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The moduli space of hex spheres

ALDO-HILARIO CRUZ-COTA

A hex sphere is a singular Euclidean sphere with four cone points whose cone angles
are (integer) multiples of 2�

3
but less than 2� . We prove that the Moduli space of

hex spheres of unit area is homeomorphic to the the space of similarity classes of
Voronoi polygons in the Euclidean plane. This result gives us as a corollary that each
unit-area hex sphere M satisfies the following properties:

(1) it has an embedded (open Euclidean) annulus that is disjoint from the singular
locus of M ;

(2) it embeds isometrically in the 3–dimensional Euclidean space as the boundary of
a tetrahedron; and

(3) there is a simple closed geodesic  in M such that a fractional Dehn twist along
 converts M to the double of a parallelogram.

57M50; 57M15

1 Introduction

A surface is singular Euclidean if it is locally modeled on either the Euclidean plane or
a Euclidean cone. In this article we study a special type of singular Euclidean spheres
that we call hex spheres. These are defined as singular Euclidean spheres with four
cone points which have cone angles that are multiples of 2�

3
but less than 2� . Singular

Euclidean surfaces whose cone angles are multiples of 2�
3

are mainly studied because
they arise as limits at infinity of real projective structures. This is explained in the next
paragraph.

Real projective structures are central objects in mathematics and they have been studied
extensively by many authors (see Goldman [6], Choi and Goldman [3], Loftin [9],
Labourie [8] and Hitchin [7]). The asymptotic behavior at infinity in the moduli space
of projective structures is a very active topic of current research. A strictly convex
projective orbifold has a natural Finsler metric called the Hilbert metric. A set of
projective orbifolds is called uniformly fat if for each orbifold the diameter divided
by the minimum injectivity radius is bounded below independent of the orbifold. A
uniformly fat sequence of projective structures on the orbifold S2.2; 2; 3; 3/ has a
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subsequence which, after rescaling so that the diameter is 1, converges in the Gromov–
Hausdorff topology to a singular hex metric. Such a metric is equivalent to a singular
Euclidean metric of the form given in this paper, together with a point on the circle.
Details will appear in a forthcoming paper by Cooper, Delp, Long and Thistlethwaite.

We now give examples of hex spheres. Consider a parallelogram P on the Euclidean
plane such that two of its interior angles equal �=3, while the other two equal 2�=3.
Such a parallelogram will be called a perfect parallelogram. The double D of a
perfect parallelogram P is an example of a hex sphere. This example gives rise to a
3–parameter family of hex spheres. To see this, let  be the simple closed geodesic in
D that is the double of a segment in P that is perpendicular to one of the longest sides
of P . Then two parameters of the family of hex spheres correspond to the lengths of
two adjacent sides of P , and the other parameter corresponds to twisting D along  .

Let M be a hex sphere. The Gauss–Bonnet Theorem implies that exactly two of the
cone angles of M are equal to 4�

3
, while the other two are equal to 2�

3
. We consider

the Voronoi decomposition of M centered at the two cone points of angle 4�
3

. This
decomposes M into two cells, the Voronoi cells, which intersect along a graph in M ,
the Voronoi graph. Each Voronoi cell embeds isometrically in a Euclidean cone as a
convex geodesic polygon, where the center of the Voronoi region maps to the vertex of
the cone (see Cruz-Cota [5, Proposition 5.4]). The closure of this polygon in the cone
is called a closed Voronoi cell. The hex sphere M can be recovered from the disjoint
union of the closed Voronoi cells by identifying pairs of edges on their boundaries
(see [5, Theorem 1.2]). Therefore, there is a surjective quotient map � of the disjoint
union of the closed Voronoi cells onto the hex sphere M . The boundary of a closed
Voronoi cell always contains at least one vertex v such that �.v/ is one of the cone
points with smallest cone angle. Let  be the (unique) shortest geodesic from v to the
center of the cone. By cutting a closed Voronoi cell along the geodesic  we obtain a
polygon on the Euclidean plane, which will be called a Voronoi polygon. The isometry
(and similarity) class of this polygon is independent on the choice of the vertex v .

Our main result is the following:

Theorem 1.1 The space of similarity classes of Voronoi polygons in the Euclidean
plane is a parameter space for the Moduli space of hex spheres of unit area.

Each point in the space of similarity classes of Voronoi polygons is uniquely determined
by a pair of angles satisfying certain linear inequalities. Therefore, the main result
implies that, roughly speaking, the isometry class of a hex sphere of unit area is
determined by a pair of angles.
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Corollary 1.2 Every unit-area hex sphere satisfies the following properties:

� it has an embedded Euclidean annulus, which is disjoint from the cone points in
M (in particular, every hex sphere has a simple closed geodesic, which separates
cone points of the same angle);

� it embeds isometrically in the 3–dimensional Euclidean space as the boundary of
a tetrahedron;

� there is a simple closed geodesic  in M such that a fractional Dehn twist along
 converts M to the double of a perfect parallelogram.
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2 Singular Euclidean surfaces

Definition 2.1 (Troyanov [10]) A closed triangulated surface M is singular Eu-
clidean if it satisfies the following properties:

(1) For every 2–simplex T of M there is a simplicial homeomorphism fT of T

onto a non-degenerate triangle fT .T / in the Euclidean plane.

(2) If T1 and T2 are two 2–simplices of M with non-empty intersection, then there
is an isometry g12 of the Euclidean plane such that fT1

D g12fT2
on T1\T2 .

There is a natural way to measure the length of a curve  in a singular Euclidean
surface M . This notion of length of curves coincides with the Euclidean length on
each triangle of M and it turns M into a path metric space. That is, there is a distance
function dM on M for which the distance between two points in M is the infimum
of the lengths of the paths in M joining these two points. There is also a natural way
to define an area measure in a singular Euclidean surface (see Troyanov [10]). This
measure coincides with the usual Lebesgue measure on each Euclidean triangle of the
surface.

Definition 2.2 Let M be a singular Euclidean surface M and let p be a point in M .
The cone angle of M at p is either 2� (if p is not a vertex of M ) or the sum of the
angles of all triangles in M that are incident to p (if p is a vertex of M ). If � is the
cone angle of M at p , then the number k D 2� � � is the (concentrated) curvature of
M at p .
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The next definition generalizes the concept of tangent plane (see Burago, Burago and
Ivanov [2]).

Definition 2.3 (Cooper, Hodgson and Kerckhoff [4]) Given a singular Euclidean
surface M and a point p 2M of cone angle � , the tangent cone TpM of M at p

is the union of the Euclidean tangent cones to all the 2–simplices containing p . The
cone TpM is isometric to a Euclidean cone of angle � .

A point p in a singular Euclidean surface M is called regular if its cone angle equals
2� . Otherwise it is called a singular point or a cone point. The singular locus † is the
set of all singular points in M .

3 Hex spheres

This paper exclusively studies a special type of singular Euclidean surfaces, which we
define next.

Definition 3.1 An interesting hex sphere with the minimal number of cone points is an
oriented singular Euclidean sphere with 4 cone points whose cone angles are integer
multiples of 2�

3
but less than 2� .

For brevity, we will refer to the surfaces from Definition 3.1 as hex spheres. The word
“hex”, short for hexagon, is used to name these surfaces because their cone angles are
mainly defined by being multiples of 2�

3
, which is the size of an interior angle of a

regular hexagon on the Euclidean plane.

Examples of hex spheres are given in the introduction of this paper. The following
paragraphs motivate the definition of hex spheres.

Why cone angles that are multiples of 2�
3

? The main motivation to study singular
Euclidean surfaces whose cone angles are integer multiples of 2�

3
is that they arise as

limits of real projective structures (see the introduction section for details).

Why 4 cone points? The following lemma shows that there is only one singular
Euclidean sphere with 3 cone points whose cone angles satisfy the numeric restrictions
we are interested in. This suggests studying the next simplest case (when the singular
sphere has 4 cone points).

Lemma 3.2 Let M be a singular Euclidean sphere with k singular points and assume
that each cone angle of M is an integer multiple of 2�

3
. Then k � 3, and if k D 3 then

M is the double of an Euclidean equilateral triangle.
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The proof of Lemma 3.2 follows from the Gauss–Bonnet Theorem and Cooper, Hodgson
and Kerckhoff [4, Proposition 4.4]. The Gauss–Bonnet theorem also tells us the sizes
of the cone angles of a hex sphere:

Lemma 3.3 Exactly two of the cone angles of a hex sphere equal 2�
3

while the other
two equal 4�

3
.

From now on, we will use the following notation:

� M will denote a hex sphere.

� a and b will denote the two cone points in M of angle 4�
3

.

� c and d will denote the two cone points in M of angle 2�
3

.

� †D fa; b; c; dg will denote the singular locus of M .

Definition 3.4 The (open) Voronoi region Vor.a/ centered at a is the set of points in
M consisting of:

� the cone point a, and

� all non-singular points x in M such that

(1) dM .a;x/ < dM .b;x/ and
(2) there exists a unique shortest geodesic from x to a.

The (open) Voronoi region Vor.b/ centered at b is defined by swapping the roles of a

and b in Definition 3.4. It is shown in Boileau and Porti [1], and Cooper, Hodgson
and Kerckhoff [4], that if p 2 fa; bg, then there is a natural isometric embedding fp

of Vor.p/ into the cone TpM . We will use the following notation:

� A will be the closure of fa.Vor.a// in TaM .

� B will be the closure of fb.Vor.b// in TbM .

� t denotes the disjoint union of sets.

4 The moduli space of hex spheres

Definition 4.1 A topological hex sphere is an oriented triangulated sphere S together
with 4 pairs .x1; �1/, .x2; �2/, .x3; �3/, .x4; �4/ such that:

� The xi ’s are distinct points in the surface S .

� Each �i > 0 is an integer multiple of 2�=3 but less than 2� .
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�
P4

iD1.2� � �i/D 2��.S/, where�.S/ is the Euler characteristic of S .

The point xi will be called a “cone point” in S of “cone angle” �i .

Definition 4.2 A hex structure marked by a topological hex sphere S is a pair .M; h/,
which consists of a hex sphere M together with an orientation-preserving piecewise-
linear homeomorphism hW S!M . We also require that the homeomorphism h sends
a cone point of S to a cone point of M with the same cone angle.

The set of all hex structures marked by S will be denoted by H.S/.

Definition 4.3 We define the equivalence relation 'M on H.S/ such that .M; h/'M
.M 0; h0/ if and only if there is an orientation-preserving isometry gW M !M 0 which
preserves the cone points (that is, if the xi ’s are the cone points of S , then g.h.xi//D

h0.xi/ for each i ). The (oriented) moduli space M.S/ of S is defined as the set H.S/
modulo the equivalence relation 'M .

The 'M equivalence class of .M; h/ will be denoted by ŒM; h�'M 2M.S/.

Definition 4.4 Let dM.S/ be the map of M.S/�M.S/ into the non-negative reals
defined by dM.S/.ŒM; h�'M ; ŒM

0; h0�'M/ D log inf K . The infimum is taken over
all numbers K � 1 such that there is an orientation-preserving PL K–bi-Lipschitz
homeomorphism gW M !M 0 preserving the cone points and the Voronoi graphs of
the hex spheres.

The reader can check that dM.S/ is a metric on M.S/.

5 Special polygons

Given a hex sphere M , its Voronoi polygons, which were defined in the introduction,
will be denoted by PA and PB (the subindex indicates the closed Voronoi cell from
which the Voronoi polygon is obtained). These polygons satisfy certain properties,
depending on the number p of edges of A (p can only be equal to 2, 3 or 4, see
Cruz-Cota [5]). A planar polygon satisfying the same properties as a Voronoi polygon
with p edges will be called a p–special polygon. This is made precise in the following
definitions.

Definition 5.1 A planar polygon P is 2–special if it satisfies the following:
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(1) P has 4 sides.

(2) There is exactly one vertex a of P at which the corner angle equals 4�=3.

(3) The corner angle of P at a vertex different than a is less than � .

(4) The corner angle of P at the vertex opposite to a equals �=3.

(5) Vertices of P that are different than a are equidistant from it.

We reformulate the main result of Cruz-Cota [5] for the case p D 2 as follows.

Theorem 5.2 If p D 2, then the (isometric) Voronoi polygons PA and PB are 2–
special. Furthermore, the hex sphere M can be recovered from the disjoint union of
the polygons PA and PB by identifying the edges on the boundaries of PA and PB as
shown in Figure 1.

a

4�
3

�
3

PA

b

4�
3

�
3

PB

Figure 1: Recovering M from PA tPB when p D 2

Definition 5.3 A planar polygon P is 3–special if it satisfies the following:

(1) P has 5 sides.

(2) There is exactly one vertex a of P at which the corner angle equals 4�=3.

(3) The corner angle of P at a vertex different than a is less than � .

(4) The corner angle of P at each vertex adjacent to a equals �=3.

(5) The two sides of P that have a as an endpoint have the same length. Let ac0

and ac00 be these two sides of P .

(6) Let e0 be the vertex of P that is adjacent to c0 but different than a and, similarly,
let e00 be the vertex of P that is adjacent to c00 but different than a. Then the
sides c0e0 and c00e00 of P are parallel and have the same length.

(7) The corner angles of P at the vertices e0 and e00 equal �=2.

Using Definition 5.3, the main result of Cruz-Cota [5] becomes the following.
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a

c0 c00

e0 e00

4�
3

�
3

�
3

PA

b

d 0 d 00

e000 e0000

4�
3

�
3

�
3

PB

Figure 2: Recovering M from PA tPB when p D 3

Theorem 5.4 If p D 3, then the (isometric) Voronoi polygons PA and PB are 3–
special. Furthermore, the hex sphere M can be recovered from the disjoint union of
the polygons PA and PB by identifying the edges on the boundaries of PA and PB as
shown in Figure 2.

Definition 5.5 A planar polygon P is 4–special if it satisfies conditions (2)–(6) from
Definition 5.3 as well as the following:

(1) P has 6 sides.

(2) Let f 0 be the only vertex of P that is different from a, c0 , c00 , e0 and e00 . Then
the vertices e0 , e00 and f 0 are equidistant from the vertex a.

Reformulating the main result of Cruz-Cota [5] in terms of Definition 5.5, we get the
following result.

Theorem 5.6 If p D 4, then the (isometric) Voronoi polygons PA and PB are 4–
special. Furthermore, the hex sphere M can be recovered from the disjoint union of
the polygons PA and PB by identifying the edges on the boundaries of PA and PB as
shown in Figure 3.

a

c0 c00

e0 e00

f 0

4�
3

�
3

�
3

PA

b

d 0 d 00

f 00 f 000

e000

4�
3

�
3

�
3

PB

Figure 3: Recovering M from PA tPB when p D 4

Definition 5.7 A planar polygon P is special if it is n–special for some n 2 f2; 3; 4g.

Remark 5.8 Observe that a “generic” special polygon is 4–special. In fact:
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� A 3–special polygon is a degenerate 4–special polygon in which a vertex merges
with one of its two adjacent vertices.

� A 2–special polygon is a degenerate 4–special polygon whose pair of parallel
sides collapse to points.

Definition 5.9 Let P be a special polygon and let a be the unique vertex of P at
which the corner angle equals 4�=3. Suppose that if we traverse the boundary of P

counterclockwisely, starting and ending at the vertex a, we encounter the vertices
� a; c0; d; c00; a if P is 2–special;
� a; c0; e0; e00; c00; a if P is 3–special;
� a; c0; e0; f 0; e00; c00; a if P is 4–special.

We define the angles ' D '.P /, ˛ D ˛.P / and ˇ D ˇ.P / as follows:
� ' D 0, ˛ D†ac0d and ˇ D†ac00d if P is 2–special;
� ' D†c0ae0 , ˛ D†ae0e00 and ˇ D†ae00e0 if P is 3–special;
� ' D†c0ae0 , ˛ D†ae0f 0 and ˇ D†ae00f 0 if P is 4–special.

a

c0 c00

d

˛ ˇ

2–special

a

c0

e0 e00

c00

˛ ˇ

'

3–special

a

c0

e0

f 0
e00

c00

˛ ˇ

'

4–special

�
3

�
3

�
3

�
3

Figure 4: Defining the angles ' , ˛ and ˇ

Given a special polygon P , it is easy to see that ˛CˇD 'C�=3 if P is either 2– or
4–special, and that ˛ D ˇ D ' ��=6 if P is 3–special.

Definition 5.10 Given a hex sphere M with Voronoi polygons PA or PB , we define
its angles parameters '.M /, ˛.M / and ˇ.M / by '.M /D'.PA/D'.PB/, ˛.M /D

˛.PA/D ˛.PB/ and ˇ.M /D ˇ.PA/D ˇ.PB/.
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6 The moduli space of special polygons

Definition 6.1 We define the equivalence relation � on the set of all special polygons
by P1 � P2 if and only if there is an orientation-preserving similarity of the plane
which sends the vertices of P1 to the vertices of P2 . The set of all � equivalence
classes is called the moduli space of special polygons and it is denoted by MSP . The
set MSPn �MSP is the set of all � equivalence classes of n–special polygons
(n 2 f2; 3; 4g).

Notation 6.2 From now on, we will use the following notation:

� The � equivalence class of a special polygon P will be denoted by ŒP �sim 2

MSP .

� The only vertex of a special polygon at which the corner angle is 4�=3 will be
denoted by a.

� Given a special polygon P , let yP denote the only unit-area polygon that is the
image of the polygon P under a homothety of the plane fixing the vertex a.

� If P is a special polygon, then we write P D .v1; v2; � � � ; vn/ to mean that
v1; v2; � � � ; vn (in that order) are the vertices of P that we find when we travel
along the boundary of P counterclockwisely, starting at the vertex v1 D a.

The proofs of Propositions 6.3–6.5 use only elementary Euclidean geometry and
therefore they are omitted.

Proposition 6.3 Given a 4–special polygon P , its angle parameters ' and ˛ satisfy
the following inequalities:

(1) 0< ' < 2�=3,

(2) 0< ˛ < �=2,

(3) ' ��=6< ˛ < 'C�=3.

Conversely, given two numbers ' and ˛ satisfying (1)–(3), there is a 4–special polygon
P with ' D '.P / and ˛D ˛.P /. If P1 is another 4–special polygon with ' D '.P1/

and ˛ D ˛.P1/, then P � P1 .

Proposition 6.4 Given a 3–special polygon P , its angle parameters ' and ˛ satisfy
the following inequalities:

(1) �=6< ' < 2�=3,
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(2) ˛ D ' ��=6.

Conversely, given two numbers ' and ˛ satisfying (1)–(2), there is a 3–special polygon
P with ' D '.P / and ˛D ˛.P /. If P1 is another 3–special polygon with ' D '.P1/

and ˛ D ˛.P1/, then P � P1 .

Proposition 6.5 Given a 2–special polygon P , its angle parameters ' and ˛ satisfy
the following inequalities:

(1) ' D 0,

(2) 0< ˛ < �=3.

Conversely, given two numbers ' and ˛ satisfying (1)–(2), there is a 2–special polygon
P with ' D '.P / and ˛D ˛.P /. If P1 is another 2–special polygon with ' D '.P1/

and ˛ D ˛.P1/, then P � P1 .

We know from Section 5 that given a special polygon P we can construct a hex sphere
in the following way. Take the polygon P and a copy, P1 , of P. Identify the edges on
the boundaries of P and P1 according to the gluing scheme of Figure 1, Figure 2 or
Figure 3 (depending if P is 2–, 3– or 4–special, respectively). Let Hex.P / denote
the hex sphere constructed from P in this way, and let �P W P tP1! Hex.P / be the
canonical map. Let aP 2 Hex.P / be the image of the vertex a of P . Let AP be the
Voronoi cell of the hex sphere Hex.P / centered at the singular point aP . Then the
polygon P can be identified with the planar polygon associated to AP .

Definition 6.6 Let P and Q be two special polygons. A PL homeomorphism gW P!

Q is said to extend to a map xgW Hex.P /!Hex.Q/ if xgı�P ı iP D�Qı iQıg , where
iP W P ,! P tP1 and iQW Q ,!QtQ1 are the inclusion maps.

Definition 6.7 Given two special polygons P and Q, we define dSP.P;Q/ D

log inf K . The infimum is taken over all numbers K � 1 such that there is an
orientation-preserving PL K–bi-Lipschitz homeomorphism gW yP! yQ, which extends
to an orientation-preserving PL homeomorphism xgW Hex. yP /!Hex. yQ/ that preserves
Voronoi graphs.

Proposition 6.8 The map dMSP of MSP �MSP into the non-negative reals de-
fined by dMSP.ŒP �sim; ŒQ�sim/D dSP.P;Q/ is a metric on MSP . Let Cl.�/ denote
the closure of � in the metric space .MSP;dMSP/. Then Cl.MSP4/DMSP , and
MSP i \Cl.MSPj /D∅ for i; j 2 f2; 3g, i ¤ j .
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The proof of Proposition 6.8 follows from standard metric arguments.

Definition 6.9 Let Y Df.'; ˛/2 Œ0; 2�=3/�.0; �=2�W '��=6� ˛ <'C�=3g. This
set becomes a metric space with the restriction of the Euclidean metric on the plane to
Y .

The reader can check that the map ƒWMSP! Y defined by

(6-1) ƒ.ŒP �sim/D .'.P /; ˛.P //; ŒP �sim 2MSP :

is well-defined. However, this map is not continuous (see Example 6.10).

Example 6.10 Consider the unit-area, 4–special polygons P1D.a1; c
0
1
; e0

1
; f1; e

00
1
; c00

1
/

and P2D.a2; c
0
2
; e0

2
; f2; e

00
2
; c00

2
/ from Figure 5. Suppose that dE2.a1; c

0
1
/DdE2.a2; c

0
2
/

and that dE2.c01; e
0
1
/D dE2.c02; e

0
2
/ (where dE2 denotes the Euclidean distance on the

plane). Let PENT D .a1; c
0
1
; e0

1
; e00

1
; c00

1
/ (see Figure 5). Then clearly:

(1) limf1!e0
1
.ŒP1�sim/ D ŒPENT �sim =limf2!e00

2
.ŒP2�sim/. [Here f1 ! e0

1
(respec-

tively, f2! e00
2

) means that f1 (respectively, f2 ) approaches e0
1

(respectively,
e00

2
) keeping all vertices of P1 (respectively, P2 ) but f1 (respectively, f2 ) fixed.

While f1 (respectively, f2 ) is approaching e0
1

(respectively, e00
2

), the polygon
.a1; c

0
1
; e0

1
; f1; e

00
1
; c00

1
/ (respectively, .a2; c

0
2
; e0

2
; f2; e

00
2
; c00

2
/) remains a 4–special

polygon.]

(2) limf1!e0
1
ƒ.ŒP1�sim/D .'1; �=2/, but limf2!e00

2
ƒ.ŒP2�sim/D .'1; '1��=6/.

�
3

�
3

�
3

�
3a1

c0
1

c00
1

e01 e001
f1

a2

c0
2

c00
2

e02 e002
f2

'1

˛1

'1

˛2

P1 P2

Figure 5: The special polygons P1 and P2

Example 6.10 motivates the following definition.

Definition 6.11 Let Z be the set obtained from Y by identifying the points .'; �=2/2
Y and .'; ' ��=6/ 2 Y for �=6 < ' < 2�=3. The set Z inherits a metric from Y
and, with this metric, Z becomes a metric surface. The canonical projection of Y onto
Z will be denoted by …W Y! Z .

Algebraic & Geometric Topology, Volume 11 (2011)



The moduli space of hex spheres 1335

Theorem 6.12 Let ƒWMSP!Y be the map defined in (6-1). Then the composition
… ıƒWMSP! Z is a homeomorphism.

Proof The proof is divided into three steps.

Step I The map … ıƒWMSP! Z is bijective.

Let eY D f.'; ˛/ 2 Y W ˛ ¤ �=2g. By Propositions 6.3, 6.4 and 6.5, eY Dƒ.MSP/.
Clearly, the restriction of the map … to eY is a bijection of eY onto Z . Thus, … ı
ƒ.MSP/D….eY /D Z . Since the restriction of … to eY D ƒ.MSP/ is injective,
then it suffices to show that ƒWMSP ! Y is injective. This can be easily done by
using Propositions 6.3, 6.4 and 6.5.

Step II The map … ıƒWMSP! Z is continuous.

For each n, let ƒnWMSPn!Y be the restriction of ƒ to MSPn . It is geometrically
clear that the map ƒn is continuous, and therefore so is …ıƒnWMSPn!Z . Hence,
… ıƒWMSP! Z is also continuous (by Remark 5.8 and Proposition 6.8).

Step III The inverse map of … ıƒWMSP! Z is also continuous.

Consider the map ˆW Y!MSP defined by ˆ.'; ˛/D ŒP �sim , where P is a special
polygon with angle parameters .'; ˛/. The reader can check that this map is well-
defined. The map ˆ is continuous because two (unit-area) special polygons are
close in the bi-Lipschitz distance provided that their angle parameters are sufficiently
close in the space Y . Also, by Example 6.10, ˆ.'; �=2/ D ˆ.'; ' � �=6/, and so
ˆW Y!MSP descends to a continuous map ê W Z!MSP such that ê ı…Dˆ.
Clearly, ê W Z!MSP is the inverse map of … ıƒWMSP! Z .

Remark 6.13 By Theorem 6.12, we can decompose the surface Z as Z DZ2tZ3t

Z4 , where Z2 D….f.'; ˛/ 2 Y W ' D 0g/, Z3 D….f.'; ˛/ 2 Y W ˛ D ' ��=6g and
Z4D….f.'; ˛/2Y W '��=6<˛ <'C�=3g/. Notice that Zn parametrizes MSPn ,
that is, Zn D… ıƒ.MSPn/ for each nD 2; 3; 4.

7 The moduli space of hex structures of unit area

Definition 7.1 Given a topological hex surface S , let Munit.S/ denote the set of all
points ŒM; h�'M 2M.S/ such that M has unit area.

The set Munit.S/ is a subspace of M.S/ with the restriction of the metric dM.S/ to
Munit.S/.
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Definition 7.2 Let S be a topological hex sphere with cone points x1 , x2 , x3 and
x4 . From now on, we will use the following notation:

� fia; ib; ic ; idg will be the unique permutation of the set f1; 2; 3; 4g that satisfies
the following properties:

(1) xia
and xib

are the cone points of S of angle 4�=3.
(2) xic

and xid
are the cone points of S of angle 2�=3.

(3) ia � ib and ic � id .

� Given a hex structure .M; h/ marked by S , we define aD h.xia
/, b D h.xib

/,
c D h.xic

/ and d D h.xid
/.

The definition below gives us a way to split Munit.S/ into “halves”.

Definition 7.3 Given a topological hex surface S , define

� MC
unit.S/D fŒM; h�'M 2Munit.S/W dM .a; c/� dM .b; c/g;

� M�
unit.S/D fŒM; h�'M 2Munit.S/W dM .b; c/� dM .a; c/g.

The spaces MC
unit.S/ and M�

unit.S/ have some nice properties.

Proposition 7.4 Given a topological hex surface S , the following hold:

(1) The sets MC
unit.S/ and M�

unit.S/ are closed in Munit.S/.

(2) The space Munit.S/ is the union of MC
unit.S/ and M�

unit.S/.

(3) A point ŒM; h�'M 2Munit.S/ is in MC
unit.S/\M�

unit.S/ if and only if both
Voronoi cells A and B of M have exactly 2 edges.

Proof The statements (1) and (2) are obvious. We now prove (3). Suppose that
ŒM; h�'M 2MC

unit.S/ \M�
unit.S/, so that dM .a; c/ D dM .b; c/. This means that

there are at least two shortest geodesics from c to the set fa; bg. Hence, the degree of
the vertex c of the graph � , the Voronoi graph of M , is at least 2 (by [5, Lemma 5.3]).
Similarly, the degree of the vertex d of the graph � is also at least 2, since dM .a; c/D

dM .b; c/ implies that dM .b; d/D dM .a; d/ (by [5, Theorem 4.4]).

Let p be the number of edges of the Voronoi cell A of the hex sphere M . By [5,
Theorem 1.2 and Observation 6.1], p is also the number of edges of the Voronoi cell
B and it can only be equal to 2, 3 or 4. If p were equal to either 3 or 4, then the
vertices c and d of the Voronoi graph � would have degree 1 (by [5, Lemmas 6.4 and
6.5]). But this contradicts what we just proved in the previous paragraph. Therefore,
p D 2.
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Conversely, suppose that ŒM; h�'M 2Munit.S/ and that both Voronoi cells A and B

of M have exactly 2 edges. This implies that dM .a; c/D dM .b; c/ (by the proof of
Lemma 6.2 of [5]). Therefore, ŒM; h�'M 2MC

unit.S/\M�
unit.S/.

Definition 7.5 Consider two copies ZC and Z� of the surface Z from Definition 6.11.
By Remark 6.13, ZC D ZC

2
t ZC

3
t ZC

4
and Z� D Z�

2
t Z�

3
t Z�

4
, where ZCn

(respectively, Z�n ) is the subspace of ZC (respectively, Z� ) parametrizing MSPn .
We define yZ as the space obtained from ZC tZ� by identifying a point in ZC

2
with

its corresponding point in Z�
2

.

The surface yZ is homeomorphic to a sphere with three holes, without including the
boundary of the holes (see Figure 8).

Theorem 7.6 Define a map �CWMC
unit.S/!MSP by �C.ŒM; h�'M/D ŒPA�sim ,

where PA is the special polygon associated to the Voronoi region A of M . Then
�C is a homeomorphism. Similarly, the map ��WM�

unit.S/!MSP defined by
��.ŒM; h�'M/D ŒPA�sim is also a homeomorphism.

Proof The reader can check that the map �C is well-defined. We now divide the
proof into three steps.

Step I The map �CWMC
unit.S/!MSP is continuous.

Let fŒMn; hn�'Mgn be a sequence in MC
unit.S/ converging to a point ŒM 0; h0�'M 2

MC
unit.S/. This means that there is a sequence fKngn converging to 1, and for each n

there is an orientation-preserving PL Kn –bi-Lipschitz homeomorphism gnW Mn!M 0

such that gn ı hnj† D h0j† and gn.�n/ D �
0 . [Here † is the singular locus of the

topological hex sphere S , and �n , � 0 are the Voronoi graphs of Mn , M 0 , respectively.]

Let An be the Voronoi cell of Mn centered at an , and let A0 be the Voronoi cell of
M 0 centered at a0 . Since the map gn preserves Voronoi graphs, then gn.An/D A0 .
Thus, gn induces an orientation-preserving PL Kn –bi-Lipschitz homeomorphism
zgnW PAn

! PA0 , where PAn
and PA0 are the special polygons associated to the

Voronoi cells An and A0 , respectively. The map zgnW PAn
!PA0 naturally gives rise to

a Kn –bi-Lipschitz homeomorphism ygnW
yPAn
! yPA0 , which extends to an orientation-

preserving PL homeomorphism xgnW Hex. yPAn
/! Hex. yPA0/. Further, xgn preserves

Voronoi graphs. Thus, �C.ŒMn; hn�'M/!�C.ŒM 0; h0�'M/ as n!1.

Step II The map �CWMC
unit.S/!MSP is bijective.

Let ŒP �sim 2MSP . Pick a polygon P1=2 in ŒP �sim with area .P1=2/ D 1=2. Then
the hex sphere M D Hex.P1=2/ has unit area. Pick a marking hW S !M , so that
ŒM; h�'M 2MC

unit.S/ and �C.ŒM; h�'M/D ŒP �sim .
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Suppose ŒM; h�'M and ŒM 0; h0�'M are two points in MC
unit.S/ with �C.ŒM; h�'M/D

�C.ŒM 0; h0�'M/. Then ŒPA�simD ŒPA0 �sim , where PA (respectively, PA0 ) is the planar
polygon associated to the Voronoi region A (respectively, A0 ) of M (respectively,
M 0 ). Thus, there is an orientation-preserving similarity of the plane sending PA to
PA0 . This similarity is actually an isometry, as the area of PA equals that of PA0 . This
isometry extends to an isometry of M D Hex.PA/ to M 0 D Hex.PA0/ that preserves
the cone points and the Voronoi graphs. Hence, ŒM; h�'M D ŒM

0; h0�'M .

Step III The inverse map of �C is also continuous.

This step is proven using the arguments from Step I.

We now prove that the surface yZ is a parameter space for Munit.S/.

Theorem 7.7 Let ZC and Z� be two copies of the surface Z from Definition 6.11.
Let idCW Z! ZC and id�W Z! Z� be the identity maps. Then:

(i) ParC D idC ı… ıƒ ı�CWMC
unit.S/! ZC is a homeomorphism;

(ii) Par� D id� ı… ıƒ ı��WM�
unit.S/! Z� is a homeomorphism.

Furthermore, the maps ParC and Par� can be amalgamated to give a homeomorphism
ParWMunit.S/! yZ such that ParjMCunit.S/

D ParC and ParjM�unit.S/
D Par� .

Proof (i) and (ii) follow from Theorems 6.12 and 7.6. By Proposition 7.4, the space
Munit.S/ is the union of MC

unit.S/ and M�
unit.S/, which intersect along the space

of all ŒM; h�'M 2 Munit.S/ for which both Voronoi cells A and B of M have
exactly 2 edges. Also, ParC.ŒM; h�'M/ D Par�.ŒM; h�'M/ for all ŒM; h�'M 2

MC
unit.S/ \M�

unit.S/. Therefore, the maps ParC and Par� can be combined to
produce a homeomorphism ParWMunit.S/! yZ that restricts to ParC on MC

unit and
to Par� on M�

unit .

Corollary 7.8 Let M be a hex sphere of unit area. Then

(1) M embeds isometrically in the 3–dimensional Euclidean space as the boundary
of a tetrahedron.

(2) There exists an open Euclidean annulus, embedded in M , which is disjoint from
the cone points in M . In particular, M has a simple closed geodesic, which
separates cone points of the same angle.

(3) There is a simple closed geodesic  in M such that a fractional Dehn twist
along  converts M to the double of a perfect parallelogram.
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Proof Let ' and ˛ be the angle parameters of M . Let PA and PB be the Voronoi
polygons of M . Then both PA and PB are either 2–, 3– or 4–special.

In [5] the author proves that the polygons PA and PB are isometric, and that the hex
sphere M can be reconstructed from PA and PB by gluing pairs of edges of these
polygons according to one of 3 possible combinatorial patterns. These gluing patterns
depend on whether the Voronoi polygons are either 2–, 3– or 4–special. We divide
the proof into three cases.

Case I Both PA and PB are 2–special.

The gluing pattern to obtain M from PA and PB is that of Figure 1. Let Z be
the planar polygon obtained from PA tPB by identifying the edges labeled by II

in Figure 1. Figure 6(a) shows the polygon Z and the identification pattern on its
boundary needed to recover M .

c0 c00

a

d

c000

b

(a) Z

c0 c00

a

d 0 d 00

b

l1
l2

S

(b) Z1

Figure 6: The polygons Z and Z1 in Case I

(1) Adding the dashed segments from Figure 6(a) divides the polygon Z into
four triangles, which gives rise to a triangulation of M . After looking at the
identification pattern from Figure 6(a), it is obvious that M embeds isometrically
in the 3–dimensional Euclidean space as the boundary of a tetrahedron. Each
face of this tetrahedron is an isosceles triangle (by [5, Theorem 4.4] and the
proof of [5, Lemma 6.2]).

(2) Label the vertices of the polygon Z as in Figure 6(a). Cut Z along the segment
bd and then glue the edges bc00 and bc000 , obtaining a new planar polygon Z1 .
The hex sphere M can be recovered by gluing the edges of Z1 as shown in
Figure 6(b). Label the vertices of Z1 as in Figure 6(b). Let l1 (respectively, l2 )
be the segment in Z1 that is parallel to the segment c0c00 and passes through the
vertex a (respectively, the vertex b ). Let S be the strip in Z1 that is bounded
by the segments l1 and l2 . Since the edges c0d 0 and c00d 00 are parallel, then,
after gluing the edges of Z1 as shown in Figure 6(b), the strip S gives rise to an
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annulus in M . The interior of this annulus satisfies the desired properties, and
its core is a simple closed geodesic in M separating cone points of the same
angle.

(3) Let  be the core of the annulus from (2) of the statement of the corollary. Let Sa

(respectively, Sb , Sc00 and Sd 0 ) be the segment in Z1 that starts orthogonally
to the curve  and ends at the point a (respectively, b , c00 and d 0 ). Let y

(respectively, z ) be the point where  intersects Sa (respectively, Sd 0 ). Perform
a fractional Dehn twist along  until the points y and z coincide. Now it is
easy to show that the hex sphere we obtain after the Dehn twist is the double of
the perfect parallelogram ad 0bc00 .

c0 c00

a

d 0 d 00

b

Sa

Sb

Sc00

Sd 0

Figure 7: The hex sphere before the fractional Dehn twist along 

The remaining cases are when both polygons PA and PB are either 3– or 4–special.
In these cases, (1)–(3) can be proved using the same arguments as in Case I. The details
are omitted.

8 A picture is worth a thousand words

By Theorem 7.7, the surface yZ can be identified with the moduli space of hex spheres
of unit area. Given a point in yZ , we would like to see the hex sphere this point
corresponds to. This is summarized in Figure 8.

The surface yZ can be split into the halves ZC and Z� . The left half ZC (respectively,
Z� ) parametrizes the hex spheres M for which dM .a; c/� dM .a; d/ (respectively,
dM .a; c/� dM .a; d/). The regions ZC and Z� intersect in the open arc labeled as
nD 2 in Figure 8. This arc is defined by the relations ' D 0 and 0< ˛ < �=3 and its
points correspond to hex spheres whose Voronoi polygons are 2–special. These hex
spheres are those that embed isometrically in the 3–dimensional Euclidean space as
the boundary of a tetrahedron, all of whose faces are isosceles triangles.
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.R�0; 0/ .R�0; 0/

0 0

double of an
equilateral triangle

‚ …„ ƒ‚ …„ ƒdM .a; c/� dM .a; d/ dM .a; c/� dM .a; d/

nD 3 nD 3
nD 2

doubles of
parallelograms

doubles of
parallelograms

Figure 8: Interpreting points in �Z as hex spheres

There are two arcs in Figure 8 labeled as n D 3: one in ZC and the other in Z� .
These arcs are defined by the relations �=6 < ' < 2�=3 and ˛ D ' ��=6 and their
points correspond to hex spheres whose Voronoi polygons are 3–special. Each of these
hex spheres is the double a Euclidean trapezoid with interior angles �=3, �=3, 2�=3

and 2�=3.

Points in yZ that are not in one of the arcs labeled as either nD 2 or nD 3 represent
hex spheres whose Voronoi polygons are 4–special. These form the generic type of
hex spheres and, among them, there are some which are especially symmetric: the
doubles of perfect parallelograms. The latter are parametrized by the dashed segment
from Figure 8 that traverse the back of yZ and whose middle point intersects the arc
labeled nD 2. In terms of the parameters ' and ˛ , a generic hex sphere is defined by
the inequalities 0< ' < 2�=3, 0< ˛ < �=2 and ' ��=6< ˛ < 'C�=3. This hex
sphere is the double of a perfect parallelogram if, additionally, ˛ D '=2C�=6.

Recall that yZ is homeomorphic to a sphere with three holes (not including the boundary
of the holes). The leftmost and rightmost holes of yZ will be referred to as small holes,
while the hole in the middle of yZ will be referred to as the big hole (see Figure 8).

Each hole in yZ represents a degenerate hex sphere, by which we mean a proper metric
space that is the Gromov–Hausdorff limit of a sequence of genuine hex spheres. We
consider only proper metric spaces because the Gromov–Hausdorff limits are unique
when restricted to these spaces (see [4, Corollary 6.11]).

The big hole of yZ represents the orbifold S2.2�=3; 2�=3; 2�=3/, which is the double
of an Euclidean equilateral triangle. This is so because every point in the boundary
of the big hole is parametrized by a pair .'; ˛/ 2R2 such that there is a sequence of
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points .'n; ˛n/ 2 yZ converging to .'; ˛/ with

(8-1) either ˛n! 0 or ˛n! 'C�=3

Let Mn be the hex sphere of unit area with angle parameters 'n , ˛n , and let an , bn

be the two cone points in Mn of angle 4�=3. By (8-1), dMn
.an; bn/! 0, and the

degenerate hex sphere S2.2�=3; 2�=3; 2�=3/ corresponds to the limiting case when
the cone points an and bn merge.

The small holes of yZ represent non-compact degenerate hex spheres that experience
a dimensional collapsing. More precisely, each of these degenerate hex spheres is
1–dimensional but it is the limit of a sequence of long and skinny (2–dimensional)
hex spheres. (The limit is a pointed Gromov–Hausdorff limit because of the non-
compactness of the limiting space.) This is explained in the next paragraph.

Consider the small hole in ZC , which is parametrized by the pair .'; ˛/D
�

2�
3
; �

2

�
2

R2 . There is a sequence of points .'n; ˛n/ 2 ZC such that 'n ! ' D 2�=3 and
˛n! ˛ D �=2. Let Mn be the hex sphere of unit area with angle parameters 'n , ˛n .
Let an , bn be the two cone points in Mn of angle 4�=3, and let cn , dn be the two cone
points in Mn of angle 2�=3. Then, dMn

.an; cn/! 0 and dMn
.an; dn/!1, which

imply that dMn
.bn; dn/! 0 and dMn

.bn; cn/!1 (by [5, Theorem 4.4]). These
conditions force the hex sphere Mn to become longer and skinnier (by Corollary 7.8
.1/). Furthermore, the pointed Gromov–Hausdorff limit of the sequence .Mn; an/ is
the metric space .R�0; 0/, where R�0 denotes the non-negative reals equipped with
the usual metric.

In general, the pointed Gromov–Hausdorff limit of a sequence of metric spaces depends
on the base point. Thus, the Gromov–Hausdorff limit of the sequence .Mn;xn/ will
depend on the choice of the xn ’s. For instance, we just saw that if xn D an for all
n, then the limit of the sequence .Mn;xn/ is .R�0; 0/. The reader can check that
we obtain the same limit if, for each n, xn is any other of the cone points of Mn .
However, if xn is a point in the Voronoi graph of Mn for each n, then the limit of
the sequence .Mn;xn/ is .R; 0/, where R denotes the reals equipped with the usual
metric. In a sense, it is more natural to take a cone point of Mn as its base point, since
cone points are the only “distinguished” points in a singular Euclidean surface. This
would mean that .R�0; 0/ is the “natural” limit of the sequence .Mn;xn/, and this is
why we included it in Figure 8.

The small hole in Z� can be analyzed using the same arguments from the previous
paragraphs.
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