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Units of equivariant ring spectra

REKHA SANTHANAM

It is well known that very special � –spaces and grouplike E1–spaces both model
connective spectra. Both these models have equivariant analogues in the case when
the group acting is finite. Shimakawa defined the category of equivariant � –spaces
and showed that special equivariant � –spaces determine positive equivariant spectra.
Costenoble and Waner [7] showed that grouplike equivariant E1–spaces determine
connective equivariant spectra.

We show that with suitable model category structures the category of equivariant
� –spaces is Quillen equivalent to the category of equivariant E1–spaces. We define
the units of equivariant ring spectra in terms of equivariant � –spaces and show
that the units of an equivariant ring spectrum determines a connective equivariant
spectrum.

55P91, 55P42; 55P47, 55P48

1 Introduction

There are several space level models for the category of spectra. Segal [22] developed
the notion of very special � –spaces to model connective spectra. May [16] showed
that group-like E1–spaces model connective spectra.

May and Thomason [20] gave a comparison of these models and showed that they
are indeed equivalent. However, the model theoretic viewpoint was missing and the
equivariant case was not considered. We show that the two models of equivariant
infinite loop spaces, namely, equivariant E1–spaces and equivariant � –spaces are
equivalent.

We interpret the infinite loop space of an E1–equivariant ring spectrum as an equivariant
� –space. We then describe the units of equivariant spectra in terms of equivariant
� –spaces.
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1.1 Background and results

Let R be an E1–ring spectrum. Then �0.R/ defines a monoid and we can consider
its unit components. Define GL1 R to be the following pullback of spaces:

GL1 R //

��

�1R

��
.�0.R//

� // �0.R/

May, Quinn and Ray [17] showed that GL1.R/ is a grouplike E1–space and hence
determines a connective spectrum which is denoted by gl1 R.

The theory of units of ring spectra was developed to understand the obstruction the-
ory [17] for E1–orientations on cohomology theories and to classify these orientations.
Further the classifying space of the multiplicative units of a cohomology (ring) theory
parametrize its twistings (see Ando et al [1]), as in the case of twisted K–theory (see
Atiyah and Segal [2]).

A recent result of Freed, Hopkins and Teleman [10] relates twisted equivariant K–
theory of a compact Lie group with the representations of the loop group of the Lie
group. Atiyah and Segal [2] and Freed, Hopkins and Teleman [10] give a geometric
construction of twisted equivariant K–theory. This construction does not use homotopy
theoretic methods. Further, equivariant orientation theory is not as well understood as
the nonequivariant case. We expect that the twistings of equivariant K–theory will be
parametrized by the units of equivariant K–theory as in the nonequivariant case. We
also hope that the units of equivariant ring spectra will give a better perspective on
equivariant orientation theory.

May’s machine describing equivariant infinite loop spaces via equivariant grouplike
E1–spaces can be applied directly to construct the unit equivariant spectrum associated
to the unit space of an equivariant E1–ring-spectrum. According to May [19], the
details have been understood in principle since the early 1980s, although the theory
has still not been written up. The details of how equivariant E1–spaces describe
equivariant infinite loop spaces have been discussed by Costenoble and Waner in [7].

In this article, we give a comparison theorem between the two models of equivariant
infinite loop spaces. We use the comparison theorem to give a construction of the
unit space of equivariant E1–ring spectrum in terms of equivariant � –spaces (see
Definitions 3.2 and 3.3).

Let G be a finite group. Shimakawa defined the notion of �G –spaces [23] and
showed that special �G –spaces are equivalent to positive G –spectra (Definition 3.6).
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We develop this notion of equivariant �–spaces further and show that very special
� –spaces are equivalent to equivariant infinite loop spaces in Theorem 7.6.

We describe a model structure on the category of equivariant � –spaces where the
special �G –spaces are the fibrant objects. We prove that this category is Quillen
equivalent to the category of equivariant E1–spaces with the model structure inherited
from that on the underlying category of G–spaces in Theorem 6.2. We expect this
equivalence will respect the symmetric monoidal structures on the categories. This is
discussed in Remark 5.18.

If X is a very special �G –space then X.1/ is an equivariant infinite loop space. Given a
special �G –space we show that the G –space represented by the orbit diagram of invert-
ible fixed point components defines an equivariant infinite loop space; see Lemma 9.6.

Beginning with an equivariant E1–ring spectrum we define the group of units of equi-
variant E1–ring spectra as a very special equivariant gamma space in Definition 9.10.
Our definition of GL1 matches with the usual notion of units of commutative ring
spectra when the group action is trivial.

In Appendix C, we discuss further why our definition of equivariant units is a good
analog of the nonequivariant definition. As alluded to in Appendix C, in a later paper
joint with Chenghao Chu we will discuss the Quillen equivalence between the category
of equivariant � –spaces and the category of equivariant spectra. There we will also
discuss an equivariant analog of Segal’s method of obtaining � –spaces from symmetric
monoidal categories.

All of our constructions are valid only when the group acting is finite. If G is not finite
then Blumberg [4] shows that one cannot use the model of �G –spaces. The equivariant
infinite loop space theory is not as well understood when the group acting is not finite.

There has been some work in the direction of describing equivariant infinite loop spaces
in the compact Lie group case by Caruso and Waner [5]. However, very little is known
so far.

Remark 1.1 We expect that the notion of orientations arising from the equivariant
space GL1 for the Eilenberg–Mac Lane spectra of Burnside Green functors should be
related the notion of equivariant orientation theory described by May, Costenoble and
Waner [6] for equivariant bundles when the group acting is finite. At this point we do
not have any results in this direction.

Acknowledgements A large portion of this article is my PhD thesis completed at the
University of Illinois, Urbana-Champaign under the guidance of Charles Rezk. I would
like to thank Charles Rezk for his valuable advice and guidance. I also want to thank
Peter May for his suggestions and feedback on the article.
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2 Notation

Let T denote the category of compactly generated based topological spaces, morphisms
being continuous based maps.

Let W denote the category of pointed CW–complexes.

Let n, m, p and r denote natural numbers.

We will denote the unit of adjunction of an adjoint pair by � and the counit by � .

Denote the category of sets by I and the category of finite G –sets by IG .

Let C be any topological category and A be an object of C . Then denote the corepre-
sentable functor C.A; _/ from C! T by CA and representable functor C._;A/ from
C! T by CA .

3 Equivariant infinite loop space machines

Let G be a compact Lie group. Let U denote the complete universe of real represen-
tations of G , namely, U is a collection of G–representations containing the trivial
representation and countably many copies of irreducible representations.

Definition 3.1 A prespectrum X is a collection of G spaces indexed on finite di-
mensional subspaces, namely, V;W of U with G –maps SW ^XV !XV˚W . If the
adjoint maps are G –weak equivalences then X is called a �–G –spectrum.

For the rest of this article we will assume that G is a finite group.

3.1 Equivariant � –spaces

Shimakawa [23] constructed an equivariant analogue of � –spaces. We now describe
equivariant � –spaces.

Let GT denote the category with objects based G –spaces and morphisms continuous
based G –maps. A map of G –spaces f W X �! Y is a G –homotopy (weak) equivalence
if for every H <G ,

f H
W X H

�! Y H

is a homotopy (weak) equivalence.

Algebraic & Geometric Topology, Volume 11 (2011)
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Define TG to be the category whose objects are the same as that of GT but morphisms
are all maps between based G–spaces. The category TG is enriched over G–spaces.
Given two based G –spaces X and Y , for any f W X ! Y and g 2G we define

g : f .x/ WD gf .g�1x/:

Thus, the space of all maps TG.X;Y / has a G–action by conjugation. When clear
from context, we will use spaces to refer to G –spaces.

Definition 3.2 Let � denote the skeletal category of finite pointed sets with pointed
set maps as morphisms. Denote the nC 1 element set f0; 1; : : : ; ng by n where 0 is
the base point. The category � is a topological category with discrete topology on the
morphism sets. Note that our � is Segal’s �op .

Define a category �ŒGT � to be the category whose objects are continuous functors X

from � to GT such that X.0/ is a point. Morphisms in this category are natural
transformations.

Definition 3.3 Let G� denote the skeletal category of finite pointed G –sets (where
the G action preserves the marked point) with G –pointed maps. Let �G be the category
with the same objects as G� but with morphisms being all pointed set maps, The
category �G is G –enriched. The G –action on �G.S;T / is by conjugation as before.

Define the category �G ŒTG � to have objects continuous G–functors X from �G to
G–spaces such that X.0/ is a point. We refer the objects of �G ŒTG � as equivariant
� –space or as �G –spaces. Morphisms in �G ŒTG � are G –natural transformations.

Denote the category of functors X W G�! GT such that X.0/D � by G�ŒGT �.

Let S denote a finite pointed G–set. Let psW S ! 1 for s 2 S be the morphism
defined as

ps.t/D

(
1 if s D t;

0 if s ¤ t:

Let X be a �G –space. The projections ps induce a map � W S^X.S/!X.1/ defined
by �.s;x/ WDX.ps/.x/.

Since �G.S; 1/! TG.X.S/;X.1// is a G –map and g :ps D pg�1s it is easy to show
that the map � is a G –map.

Definition 3.4 Let X be a �G –space. If the adjoint map X.S/! TG.S;X.1// is a
G –weak equivalence then X is defined to be a special �G –space.
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Define the map �W 2 �! 1 to be such that �.0/D 0 and �.1/D 1D �.2/. Let H be
a subgroup of G and X be a special �G –space. Then up to homotopy the map

.X.1/H /2
�
 �X.2/H

�
�!X.1/H

induces a monoidal structure on X.1/H .

Definition 3.5 Let X be a special �G –space. If for every H < G , the space
�0.X.1/

H / is a group under the monoid structure induced by specialness condition
on X , then X is defined to be a very special �G –space.

Given any �G –space X , the G–functor X W �G ! TG has a left Kan extension from
the category of G–CW–complexes to TG . Denote the left Kan extension again by
X W WG ! TG , where WG is the G–enriched category of based G–CW–complexes.
Let V and W be a G–representations. Then, the adjoint map to the isomorphism
SV ^SW ! SV˚W induces the map

SV
!Map.X.SW /;X.SV˚W //

H) SV
^X.SW /!X.SV˚W /:

Thus every �G –space defines a G –prespectrum. Shimakawa [23] shows that a special
�G –space defines a positive �–G –spectrum.

Definition 3.6 A G–prespectrum X is a positive �–G–spectrum if for every G–
representation V such that V G ¤ � , the map X.V / ! �V X.W / is a G–weak
equivalence.

The following proposition is an important observation (due to Shimakawa and May)
which we will use extensively.

Proposition 3.7 [24] Let i be the inclusion functor from � to �G taking sets to
G –sets with trivial G –action. Then there exists an adjoint pair of functors

�G ŒTG �
i //

�ŒGT �
P
oo

which induce an equivalence of categories.

Proof Let X be a functor � ! GT . For any finite G–set, define �G;S to be the
G –functor �G ! TG as �G;S.T /D �G.S;T / for all finite G –sets T .

Define the functor PX W �G ! TG at a G –set S as the left Kan extension

PX.S/D �G;S ˝� X;

Algebraic & Geometric Topology, Volume 11 (2011)



Units of equivariant ring spectra 1367

defined to be the coequalizer

m̀;n
�G.n;S/��.m;n/�X.m/

////
m̀
�G.m;S/�X.m/ // PX.S/;

where one of the maps is given by the functoriality of X and the other is composition
in �G given via inclusion of �.m;n/! �G.m;n/ but giving the sets trivial G –action.
Let S be a finite G –set and f W S Š

! n as sets. The G –action on S can be described
by a group morphism �W G ! †n . Define X.n/� to be the G–space X.n/ with
the G–action defined as follows: Given an element x 2 X.n/ and g 2 G , gx D

gX.�.g//x DX.�.g/.gx/ since X.�.g// is a G –map.

Claim PX.S/ŠX.n/� .

Proof of Claim PX.S/D
`
�G.m;S/�X.m/=�, where � is defined as follows.

For any h0 2�G.m;S/, h2�G.n;m/D�.n;m/ and x 2X.n/ we have .h0;X.h/x/�
.f h;x/.

Fix f W S!n to be an isomorphism of sets. This induces a group morphism �W G!†n

such that for any s 2 S ,
fg.s/D �.g/f .s/:

Define X.n/� as before, then we have a map ˇW PX.S/ ! X.n/� as ˇ.h;x/ D
X.f h/.x/. This is a G–map and is invertible with inverse � W X.n/� ! PX.S/

defined as �.x/D .f �1;x/.

Therefore, X Š i PX .

Let Y be an object in �G ŒTG �. Let S be a finite G–set with jS j D n. Then the
G –set is completely described by .n; �W G!†n/ up to a set isomorphism, where �
describes the G –action on S . For any Y 2 �G ŒTG � we have i Y .S/.n/D Y .n/. Then
P i Y .S/D Y .n/� .

The map �W Y .S/! P i Y .S/DY .n/� is induced by the isomorphism from f W S!n,
that is, �.x/D Y .f /.x/. This is a G –map since �.g :x/D Y .f /.g :x/D gY .gf /.x/

since Y is a G –functor.

But, gX.gf /.x/D gX.�.g//Y .f /.x/D g :Y .f /.x/ in Y .n/� .

Claim � is an isomorphism.

Proof of Claim Define the inverse map ˛W Y .n/� ! Y .S/ as ˛.y/ D Y .f �1/y .
Then ˛ is a G –map.

˛.gy/D Y .f �1/.gy/D Y .f �1/Y .�.g//.gy/

D Y .f �1�.g//.gy/D Y .gf �1/.gy/D g :Y .f �1/.gy/D gY .f /.y/:

Thus, these functors induce an equivalence of G –categories.
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In �ŒGT �, a � –space X is special if for every H <G and homomorphism �W H!†n

the map
X.n/�! .X.1/n/�

is a H –weak equivalence. The group H acts on X.1/n� as follows. For any h 2H

and .x1; : : : ;xn/ 2X.1/n we have

h : .x1; : : : ;xn/D .h :x�.h/.1/; : : : ; h :x�.h/.n//:

Shimakawa [24, page 226] shows that this is equivalent to the condition that EX is
a special �G –space. We will switch back and forth between these two notions of
equivariant � –spaces depending on the situation.

3.2 Equivariant operads and monads

Costenoble and Waner [7] showed that a G–grouplike E1–space is G–homotopy
equivalent to an equivariant infinite loop space.

Definition 3.8 A G–operad D is an operad in the category of G–spaces. The
spaces D.n/ have an action by G � †n and the operad action maps are G–maps
commuting with the symmetric group action. We assume that D.0/ is a point (which
induces the base point on D.n/ for all n 2 N via the operad structure maps) and
1 2D.1/ is fixed under the action of G .

Definition 3.9 A D–space is a based G –space X along with G –maps

D.n/�X n
!X

commuting with the operad structure and the †n –action. Maps of D–spaces are
maps of G–spaces which are compatible with the D–action. Denote the category of
D–spaces by DŒTG �.

Given a based G –space X we can construct a free D–space

F.X / WD

1a
nD0

D.n/�†n
X n=�

where, the relation is defined as follows. Let �j W D.0/�D.1/� � � �D.0/ � � � �D.1/!
D.j � 1/ where D.0/ is in the j –th spot and let ij WX

j�1!X j be the map which
inserts a point in the j –th spot. Then for any d 2D.j / and x 2X j�1 the relation is
given by .c; ij .x//� .�j .c/;x/.
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Definition 3.10 Let D be a G–operad. Then D is a E1–G–operad if D.n/ is a
universal .G; †n/ principal bundle for every n 2N .

A G–space, X is said to be an E1–space if it has an E1–G–operad acting on it.
Given an E1–space X , the operad induces a monoidal structure up to homotopy
on X H for all subgroups H <G . Define X to be G –grouplike if �0.X

H / is a group
for all subgroups H of G .

4 Category of equivariant operators

Both, the category of grouplike E1–spaces and the category of very special � –spaces
model infinite loop spaces. May and Thomason [20] showed that both these approaches
to infinite loop space are equivalent. They defined the notion of "category of operators"
to construct a category which can be compared to the category of E1–spaces and the
category of � –spaces. We generalize their ideas to the equivariant setting.

With appropriate model category structure the category �ŒGT � models the category of
equivariant � –spaces. Our theorem compares the category of equivariant E1–spaces
with the category �ŒGT �.
We now introduce the notion of a “category of equivariant operators”.

Definition 4.1 Let … denote the subcategory of � with morphisms

….m;n/D f� 2 �.m;n/ j ��1.i/ has at most one element for all i > 0g

Note that ….m; 1/ has the maps pi for all i D 1; 2; : : : ; n.

Definition 4.2 Let G… denote the subcategory of G� such that

G….S;T /D f� 2 G�.S;T / j ��1.t/ has at most one element for all t 2 T g:

Definition 4.3 Let …
G

denote the subcategory of �G such that

…
G
.S;T /D f� 2 �G.S;T / j �

�1.t/ has at most one element for all t 2 T g:

Definition 4.4 Define a …
G

–space to be a covariant G –functor from X W …
G
! TG

such that X.0/D �. Define the representable …
G

–spaces, …G;T as

…G;T .S/D…G
.T;S/:

Define X to be a special …
G

–space if the map � induced by the maps ps ,

X.S/!Map.S;X.1//;

is a G weak equivalence.
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Given any pointed G –space Y , we can construct a …
G

–space R0Y .S/ WDMap.S;Y /.
This defines a …

G
–space. A map ˛W S ! T induces a map R0.˛/W Map.S;Y /!

Map.T;Y / given by

R0.˛/.f /.t/D

(
f .˛�1.t// if j˛�1.t/j D 1;

� if j˛�1.t/j D 0:

Lemma 4.5 Let L0 and R0 be a pair of functors

…
G
ŒTG �

L0 // TG

R0
oo

defined as L0X DX.1/ for X 2…
G
ŒTG � and R0Y .S/D TG.S;Y / for Y 2 TG . Then

L0 and R0 are G –functors adjoint to each other.

Proof It is easy to see that L0 and R0 are G–functors. We will denote the unit of
adjunction of an adjoint pair by � and the counit by � . Note �W L0R0Y D R0Y .1/D
Map.1;Y / �! Y .

Now, R0L0X.S/D TG.S;L0X /D TG.S;X.1//. The maps ps induce a map

X.S/! TG.S;X.1//D TG.S;L0X /D R0L0X.S/

as defined before.

Therefore, the functors L0 and R0 are adjoint to each other.

The proof of Proposition 3.7 can be modified to show that …
G
ŒTG � and …ŒGT � are

equivalent categories. The adjoint pair L0 and R0 factor through to give an adjoint
pair LW …ŒGT � ! GT defined as LX D X.1/ and RW GT ! …ŒGT � defined as
RY .n/D Y .1/n . We have the following commutative diagram :

…ŒGT �
P

%%

L // GT
R

oo

R0

��
…

G
ŒTG �

i

ee
L0

OO

Definition 4.6 [20, Definition 1.1] Define a category of operators G to be a topo-
logical category whose objects are the sets n and with functors from … to G and G
to � such that the induced functor from … to � is the inclusion of … in � . We will
assume that G.m; 0/D � for all m 2 ObG .
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A map of category of operators G and H is the following commutative diagram of
continuous functors.

G

��
v

��

…

>>

  ��

�

H

??

Definition 4.7 Define a category of equivariant operators to be a category of operators
G enriched over G –spaces. Morphisms are morphisms of category of operators which
are G –functors. An equivalence of category of equivariant operators is an morphism
of category of operators which induces G –weak equivalence on the morphism spaces.

Define a G–space X to be a covariant G –functor from G to TG such that X.0/D �.
Denote the category of G–spaces by GŒTG �.

Note that any category of operators is enriched over G–spaces via trivial G–action
and is therefore a category of equivariant operators.

Let H be a category of equivariant operators. Given any n 2 ObH , we have an
object in the category HŒTG � defined as Hn.m/ D H.m;n/ for all m 2 ObH . A
morphism vW G �!H of category of equivariant operators induces a morphism from
v�W HŒTG � �! GŒTG � defined as v�Y D Y ı v .

Proposition 4.8 Let G and H be categories of equivariant operators. Let vW G �!H
be a morphism of category of equivariant operators. Then there exists a functor
v�W GŒTG � �!HŒTG � left adjoint to v� :

GŒTG �
v� // HŒTG �:
v�
oo

Proof Given a functor vW G �! H and functor X W G �! TG , there exists a left Kan
extension of X to H defined as the coend, v�X.n/DHn˝G X which is given by the
following coequalizer in GT :`

m;k H.m;n/�G.k;m/�X.k/
� //
vk;m

//
`

m H.m;n/�X.m/ // v�X.n/

The adjointness is easy to check.
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Let G be a category of equivariant operators. Then G defines a monad on …ŒGT �. For
any …–space X ,

FGX.n/ WD Gn
˝…X WD

a
m

G.m;n/�X.m/=�

where, for f 2 G.k;n/, x 2X.m/ and � 2….m;k/ we have .f; �x/� .f �;x/.

Thus GŒTG � is the category of FG –algebras over …ŒGT �.

Any pointed G –operad D induces a category of equivariant operators. Define yD to be
the category with objects being the finite sets n and the morphism space defined as

yD.m;n/ WD
a

�2�.m;n/

Y
1�j�n

D.j��1.j /j/:

It follows that the category yD is a category of equivariant operators.

The category of operators yD induces a monad and denote the free algebra functor
FDW …ŒGT �!…ŒGT � defined as

FDX WD yDX.n/D
a
m

yD.m;n/�X.m/=�

where the relation is as before.

Given a D–space X by construction RX is a yD–space. Denote this induced functor
on D–spaces by RD . We have the following square of adjoint pairs:

…ŒGT �

FD
��

L // GT

F
��

R
oo

yDŒTG �

UD

OO

DŒTG �

U

OO

RD
oo

Definition 4.9 A morphism � in �.m;n/ is said to be effective if ��1.0/D 0. It is
said to be ordered if it is order preserving. The set of ordered effective morphisms
from m to n is denoted by E.m;n/.

Lemma 4.10 [20, Lemma 5.5] Let X be a …–space. Let D be a G–operad. For
n� 1 let Fp

yDX.n/ be the image ofa
m�p

yD.m;n/�X.m/=�:

Then yDX.n/ is the union of Fp
yDX.n/ over all p .
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Moreover, F0
yDX.n/ D X.0/ D yDX.0/ and Fp

yDX.n/ can be constructed as the
following pushout of G –spaces:

(4-1)

`
˛2E.p;n/

Q
1�j�n

D.j˛�1.j /j/�
Q
†.˛/

sX.p�1/
v //

i

��

Fp�1
yDX.n/

��`
˛2E.p;n/

Q
1�j�n

D.j˛�1.j /j/�
Q
†.˛/

X.p/ // Fp
yDX.n/:

Here sX.p�1/ D
`

i �iX.p�1/ for �i are the ordered effective morphisms from
p�1! p and †.˛/D †˛�1.1/ � � � � �†˛�1.n/ . The morphism v takes .˛; cI �ix/

to .˛�i ; cIx/. Then
yDX.n/D colim Fp

yDX.n/

where the colimit is computed in the category of G –spaces.

Lemma 4.11 [20] Let D be a G –operad. The functor UF is a monad on G –spaces
and LUDFDRD UF. In fact, UDFDRD RUF.

By Proposition A.2, the functor RD has a left adjoint LD and we have the following
diagram:

(4-2)

…ŒGT �

FD
��

L // GT

F
��

R
oo

yDŒTG �

UD

OO

LD // DŒTG �

U

OO

RD
oo

5 Model category structures

We now set up the model category structure for all the categories which play a role in
proving the main theorem.

The G –topological category GT admits a compactly generated model category struc-
ture where

� a map X ! Y is a weak equivalence if X H ! Y H is a weak equivalence for
all subgroups H of G .

� a map X ! Y is a fibration if X H ! Y H is a Serre fibration for all subgroups
H of G .

� cofibrations are maps with left lifting property with respect to all trivial fibrations.
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The sets
I D f.G=H �Sn�1/C! .G=H �Dn/C=H <G; n� 1g;

J D f.G=H �Dn/C! .G=H �Dn
� I/C=H <G; n� 1g

are the generating cofibrations and trivial cofibrations in GT .

The following result is well known. This proof is an adaptation of the nonequivariant
case.

Theorem 5.1 Let D be an pointed G–operad. The category of D–spaces forms
a model category with weak equivalences and fibrations defined on the underlying
category of G –spaces.

Proof Let D be the monad corresponding to the operad D . The category GT
forms a cofibrantly generated model category with weak homotopy equivalences and
Serre fibrations. The maps .G=H �Sn�1/C! .G=H �Dn/C and .G=H �Dn/C!

.G=H �Dn � I/C are the generating cofibrations and acyclic cofibrations respectively.
By [15, Proposition 5.13] we need to show that the maps D.G=H � Sn�1/C !

D.G=H � Dn/ and D.G=H � Dn/C ! D.G=H � Dn � I/C for n � 1, satisfy the
cofibration hypothesis [15, 5.3] and that the monad D preserves reflexive coequalizers.

Reflexive coequalizers of spaces preserve finite products. Also, colimits commute with
coequalizers implies D preserves reflexive coequalizers.

Thus we need to show that
(i) for any D–algebra Y ,

D.G=H �Sn�1/C
//

��

Y

��
D.G=H �Dn/C // D.G=H �Dn/C

`
D.G=H�Sn�1/C

Y

the pushout is a Hurewicz cofibration.
(ii) Every relative DJ –cell complex is a weak equivalence.

Note that
� Y !DS0

`
Y is a Hurewicz cofibration.

� Y
`

D.G=H�Sn�1/C
D.G=H �Dn/C D B.Y;D.G=H � Sn/C;D.G=H � �/C/

and the degeneracy maps are Hurewicz cofibrations.
� Hence Y ! Y

`
D.G=H�Sn�1/C

D.G=H �Dn/C is a Hurewicz cofibration.

Similar ideas can be used to show that every DJ –relative cell complex is a weak
equivalence.
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5.1 Diagram categories

Definition 5.2 [15] Let A be a topological category. Let AŒGT � denote the category
of covariant functors from A!GT . A map of A–spaces X ! Y is said to be a level
equivalence and a level fibration if for every object a 2A and subgroup H of G , the
map X.a/H ! Y .a/H is a weak equivalence and a Serre fibration respectively. A map
of A–spaces is said to be a q–cofibration if it has the left lifting property with respect
to all level acyclic fibrations. A map of A–spaces X ! Y is said to be an h-cofibration
if X.a/! Y .a/ is a Hurewicz G –cofibration (has G –homotopy extension property)
for all a 2 ObjA.

For every a 2A we have an adjoint pair of functors,

GT
Fa // AŒGT �;
Ea

oo

defined as Ea.X /DX.a/ and Fa.A/.b/DA.a; b/^A

Theorem 5.3 (Mandell–May–Schwede–Shipley [15, Theorem 6.5], Mandell–May [14,
Theorem III.2.4]) Let A be a G–topological category. The category AŒGT � admits
a level model category structure where the weak equivalences are level equivalences,
fibrations are level fibrations and cofibrations are q–cofibrations. Then AŒGT � forms a
compactly generated topological model category with the level model structure. The
set of maps FaI and FaJ for all objects a of A are the generating cofibrations and
generating trivial cofibrations.

Proof The category AŒGT � is complete and cocomplete since the colimits and limits
are evaluated in the underlying category of G –spaces. In order to show that the model
structure on GT lifts to AŒGT �, we need to show that the sets FaI and FaJ satisfy
the cofibration hypothesis. This follows from the adjointness of Fa and the model
category structure on GT .

Corollary 5.4 The category G…ŒGT � is a compactly generated model category with
the level model category structure. Then the sets FSI and FSJ for all S 2 Ob G…

are the generating cofibrations and generating acyclic cofibrations.

Let S be a G –set. Let …G;S be an object of …
G
ŒTG � defined as …G;S.T /D…G

.S;T /.
Then by restricting to the subcategory G… this also defines a G…–space. The projection
morphisms ps where s 2 S induce a map S ^…G;1 ! …G;S in G…ŒGT �. By
[11, Theorem 4.1.1] the left localization of G…ŒGT � with respect to the set V WD

fS ^…G;1!…G;S j S 2 Ob G…g exists.
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Define a G…–space X to be a V –local object if for every map in Z ! W in V ,
Map.W;X / ! Map.Z;X / is a G–weak equivalence. Further a morphism in of
G…ŒGT � spaces X ! Y is defined to be a V –local equivalence if for every V –local
object Z , the map Map.Y;Z/!Map.X;Z/ is a G –weak equivalence.

Then in the localized model category structure on G…ŒGT �,

� weak equivalences are V –local equivalences.

� cofibrations are cofibrations in the level model category structure.

� fibrations are maps with right lifting property with respect to trivial cofibrations.

� fibrant objects are the V –local objects.

The category …
G
ŒTG � is equivalent to …ŒGT �. Therefore, P is a right adjoint. Define

a functor …S
G
W …

op
G ! TG as …S

G
.T / D …

G
.T;S/. We can forget to G… to get a

functor from G…op!GT For any X W G…!GT define

E0X.S/D…S
G
˝G…X

for all S 2Ob G…. It is easy to check that E0 is the left adjoint to the forgetful functor
iW …

G
ŒTG �!G…ŒGT �.

This induces an adjoint pair of functors between G…ŒGT � and …ŒGT �. Define
EW …ŒGT �!G…ŒGT � as the right adjoint ED i P.

G…ŒGT �
E0

&&

E0ıi //
…ŒGT �

iıP
oo

P
��

…
G
ŒTG �

i

ff
i

OO

Then the model category structure on G…ŒGT � induces a model category structure on
…ŒGT � where

� a map X ! Y is a weak equivalence if EX ! EY is a weak equivalences in
G…ŒGT �.

� a map X ! Y is a fibration if EX ! EY is a fibration in G…ŒGT �.
� cofibrations are maps with the left lifting property with respect to trivial fibrations.

Denote …ŒGT � with the localized model category by …ŒGT � iV . The notation is
appropriate since by Lemma A.4 we can also consider this as localizing the induced
model structure on …ŒGT � with respect to iV .
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Remark 5.5 The space X is fibrant in …ŒGT � if EX is fibrant in G…ŒGT �. Therefore,
the map

G…ŒGT �.…G;S ;EX /!G…ŒGT �.S ^…G;1;EX /

is a G –weak equivalence. In particular,

…ŒGT �.i…G;S ;X /!…ŒGT �.S ^ i…G;1;EX /

is a G –weak equivalence.

If jS j D k then the G action on S can be described by an isomorphism �W k! S .
Then an argument similar to the proof of Proposition 3.7 shows that

X.k/�! .X.1/k//�

is a G –weak equivalence.

The space X is fibrant if and only X.k/�! .X.1/k//� is a G –equivalence for every k

and � . In this localized model category structure the fibrant objects in …ŒGT � are
therefore, exactly the special …–spaces.

Proposition 5.6 Let G be a category of equivariant operators. Define
� a map of G–spaces X !X 0 to be a weak equivalence (fibration) if EUGX.n/!

EUGX 0.n/ is a weak equivalence (fibration) of G…–spaces.
� a map of G–spaces to be a cofibration if it has the left lifting property with

respect to all trivial fibrations.

Then GŒTG � forms a compactly generated model category with this structure. The set of
maps FG i FSI and FG i FSJ for all objects S of G…, are the generating cofibrations
and generating trivial cofibrations.

Proof Colimits and limits exist in the category of G–functors from G ! TG . The
sets FG i FSI and FG i FSJ satisfy the cofibration hypothesis. This follows from the
fact that UG preserves colimits, i FSI and i FSJ satisfy the cofibration hypothesis
and the functor FG commutes with tensoring over spaces. Now, apply the small object
argument [15, Lemma 5.3] to prove the factorization axioms. The other axioms are
easy to prove from definitions and since the model structure is inherited from the model
structure on …ŒGT �.

Remark 5.7 (Lemma A.4) Consider the category GŒTG � with the model structure
inherited from the level model structure on G…–spaces. Then GŒTG � has a localized
model category structure with respect to the set fS ^ FG i…G;1 ! FG i…G;S=S 2

Ob G…g and this is equivalent to the model category structure on GŒTG � obtained from
the underlying localized model category structure on G…ŒGT �.
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Corollary 5.8 The category yDŒTG � therefore, has a cofibrantly generated model cate-
gory structure where

� a map X ! Y is a weak equivalence (or fibration) if UDX ! UDY is a weak
equivalence (or fibration) in …ŒGT � iV .

� cofibrations are maps of yD–spaces with left lifting property with respect to
acyclic fibrations.

5.2 Quillen equivalences

Proposition 5.9 The adjoint functors

…ŒGT � iV
L // GT
R
oo

induce a Quillen equivalence between …ŒGT � and GT .

Proof Consider G…ŒGT � with the level model structure. The functor R0W GT !
G…ŒGT � takes weak equivalences and fibrations to level weak equivalences and fi-
brations. The adjoint pair L0 and R0 form a Quillen pair between G…ŒGT � and GT .
Since the model structure on …ŒGT � is induced by the model structure on G…ŒGT �
and we have the following diagram:

…ŒGT �
E

&&

L // GT
R

oo

R0
��

G…ŒGT �:
i

ff
L0

OO

The adjoint pair L and R is a Quillen pair between …ŒGT � and GT . We need to show
that the adjoint pair

…ŒGT � iV
L // GT
R
oo

induces a Quillen equivalence.

Let Y be a based G–space. Let X
�
! R0Y be a cofibrant replacement in G…ŒGT �

and therefore i R0Y is a cofibrant replacement in …ŒGT �. In particular, E i X ! ER0Y
is a level G–weak equivalence and E i X is cofibrant in G…ŒGT �V . Then LX D

L0E i X DX.1/! L0E i R0Y D LRY is a G –weak equivalence.

Let X be a cofibrant-fibrant object in …ŒGT �. Then LX is cofibrant and also fibrant
since all objects of GT are fibrant. Further RLX.n/ DMap.n;X.1//. Then being
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fibrant in …ŒGT � iV implies EX ! ERLX is a level G –weak equivalence and hence
a weak equivalence.

Thus L and R induce a Quillen equivalence.

We would like to understand what it means for yDX to be special.

Remark 5.10 Let D be a G –operad. Let yD be the category of equivariant operators
induced by D . Let X be a …ŒGT �–space X . For any k and �W G!†k , we have

. yDX.k//� D yDk
� ˝…X

WD

a
m

� a
�2�.m;k/�

Y
1�j�k

D.j��1.j /j/�

�
�X.m/=� ;

where the relation is given as follows. Let f 2 yD.m;k/, y 2X.n/ and ˛ 2….n;k/.
Then .f; ˛y/� .f ı˛;y/.

Let H be a subgroup of G and �W G ! †k be a group homomorphism. The G

action on yD.X.k// is via the G –action on �.m;k/ for all m and diagonal action on
D.j��1.j /j/�X.m/ for all � 2 �.m;k/. Taking fixed points, when � 2 �.m;k/H� ,
the map � acts by identity on D.j��1.j /j/ for all 1� j � k .

In fact,

.. yDX.k//�/
H
D

a
m

a
�2�.m;k/H�

Y
1�j�k

.D.j��1.j /j//H �X.m/H =�

where the relation � is as defined before.

Let X be an object of …ŒGT �. Let H be a subgroup of G . Let �W G!†n be a group
homomorphism. By Lemma 4.10 we have a filtration for yDX.n/.

Then by above remark and since fixed points preserve pushouts, note that FH
0
yDX.n/�D

X.0/H D yDX.0/H� and FH
p
yDX.n/ is the pushout of the following diagram:Q

˛2E.p;n/H�

`
1�j�n

D.j˛�1.j /j/H �†.˛/ sX.p�1/H
v //

i

��

FH
p�1
yDX.n/�

��`
˛2E.p;n/H�

Q
1�j�n

D.j˛�1.j /j/H �†.˛/X.p/H // FH
p
yDX.n/�

Here sX.p�1/H D
S

i �iX.p�1/H where �i are the ordered effective morphisms
from p�1! p . The morphism v takes .˛; cI �ix/ to .˛�i ; cIx/.
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Lemma 5.11 If X is a cofibrant in …ŒGT � then the map i is a h-cofibration.

Proof Consider the …op �… space …0.m;n/D….m;n�1/. Then for any ordered
effective morphism n�1!n induces a level-wise h-cofibration …0!…, so …0ıX!
…ıX is a cofibration in the Hurewicz–Strom model structure by Proposition B.8. This
implies in particular, sX.p�1/H ! X.p/H is a †p –h-cofibration for all H < G ,
and i is a h-cofibration.

Lemma 5.12 Let D be a †–free G –operad, that is, D.n/ is a free †n –space for all
n. Let X !X 0 be a level G –weak equivalence of cofibrant objects in …ŒGT �. Then
E yDX ! E yDX 0 is a weak equivalence in G…ŒGT �.

Proof If X !X 0 is a level G –weak equivalence thena
˛2E.p;n/H�

Y
1�j�n

D.j˛�1.j /j/H �†.˛/ sX.p�1/H

!

a
˛2E.p;n/H�

Y
1�j�n

D.j˛�1.j /j/H �†.˛/ sX 0.p�1/H ;

a
˛2E.p;n/H�

Y
1�j�n

D.j˛�1.j /j/H �†.˛/X.p/H

!

a
˛2E.p;n/H�

Y
1�j�n

D.j˛�1.j /j/H �†.˛/X 0.p/H

are weak equivalences for all H <G .

As in the nonequivariant case, we can show that if X is cofibrant then the map
sX.p�1/H ! X.p/H is a †p –cofibration for all H < G . Since †k acts freely
on D.k/, we have that i is a Hurewicz-cofibration. Therefore the pushout diagram
preserves weak equivalences.

By induction, FH
p
yDX.n/�! FH

p
yDX 0.n/� is a weak equivalence for all subgroups H

of G . Thus inducing a G –weak equivalence yDX.n/�! yDX 0.n/� , that is, a G –weak
equivalence E yDX ! E yDX .

Proposition 5.13 Let D be a †–free G–operad and X be a cofibrant-fibrant object
in …ŒGT � in the localized model category. Then UDFDX is fibrant.

Proof A …–space, X is fibrant if for every n 2N and homomorphism �W G!†n ,
the map X.n/�!X.1/n� is a G –weak equivalence. Let X 0 be the …–space defined
as X 0.n/ WDX.1/n . By Lemma 5.12 we have that E yDX ! E yDX 0 is a level G –weak
equivalence of …–spaces. By construction this implies yDX! yDX 0 is a level G –weak
equivalence of yD–spaces.
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Let X be an object of …ŒGT �. Then we can define a simplicial object in …ŒGT � using
the monad structure on …ŒGT � due to G . Given an object of …ŒGT �, let B�.G;G;Y /
denote the simplicial object in …ŒGT � with the n–th simplex UGFG � � �UGFGY where
UGFG is applied n–times. The simplicial structure follows from the monad structure
of FGUG . Denote the geometric realization of this simplicial object in …ŒGT � by
B.G;G;Y /. Given a morphism of category of equivariant operators vW G ! H one
can similarly define B.H;G;Y /. Note if Y is a G–space then B.G;G;Y / denotes
B.G;G;UGY /.

Lemma 5.14 Let G and H be category of equivariant operators and vW G �!H be a
morphism of category of operators. If …! G is a cofibration (Proposition B.7) and
EUGGm ! EUHHm is a weak equivalence in G…ŒGT � then the map of H spaces
B.G;G;Y /! B.H;G;Y / is a weak equivalence.

Proof The assumption that EUGGm! EUGHm is a weak equivalence implies that
EUGB�.G;G;Y / ! EUHB�.H;G;Y / is a weak equivalence of G…–spaces. By
Proposition B.5 both these simplicial H–spaces are Reedy cofibrant in the Hurewicz–
Strom model structure. By Proposition B.2 we have the lemma.

Theorem 5.15 Let G and H be categories of equivariant operators. Let vW G �! H
be a morphism of category of equivariant operators. Then the following adjoint pair
is a Quillen pair with the model categories inherited from the underlying category of
…–spaces:

GŒTG �
v� // HŒTG �:
v�
oo

Further if …! G is a cofibration (Proposition B.7) and EUGGm! EUHHm is a weak
equivalence in G…ŒGT � then the above adjoint pair form a Quillen equivalence.

Proof Consider HŒTG � and GŒTG � with the underlying level model structure on …ŒGT �.
Then v� takes fibrations and weak equivalences in H–spaces to fibrations and weak
equivalences respectively in G–spaces since they are defined on …–spaces. Thus v�
and v� form a Quillen pair.

Note a map of G–spaces or H–spaces is a weak equivalence if it is a weak equivalence
of their underlying …–spaces. In the level model structure on GŒTG � and HŒTG � all
objects are fibrant.
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Let Y be an cofibrant object of GŒTG �. By Lemma 5.14 the maps

EUGB.G;G;Y / ��! EUGY

EUHB.G;G;Y / ��! EUHB.H;G;Y /

EUHB.H;G;Y / ��! EUH.H˝G Y /D EUHv�Y

UGv
�v�Y Š UHv�Y

are G–weak equivalences. By two out of three of weak equivalences we get that
implies v�v�Y ! Y is a weak equivalence in G–spaces.

Let X be a fibrant-cofibrant H–space. Then v�X is a fibrant H–space. Let Y such
that Y

�
! v�X be a cofibrant replacement G–spaces. Then EW EUHX �! UGY . But

we know that
EUHv�Y

�
�! EUGY !

�
�! EUHX:

Therefore, v� and v� induce Quillen equivalence.

Theorem 5.16 Let G and H be a category of equivariant operators and vW G �!H be
a morphism of category of equivariant operators. Then

GŒTG �
v� // HŒTG �:
v�
oo

form a Quillen equivalence with the localized model category structures on GŒTG �

and HŒTG �.

Proof The proof follows from noting that v�FG D FH and applying [11, Theorem
3.3.20] to Theorem 5.15.

Theorem 5.17 Let D be a †–free G –operad such that 1 ,!D.1/ is a h-cofibration.
Let yD denote the induced category of equivariant operators. Then the adjoint pair of
functors

(5-1) yDŒTG �
LD // DŒTG �
RD
oo

are Quillen equivalences.

Proof Let Y ! Y 0 be fibration (acyclic fibration) of D–spaces. Then UY ! UY 0 is
fibration (acyclic fibration) on the underlying category of G –spaces. By Proposition 5.9
RUY ! RUY 0 is a fibration (or acyclic fibration). This implies UDRDY ! UDRDY 0

is a fibration (or acyclic fibration) of …ŒTG �. Therefore the functors RD and LD form
a Quillen pair.
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Note that RD creates all weak equivalences in yD–spaces.

Given a cofibrant-fibrant yD–space X the map

EUDB. yD; yD;X /D B. yD; yD;X /! EUDX

is a level G –weak equivalence.

Since LD preserves weak equivalences of cofibrant objects in yDŒTG �,

ULDB.FDUD;FDUDX /
�
�! ULDX:

Now, RD preserves weak equivalences of D–spaces. Hence

ERDLDB.FDUD;FDUDX /! ERDLDX

is a weak equivalence of G…–spaces.

Therefore,
EB.RUFL;UDFD;UDX /

�
�! ERDLDX:

We have the commutative diagram

EUDX // EUDRDLDX

EB.UDFD;UDFD;UDX /

�

OO

ˇ // EB.RUFL;UDFD;UDX /:

�

OO

where the map ˇ is induced by the map of triples

UDFD! RLUDFDRL! RUFL:

By Lemma 4.11 and Proposition 5.9 the map ˇ is a weak equivalence of simplicial
objects on …–spaces for cofibrant-fibrant X . Given a cofibrant yD–space X , the bar
construction is Reedy cofibrant in the Hurewicz–Strom model category structure by
Proposition B.5. Moreover, geometric realization preserves weak equivalences by
Proposition B.2. Therefore, UDX ! UDRDLDX is a weak equivalence of …–spaces
by two out of three axiom. Lemma A.3 implies that RD and LD induce a Quillen
equivalence.

Remark 5.18 Lydakis [13] defined a symmetric monoidal structure on the category
of � –spaces. One can use this idea to define a symmetric monoidal structure on the
category …ŒT �. The functor RW T !…ŒT � respects the symmetric monoidal structure
on T via cartesian products. The category of operators yC defined by an operad C on T
defines a monad on the category …ŒT �. By [12, Theorem 2.1] it is easy to check that
this monad is symmetric monoidal and hence the symmetric monoidal structure lifts
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to yCŒT � and similarly to CŒT �. Then in the non equivariant case, the corresponding
Theorem 5.17 and Theorem 5.16 respect the symmetric monoidal structures. Thus the
equivalence between E1–spaces and �–spaces is symmetric monoidal. We expect
this to generalize to the equivariant case. We will talk about the monoidal structure on
equivariant � –spaces elsewhere.

6 Comparison theorem

Let N denote the G –operad, defined as N .m/D � with a trivial G –action. Let E be
a E1–G –operad such that 1! E.1/ is a Hurewicz G –cofibration. Then by definition
for every subgroup ƒ<G�†m such that ƒ does not contain any nontrivial subgroups
of †m , E.m/ƒ!N .m/ƒ is a weak equivalence.

Consider the category of equivariant operators induced by the operads E and N . For
any subgroup H of G and �W H !†m ,

yEn.m/� D
a

�2�.m;n/�

Y
1�j�n

E.j��1.j /j/�:

Since E is an E1–G –operad, E yEn is G –weakly equivalent to E yN n .

Theorem 6.1 The category �ŒGT � forms a model category with the model structure
induced by level model structure of G�ŒGT �. The localized model category of G�ŒGT �
with respect to the set

˚`
s2S �G;1!�G;S jS is a G–set

	
exists and induces as model

category structure on �ŒGT � where the fibrant objects are special �–spaces. This is
Quillen equivalent to the localized model category structure on yN ŒTG �.

Theorem 6.2 Let E be an equivariant E1–operad such that 1!E.1/ is a h-cofibration.
The category of E –spaces with the model category structure induced from G –spaces is
Quillen equivalent to the category of �ŒGT � with the induced localized model structure.

Proof By Theorem 5.17 we get that yE ŒTG � with the localized model category structure
is Quillen equivalent to E ŒTG � with the underlying model category structure of G–
spaces.

Since E is an E1–operad for any subgroup H of G and group homomorphism
�W H !†n , the space .E.n/�/H is contractible. Note that yN D � . This implies that

. yEm.n/�/
H
! .�m.n/�/

H
D . yNm.n/�/

H

is a weak equivalence. Thus EUE yEm ! EUN yNm is a weak equivalence of G…–
spaces. Theorem 5.15 implies that yE ŒTG � is Quillen equivalent to yN ŒTG � with the
localized model structures. Hence proved.
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Proposition 6.3 Let E be an E1–G–operad satisfying the hypothesis of Theorem 5.15.
Let X be an equivariant E –space. Then X is a special equivariant �–space up to a
cofibrant replacement in �ŒGT �.

Proposition 6.3 follows from the following Lemma and Theorem 6.2.

Lemma 6.4 Let D be a †–free G –operad and vW yD �!H be a morphism of category
of equivariant operators satisfying the hypothesis of Theorem 5.15. Let X be a fibrant-
cofibrant yD–space. Then the map

vW UDB. yD; yD;X / �! UHB.H; yD;X /

is a weak equivalence in …ŒGT � and B.H; yD;X / is a fibrant H–space in the localized
model category.

Proof By hypothesis vW EUDB�. yD; yD;X / �! EUHB�.H; yD;X / is a weak equiva-
lence of simplicial …–spaces. By Proposition B.5 these spaces are Reedy cofibrant.
This induces a level G –equivalence of …–spaces. This implies that UHB.H; yD;X / is
a fibrant …–space and hence a fibrant H–space in the localized model category.

Proof of Proposition 6.3 We have shown that E ŒTG � is Quillen equivalent to �ŒGT �
via a Quillen equivalence with the category yE ŒTG �. Let X be an E1–space. Then REX

is a fibrant yE –space. If we take its cofibrant replacement Y ! REX in the level model
category structure on yE ŒGT � then Y is fibrant-cofibrant in the localized model category
on yE –spaces. Now let vW yE!� denote the morphism of category of operators induced
by the contractibility of E.n/’s. By Lemma 6.4 the space v�B. yE ; yE ;Y / is a fibrant
� –space. Thus, up to a cofibrant replacement, an equivariant E1–space is equivalent
to a special equivariant � –space.

7 �G –Spaces and equivariant spectra

Shimakawa [23] generalized Segal’s work to the equivariant case to show that special
�G –spaces model positive connective �–G –spectra. We extend Shimakawa’s work to
show that very special �G –spaces model connective G –spectra.

Given a G –functor X W �G ! TG the left Kan extension of X from the category WG

of based G –CW–complexes to TG exists. Denote the Kan extension by X again and
the homotopy Kan extension of X to WG by zX .

Remark 7.1 Note both these constructions are functorial. This defines a functor
from the category of equivariant � –spaces to the category of equivariant spectra. We
elaborate this further in Appendix C.
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Let A be an object of WG . Define a functor YAW �
op
G ! TG as YA.S/D TG.S;A/.

Then the homotopy extension is given by zX .A/DB.YA; �G;X /, where B.YA; �G;X /

denotes the geometric realization of the simplicial space B�.YA; �G;X / whose n

simplices are a
T1;T2;:::;Tn

YA.Tn/��G.Tn�1;Tn/� � � � ��G.T0;T1/�X.T0/;

face maps are compositions and degeneracy maps are defined via the natural inclusion
of identity map in �G.Ti ;Ti/.

The left Kan extension of X at A is the coequalizer`
T0;T1

YA.T1/��G.T0;T1/�X.T0/
////
T̀0

YA.T0/�X.T0/ // X.A/:

There exists a natural map from zX .A/!X.A/.

Lemma 7.2 Let X be an object in �G ŒTG � such that i X is a cofibrant object in
G�ŒGT � with the localized model category structure on G�–spaces. Then the map
zX !X is a level G –weak equivalence.

Proof Let X be a corepresentable object of �G ŒTG � denoted by �G;S where S is an
object of �G . Then z�G;S ! �G;S is a level G–weak equivalence in G�ŒGT �, since
all the n–simplices in B�.YA; �G; �G;S / are degenerate for n> 2.

The set of maps

I D f�G;S � .G=H �Sn�1/C! �G;S � .G=H �Dn/C=n 2N;S 2 Obj�G;H <Gg

is the set of generating cofibrations of G�ŒGT �. A cofibrant object in G�ŒGT � can be
written as a transfinite composition of maps which are pushouts of maps in I .

The bar construction commutes with colimits. Furthermore if the colimits are computed
along cofibrations then they preserve the weak equivalences. Therefore, if X is cofibrant
then zX !X is a level G –weak equivalence in G�ŒGT �.

Theorem 7.3 (Shimakawa [23, Lemma 1.4]) Let X be a special �G –space. Then
for G –CW–complexes A and B and an object S of �G ,

(a) the map z�W zX .S ^A/ �!Map.S; zX .A// adjoint to the evaluation map �W S ^
zX .S ^A/ �!X.A/ is a G –weak equivalence.

(b) if zX .A/ is G –grouplike and A!B is a G –cofibration then zX .A/! zX .B/!
zX .A=B/ is a G –fibration.
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Theorem 7.4 Let X be a very special �G –space such that i X is a cofibrant object in
G�ŒGT � with the localized model structure. Let V and W be G –representations such
that V G ¤ f0g. Then X.SV /

�
! �W X.SV˚W / and X.S0/

�
! �X.S1/ are level

G –weak equivalences.

Proof Shimakawa [23, Theorem B], shows that for any G –representations V and W

such that V G ¤ f0g, the map zX .SV /
�
!�W zX .SV˚W / and zX .S0/

�
!� zX .S1/ are

level G –weak equivalences.

By Lemma 7.2 we have that zX .SV /! X.SV / is a level G–weak equivalence for
all representations V of G . Since SV is cofibrant in GT , the map �V X.SW /!

�V X.SW / is a G –weak equivalence.

For any G –representations V;W such that V G ¤ f0g the maps

X.SV /
�
�!�W X.SV˚W /;

X.S0/
�
�!�X.S1/

are level G –weak equivalences.

Lemma 7.5 Let X be a very special �G –space and cofibrant as an object of G�ŒGT �.
Let A be a based G –CW–complex. Then X.A/ is G –grouplike.

Proof The space X.1/ is G–grouplike implies that X.1/ has a homotopy inverse
under the monoid structure. Let S be finite pointed G–set. Then S is equivalent toW

i.G=Hi/C as G –sets, for some subgroups Hi of G .

Since X is special,

X.S/DX.
W

i..G=Hi/C//D
Q

i X..G=Hi/C/
�
�!

Y
i

Map..G=Hi/C;X.1//

D

Y
i

X.1/Hi :

Since the above equivalence commutes with the monoidal structure, X.S/ is G–
grouplike.

Let �W 2!1 denote the map of finite sets which map both 1 and 2 to 1. Then X.S^1/

being G –grouplike is equivalent to the map

X.S ^ 2/H
X .�/�X .p2

1
/

���������!X.S ^ 1/H �X.S ^ 1/H

being a G–homotopy weak equivalence. Now taking homotopy Kan extension pre-
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serves the homotopy equivalence since geometric realizations preserve finite products.
Therefore for any G –CW–complex A,

zX .A^ 2/H
zX .�/� zX .p2

1
/

���������! zX .A^ 1/H � zX .A^ 1/H :

But by Lemma 7.2 homotopy Kan extension is weakly equivalent to Kan extension.
Thus, we have that X.A/ is grouplike for all G–CW–complexes A if X is very
special.

Theorem 7.6 Let X be a very special �G –space such that i X is a cofibrant object
in G�ŒGT � with the localized model structure. Then fX.SV /g is an equivariant
�–spectrum.

Proof By Lemma 7.5 and Theorem 7.3(b), given a very special �G –space X which
is cofibrant in G�ŒGT �, for any G –representation V we have that

X.SV /
�
�!�1X.SV˚R/:

But, Theorem 7.4 says that X.S0/
�
!�V X.SV˚R/ is a G –weak equivalence.

Then in the following diagram for any G –representation V

X.S0/

��

// �X.S1/

��
�V X.SV / // �V˚RX.SV˚R/;

both the horizontal arrows and the right vertical arrow are G –weak equivalences. This
implies that X.S0/

�
!�V X.SV / is a G –weak homotopy equivalence.

Therefore, fX.SV /g is an �–G –spectrum.

8 G –Spaces and orbit categories

Definition 8.1 Let G be a finite group. Define the orbit category of G denoted O.G/
to be the category with

� left cosets G=H for every subgroup H of G as the objects.

� G –set maps as the morphisms.

The morphism set can be identified as

GT .G=H;G=K/Š .G=K/H :
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Definition 8.2 Let an O.G/–space be a functor from O.G/op to T . Define the cate-
gory of O.G/–spaces be the category whose objects are O.G/–spaces and morphisms
are natural transformations. Denote this category by O.G/ŒT �. Define the representable
O.G/–space as

G=H .G=K/ WDO.G/.G=K;G=H /:

The category O.G/ŒT � is enriched over itself. For any two functors W and Z define
the Map.W;Z/ as the O.G/–space defined by the functor Map.W;Z/.G=H / D

Map.G=H �W;Z/. We use the same notation for the enriched category.

Given a G –space W , we can define a O.G/–space ˆW defined as

ˆW .G=H / WDGT .G=H;W /DW H :

Note that since the category TG is G –enriched, it is naturally O.G/–enriched.

The model category structure on G –spaces is as described in Section 5. The category
of O.G/–spaces has a level-model category structure where

� a map W !Z is a weak equivalence (fibration) if W .G=H /!Z.G=H / is a
weak-equivalences (Serre fibration) of spaces.

� cofibrations are maps with the left lifting property with respect to acyclic fibra-
tions.

Proposition 8.3 (Elmendorf [8]; May [18]) The functor ˆ has a left adjoint C and
we have an adjoint pair of enriched functors

O.G/ŒT �
C // TG

ˆ
oo

and for the categories O.G/ŒT � and GT with the model structures described above,

O.G/ŒT �
C // GT
ˆ
oo

is a Quillen equivalence.

9 Units of equivariant ring spectra

We construct the group of units of a special equivariant � –space and show that it is a
very special equivariant � –space. We use the equivalence of equivariant � –spaces and
equivariant E1–spaces to give a construction of the units of equivariant ring spectra.
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9.1 Units of special � –spaces

Denote the category of sets with set maps by I and let IG denote the category of
G –sets with the morphisms being set maps. The category IG is G –enriched. Given a
set map f W K �!L, the action of G is defined via conjugation as follows:

g : f .k/D g�1f .gk/

for all k 2K .

Definition 9.1 Define a �–set N to be a functor from �! I such that N.0/D �.
Then N is a special � –set if the map

N.n/

Q
i pi

����!N.1/n

is an isomorphism.

Let N be a special � –set. Let i W 0! 1 be the inclusion. Then N.1/ is a commutative
monoid via the monoidal structure given by

N.1/�N.1/
Š
 �N.2/

N.�/
���!N.1/:

If �–set N is special then N.id^�/W N.m^ 2/ �! N.m/2 is an isomorphism and
we have a product structure on N.m^ 1/.

We can define the group of units of N.1/ in terms of a very special � –set. Let N 0 be
a � –set defined as the pullback of the following diagram:

N 0.m/
� � //

��

N.m^ 2/

N.id^�/
��

N.m^ 0/
� � N.i/ // N.m^ 1/

Since m^ 0D 0 and N.0/D � the above construction is functorial, that is, describes
a � –set. By construction N 0.m/ is the pair of invertible elements of N.m/ with their
inverses. The � –set UN describing the group units of N is therefore, the image of N 0

under the projection onto first factor namely,

UN.m/ WDN.id^p1/N
0.m/:

Definition 9.2 Let G be a finite group. Define a �G –set to be a G–functor A from
�G! IG such that A.0/D�. Let � W S^A.S/!A.1/ be as defined in Definition 3.4.
A �G –set A is special if the adjoint of � induces a G –isomorphism, that is,

A.S/H
Š
�!HT .S;A.1//
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is an isomorphism for all subgroups H of G . Further A is very special if A.1/H is
grouplike under the induced monoid structure for all H <G .

Given a G–functor AW �G ! IG , the functor ˆA describes a functor from �G to
O.G/–sets. Now the category �G is G –enriched. By Proposition 8.3, the category is
O.G/ŒI �–enriched.

Definition 9.3 Define a �G –O.G/–set to be an O.G/ŒI �–functor from �G to O.G/–
sets. Given a �G –set A, we get an �G –O.G/–set ˆA.

Note that a �G –O.G/–set can be rewritten as a O.G/–�G –set.

Let A be a special �G –set. Define a �G –O.G/–set B to be the following pullback of
sets:

B.S/.G=H /
� � //

��

ˆA.S ^ 2/.G=H /

�

��
ˆA.S ^ 0/.G=H /

� � i // ˆA.S ^ 1/.G=H /

The construction is functorial and therefore defines a �G –O.G/–set.

Define the units of A to be the � –O.G/–set

UA.S/.G=H / WDˆA.p1/.B.S//.G=H /:

Given a �G –O.G/–set B the projections induce the map of O.G/–sets similar to the
�G –space case.

Definition 9.4 Define a �G –O.G/–set B to be special if the map induced by projec-
tions ps

B.S/!O.G/ŒI �.ˆS;B.1//

is an isomorphism of O.G/–sets. This induces a monoidal structure on B.1/.G=H /

for all objects G=H of O.G/. If B.1/.G=H / is grouplike for all H < G then B is
said to be very special.

Lemma 9.5 If A is a special �G –set then UA is a very special �G –O.G/–set.

Let X be a special �G –space. Then �0.X / is a special �G –set. Define UX as the
following homotopy pullback:

UX.S/.G=H /
� � //

��

X.S/.G=H /

��
U.�0X.S/.G=H //

� � i // .�0X /.S/.G=H /
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By construction, for any map S ! T since UX includes into X we have a map from
UX.S/.G=H /!X.T /.G=H /. But the �0.UX / is a group and this map should factor
through a group of units in of �0.X /. Therefore, This UX is an �G –O.G/–space by
construction.

Lemma 9.6 Let X be a special O.G/–space. Then CUX is a very special �G –space.

Proof This follows from the adjointness of the O.G/–spaces and TG .

Definition 9.7 Let X be a special �G –space. Define the units of X to be the very
special �G –space, CUX .

9.2 Equivariant E1–ring spectra

Denote the category of G –spectra by SG .

Theorem 9.8 The category SG is a topological model category with

� weak equivalences being G –weak equivalences of G –spectra.
� fibrations being Serre fibrations of G –spectra.
� cofibrations being the maps of spectra with a left lifting property with respect to

acyclic fibrations.

Moreover, given a continuous monad CW SG! SG such that the category CŒSG � of a
C–algebras has continuous coequalizers and satisfies the Cofibration Hypothesis, SG

creates a topological model structure on CŒSG �.

Proof The proof is similar to the proof of the nonequivariant version [9, Theo-
rem VII.4.4].

There exist adjoint maps from G –spectra to G –spaces:

SG

�1 // TG

†1
oo

Here, �1X DX0 for 0 is the trivial representation and †1Y denotes the spectrifica-
tion of f†V Y g.

Proposition 9.9 Let L denote the linear isometries G –operad. Then we have a adjoint
pair of functors between equivariant E1–ring spectra and E1–spaces:

LŒSG �
�1 // LŒTG �
†1
oo
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9.3 Defining the units of equivariant E1–ring spectra

Let R be a E1–equivariant ring spectrum. Then �1R is a E1–ring space. There is a
forgetful functor to L–spaces which forgets the additive structure on �1R due to the
infinite loop space structure. By Proposition 6.3, as an equivariant L–space (forgetting
the additive structure) �1R is equivalent to an equivariant special � –space. We know
how to construct units of an equivariant special � –space. Therefore, we can make the
following definition.

Definition 9.10 Let R be an equivariant E1–ring spectrum and Y be the special
�G –space equivalent to the L–space, �1R. Define the unit equivariant spectrum
of R to be the equivariant spectrum represented by the very special �G –space CU Y .

Appendix A Adjoint square

Theorem A.1 (Barr–Wells [3, Theorem 3.3.10]) Let B and A be cocomplete cate-
gories Beck’s monadicity theorem states that a functor U W B!A is monadable if and
only if

(i) U W B!A has a left adjoint.

(ii) U reflects isomorphisms.

(iii) B has coequalizers of reflexive U –contractible coequalizer pairs and U pre-
serves them.

Proposition A.2 Let D and F be cocomplete categories with an adjoint pair of
functors

D
L // F
R
oo

such that LRD id. Let zD and zF be categories with monadable functors Ud W
zD!D

and Uf W zF ! F . Let Fd and Ff be the left adjoints to Ud and Uf respectively with
LUdFdRD Uf Ff . Further, let there exist zRW zF ! zD with the following commuting
diagram of adjoint functors, namely RUf D Ud

zR:

(A-1)

D
Fd

��

L // F
Ff
��

R
oo

zD

Ud

OO

zF :

Uf

OO

zR

oo
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Then zR has a left adjoint such that the following diagram of adjoints commutes:

(A-2)

D
Fd

��

L // F
Ff
��

R
oo

zD

Ud

OO

zL //
zF :

Uf

OO

zR

oo

Proof For any Y in zD we have a morphism FdUdY ! Y due to adjointness. Also
for any Y in zD note we have

UdFdY
�Ud Fd� // RLUdFdRLDRUf FfL:

The above map denoted by ˇ is in fact a map of triples. Further

FfLUdFdY // FfLRUf Ff Y D FfUf FfLY
� // FfLY:

This gives an action ˛W FfLUdFd ! FfL.

Define a functor zLW zD! zF as follows. For any X in D ,

FfLUdFdUdX
FfLUd � //

˛Ud

// FfLUdX // zLX:

This is a Uf –contractible coequalizer. By Beck’s monadicity theorem the above
coequalizer exists.

Claim The functor zL is adjoint to zR.

Proof of Claim Let X be an object of zD . Then there exist maps

UdX
� // RLUdX

R�LUd X // RUf FfLUdX D Ud
zRFfLUdX // Ud

zR zLX:

The last map is the coequalizing map in the definition of zL. Since UdFd !RFfUfL

is a map of triples we get a map of algebras

UdFdUdX

��

// RFfUfLRFfUfLUdX

��
UdX // RFfUfLUdX:

This gives a map from X ! zR zLX since zD is a equivalent to the category of UdFd

algebras on D .
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Since Ud is monadable, we can think of zD as space of UdFd algebras. Then above
diagram says that we have a map of UdFd algebras X ! zR zLX .

Given any Y in F , zL zRY will be given by the coequalizer

FfLUdFdUd
zRY

FfLUd� //

˛Ud

// FfLUd
zRY // zL zRY

Using the fact that Ud
zRDRUf and LRD id we get that the coequalizer diagram is

FfLUdFdRUf Y
FfLUd� //

˛Ud

// FfUf Y // zL zRY

This reduces to

FfUf FfUf Y
Ff Uf � //

�Ff Uf

// FfUf Y // zL zRY

But this gives an isomorphism zL zRY ! Y .

Thus we have an adjoint pair.

Let A and B be model categories. A functor UW B!A creates weak equivalences
in A if a map B!B0 is a weak equivalence in B if and only if UB!UB0 is a weak
equivalence.

Lemma A.3 (Mandell–May–Schwede–Shipley [15, Lemma A.2]) Let UW B! A
and FW A ! B be a Quillen adjoint pair. Then .U;F/ form a Quillen equivalence
if U creates weak equivalences in B and for all cofibrant objects A of A, the map
A! UFA is a weak equivalence in A.

Lemma A.4 Let D be a model category and S be a set of maps in D such that the
localization of D with respect to S exists and is denoted by Ds . Let T be a monad
on D and DT denote the category of T –algebras. Then DT has a model category
structure inherited by both D and Ds . Localizing DT with respect to TS we get
another model category structure on DT and let us denote this model category by DTS

for notational convenience.

Then the model categories DsT and DTS are Quillen equivalent.

Proof In the localized model category Ds ,
� fibrant objects are S –local objects, namely, fibrant objects X in D such that for

every morphism Y ! Y 0 in S , the map Map.Y 0;X /!Map.Y;X / is a weak
equivalence.
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� weak equivalences are S –local equivalences, namely, morphisms Z!W such
that Map.W;X /!Map.Z;X / is a weak equivalence for all fibrant X .

� cofibrations are maps which are cofibrations in D .

� fibrations are maps with right lifting property with respect to acyclic cofibrations.

In the model category DsT ,

� weak equivalences and fibrations same as those in Ds .

� cofibrations are the ones with left lifting property with respect to acyclic fibra-
tions.

In the model category DTS ,

� weak equivalences are TS –local equivalences.

� cofibrations are on the underlying category D .

� fibrations have the right lifting property with respect to acyclic cofibrations.

Note that the free functor FT on D is left adjoint to the forgetful functor UT on DT .
Thus a TS –local object in DT is exactly a T –algebra whose underlying space is
an S –local object of D . Both model categories have the same fibrant objects. For
similar reasons, both model categories have the same weak equivalences. Moreover,
fibrations in DsT are fibrations in DTS . Thus one can show that the identity functors
will actually induce an Quillen equivalence between the two model categories.

Appendix B Cofibrant objects

Proposition B.1 The category of G –topological spaces forms a model category with

� weak equivalences as G –homotopy equivalences of G –spaces.

� cofibrations are Hurewicz G –cofibrations denoted by h-cofibrations.

� fibrations are maps with right lifting property with respect to trivial cofibrations
denoted by h-fibrations. In particular, fibrations are Hurewicz fibrations.

We will call this the Hurewicz–Strom model structure on G –spaces.

Proposition B.2 Let X be simplicial object in G–topological spaces with the Hure-
wicz–Strom model structure. Then geometric realization preserves weak homotopy
equivalences between Reedy cofibrant objects.
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Lemma B.3 (Elmendorf–Kriz–Mandell–May [9, I.ı6.5]) Let A!B be an h-cofibra-
tion of G –topological spaces. Then cobase change along a weak homotopy equivalence
is a weak homotopy equivalence.

Lemma B.4 Let the following be a pushout diagram of G –spaces:

A
f //

i

��

C

��
B // B [A C

If i is a h-cofibration then the pushout is preserved under weak homotopy equivalences.

For rest of this section we will assume that GT has the Hurewicz-Storm model
structure. Consider G…ŒGT � with the level model category structure. Then G…ŒGT �
is a topological model category induced by the Hurewicz–Strom model structure on GT .
Then …ŒGT � is a topological model category with the model structure induced by
the functor E. Let G be a category of operators and GŒTG � have the model category
from the underlying structure on …ŒGT �. Denote the category of simplicial objects in
the GŒTG � by s:GŒTG �. Consider the category s:GŒTG � with the Reedy model structure
induced by the Hurewicz–Strom model structure on GŒTG �.

Proposition B.5 Let G and H be category of operators with a morphism vW G!H .
Let …! G be a cofibration of …op �…–spaces. Let X be a cofibrant G–space. Then
the bar construction B�.H;G;X / is Reedy cofibrant as a simplicial object in …ŒGT �.

Note in the case that this Proposition is applied we assume that X is cofibrant in model
category described in Proposition 5.6.

In order to prove Proposition B.5 we reformulate the proof of a similar result by [21].

Consider the category of covariant functors from …op�… to GT which is denoted by
.…op �…/ŒGT �. We can define a monoidal structure on …op �…–spaces as follows.
For any …op �…–spaces A and B define a …op �…–space as

A ıB.n;m/ WDAm
˝… Bn:

Note … ıADA and A ı…DA.

The category of …op �…–spaces acts on the category of …–spaces. Let X be a
…–space and A be a …op �…–space. Then define a …–space A.X / as

A.X /.n/ WDAn
˝…X:
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This defines right closed action of …op �…–spaces on …–spaces. Let X and Y be
…–spaces. Define

Hom.X;Y /.m;n/ WD TG.X.m/;Y .n//:

Note this is a …op �…–space.

Let X and Y be …–spaces and A be a …op �…–space. Then

Hom.AX;Y /Š Hom.A;Hom.X;Y //:

Further given …op �…–spaces A and B we get a function …op �…–space defined is
the coequalizer

F.A;B/.m;n/
Q

k TG.A.k;m/B.k;n//oo Q
k!k0 TG.A.k;m/;B.k0;n//:oooo

Proposition B.6 The category of …op �…–spaces has a right closed monoidal struc-
ture and for …op �…–spaces A;B and G ,

Hom.A ıB;G/Š Hom.A;F.B;G//:

Proposition B.7 Define a morphism A! B in .…op �…/ŒGT �
� to be a weak equivalence (or fibration) if A.n; _/!B.n; _/ is a weak equivalence

(or fibration) in …ŒGT �.
� to be a cofibration if it has the left lifting property with respect to all trivial

fibrations.

Proposition B.8 The action of …op �…–spaces on …–spaces is compatible with the
level model category structure of …–spaces.

Proof Let i W X ! Y be a cofibration of …–spaces and pW Z!W be a fibration of
…op �…–spaces. Then we need to show that the induced maps

f W Hom.�;Z/! Hom.�;W /;

gW Hom.Y;Z/! Hom.X;Z/�Hom.X ;W / Hom.Y;W /

are fibrations. Further we need to show that if i is also a weak equivalence, then g is a
trivial fibration. If p is also a weak equivalence, then f and g are trivial fibrations.

We can reduce this to a similar diagram in …ŒGT � using adjointness of E and i. The
result follows from the fact that …ŒGT � is a topological model category.

Proposition B.9 The monoidal structure of …op �…–spaces is compatible with the
model category structure of …op �…–spaces.
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Proof We need to show that if i W A! B is a cofibration and pW G!H is a fibration
of …op �…–spaces, then the induced maps

F.�;G/! F.�;H/;
Hom.B;G/! Hom.A;G/�Hom.A;H/ Hom.B;H/

are fibrations in .…op �…/ŒGT �. If i is also a weak equivalence then the second map
is a trivial fibration. If both i and p are weak equivalences then both the maps are
trivial fibrations.

In order to prove the above result we need to know that if i W A �! B is a cofibration
then An! Bn is a cofibration of …–spaces. This follows from the fact that fibrations
of …op �…ŒGT � are defined level-wise.

The rest of the proof is similar to that of the previous Proposition.

In order to prove Proposition B.5 we follow the proof of Proposition 3.7.3 in [21]. In
order to show that B�.H;G;X / is Reedy cofibrant for a cofibrant G–space X , we
need to show that Ln�1B�.H;G;X /! Bn.H;G;X / is a cofibration of G–spaces.

Let i W … �! G be the natural map. Then we have maps sj W G˝m �! G˝mC1 given by
sj D id˝ � � � i ˝ � � �˝ id where i is in the j –th spot and s0 D i ˝ id˝ � � �˝ id. Now,
define Am to be the coequalizer`

0�r<j<m�1 Gım�1
sr //
sj
//
`

0�k�m Gım // Am:

There exist maps sk from Gım! GımC1 giving rise to a map aW Am! GımC1 .

Lemma B.10 The following diagram is a pushout square in …op �…–spaces:

Am ı…
id ıi //

aıid
��

Am ıG

��
GımC1 ı… // AmC1

Proof The functor �ıG preserves colimits in …op�…–spaces as they are computed
in the underlying category of spaces. The proof follows similar to the proof of [21,
Lemma 3.7.8].

Lemma B.11 Let G be a …op�…–space such that …!G is a cofibration of …op�…–
spaces. Then the map AmC1! GınC1 is a cofibration …op �…–spaces.
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Proof Proof is by induction. By hypothesis .A0 D …/! G is a cofibration. Let
Am�1! Gım be a cofibration. Then since …! G is a cofibration, by previous lemma
and Proposition B.8 we get that Am! GımC1 is a cofibration.

Remark B.12 Note that if D is a well pointed operad, that is, � ! D.1/ is a h-
cofibration. Then we can show that …! yD is a cofibration of …op �…–spaces.

Lemma B.13 Let G!H be a map of …op �…–spaces, …! G be a cofibration of
…op�…–spaces and X be a cofibrant …–space. Then LnB�.H;G;X /!Bn.H;G;X /
is a cofibration in …ŒGT �.

Proof By previous lemma and Proposition B.8 the map An ıX ! GınC1 ıX is a
cofibration. Now, LnB�.H;G;X /ŠH ıAın ıX . This implies from Proposition B.9
that LnB�.H;G;X /! Bn.H;G;X / is a level cofibration.

Proof of Proposition B.5 This follows from the previous lemma.

Appendix C Discussion on units of equivariant ring spectra

Following is a discussion regarding the equivariant gl1 functor from equivariant ring
spectra to equivariant spectra. Let SG denote the G –enriched category of G –spectra
and GS denote the category of G –spectra without the enrichment. There exists Quillen
pair of functors between equivariant ring spectra and equivariant E1–spaces:

(C-1) E ŒTG �
†1
// E ŒSG �

�1oo

induced by the adjoint pair between G –spaces and G –spectra. This induces an adjoint
pair between the homotopy categories of E ŒTG � and E ŒSG �. By the results in this article,
since the homotopy categories of E ŒTG � and �ŒGT � are equivalent we have an adjoint
pair between the homotopy categories of �ŒGT � and E ŒSG �.

There are two relevant model structures on the category of equivariant � –spaces. The
one described in this paper is such that the fibrant objects in the category are special
equivariant �–spaces, which we will denote by �ŒGT �s . There is a different model
structure in which fibrant objects are very special equivariant � –spaces which we
denote by �ŒGT �vs . In a later paper (joint with Chenghao Chu), we show that there is
a Quillen pair between the category of equivariant � –spaces and a suitable category
of equivariant spectra that induces an equivalence between the homotopy category
of connective equivariant spectra and homotopy category of equivariant � –spaces.
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We will have a Quillen pair as follows, where A and B denote the equivariant analogs
of functors A and B defined by Segal [22, Proposition 3.3]:

(C-2) GS
A
// �ŒGT �vs

Boo

Consider the functor Units obtained by taking fibrant replacement in �ŒGT �s and then
applying GL1 construction to it. On the level of homotopy categories this induces a
functor which is right adjoint to the identity functor of equivariant � –spaces. More
precisely we have a pair of adjoint functors

ho:�ŒGT �vs

Id // ho:�ŒGT �s:
Units
oo

Assembling all these diagrams and noting that the Quillen pair (C-2) induces an
equivalence on the homotopy category of connective spectra. We can define the functor
on the homotopy categories gl1W ho:E ŒSG �! ho: connective GS � ho:GS adjoint to
the functor †1AW ho: connective GS � ho:GS! ho:E ŒSG �.

Remark C.1 We expect that the notion of equivariant � –spaces can be extended to
the notion of equivariant � –spectra and one can generalize the result in this paper to a
Quillen equivalence between the category of equivariant E1–spectra and equivariant
� –spectra. With the notation in this article, we will have the following:

Claim C.2 Let E denote a E1–G–operad. Then with appropriate model structures
where the fibrant objects in �ŒGS � are special objects, we get a zigzag of Quillen
equivalences between E ŒSG � and �ŒGS�.

We can reiterate the definition of gl1 in the equivariant case using the above claim.
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