S2 be a genus–1 SBLF and Wf a Hurwitz system
of f . Then by successive application of simultaneous conjugations and elementary
transformations, we can change Wf into a sequence W which satisfies the following
conditions:

(a) w.W /D˙X m
1

;

(b) W D .X1; : : : ;X1;X
�n1

1
X2X

n1

1
; : : : ;X

�ns

1
X2X

ns

1
/,

where m; n1; : : : ; ns are integers.

Lemma 3.12 Let � be a chart. Then by successive application of C-moves, we can
change � into a chart which has no degree–12 vertices.

Proof We first remark that a chart move illustrated in Figure 7 is a CI–move, where
two vertices v1 and v2 satisfy one of the following conditions:

(a) v1 and v2 are not contained in same boundary comb;

(b) v1 and v2 are end points of a boundary comb.

We choose a decomposition of the boundary sequence of � into the unit subsequences.
Let v1 and v2 be consecutive vertices in @D2 which satisfy one of conditions (a)
and (b) as above. We denote by S the connected component of @D2 n .@D2 \ �/
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Figure 7: CI–moves used to prove Lemma 3.12, where the bold lines repre-
sent @D2

between v1 and v2 . We can move all the degree–12 vertices in � into a region of
@D2 n � containing S by using CI–moves illustrated in Figure 12 of [7]. Then, by
the CI–move illustrated in Figure 7, we can eliminate all the degree–12 vertices in � .
This completes the proof of Lemma 3.12.

Lemma 3.13 Let � be a chart. Then, by successive application of C-moves, we can
change � into a chart � 0 such that each .1; 6/–edge e in � 0 satisfies the following
conditions:

(i) e is a middle edge;

(ii) the label of e is 2;

(iii) let K be the connected component of D2 n� 0 whose closure contains e . Then
K\ @D2 is not empty.

The idea of the proof of Lemma 3.13 is similar to the proof of Lemma 22 in [7]. But
the two proofs are slightly different because of the difference of the definition of charts.
So we give the full proof below.

Proof Let n.�/ be the sum of the number of degree–6 vertices and the number of
.1; 6/–edges in � . The proof proceeds by induction on n.�/.

If n.�/D 0, the conclusion of Lemma 3.13 holds since � has no .1; 6/–edges. We
assume that n.�/ > 0 and there exists a .1; 6/–edge which does not satisfy at least one
of conditions (i), (ii) or (iii) of Lemma 3.13.

Case 1 Suppose that � has a nonmiddle .1; 6/–edge. Let v be a degree–6 vertex
which is an end point of a .1; 6/–edge. We can apply a CII–move around v and
eliminate this vertex. Then one of the following occurs:

� both the number of degree–6 vertices and the number of .1; 6/–edges decrease;
� the number of .1; 6/–edges is unchanged, but the number of degree–6 vertices

decreases.
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In each case, n.�/ decreases and the conclusion holds by the induction hypothesis.

Case 2 Suppose that � has a middle .1; 6/–edge whose label is 1. Let e be the edge
and v0 and v1 the end points of e whose degrees are 1 and 6, respectively. We denote
by K the connected component of D2 n� whose closure contains v0 , v1 and e . We
take a sequence f1; : : : ; fm of edges of � with signs as in the proof of Lemma 22
of [7]. For each fi , we take a letter w.fi/DX "

k
, where k is equal to the label of the

edge fi and " is equal to the sign of fi . We remark that both f1 and fm are equal
to e and the sign of f1 is negative, while the sign of fm is positive, since the vertex
v0 is negative.

Case 2.1 There exists a consecutive pair fi and fiC1 such that two edges are incident
to a common vertex and

.w.fi/; w.fiC1//D .X
�1
1 ;X�1

2 /:

Case 2.2 There exists a consecutive pair fi and fiC1 such that two edges are incident
to a common vertex and

.w.fi/; w.fiC1//D .X2;X1/:

Case 2.3 K\ @D2 D∅.

If one of the above three cases occurs, then the conclusion holds by the same argument
as that in Lemma 22 of [7].

Case 2.4 Suppose that K\@D2¤∅. Then one of the edges f1; : : : ; fm is a boundary
edge. By Cases 2.1 and 2.2, we can assume that .w.fi/; w.fiC1// is not equal to the
subsequences .X�1

1
;X�1

2
/ and .X2;X1/ if fi and fiC1 are incident to a common

vertex. Let fk be a boundary edge with the smallest index. By the assumption above,
w.fk/ is equal to either X�1

1
or X2 . If w.fk/DX�1

1
, we can decrease the number

of .1; 6/–edges by applying C-moves illustrated in Figure 8. So the conclusion holds
by the induction hypothesis.

......

...

...

......

...

...

......

...

...

... ... ... ... ... ...

e

f1

fk

e

f1

fk

e

f1

fk

@D2 @D2
@D2

isotopy
deformation

channel
change

Figure 8: The bold line in the figure describes @D2 .

Suppose that w.fk/DX2 . One of fkC1; : : : ; fm is a boundary edge but not a .@; 1/–
edge. Let fl be such an edge with the smallest index.
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Case 2.4.1 Suppose that w.fl/DX1 . Then we can decrease the number of .1; 6/–
edges by applying C-moves illustrated in Figure 9 and the conclusion holds by the
induction hypothesis.

......

...

...

......

...

...

......

...

...

... ......

..
.

... ......

..
.

... ......

..
.

e

f1

fk fl

e

f1

fk fl

e

f1

fk fl

@D2 @D2
@D2

isotopy
deformation

channel
change

Figure 9

Case 2.4.2 Suppose that w.fl/DX2 . When we fix a decomposition of the boundary
sequence of � into unit subsequences, fk is contained in a boundary comb distinct
from that of fl . So we can apply C-moves as shown in Figure 10 and conclusion holds
by induction.

......

...

...

......

...

...

......

...
...

... .........

..
.

... .........

..
.

... .........

..
.

e

f1

fk fl

e

f1

fk fl

e

f1

fk fl1
1

@D2 @D2
@D2

channel
change

Figure 10: We first apply the CI–move between the two boundary comb
which contain fk and fl , respectively, and we obtain a new 1–labeled .@; @/–
edge. Then we move v0 near this edge by isotopy deformation and apply a
channel change.

Case 2.4.3 Suppose that w.fl/DX�1
2

. If both fk and fl were contained in a same
boundary comb, there would be at least one .@; 1/–edge between fk and fl . But
all the degree–1 edges are negative. This contradiction says that a boundary comb
that contains fk is different to a boundary comb that contains fl . So we can apply
C-moves similar to the C-moves we use in Case 2.4.2 and the conclusion holds by
induction hypothesis.

Case 2.4.4 Suppose that w.fl/DX�1
1

. If each flC1; : : : ; fm were not a boundary
edge, then

.w.fl/; : : : ; w.fm//D .X
�1
1 ;X2;X

�1
1 ;X2; : : :/:

This contradicts w.fm/ D X1 . So at least one of flC1; : : : ; fm is a boundary edge.
Let fk0 be such an edge with smallest index. Then w.fk0/ is equal to either X�1

1
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or X2 . If w.fk0/DX�1
1

, the conclusion holds by the above argument. If w.fk0/DX2 ,
one of four cases above occurs for fk0 . When one of the former three cases occurs,
the conclusion holds by the same argument. When Case 2.4.4 occurs for fk0 , we
can take fk00 again as we take fk0 . We can repeat the above argument and thus the
conclusion holds since m is finite.

Case 3 Suppose that � has a middle .1; 6/–edge whose label is 2. We define K as
we defined in Case 2. If K \ @D2 D ∅, we can prove the conclusion by the same
argument as that in Cases 2.1, 2.2 and 2.3. So we conclude that K\ @D2 ¤∅.

Combining the conclusions of Cases 1, 2 and 3 completes the proof of Lemma 3.13.

Proof of Theorem 3.11 By Lemma 3.5, we can take a chart � that �� is equal to
the monodromy representation of the higher side of f up to inner automorphisms
of SL.2;Z/. We first eliminate degree–12 vertices in � by applying Lemma 3.12.
Then, by applying Lemma 3.13, we change the chart � into a chart such that all the
.1; 6/–edges satisfy conditions (i), (ii) and (iii) in Lemma 3.13. In the process to prove
Lemma 3.13, no new degree–12 vertices appear. So the chart obtained by the above
process has no degree–12 vertices. Let fv1; : : : ; vmg be the set of degree–1 vertices
of � in @D2 . We choose the indices of vi so that v1; : : : ; vm appear in this order when
we travel counterclockwise on @D2 and that v1 and vm satisfy one of the following
conditions:

� v1 and vm are not contained in same boundary comb;
� v1 and vm are end points of a boundary comb.

We denote by ei a boundary edge incident to vi . We put S�Dfp1; : : : ;png. Let Ki be
a connected component of D2n� whose closure contains pi . By the assumption about
� , each pi is an end point of either .1; 6/–edge or .@; 1/–edge. For each pi which is
an end point of .1; 6/–edge, we choose a connected component Ei of Ki \ @D

2 . We
denote the two points of @Ei by vki

and vkiC1 , where ki 2f1; : : : ;mg and vmC1D v1 .
Let V be a sufficiently small collar neighborhood of @D2 in D2 and p0 a point in
V \K , where K is a connected component of D2 n � whose closure contains a
connected component of @D2 n fv1; : : : ; vmg between vm and v1 . We take embedded
paths Ai (i D 1; : : : ; n) in D2 starting from p0 as follows:

(a) if i ¤ j , then Ai \Aj D fp0g;

(b) if pi is incident to a .@; 1/–edge ej , then Ai starts from p0 , travels in V across
the edges e1; : : : ; ej�1 , goes into Ki and ends at pi ;

(c) if pi is incident to a .1; 6/–edge, then Ai starts from p0 , travels in V across
the edges e1; : : : ; eki�1 , goes into Ki and ends at pi .
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For example, the paths A1; : : : ;An are as shown in Figure 11 for the charts described
in Figure 4.

A2

1

k1

2

p2

1

2

1

1

2

A1

2

p1

1

p0

Figure 11: Examples of paths A1; : : : ;An determined by condition (a) and
the constructions (b) and (c)

Let ai be an element of �1.D
2 nS� ;p0/ which is represented by a curve obtained by

connecting counterclockwise circle around pi to the base point p0 by using Ai . It is
sufficient to prove that each ��.ai/ is equal to either X1 or X�n

1
X2X n

1
, where n is

an integer.

Case 1 Suppose that pi is an end point of .1; 6/–edge and eki
is not contained in a

boundary comb. Then the intersection word of Ai is equal to X n
1

. So ��.ai/ is equal
to X1 if the label of the .1; 6/–edge is 1 and X n

1
X2X�n

1
if the label of the .1; 6/–edge

is 2.

Case 2 Suppose that pi is an end point of .@; 1/–edge and the edge is not contained in
a boundary comb. Then the intersection word of Ai is equal to X n

1
and the conclusion

holds.

Case 3 Suppose that pi is an end point of .1; 6/–edge and eki
is contained in a

boundary comb. Let el and elC6 be two edges at the end of the boundary comb which
contains eki

. Then one of 24 cases illustrated in Figure 12 occurs.

The intersection word of a path which starts from p0 , travels in V across the edges
e1; : : : ; el�1 , ends near the boundary comb is equal to X n

1
, where n is an integer.

Algebraic & Geometric Topology, Volume 11 (2011)



On genus–1 simplified broken Lefschetz fibrations 1287

Since the label of the .1; 6/–edge incident to pi is 2, ��.ai/ is calculated as follows:

��.ai/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

X nC1
1

X2X�n�1
1

in cases (1), (2);

X nC1
1

X2X1X2X�1
1

X�1
2

X�n�1
1

in cases (3), (4) ;

X nC1
1

X2X1X2X1X2X�1
1

X�1
2

X�1
1

X�1
2

X�n�1
1

in cases (5), (6);

X n
1

X2X�n
1

in case (7);

X n
1

X2X1X2X�1
1

X�1
2

X�n
1

in cases (8), (9) ;

X n
1

X2X1X2X1X2X�1
1

X�1
2

X�1
1

X�1
2

X�n
1

in cases (10), (11);

X n
1

X2X1X2X1X2X1X2X�1
1

in case (12);

�X�1
2

X�1
1

X�1
2

X�1
1

X�1
2

X�n
1

X n�1
1

X2X�nC1
1

in cases (13), (14);

X n�1
1

X�1
2

X�1
1

X2X1X2X�nC1
1

in cases (15), (16) ;

X n�1
1

X�1
2

X�1
1

X�1
2

X�1
1

X2X1X2X1X2X�nC1
1

in cases (17), (18);

X n
1

X2X�n
1

in case (19);

X n
1

X�1
2

X�1
1

X2X1X2X�n
1

in cases (20), (21) ;

X n
1

X�1
2

X�1
1

X�1
2

X�1
1

X2X1X2X1X2X�n
1

in cases (22), (23);

X n
1

X�1
2

X�1
1

X�1
2

X�1
1

in case (24):

�X�1
2

X�1
1

X2X1X2X1X2X1X2X�n
1

Since X1X2X1X�1
2

X�1
1

X�1
2
D .X1X2/

6 DE , we obtain

��.ai/D

8̂̂̂̂
<̂
ˆ̂̂:

X nC1
1

X2X�n�1
1

in cases (1), (2), (22), (23);

X1 in cases (3), (4), (8), (9), (15), (16), (20), (21);

X n�1
1

X2X�nC1
1

in cases (5), (6), (10), (11), (13), (14);

X n
1

X2X n
1

in cases (7), (12), (17), (18), (19), (24):

For each case, the conclusion holds.

Case 4 Suppose that pi is an end point of .@; 1/–edge ej and ej is contained in a
boundary comb. Let el and elC6 be two edges at the end of the boundary comb which
contains ej . Since the degree–1 vertex pi is negative, one of 12 cases illustrated in
Figure 13 occurs. We assume that the intersection word of a path which starts from p0 ,
travels in V across the edges e1; : : : ; el�1 , ends near the boundary comb is equal
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.1/ .2/ .3/ .4/

.5/ .6/ .7/ .8/

.9/ .10/ .11/ .12/

.13/ .14/ .15/ .16/

.17/ .18/ .19/ .20/

.21/ .22/ .23/ .24/

el el el el

el el el el

el el el el

el el el el
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Figure 12: 24 cases about eki
and the boundary comb containing eki
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Figure 13: 12 cases about ej and the boundary comb containing ej
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to X n
1

, where n is an integer. Then ��.ai/ is calculated as follows:

��.ai/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

X1 in case (1);

X nC1
1

X2X�n�1
1

in case (2);

X nC1
1

X2X1X�1
2

X�n�1
1

in case (3);

X nC1
1

X2X1X2X�1
1

X�1
2

X�n�1
1

in case (4) ;

X nC1
1

X2X1X2X1X�1
2

X�1
1

X�1
2

X�n�1
1

in case (5);

X nC1
1

X2X1X2X1X2X�1
1

X�1
2

X�1
1

X�1
2

X�n�1
1

in case (6);

X n
1

X2X�n
1

in case (7);

X n
1

X2X1X�1
2

X�n
1

in case (8);

X n
1

X2X1X2X�1
1

X�1
2

X�n
1

in case (9);

X n
1

X2X1X2X1X�1
2

X�1
1

X�1
2

X�n
1

in case (10) ;

X n
1

X2X1X2X1X2X�1
1

X�1
2

X�1
1

X�1
2

X�n
1

in case (11);

X n
1

X2X1X2X1X2X1X�1
2

X�1
1

X�1
2

X�1
1

X�1
2

X�n
1

in case (12):

By the relations of SL.2;Z/, we obtain

��.ai/D

8̂̂̂̂
<̂
ˆ̂̂:

X1 in cases (1), (4), (9), (12);

X nC1
1

X2X�n�1
1

in cases (2), (5);

X n
1

X2X�n
1

in cases (3), (6), (7), (10);

X n�1
1

X2X�nC1
1

in cases (8), (11):

For each cases, the conclusion holds.

Combining the conclusions we obtain in Cases 1, 2, 3 and 4, we complete the proof of
Theorem 3.11.

4 Examples

In this section, we give examples of genus–1 SBLFs. We have already known that
the monodromy representations of the higher sides of such fibrations satisfy a certain
condition by Theorem 3.11. We first give some examples of sequences of elements
of SL.2;Z/ and examine what 4–manifolds these sequences represent. We denote by
T .n1; : : : ; ns/ the following sequence:

.X
�n1

1
X2X

n1

1
; : : : ;X

�ns

1
X2X

ns

1
/:
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Proposition 4.1 We define sequences Sr and Ts as follows:

Sr D .X1; : : : ;X1/ (r X1’s stand in a line.):

Ts D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

.X�1
1

X2X1;X1X2X�1
1
/ if s D 2;

.X�3
1

X2X 3
1
;X2;X

3
1

X2X�3
1
/ if s D 3;

.X�2sC3
1

X2X 2s�3
1

;X�2sC6
1

X2X 2s�6
1

; if s � 4:

X�2sC10
1

X2X 2s�10
1

;X�2sC14
1

X2X 2s�14
1

;

: : : ;X 2s�10
1

X2X�2sC10
1

;X 2s�6
1

X2X�2sC6
1

;

X 2s�3
1

X2X�2sC3
1

/

That is, Ts DT .n1; : : : ; ns/, where n1D 2s�3, ns D�2sC3, ni D 2s�6C4.i�1/

(i D 2; : : : ; s � 1). Then, w.Sr / D X1
r and w.Ts/ D .�1/sC1X�5sC6

1
. So these

sequences are Hurwitz systems of some genus–1 SBLF.

Proof It is obvious that w.Sr / is equal to X1
r . We prove w.Ts/D .�1/sC1X�5sC6

1

by induction on s . Since .X1X2/
3 D�E and X1X2X1 DX2X1X2 , we obtain

X2X1
2X2X1

2
DX2X1.X2X1X2/X1 D�E:

So w.T2/ and w.T3/ are computed as follows:

w.T2/D .X
�1
1 X2X1/.X1X2X�1

1 /

DX�1
1 .X2X1

2X2/X
�1
1

DX�1
1 .�X�2

1 /X�1
1

D�X�4
1 :

w.T3/D .X
�3
1 X2X1

3/X2.X1
3X2X�3

1 /

DX�3
1 X2X1.X1

2X2X1
2/X1X2X�3

1

DX�3
1 X2X1.�X�1

2 /X1X2X�3
1

D�X�3
1 .X2X1X�1

2 /X1X2X�3
1

D�X�3
1 .X�1

1 X2X1/X1X2X�3
1

D�X�4
1 .X2X1

2X2/X
�3
1

DX�9
1 :

By the definition of Ts , w.Ts/ is represented by w.Ts�2/ as follows:

w.Ts/D .X
�2sC3
1

X2X 2s�3
1 /.X�2sC6

1
X2X 2s�6

1 /.X�2sC7
1

X�1
2 X 2s�7

1 /w.Ts�2/

.X 2s�7
1 X�1

2 X�2sC7
1

/.X 2s�6
1 X2X�2sC6

1
/.X 2s�3

1 X2X�2sC3
1

/
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DX�2sC3
1

X2X1
2.X1X2X1/X

�1
2 X 2s�7

1 w.Ts�2/

X 2s�7
1 X�1

2 .X1X2X1/X1
2X2X�2sC3

1

DX�2sC3
1

.X2X1
2X2/X

2s�6
1 w.Ts�2/X

2s�6
1 .X2X1

2X2/X
�2sC3
1

DX�2sC3
1

.�X�2
1 /X 2s�6

1 w.Ts�2/X
2s�6
1 .�X�2

1 /X�2sC3
1

DX�5
1 w.Ts�2/X

�5
1 :

Thus the conclusion holds by the induction hypothesis. This completes the proof of
Proposition 4.1.

Theorem 4.2 Let f W M ! S2 be a genus–1 SBLF. Suppose that Wf D Sr . Then
M is diffeomorphic to one of the following 4–manifolds:

(1) # rCP2 ;

(2) L # rCP2 ;

(3) S1 �S3 # S # rCP2 ,

where S is either of the manifolds S2 � S2 and S2 z� S2 and L is either of the
manifolds Ln and L0n .

Before proving Theorem 4.2, we review the definition and some properties of Ln

and L0n . For more details, see [13]. Let N0 and N1 be 4–manifolds diffeomorphic to
D2 �T 2 . The boundaries of N0 and N1 are @D2 �T 2 . Let .t;x;y/ be a coordinate
of R3 . We identify @D2�T 2 with R3=Z3 . The group GL.3;Z/ naturally acts on R3

and this action descends to an action on the lattice Z3 . So GL.3;Z/ acts on @D2�T 2 .
For an element A of GL.3;Z/, we denote by fA a self-diffeomorphism of @D2 �T 2

defined by
fA.Œt;x;y�/D Œ.t;x;y/

tA�:

We define elements An and A0n of GL.3;Z/ by

An D

0@0 1 1

0 n n� 1

1 n 0

1A ; A0n D

0@0 1 1

0 n n� 1

1 n� 1 0

1A :
Let B3 �D2 �S1

y be an embedded 3–ball, where S1
x and S1

y represent circles with
coordinates x and y , respectively. Then,

B3
�Sx

1
� .D2

�Sy
1/�Sx

1
DD2

�T 2
DN0:
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We take a diffeomorphism �W S2! @B3 . We obtain a diffeomorphism

hD �� idW S2
�S1

! @B3
�S1:

We define Ln and L0n by

Ln DD2
�S2

[h .N0 n .int B3
�S1//[fAn

N1;

L0n DD2
�S2

[h .N0 n .int B3
�S1//[fA0n

N1:

Remark 4.3 The original definitions of Ln and L0n are different from the above
definitions. However, both two definitions are equivalent (cf Lemma V.7 in [13]).
We also remark that these manifolds were constructed in Example 1 of Section 8.2
of [1], although they did not state that their examples were actually the manifolds Ln

and L0n . Indeed, N1 (resp. N0 n .int B3 �S1/, D2 �S2 ) in our paper corresponds
to X� (resp. W , XC ) in [1]. Moreover, in the construction in [1], we obtain Ln

(resp. L0n ) if we glue X� by using the element .k; l/ 2 Z2 Š �1.Diff.T 2// which
satisfies gcd.k; l/ D n and XC by using the trivial (resp. nontrivial) element of
�1.Diff.S2//Š Z=2.

We next take handle decompositions of Ln and L0n . Since N1 DD2 �T 2 , a Kirby
diagram of N1 is as shown in Figure 14. The coordinate .t;x;y/ is also described as
in Figure 14.

0

t

x

y

Figure 14: A Kirby diagram of N1 , where t represents the coordinate of
@D2 and x and y represent the coordinate of T 2

The manifold B3 �S1 has a handle decomposition consisting of a 0–handle and a
1–handle. So we can decompose N0 n .int B3 �S1/ as

N0 n .int B3
�S1/D @N0 � I [ .2-handle/[ .3-handle/:
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Let C1 � @N0 be an attaching circle of the 2–handle. By the construction of the
decomposition, we obtain

C1 D fŒt; 0; 0� 2 @N0 j t 2 Œ0; 1�g:

Since fAn
.Œt; 0; 0�/ D fA0n.Œt; 0; 0�/ D Œ0; 0; t �, an attaching circle of the 2–handle is

in a regular fiber and along y–axis in the diagram of N1 . Since fAn
.Œt; 0; "�/ D

fA0n.Œt; 0; "�/D Œ"; .n�1/"; t � for sufficiently small " > 0, the framing of the 2–handle
is along a regular fiber. Hence the diagram of .N0 n .int B3 �S1//[fAn

N1 and
.N0 n .int B3 �S1//[fA0n

N1 is as shown in Figure 15.

0

0

[ 3–h

Figure 15: A diagram of the spaces .N0 n .int B3 �S1//[fAn
N1 and

.N0 n .int B3 �S1//[fA0n
N1

We can decompose D2 �S2 as

D2
�S2

D @D2
�S2

� I [ .2-handle/[ .4-handle/:

Let C2� @N0 be the image under h of the attaching circle of the 2–handle of D2�S2 .
After moving C2 by isotopy in N0 , we obtain

C2 D fŒ0; t; ı� 2 @N0 j t 2 Œ0; 1�g;

where ı > 0 is sufficiently small.

The framing of the 2–handle is fŒ0; t; ı0� 2 @N0jt 2 Œ0; 1�g, where ı0 > ı is sufficiently
small. Since fAn

.Œ0; t; ı�/D Œt C ı; nt C .n� 1/ı; nt �, we can describe the attaching
circle of the 2–handle of D2 � S2 contained in Ln and the knot representing the

Algebraic & Geometric Topology, Volume 11 (2011)



1294 Kenta Hayano

...

...

...

...

...
...

0

0

0

n
curves

n� 0

[ 3–h
4–h

0

0

0

�n
curves

n< 0

[ 3–h
4–h

Figure 16: Left: A Kirby diagram of Ln for n� 0 . Right: A Kirby diagram
of Ln for n< 0 .

framing of the 2–handle in the diagram described in Figure 15. Eventually, we can
describe a diagram of Ln as shown in Figure 16.

Similarly, a diagram of L0n is described as shown in Figure 17.

... ...

...

... ...

...

0

0
0

n> 0

n�1
curves

[ 3–h
4–h

0

0
0

1�n
curves

n� 0

[ 3–h
4–h

Figure 17: Left: A Kirby diagram of L0n for n� 0 . Right: A Kirby diagram
of L0n for n< 0 .

By the diagrams of Ln and L0n described in Figure 16 and Figure 17, both Ln and L0n
admit genus–1 SBLFs without Lefschetz singularities. We can easily prove by Kirby
calculus that L�n (resp. L0�n ) is diffeomorphic to Ln (resp. L0n ).

Proof of Theorem 4.2 The higher side of f is obtained by attaching r 2–handles
to a trivial T 2 bundle over D2 . Each attaching circle of the 2–handle is in a regular
fiber and isotopic to a simple closed curve 1;0 . Since w.Wf / D X1

r , a 2–handle

Algebraic & Geometric Topology, Volume 11 (2011)
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of a round 2–handle is attached along 1;0 in a regular fiber of the boundary of the
higher side. We obtain M by attaching a 2–handle and a 4–handle to the 4–manifold
obtained by successive handle attachment to D2 �T 2 . If the attaching circle of the
2–handle of D2�S2 goes through the 1–handle that the 2–handle of the round handle
goes through, we can slide the 2–handle of D2 � S2 to the 2–handle of the round
handle so that the 2–handle of D2 �S2 does not go through the 1–handle. Thus a
Kirby diagram of M is one of the diagrams in Figure 18, where n and l are integers. It
is obvious that both two 4–manifolds illustrated in Figure 18 are diffeomorphic to each
other. We denote by Mn;l the 4–manifold illustrated in Figure 18. We remark that l

framed knot in Figure 18 represents a 2–handle of D2 �S2 and the attachment of the
lower side depends only on the parity of l . So Mn;l and Mn;l 0 are diffeomorphic to
each other if l � l 0 (mod 2).

...

...
... ...
...

...

...

...

0 0

0 0�1 �1

l l

n
n

r
lines

r
lines

[ 3–h
4–h

[ 3–h
4–h

Figure 18: A Kirby diagram of a genus–1 SBLF whose Hurwitz system is
Sr . Framings of r 2–handles parallel to the 2–handle of the round 2–handle
are all �1 .

We will determine what 4–manifold Mn;l is by Kirby calculus.

We first examine the case nD 0. A Kirby diagram of M0;l is as shown in Figure 19.
We first slide r 2–handles representing Lefschetz singularities to the 2–handle of the
round 2–handle. Then we slide the 2–handle of D2�T 2 to the 2–handle of the round
2–handle and move this 2–handle so that the attaching circle of the 2–handle does
not go through 1–handles. We obtain the last diagram of Figure 19 by eliminating the
obvious canceling pair.

Thus we obtain
M0;l D S1

�S3 # S # rCP2;

where S is equal to S2 �S2 if l is even and S2 z�S2 if l is odd.

Algebraic & Geometric Topology, Volume 11 (2011)



1296 Kenta Hayano

...

...

0 0

0

0 0

0

�1

�1

�1

l l

l

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

r
lines

0

�1

l

� r

� r

� r

�

� �

Figure 19: A Kirby diagram of M0;l

We next examine the case n D 1. We first slide r .�1/–framed 2–handles and the
2–handle of D2�T 2 as we slide in the case nD 0. Then we can eliminate the obvious
canceling pair. We next move the 2–handle of D2 �T 2 so that the attaching circle of
the 2–handle does not go through the 1–handle. Then we can eliminate two pairs of
handles. Thus we can prove

M1;l D # rCP2:

Lastly, we examine the case n� 2. A Kirby diagram of Mn;l is illustrated in Figure 20
and we change the diagram as shown in Figure 20 by performing similar calculus to
the calculus illustrated in Figure 19.

We can change the diagrams of Ln and L0n illustrated in Figures 16 and 17 as shown
in Figure 21. The upper four diagrams in Figure 21 describe Ln , where n � 0. We
first slide 2–handle of D2 �S2 to the 2–handle of N0 . Then we move the 2–handle
of D2�S2 by isotopy and slide the 2–handle of D2�T 2 to the 2–handle of N0 . To
obtain the last diagram of the four, we first untwist the 2–handle of D2 �S2 by using
0–framed meridian of this. The framing of this handle is unchanged in these moves.

Algebraic & Geometric Topology, Volume 11 (2011)



On genus–1 simplified broken Lefschetz fibrations 1297

Then we eliminate a canceling pair. The lower four diagrams in Figure 21 describe L0n ,
where n� 0. By the same method as above, we obtain the last diagram of the four.

...

...

... ...

... ...

... ...

... ...

0 0

0

0 0

0

0

�1

�1

�1 �1

l l

l l

n n

n n

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

r
lines

� r

� r � r

�

� �

Figure 20: A Kirby diagram of Mn;l , where n� 2

Thus we obtain
Mn;l DL # rCP2;

where L is either Ln or L0n . This completes the proof of Theorem 4.2.

Theorem 4.4 Let f W M ! S2 be a genus–1 SBLF. Suppose that Wf D Ts . Then
M is diffeomorphic to S # .s� 2/CP2 , where S is either of the manifolds S2 �S2

and S2 z�S2 .

Before proving Theorem 4.4, we change Ts by applying elementary transformations
and simultaneous conjugations so that we can easily determine what 4–manifold Ts

represents.

Lemma 4.5 Suppose that s � 3. Then, by successive application of elementary
transformations and simultaneous conjugations, we can change Ts into the following
sequence:

.T2;1;T2;3; : : : ;T2;2s�5;T1;s�1;T1;�1/:
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...

...

...

...

... ...

...

... ...

... ...

...

..
.

...

...

...

...

0 0

0

0
0

0

0 0

0

0 0

0

0 0

n

0 0

n
curves n

curves

n
curves

n
curves

n�1
curves

n�1
curves

n�1
curves

n�1
curves

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

0

n

n� 1

0

n� 1

1

1

Figure 21: The upper four diagrams describe Ln , while the lower four
diagrams describe L0n .
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Proof By applying simultaneous conjugation, we can transform Ts as follows:

Ts!

8̂̂̂̂
<̂
ˆ̂̂:
.X�5

1
X2X 5

1
;X�2

1
X2X 2

1
;X1X2X�1

1
/ if s D 3;

.X�4sC7
1

X2X 4s�7
1

;X�4sC10
1

X2X 4s�10
1

; if s � 4

X�4sC14
1

X2X 4s�14
1

;X�4sC18
1

X2X 4s�18
1

;

: : : ;X�6
1

X2X 6
1
;X�2

1
X2X 2

1
;X1X2X�1

1
/

D

(
.T5;1;T2;1;T�1;1/ if s D 3;

.T4s�7;1;T4s�10;1;T4s�14;1;T4s�18;1; : : : ;T6;1;T2;1;T�1;1/ if s � 4:

We first prove that the following formula holds up to orientation of simple closed
curves:

(4-1) T2;2l�1 ıT2;2l�3 ı � � � ıT2;1.4k�10;1/D 4k�10�4l;4lk�4l2�10lC1;

where k � 4 and l � k � 3.

We prove the formula (4-1) by induction on l . By the Picard–Lefschetz formula, we
obtain

T2;1.4k�10;1/D 4k�10;1� ..4k � 10/� 2 � 1/2;1

D 4k�10;1� .4k � 12/2;1

D �4kC14;�4kC13:

Thus the formula (4-1) holds for l D 1.

For general l , by the induction hypothesis, we obtain

T2;2l�1 ıT2;2l�3 ı � � � ıT2;1.4k�10;1/

D T2;2l�1.4k�6�4l;4lk�4k�4l2�2lC7/

D 4k�6�4l;4lk�4k�4l2�2lC7� ..2l � 1/.4k � 6� 4l/

� 2.4lk � 4k � 4l2
� 2l C 7//2;2l�1

D 4k�6�4l;4lk�4k�4l2�2lC7� .4k � 4l � 8/2;2l�1

D �4kC10C4l;�4lkC4l2C10l�1:

So the formula (4-1) holds for general l and we obtain

conj.T2;2k�7 ıT2;2k�9 ı � � � ıT2;1/.T4k�10;1/D T2;2k�5:

Thus, for s � 4, we can transform Ts as follows:

Ts! .T4s�7;1;T4s�10;1;T4s�14;1;T4s�18;1; : : : ;T6;1;T2;1;T�1;1/

! .T4s�7;1;T4s�10;1;T4s�14;1;T4s�18;1; : : : ;T10;1;T2;1;T2;3;T�1;1/
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! .T4s�7;1;T4s�10;1;T4s�14;1;T4s�18;1; : : : ;T14;1;T2;1;T2;3;T2;5;T�1;1/

! � � �

! .T4s�7;1;T2;1;T2;3; : : : ;T2;2s�5;T�1;1/:

We next prove that the following formula holds up to orientation:

(4-2) T2;2l�1 ıT2;2l�3 ı � � �T2;1.4k�7;1/D 4k�7�4l;4lk�4l2�7lC1;

where k � 3 and 1� l � k � 2. We prove the formula (4-2) by induction on l .

By the Picard–Lefschetz formula, we obtain

T2;1.4k�7;1/D 4k�7;1� ..4k � 7/� 2/2;1

D 4k�7;1� .4k � 9/2;1

D �4kC11;�4kC10:

So the formula (4-2) holds for l D 1.

For general l , by the induction hypothesis, we obtain

T2;2l�1 ıT2;2l�3 ı � � � ıT2;1.4k�7;1/

D T2;2l�1.4k�3�4l;4lk�4k�4l2ClC4/

D 4k�3�4l;4lk�4k�4l2ClC4� ..2l � 1/.4k � 3� 4l/

� 2.4lk � 4k � 4l2
C l C 4//2;2l�1

D 4k�3�4l;4lk�4k�4l2ClC4� .�4l C 4k � 5/2;2l�1

D �4kC4lC7;�4lkC4l2C7l�1:

Thus the formula (4-2) holds for general l and we obtain

conj.T2;2k�5 ıT2;2k�7 ı � � �T2;1/.T4k�7;1/D T1;k�1:

So we can transform Ts into the following sequence:

.T2;1;T2;3; : : : ;T2;2s�5;T1;s�1;T1;�1/:

This completes the proof of Lemma 4.5.

Proof of Theorem 4.4 Let Ms be the total space of genus–1 SBLF with Wf D Ts .
We first examine the case s D 2. We can describe a diagram of M2 as shown in
Figure 22. We slide the 2–handles representing Lefschetz singularities and the 2–
handle of D2�T 2 to the 2–handle of the round handle. Then we eliminate the obvious
canceling pair and slide the .�2/–framed knot and the l –framed knot to the 0–framed
knot. We can change the l –framed knot and the 0–framed meridian of this into a Hopf
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link by using the 0–framed meridian. We can obtain the last diagram of Figure 22 by
canceling two pairs of handles. Thus we obtain

M2 D S;

where S is S2 �S2 if m is even and S2 z�S2 if m is odd.

... ...

... ...

... ...

... ...

0

0

0

0

0

0

0

0

0

0

0

0

�1
�1

�1
�1 �2

�2

�2

l l l

l

m

m

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 3–h
4–h

[ 4–h

� �

� � �

Figure 22: A diagram of a SBLF whose Hurwitz system is T2

For general s , we can describe a diagram of Ms as shown in Figure 23. We can move
this diagram to the upper diagram of Figure 24 by sliding all the 2–handles describing
Lefschetz singularities and the 2–handle of D2 � T 2 to the 2–handle of the round
handle. To obtain the lower diagram of Figure 24, we slide the 2–handles going through
the 1–handle to 0–framed 2–handle and eliminate the obvious canceling pair.

We will prove the conclusion by induction on s . We first examine the case s D 3. The
left diagram in Figure 25 represents the manifold M3 and we can move it to the center
diagram of Figure 25 by isotopy. It is easy to transform the center diagram of Figure 25
to the right one and we obtain

M3 D # 2CP2 # CP2:

To complete the proof, we will move inner two 2–handles of the lower diagram in
Figure 24 as shown in Figure 26. We first move the .s�2/–framed 2–handle by isotopy.
And we slide the .4s�11/–framed 2–handle to the .s�2/–framed 2–handle twice.
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...
...

... ...
...

...
...

...

...

...
...

0
�1�1 �1 �1 �1

0

l

s�1
n

2s�5

(

[ 3–h
4–h

Figure 23: A diagram of Ms

We then obtain the last diagram of Figure 26. Thus we obtain

Ms DMs�1 # CP2

D # .s� 1/CP2 # CP2;

where the second equality holds by induction hypothesis. This completes the proof of
Theorem 4.4.

For sequences of elements of SL.2;Z/ W and W 0 , we denote by W W 0 a sequence
obtained by standing elements of W 0 after standing elements of W in a row.

Theorem 4.6 Let f W M ! S2 and gW M 0! S2 be genus–1 SBLFs.

(1) If Wf D Sr Wg , then M is diffeomorphic to M 0 # rCP2 .

(2) If Wf DWgTs , then M is diffeomorphic to M 0 # S # .s� 2/CP2 , where S is
either of the manifolds S2 �S2 and S2 z�S2 .
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1 1

0 m
0 m

1 1

1

�1

� 2

[ 3–h
4–h

[ 3–h
4–h

[ 4–h
� �

Figure 25

We need the following lemma to prove Theorem 4.6.

Lemma 4.7 Let f W M ! D2 be a genus–1 LF. Suppose that f has at least one
Lefschetz singularity and the monodromy of @M is equal to ˙E 2 SL.2;Z/. Then
every orientation and fiber preserving self-diffeomorphism ' of @M can be extended
to an orientation and fiber preserving self-diffeomorphism ˆ of M up to isotopy. ie
ˆj@M is isotopic to ' .

We remark that the conclusion of Lemma 4.7 holds by the following theorem if the
monodromy of @M is trivial.

Theorem 4.8 (Moishezon [12]) Let f W M ! D2 be a genus–1 LF and T �M

a regular fiber of f . Suppose that Wf D .X1;X2/. Then for every orientation and
fiber preserving self-diffeomorphism ' of @�T , there exists an orientation and fiber
preserving self-diffeomorphism ˆ of M n int �T such that ˆ is equal to ' on @�T

and that ˆ is the identity map on @M .

Proof of Lemma 4.7 We assume that the induced map on @D2 by ' is the identity
map. It is sufficient to prove the conclusion under the above hypothesis. Both M [id SM

and M [' SM naturally have genus–1 ALF structures over D2 [id D2 . We denote
these ALFs by f1 and f2 , respectively. Then it is sufficient to prove that there exists
an orientation and fiber preserving diffeomorphism ẑ W M [' SM !M [id SM such
that the image under ˆ of M (resp. SM ) is in M (resp. SM ) and that ẑ is identity
map on SM .

@M is isomorphic to I � T 2=..1;x/ � .0;˙Ex// as a torus bundle. We fix an
identification �0W @M ! I � T 2=� of the two bundles and we identify @D2 with
Œ0; 1�=f0; 1g by using �0 .

Step 1 Suppose that an isotopy class of 'W f1
2
g � T 2! f

1
2
g � T 2 is equal to E 2

SL.2;Z/. Then we can move ' by isotopy to the map such that the restriction of the
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�
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Figure 26: Only inner two 2–handles of the diagram and a Hopf link are
described and the other handles are in the shaded part.

map to Œ1
2
� "; 1

2
C "��T 2 is the identity map. Let E �D2 be an embedded 2–disk

satisfying the following conditions:

� E \ @D2 D Œ1
2
� "; 1

2
C "�;

� E contains no critical values of f .

We denote by fp1; : : : ;png � D2 a set of critical values of f . We put p0 D
1
2

and ˛1; : : : ; ˛n be embedded paths in D2 , beginning at p0 and otherwise disjoint,
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intersecting with @D2 at only p0 , connecting p0 to the critical values p1; : : : ;pn ,
respectively. Let W˛ be a regular neighborhood of ˛1[� � �[˛n such that W˛\@D

2�E .
We denote by W˛ , xE and Spi the image under idW D2 ! D2 of W˛ , E and pi ,
respectively. Then we can define an orientation and fiber preserving diffeomorphism
from f �1

1
.E [W˛ [W˛ [

xE/ to f �1
2
.E [W˛ [W˛ [

xE/ by using the identity maps
of M and SM . We denote this map by � and E [W˛ [W˛ [

xE by D0 .

There exists a pair of disks D , D1 satisfying the following conditions:
� D contains two critical values of f ;
� a Hurwitz system of f jf �1.D/ is .X1;X2/;
� D1 contains no critical values of f ;
� D1\ .E [W˛/D∅.

Indeed, we can see an example of such a pair in the left diagram of Figure 27.

The union D2 [id D2 n int.D0 [D1/ is an annulus. We denote the annulus by A0 .
We can take a vector field XA0

on A0 satisfying the following conditions:
� XA0

is nonzero on every point of A0 ;
� each integral curve of XA0

intersects @D0 and @D1 transversely;
� every integral curve of XA0

starting at a point on @D0 ends at a point on @D1 ;
� for an integral curve c of XA0

and a real number t , if c.t/ is in D2 , c.s/ is not
in D2 for every s > t .

For example, we can take such an XA0
as shown in the right figure of Figure 27.

Let Hi for i D 1; 2 be horizontal distributions of the restriction of fi to M [

SM n f �1
i .fp1; : : : ;png/ such that H1 and H2 are identical on SM . We can take

vector fields X1 and X2 on f �1
1
.A0/ and f �1

2
.A0/, respectively, by lifting XA0

by
using H1 and H2 . Then we can define a map

‚W f �1
1 .D2

[D2
n int.D0[D1//! f �1

2 .D2
[D2

n int.D0[D1//

by ‚.c1;x.t//D c2;x.t/;

where c1;x (resp. c2;x ) is an integral curve of X1 (resp. X2 ) starting at x2f �1
1
.@D0/D

f �1
2
.@D0/. ‚ is an orientation and fiber preserving diffeomorphism and the restriction

of ‚ to f �1
1
.@D0/ is the identity map. In particular, the following diagram commutes:

f �1
1
.D0/

�
����! f �1

2
.D0/

id j
f�1
1

.@D0/

??y ??yid j
f�1
2

.@D0/

f �1
1
.D2[D2 n int.D0[D1//

‚
����! f �1

2
.D2[D2 n int.D0[D1//
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D1

D

D2

@D1

@D0

D2

Figure 27: Left: The figure of D2[D2 . The shaded part describes D0 and
the part with slanted lines describes D2 . Right: The figure of the annulus
D2[id D2 n int.D0[D1/ . The arrows in the figure represent an example
of XA0

.

By the above commutative diagram, we obtain the orientation and fiber preserving
diffeomorphism

z‚W f �1
1 .D2

[D2
n int.D1//! f �1

2 .D2
[D2

n int.D1//:

The restriction map of z‚ to SM is the identity map since the horizontal distributions H1

and H2 are identical on SM .

We can obtain by Theorem 4.8 an orientation and fiber preserving diffeomorphism
z'W f �1

1
.D n int D1/! f �1

2
.D n int D1/ satisfying the following conditions:

� z'jf �1
1
.@D1/

D .z‚jf �1
1
.@D1/

/�1 ;

� z'jf �1
1
.@D/ is the identity map.

Then we obtain the following commutative diagram:

f �1
1
.D2[D2 n int D/

z‚
����! f �1

2
.D2[D2 n int D/

id j
f�1
1

.@D/

??y ??yid j
f�1
2

.@D/

f �1
1
.D n int D1/

z‚ız'
����! f �1

2
.D n int D1/

id j
f�1
1

.@D1/

??y ??yid j
f�1
2

.@D1/

f �1
1
.D1/

id
����! f �1

2
.D1/;
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where vertical maps are defined only on boundaries. We can obtain by the above
diagram the orientation and fiber preserving diffeomorphism ẑ W M [id SM !M [' SM

which is the identity map on SM . This proves the conclusion.

Step 2 We next prove the conclusion for general ' . By Step 1, it is sufficient to prove
that, for any element A 2 SL.2;Z/, there exists an orientation and fiber preserving
diffeomorphism ‰AW M ! M such that the image under ‰A of f1

2
g � T 2 is in

f
1
2
g � T 2 and that the mapping class of the restriction of ‰A to f1

2
g � T 2 is equal

to A. To prove this claim, we use the following theorem.

Theorem 4.9 (Matsumoto [11]) Let .B1; : : : ;Bn/ be a sequence of elements of
SL.2;Z/. Suppose that each Bi is conjugate to X1 and that B1 � � �Bn D˙E . Then,
by successive application of elementary transformations, we can change .B1; : : : ;Bn/

into the sequence
.X1;X2;X1;X2; : : : ;X1;X2/:

We put zp02 int D2nfp1; : : : ;png and let  be an embedded path in D2 , connecting zp0

to p0 , intersecting @D2 at only p0 transversely. We can take an isotopy class of an
orientation preserving diffeomorphism between f �1. zp0/ and T 2 by using  . We fix
a representative element �0W f

�1. zp0/! T 2 of this class. By Theorem 4.9, we can
take embedded paths ˛1; : : : ; ˛n in int D2 satisfying the following conditions:

(a) ˛i starts at zp0 and connects zp0 to pi ;

(b) ˛i \ j̨ D f zp0g if i ¤ j ;

(c) ˛i \  D f zp0g;

(d) ; ˛1; : : : ; ˛n appear in this order when we travel counterclockwise around zp0 ;

(e) a Hurwitz system of f determined by �0; ˛1; : : : ; ˛n is

.X1;X2; : : : ;X1;X2/:

Similarly, we can take embedded paths ˇ1; : : : ; ˇn in int D2 so that they satisfy the
following conditions:

(a) 0 ˇi starts at zp0 and connects zp0 to pki
, where fpk1

; : : : ;pkn
g D fp1; : : : ;png;

(b) 0 ˇi \ ǰ D f zp0g if i ¤ j ;

(c) 0 ˇi \  D f zp0g;

(d) 0 ; ˇ1; : : : ; ˇn appear in this order when we travel counterclockwise around zp0 ;
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(e) 0 a Hurwitz system of f determined by �0; ˇ1; : : : ; ˇn is

.A�1X1A;A�1X2A; : : : ;A�1X1A;A�1X2A/:

Denote by E0 a disk neighborhood of zp0 in int D2 n fp1; : : : ;png. Let

z�0W f
�1.E0/!E0 �T 2

be an extension of an identification �0 . We define a diffeomorphism

‰1W f
�1.E0/! f �1.E0/

‰1.p;x/D .p;Ax/;by

where .p;x/2D2�T 2 . Let W˛ and Wˇ be regular neighborhoods of ˛1[� � �[˛n and
ˇ1[ � � �[ˇn , respectively. We denote by V1; : : : ;Vn sufficiently small neighborhoods
in int D2 of p1; : : : ;pn , respectively. We can easily extend ‰1 to

‰2W f
�1.E0[W˛ n .V0[ � � � [Vn//! f �1.E0[Wˇ n .V0[ � � � [Vn//:

Moreover, we can take ‰2 so that the image under ‰2 of the inverse image of ˛i

is in the inverse image of ˇi . Then the image under ‰2 of a vanishing cycle in a
regular neighborhood of f near f �1.pi/ is isotopic to a vanishing cycle in a regular
neighborhood of f near f �1.pki

/. Thus ‰2 can be extended to

‰3W f
�1.E0[W˛/! f �1.E0[Wˇ/:

We can easily extend this map to a self-diffeomorphism of M and this extension
satisfies the desired condition. This completes the proof of Lemma 4.7.

Proof of Theorem 4.6 By Lemma 4.7, without loss of generality, we can assume that
the attaching circle of the 2–handle of the round handle in M is isotopic to 1;0 in a
regular fiber.

We first prove the statement (1). We can describe a diagram of M as shown in Figure 28.
We can divide the diagram into .�1/–framed unknots and a diagram of M 0 by sliding
2–handles corresponding to elements in Sr to the 2–handle of the round handle. This
proves the statement (1).

We next prove the statement (2) by induction on the number of elements in Wg . The
statement is true if Wg D ∅ by Theorem 4.4. If Wg contains an element X1 , the
statement holds by the statement (1) and the induction hypothesis. Suppose that Wg¤∅
and Wg does not contain X1 . By Theorem 3.11, Wg is equal to the following normal
form:

.X
n1

1
X2X

�n1

1
; : : : ;X

nu

1
X2X

�nu

1
/:
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...

...

0

0

�1

[ 3–h
4–h

Figure 28: A diagram of a total space of a SBLF with associated sequence
Sr Wg . Only handles of D2�T 2 , round handle and 2–handles corresponding
to elements in Sr are described and the other handles are in a shaded part.

Then a diagram of M can be described as shown in Figure 29. By applying moves as
we performed to prove Theorem 4.4, we obtain the first diagram in Figure 30. After
handle slidings, we obtain the last diagram in Figure 30. There exists a 2–handle
whose attaching circle intersects the belt sphere of the 1–handle geometrically once in
the shaded part. We denote the 2–handle by H . By sliding the 0–framed 2–handle
intersecting the belt sphere of the 1–handle geometrically once to H and using the
0–framed meridian, we can divide the diagram into a diagram of S , s�2 .�1/–framed
unknots and a diagram of M 0 . This proves the statement (2).

Combining the conclusions obtained above, we complete the proof of Theorem 4.6.

We can prove the following theorem by an argument similar to that in the proof of
Theorem 4.6.

Theorem 4.10 Let f W M ! S2 be a genus–1 SBLF and suppose that Wf D

Sr T .n1; : : : ; ns/ and s>0. Then there exists a 4–manifold M 0 such that M DM 0#S ,
where S is either of the manifolds S2 �S2 and S2 z�S2 .

Proof By assumption about Wf , we can draw a diagram of M as shown in Figure 31.
We first slide the 2–handle of D2 �T 2 to the 2–handle of the round 2–handle twice.
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0
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[ 3–h
4–h

s�1f

2s�5f

Figure 29: A diagram of a total space of a SBLF whose Hurwitz system is
WgTs . Only handles of D2�T 2 , round handle and 2–handles corresponding
to elements in Ts are described and the 2–handle of the round handle is
eliminated.
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0 m
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Figure 30
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... ...

0

0

l

Figure 31

Then the 2–handle of D2 �T 2 becomes a 0–framed meridian of l –framed 2–handle
in the diagram. Since we assume that s > 0, there exists a 2–handle H in a shaded
part such that an attaching circle of H goes through the 1–handle that the l –framed
2–handle goes through. By sliding l –framed 2–handle to H and using the 0–framed
meridian, we can change the l –framed 2–handle and the 0–framed meridian into the
Hopf link. Thus we complete the proof of Theorem 4.10.

Corollary 4.11 Simply connected 4–manifolds with positive definite intersection
form cannot admit any genus–1 SBLF structures except S4 . Especially, kCP2 cannot
admits any such fibrations for any positive integers k .

Proof If such a 4–manifold admitted a genus–1 SBLF structure, the 4–manifold
would contain at least one S2�S2 or S2 z�S2 connected summand by Theorem 4.10.
This contradicts the hypothesis about the intersection form.

We end this section with the proof of Main Theorem A.

Proof of Main Theorem A By Theorems 4.2, 4.4 and 4.6, it is sufficient to prove
only that # kS2 � S2 admits a genus–1 SBLF structure. A diagram in Figure 32
represents the total space of a genus–1 SBLF whose monodromy representation is
represented by the sequence kT2 . We denote this manifold by Mk .

We can prove that Mk is diffeomorphic to S2 �S2 by applying same moves as we
apply in the proof of the statement (2) of Theorem 4.6. This completes the proof of
Main Theorem A.
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Figure 32

5 Proof of Main Theorem B

We will use some properties of PSL.2;Z/D SL.2;Z/=f˙Eg for proving Main Theo-
rem B. So we first review these properties before proving the theorem.

We define matrices A and B in SL.2;Z/ by

AD

�
0 �1

1 1

�
; B D

�
1 2

�1 �1

�
:

Then A and B generate SL.2;Z/. In fact, both X1 and X2 are represented by A

and B as follows:
X1 DABA; X2 D BA2:

Let a, b , x1 and x2 be elements of PSL.2;Z/ represented by A, B , X1 and X2 ,
respectively. Then PSL.2;Z/ has the finite presentation [10]

PSL.2;Z/D ha; b j a3; b2
i:

Especially, PSL.2;Z/ is isomorphic to a free product Z=3�Z=2.

The sequence .w1; : : : ; wn/ of elements of PSL.2;Z/ is called reduced if the set
fwi ; wiC1g is equal to either of the sets fa; bg and fa2; bg for each i 2 f1; : : : ; n� 1g.
The proof of Main Theorem B is based on the following theorem.

Algebraic & Geometric Topology, Volume 11 (2011)



1314 Kenta Hayano

Theorem 5.1 (Magnus, Karrass and Solitar [10]) For every element g of PSL.2;Z/,
there exists a reduced sequence .w1; : : : ; wn/ of PSL.2;Z/ such that g D w1 � � �wn .
Moreover, such a sequence is unique.

For an element g 2 PSL.2;Z/, we take the reduced sequence .w1; : : : ; wn/ such that
g D w1 � � �wn . We define an element t.g/ by

t.g/D wn � � �w1:

Then a map t W PSL.2;Z/! PSL.2;Z/ is well-defined by Theorem 5.1 and it is an
antihomomorphism. Since x1 D aba and x2 D ba2 , we obtain t.x1/ D x1 and
t.x2/D x�1

1
x2x1 .

Now we are ready to prove Main Theorem B.

Proof of Main Theorem B Let f W M ! S2 be a genus–1 SBLF with nonempty
round singular locus and with r Lefschetz singularities. Let Wf be a Hurwitz system
of f which satisfies w.Wf /D˙X m

1
, where m 2Z. We can assume by Theorem 3.11

that Wf D SkT .n1; : : : ; nr�k/.

For the case r D 0, the conclusion holds directly by Theorem 4.2.

For the case r D 1, Wf is either of the sequence S1 and T .n1/. If Wf were T .n1/,
w.Wf / would not be equal to ˙X m

1
. So Wf is equal to S1 and the conclusion holds

by Theorem 4.2.

For the case r D 2, Wf is equal to S2 , S1T .n1/ or T .n1; n2/. Wf is not equal to
S1T .n1/ since w.Wf / D ˙X m

1
. If Wf is equal to S2 , then M is diffeomorphic

to # 2CP2 , S1 � S3 # S # 2CP2 or L # 2CP2 . If Wf is equal to T .n1; n2/ and
n1� n2 D 1, we can change Wf by elementary transformations as follows:

Wf D .X
�n1

1
X2X

n1

1
;X
�n2

1
X2X

n2

1
/

7! ..X
�n1

1
X2X

n1

1
/.X
�n2

1
X2X

n2

1
/.X
�n1

1
X�1

2 X
n1

1
/;X

�n1

1
X2X

n1

1
/

D .X
�n1

1
.X2X1X2X�1

1 X�1
2 /X

n1

1
;X
�n1

1
X2X

n1

1
/

D .X
�n1

1
X1X

n1

1
;X
�n1

1
X2X

n1

1
/

D .X1;X
�n1

1
X2X

n1

1
/

D S1T .n1/:

This contradiction says that n1�n2¤ 1. Since w.Wf /D˙X m
1

, we have the equation

x
�n1

1
x2x

n1

1
x
�n2

1
x2x

n2

1
D xm

1

) x2x
n1�n2

1
x2 D xn

1 ;(5-1)

Algebraic & Geometric Topology, Volume 11 (2011)



On genus–1 simplified broken Lefschetz fibrations 1315

where nDmC n1� n2 . The left side of Equation (5-1) is represented by a and b as

x2x
n1�n2

1
x2 D

(
ba2 � a2.ba/�n1Cn2�1ba2ba2 n1� n2 � 0;

ba2 � a.ba2/n1�n2�1baba2 n1� n2 � 2

D

(
.ba/�n1Cn2ba2ba2 n1� n2 � 0;

a2.ba2/n1�n2�2baba2 n1� n2 � 2:

The element xn
1

is represented by a and b as follows:

xn
1 D

(
a.ba2/n�1ba n� 1;

a2.ba/�n�1ba2 n� �1:
(5-2)

By Theorem 5.1, we obtain n1�n2D 2. Then we can change Wf into T2 by applying
simultaneous conjugation. Thus M is diffeomorphic to either of the manifolds S2�S2

and S2 z�S2 .

For the case r D 3, Wf is equal to S3 , S2T .n1/, S1T .n1; n2/ or T .n1; n2; n3/. The
case Wf DS2T .n1/ never occurs since w.Wf /D˙X m

1
. If Wf DS3 or S1T .n1; n2/,

4–manifolds that M can be is well-known by Theorems 4.2, 4.4, 4.6 and the argument
for the case r D 2 and these are contained in a family of 4–manifolds in the statement
of Main Theorem B. So all we need to examine is the case Wf D T .n1; n2; n3/. We
can assume that ni�niC1¤ 1 (i D 1; 2) by the same argument as in the case r D 2. If
ni�niC1D 2 for i D 1 or 2, then X

�ni

1
X2X

ni

1
X
�niC1

1
X2X

niC1

1
D�X�4

1
and we can

change Wf into T .zn/T2 by elementary transformations and simultaneous conjugations,
where zn is an integer. This contradicts w.Wf /D˙X m

1
. So ni�niC1¤ 2 for i D 1; 2.

Since Wf D˙X m
1

, the following equation holds:

x
�n1

1
x2x

n1

1
x
�n2

1
x2x
�n3

1
x2x

n3

1
D xm

1

) x2x
n1�n2

1
x2x

n2�n3

1
x2 D xn

1 ;(5-3)

where nDmCn1�n3 . If n1�n2�0, then the left side of Equation (5-3) is represented
by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2

D

(
ba2 � a2.ba/�n1Cn2�1ba2 � ba2 � a.ba2/n2�n3�1 � ba2 n2� n3 � 3;

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 � a2.ba/�n2Cn3�1 � ba2 n2� n3 � 0

D

(
.ba/�n1Cn2ba � .ba2/n2�n3�3ba2 n2� n3 � 3;

.ba/�n1Cn2ba2.ba/�n2Cn3ba2 n2� n3 � 0:
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This would not be equal to xn
1

by (5-2) and Theorem 5.1. Thus we obtain n1�n2 � 3.
By operating a map t to both sides of Equation (5-3), we obtain

.x�1
1 x2x1/x

n2�n3

1
.x�1

1 x2x1/x
n1�n2

1
.x�1

1 x2x1/D xn
1

) x2x
n2�n3

1
x2x

n1�n2

1
x2 D xn

1 :

So we obtain n2 � n3 � 3 by the same argument as above. Thus the left side of
Equation (5-3) is represented by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2 D ba2

� a.ba2/n1�n2�1ba � ba2
� a.ba2/n2�n3�1ba � ba2

D a2.ba2/n1�n2�2ba � a2.ba2/n2�n3�2baba2

D a2.ba2/n1�n2�3ba.ba2/n2�n3�3baba2:

By Theorem 5.1, we obtain n1� n2 D n2� n3 D 3. Then we can change Wf into T3

by applying simultaneous conjugation and M is diffeomorphic to # 2CP2 # CP2 .

For the case r D 4, Wf is equal to S4 , S3T .n1/, S2T .n1; n2/, S1T .n1; n2; n3/ or
T .n1; n2; n3; n4/. But all we need to examine is the case Wf D T .n1; n2; n3; n4/ as
the case r D 3. We can assume that ni � niC1 ¤ 1; 2 for i D 1; 2; 3 by the same
argument as in the case r D 3. If ni � niC1 D niC1 � niC2 D 3 for i D 1 or 2,
then we can change Wf into T .zn/T3 by elementary transformations and simultaneous
conjugations, where zn is an integer. This contradicts w.Wf /D˙X m

1
. So we obtain

.ni � niC1; niC1� niC2/¤ .3; 3/ for i D 1; 2. Since Wf D˙X m
1

, we obtain

x
�n1

1
x2x

n1

1
x
�n2

1
x2x

n2

1
x
�n3

1
x2x

n3

1
x
�n4

1
x2x

n4

1
D xm

1

) x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2 D xn

1 ;(5-4)

where nDmC n1� n4 . If n1� n2 � 0, the left side of Equation (5-4) is represented
by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n2� n3 � 3; n3� n4 � 3;

� a.ba2/n2�n3�1ba � ba2 � a.ba2/n3�n4�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n2� n3 � 0; n3� n4 � 3;

� a2.ba/�n2Cn3�1ba2 � ba2 � a.ba2/n3�n4�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n2� n3 � 3; n3� n4 � 0;

� a.ba2/n2�n3�1ba � ba2 � a2.ba/�n3Cn4�1ba2 � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n2� n3 � 0; n3� n4 � 0

� a2.ba/�n2Cn3�1ba2 � ba2 � a2.ba/�n3Cn4�1ba2 � ba2
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D

8̂̂̂̂
<̂
ˆ̂̂:
.ba/�n1Cn2ba.ba2/n2�n3�3ba.ba2/n3�n4�3baba2 n2� n3 � 3; n3� n4 � 3;

.ba/�n1Cn2ba2.ba/�n2Cn3ba.ba2/n3�n4�2baba2 n2� n3 � 0; n3� n4 � 3;

.ba/�n1Cn2ba.ba2/n2�n3�2.ba/�n3Cn4C1ba2ba2 n2� n3 � 3; n3� n4 � 0;

.ba/�n1Cn2ba2.ba/�n2Cn3ba2.ba/�n3Cn4ba2ba2 n2� n3 � 0; n3� n4 � 0:

This would not be equal to xn
1

by (5-2) and Theorem 5.1. Thus we obtain n1�n3 � 3.
By operating a map t to both sides of Equation (5-4), we obtain

x2x
n3�n4

1
x2x

n2�n3

1
x2x

n1�n2

1
x2 D xn

1 :

So we obtain n3�n4 � 3 by the same argument above. If n2�n3 � 0, the left side of
Equation (5-4) is represented by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2

D ba2
� a.ba2/n1�n2�1ba � ba2

� a2.ba/�n2Cn3�1ba2
� ba2

� a.ba2/n3�n4�1ba � ba2

D a2.ba2/n1�n2�1.ba/�n2Cn3C1ba.ba2/n3�n4�2ba � ba2:

This would not be equal to xn
1

and we obtain n2 � n3 � 3. Thus the left side of
Equation (5-4) is represented by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2

D ba2
� a.ba2/n1�n2�1ba � ba2

� a.ba2/n2�n3�1ba � ba2
� a.ba2/n3�n4�1ba � ba2

D a2.ba2/n1�n2�3ba.ba2/n2�n3�3a2.ba2/n3�n4�3baba2

D

(
a2.ba2/n1�n2�4ba.ba2/n3�n4�4baba2 n2� n3 D 3;

a2.ba2/n1�n2�3ba.ba2/n2�n3�4ba.ba2/n3�n4�3baba2 n2� n3 � 4:

By Theorem 5.1, we obtain

.n1� n2; n2� n3; n3� n4/D .3; 4; 3/ or .4; 3; 4/:

Then we can easily change Wf into T4 by elementary transformations and simultaneous
conjugations. Thus M is diffeomorphic to # 3CP2 # CP2 .

For the case r D 5, Wf is equal to S5 , S4T .n1/, S3T .n1; n2/, S2T .n1; n2; n3/,
S1T .n1; n2; n3; n4/ or T .n1; n2; n3; n4; n5/. But all we need to examine is the case
Wf DT .n1; n2; n3; n4; n5/ as the case r D 4. We can assume that ni�niC1¤ 1; 2 for
iD1; 2; 3; 4 and .nj�njC1; njC1�njC2/¤ .3; 3/ for j D1; 2; 3 by the same argument
as in the case r D 4. If .ni � niC1; niC1� niC2; niC2� niC3/D .3; 4; 3/ or .4; 3; 4/
for i D 1 or 2, then we can change Wf into T .zn/T4 by elementary transformations and
simultaneous conjugations, where zn is an integer. This contradicts w.Wf /D˙X m

1
.
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So we obtain .ni � niC1; niC1� niC2; niC2� niC3/D .3; 4; 3/; .4; 3; 4/ for i D 1; 2.
Since w.Wf /D˙X m

1
, we obtain the following equation:

x
�n1

1
x2x

n1

1
x
�n2

1
x2x

n2

1
x
�n3

1
x2x

n3

1
x
�n4

1
x2x

n4

1
x
�n5

1
x2x

n5

1
D xm

1

) x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2x

n4�n5

1
x2 D xn

1 ;(5-5)

where nDmCn1�n5 . If n1�n2 � 0 and n2�n3 � 0, the left side of Equation (5-5)
is represented by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2x

n4�n5

1
x2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 3; n4� n5 � 3;

� a2.ba/�n2Cn3�1ba2 � ba2

� a.ba2/n3�n4�1ba � ba2 � a.ba2/n4�n5�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 0; n4� n5 � 3;

� a2.ba/�n2Cn3�1ba2 � ba2

� a2.ba/�n3Cn4�1ba2 � ba2 � a.ba2/n4�n5�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 3; n4� n5 � 0;

� a2.ba/�n2Cn3�1ba2 � ba2

� a.ba2/n3�n4�1ba � ba2 � a2.ba/�n4Cn5�1ba2 � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 0; n4� n5 � 0;

� a2.ba/�n2Cn3�1ba2 � ba2

� a2.ba/�n3Cn4�1ba2 � ba2 � a2.ba/�n4Cn5�1ba2 � ba2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

.ba/�n1Cn2ba2.ba/�n2Cn3ba.ba2/n3�n4�3 n3� n4 � 3; n4� n5 � 3;

� ba.ba2/n4�n5�3baba2

.ba/�n1Cn2ba2.ba/�n2Cn3ba2.ba/�n3Cn4 n3� n4 � 0; n4� n5 � 3;

� ba.ba2/n4�n5�2baba2

.ba/�n1Cn2ba2.ba/�n2Cn3ba.ba2/n3�n4�2 n3� n4 � 3; n4� n5 � 0;

� ba.ba/�n4Cn5ba2ba2

.ba/�n1Cn2ba2.ba/�n2Cn3ba2.ba/�n3Cn4 n3� n4 � 0; n4� n5 � 0:

� ba2.ba/�n4Cn5ba2ba2

This would not be equal to xn
1

by Theorem 5.1. So either of the cases n1�n2 � 3 and
n2�n3 � 3 holds. If n1�n2 � 0, then n2�n3 � 3 and the left side of Equation (5-5)
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is represented by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2x

n4�n5

1
x2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 3; n4� n5 � 3;

� a.ba2/n2�n3�1ba � ba2

� a.ba2/n3�n4�1ba � ba2 � a.ba2/n4�n5�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 0; n4� n5 � 3;

� a.ba2/n2�n3�1ba � ba2

� a2.ba/�n3Cn4�1ba2 � ba2 � a.ba2/n4�n5�1ba � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 3; n4� n5 � 0;

� a.ba2/n2�n3�1ba � ba2

� a.ba2/n3�n4�1ba � ba2 � a2.ba/�n4Cn5�1ba2 � ba2

ba2 � a2.ba/�n1Cn2�1ba2 � ba2 n3� n4 � 0; n4� n5 � 0;

� a.ba2/n2�n3�1ba � ba2

� a2.ba/�n3Cn4�1ba2 � ba2 � a2.ba/�n4Cn5�1ba2 � ba2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

.ba/�n1Cn2ba.ba2/n2�n3�3 n3� n4 � 3; n4� n5 � 3;

� ba.ba2/n3�n4�3a2.ba2/n4�n5�3baba2

.ba/�n1Cn2ba.ba2/n2�n3�2 n3� n4 � 0; n4� n5 � 3;

� .ba/�n3Cn4C1ba.ba2/n4�n5�2baba2

.ba/�n1Cn2ba.ba2/n2�n3�3 n3� n4 � 3; n4� n5 � 0;

� ba.ba2/n3�n4�3ba.ba/�n4Cn5ba2ba2

.ba/�n1Cn2ba.ba2/n2�n3�2 n3� n4 � 0; n4� n5 � 0;

� .ba/�n3Cn4C1ba2.ba/�n4Cn5ba2ba2

D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.ba/�n1Cn2ba.ba2/n2�n3�3 n3� n4 � 4; n4� n5 � 3;

� ba.ba2/n3�n4�4ba.ba2/n4�n5�3baba2

.ba/�n1Cn2ba.ba2/n2�n3�4 n3� n4 D 3; n4� n5 � 3;

� ba.ba2/n4�n5�4baba2

.ba/�n1Cn2ba.ba2/n2�n3�2.ba/�n3Cn4C1 n3� n4 � 0; n4� n5 � 3;

� ba.ba2/n4�n5�2baba2

.ba/�n1Cn2ba.ba2/n2�n3�3 n3� n4 � 3; n4� n5 � 0;

� ba.ba2/n3�n4�3ba.ba/�n4Cn5ba2ba2

.ba/�n1Cn2ba.ba2/n2�n3�2 n3� n4 � 0; n4� n5 � 0:

� .ba/�n3Cn4C1ba2.ba/�n4Cn5ba2ba2
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This would not be equal to xn
1

by Theorem 5.1. So we obtain n1�n2� 3. By operating
a map t to both sides of Equation (5-5), we obtain

(5-6) x2x
n4�n5

1
x2x

n3�n4

1
x2x

n2�n3

1
x2x

n1�n2

1
x2 D xn

1 :

So we obtain n4�n5 � 3. If n2�n3 � 0, the left side of Equation (5-5) is represented
by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2x

n4�n5

1
x2

D

8̂̂̂̂
<̂
ˆ̂̂:

ba2 � a.ba2/n1�n2�1ba � ba2 � a2.ba/�n2Cn3�1ba2 � ba2 n3� n4 � 3;

� a.ba2/n3�n4�1ba � ba2 � a.ba2/n4�n5�1ba � ba2

ba2 � a.ba2/n1�n2�1ba � ba2 � a2.ba/�n2Cn3�1ba2 � ba2 n3� n4 � 0

� a2.ba/�n3Cn4�1ba2 � ba2 � a.ba2/n4�n5�1ba � ba2

D

8̂̂̂̂
<̂
ˆ̂̂:

a2ba2.ba2/n1�n2�3.ba/�n2Cn3C1 n3� n4 � 3;

� ba.ba2/n3�n4�3ba.ba2/n4�n5�3baba2

a2ba2.ba2/n1�n2�3.ba/�n2Cn3C1 n3� n4 � 0:

� ba2.ba/�n3Cn4ba.ba2/n4�n5�2baba2

This would not be equal to xn
1

by Theorem 5.1 and we obtain n2� n3 � 3. We also
obtain n3�n4� 3 by Equation (5-6). Thus the left side of Equation (5-5) is represented
by a and b as follows:

x2x
n1�n2

1
x2x

n2�n3

1
x2x

n3�n4

1
x2x

n4�n5

1
x2

D ba2
� a.ba2/n1�n2�1ba � ba2

� a.ba2/n2�n3�1ba � ba2

� a.ba2/n3�n4�1ba � ba2
� a.ba2/n4�n5�1ba � ba2

D a2.ba2/n1�n2�2a2.ba2/n2�n3�3a2.ba2/n3�n4�3a2.ba2/n4�n5�3baba2

D a2.ba2/n1�n2�3ba.ba2/n2�n3�3a2.ba2/n3�n4�3a2.ba2/n4�n5�3baba2

D

8̂̂̂̂
<̂
ˆ̂̂:

a2.ba2/n1�n2�3ba.ba2/n2�n3�4 n2� n3 � 4;

� ba.ba2/n3�n4�3a2.ba2/n4�n5�3baba2

a2.ba2/n1�n2�4ba.ba2/n3�n4�5 n2� n3 D 3

� ba.ba2/n4�n5�3baba2
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D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

a2.ba2/n1�n2�3ba.ba2/n2�n3�4 n2� n3 � 4; n3� n4 � 4;

� ba.ba2/n3�n4�4ba.ba2/n4�n5�3baba2

a2.ba2/n1�n2�3ba.ba2/n2�n3�5 n2� n3 � 4; n3� n4 D 3;

� ba.ba2/n4�n5�4baba2

a2.ba2/n1�n2�4ba.ba2/n3�n4�5 n2� n3 D 3:

� ba.ba2/n4�n5�3baba2

By Theorem 5.1, we obtain

.n1� n2; n2� n3; n3� n4; n4� n5/D .3; 4; 4; 3/, .3; 5; 3; 4/ or .4; 3; 5; 3/:

Then we can easily change Wf into T5 by elementary transformations and simultaneous
conjugations. Thus M is diffeomorphic to # 4CP2 # CP2 .

Combining the above arguments, we complete the proof of Main Theorem B.

Remark 5.2 The case r � 6 is algebraically too complicated to solve the classification
problem. For example, in the case r D 6, the following sequence appears as a candidate
of a Hurwitz system of a SBLF:�T6D .X

�10
1 X2X 10

1 ;X�6
1 X2X 6

1 ;X
�1
1 X2X1;X

2
1 X2X�2

1 ;X 6
1 X2X�6

1 ;X 11
1 X2X�11

1 /:

Indeed, it is easy to see that w.�T6/D�X�24
1

and so it satisfies the condition in
Theorem 3.11. We can change �T6 into the following sequence by successive application
of elementary transformations and simultaneous conjugations:

.T3;1;T3;2;T2;3;T2;5;T1;4;T�1;1/:

We can draw a Kirby diagram of the total space of a SBLF whose Hurwitz systems �T6 .
We can prove by Kirby calculus that this 4–manifold is diffeomorphic to #5CP2#CP2 ,
which is the total space of a SBLF whose Hurwitz system is T6 . However, the author
does not know whether �T6 can be changed into T6 by elementary transformations and
simultaneous conjugations.

Conjecture 5.3 If M admits a genus–1 SBLF structure with nonempty round singular
locus, then it is diffeomorphic to one of the following 4–manifolds:
� # kCP2 # lCP2 , where l > 0 and k � 0.
� # kS2 �S2 , where k � 0 .
� S1 �S3 # S # kCP2 , where k � 0 and S is either S2 �S2 or S2 z�S2 .
� L # kCP2 , where k � 0 and L is either Ln or L0n .

More strongly, the families of genus–1 SBLF obtained in Section 4 contain all genus–1

SBLFs with nonempty round singular locus.
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[2] R İ Baykur, Topology of broken Lefschetz fibrations and near-symplectic four-
manifolds, Pacific J. Math. 240 (2009) 201–230 MR2485463
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