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Dividing sets as nodal sets
of an eigenfunction of the Laplacian

SAMUEL T LISI

We show that for any convex surface S in a contact 3–manifold, there exists a metric
on S and a neighbourhood contact isotopic to S � I with the contact structure
given by ker.udt � ?du/ where u is an eigenfunction of the Laplacian on S and
? is the Hodge star from the metric on S . This answers a question posed by
Komendarczyk [3].

57R17; 53D10

Given a convex surface S in a contact 3–manifold, we show the existence of a metric
defined on a tubular neighbourhood of S , adapted to the contact structure, for which
the dividing curves are nodal curves of an eigenfunction of the Laplacian on S . In our
construction, we show that any dividing set may be realized in this way. This addresses
two questions raised by Komendarczyk [3].

Definition 1 Let .M; �/ be a contact 3–manifold with co-oriented contact structure � .
A metric g on M is adapted to the contact structure if there exists a contact form ˛

generating the contact structure so that ?˛ D d˛ .

A class of examples of metrics adapted to a contact structure � D ker˛ is given by
taking an almost complex structure J on � compatible with d˛ , ie so that d˛. � ;J � / is
a metric on � . Then, we construct a metric adapted to � by taking gD ˛2Cd˛. � ;J � /.

Definition 2 (Convex surface; see Giroux [2]) A surface S in a contact 3–manifold
.M; �/ is convex if there exists a (local) vector field v transverse to S so that Lv� D 0.

The dividing set is the set of all points on S where v2 � . (The contact condition forces
this to be an embedded multicurve in S .)

The dividing set divides the surface S into two open submanifolds, SC on which v is
positively transverse to � and S� on which v is negatively transverse to � .

Our main result can then be stated as follows:
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Theorem 3 Let S be a convex surface in the co-oriented contact 3–manifold .M; �/.
Then, there exist an isotopic surface S 0 , an adapted metric g and an eigenfunction u

of 4gjS 0 so that a neighbourhood of S 0 is contactomorphic to S 0 � I with the contact
structure

ker.udt �?du/:

Furthermore, this metric g may be taken to be t –translation invariant in the neighbour-
hood of S 0 .

(Here, we take the conventions ˛^?˛ D j˛j2g dvol, and 4guD ?d?du.)

Komendarczyk [3; 4] proved this result, first in the case the dividing set is an embedded
circle, and then generalizing it to the case in which the complement of the dividing set
consists of two connected components, by using techniques from spectral geometry. In
recent personal communication, he has explained to the author a possible extension of
these methods to the general case. In contrast to his methods, we prove the result using
“soft” techniques in contact topology.

The relationship between adapted metrics and contact topology has just recently begun
to be exploited, notably by Etnyre, Massot and Komendarczyk [1].

The main interest of convex surfaces in contact topology comes from Giroux’s flexibility
theorem [2]:

Theorem 4 Suppose † is a closed convex surface in .M; �/, with transverse contact
vector field v and dividing curves � . Suppose F is a singular foliation on † divided
by � . Then, there exists an isotopy �s , s 2 Œ0; 1�, so that �0.†/D†, �j�1.†/D�1.F/,
� fixed on � and �s.†/ transverse to v for all s .

Heuristically speaking, this tells us that the neighbourhood of S is described, up to
isotopy, by the dividing curves. In particular, if †�R admits two translation invariant
contact structures giving the same dividing curves on S and cutting out the same S˙
regions, then the two contact structures are isotopic.

The proof of Theorem 3 will be by constructing the metric and the eigenfunction, and
will exploit the soft aspects of symplectic and contact topology. Instead of constructing
these directly, we will construct a symplectic form on S and an almost complex
structure compatible with it. Reformulated in this way, we obtain:

Theorem 5 Let S be a closed, connected surface, and consider the t –invariant contact
structure on R�S given by �0 D ker.˛0 D f dt Cˇ/. Denote the dividing curves by
� D f �1.0/� S .
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Orient S by i@t
.˛0 ^ d˛0/. Then, there exist an area form � on S , compatible with

the orientation, a compatible complex structure j , and a function uW S !R with

d.du ı j /D u� and u2
Cjduj2 > 0;

and so that u�1.0/D f �1.0/, and so the contact form udt Cdu ı j induces the same
SC and S� regions.

Proof of Theorem 3 We will now show that Theorem 5 implies Theorem 3.

Let S be a convex surface in .M; �/ with transverse contact vector field v. Let � be
the dividing set. Then, by following the flow of v, there exists a neighbourhood of S

in M contactomorphic to a neighbourhood of f0g�S in R�S , with contact structure
given by the contact form

˛0 D f dt Cˇ;

where f and ˇ are a function and a one-form on S respectively. Then, f �1.0/D � .

Let u, j and � be as in Theorem 5. This then gives a contact form on R� S by
˛1 D udt C du ı j . Define a metric on R�S by setting g D dt2C�. � ; j � /. We
now observe 4gjSu�D�d.duıj /, so u as in Theorem 5 indeed is an eigenfunction
of the Laplace operator of g restricted to S . It now remains to verify that this
metric g is adapted to the contact structure. We observe that dvolg D dt ^� and that
g.@t ; � /D dt , g.�Xu; � /D du ı j and g.�jXu; � /D du. It follows that ?dt D �

and ?du ı j D�dt ^ du. Thus,

?.udt C du ı j /D u�� dt ^ duD d˛1:

as required.

We now have two translation invariant contact structures on R�S , generated by the
contact forms ˛0 and ˛1 . The dividing sets and induced orientations on S are the
same, so by Giroux’s Flexibility Theorem, the contact structures are contact isotopic.
Following the image of the isotopy in M , and restricting to a sufficiently small interval
around t D 0 gives the resulting S 0 . This now constructs a local contact metric, defined
in a neighbourhood of S .

In order to extend this local metric to a global one, first extend the contact form to a
global contact form on M . Note the space of contact metrics is nonempty and fibrewise
convex. Now interpolate between our locally defined metric and an arbitrary global
one to obtain a globally defined contact metric with the desired properties.

The main result, Theorem 5, is a corollary of the following result:
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Proposition 6 Let S be a closed, connected surface and � � S be a collection of
embedded circles dividing S into two regions, so that

S Š S�[ .Œ�1; 1���/[SC;

where S˙ are two open submanifolds of S . Then, there exist a smooth function
uW S !R, an area form � and a compatible complex structure j on S so that

d.du ı j /D u�

u�1.0/D �

u2
Cjduj2 > 0:

The remainder of this paper is a proof of Proposition 6.

Proof of Proposition 6

The key step in the proof of Proposition 6 is the following Lemma, whose proof will
come later.

Lemma 7 Let S D S� [ .Œ�1; 1���/[ SC as in the hypothesis of Proposition 6.
There exist an area form ! , a compatible complex structure j , and a real valued
function F on S so that for some constants C > 0 and � > 0 the following properties
hold:

(i) maxS jF j< �=2, F�1.0/D f0g �� � Œ�1; 1��� ,

(ii) F <0 on S�[.Œ�1; 0/��/, F >0 on ..0; 1���/[SC , dF¤0 on Œ�1; 1��� ,

(iii) d.dF ı j /� 0 on Œ�1; 0��� and d.dF ı j / < 0 on S� ,

(iv) d.dF ı j /� 0 on Œ0; 1��� and d.dF ı j / > 0 on SC ,

(v) for .s; t/ 2 .��; �/�� , F.s; t/D C s and ! D ds ^ dt .

Proof of Proposition 6 Let F , j and ! be as in Lemma 7. Define a real valued
function on S by

uD sin.F /:

Define 4F by �.4F /! D d.dF ı j /. Then, we obtain

d.du ı j /D ujdF j2!C cos.F /d.dF ı j /

D u

�
jdF j2�

cos.F /
sin.F /

4F

�
!:
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Observe that from the definition of F , 4F D 0 on .��; �/� � . Since jF j < �=2,
sin.F / has the same sign as F . Thus, �.1= sin.F //4F � 0 is nonsingular, and only
vanishes in a subset of Œ�1; 1��� , where dF is nonvanishing. Hence,

jdF j2�
cos.F /
sin.F /

4F > 0:

Thus, by taking

�D

�
jdF j2�

cos.F /
sin.F /

4F

�
!

we obtain a volume form on S so that d.du ı j /D u�. We claim this triple of u, !
and j has the desired properties.

Since jF j < �=2, it follows that u > 0 on ..0; 1���/ [ SC , and that u < 0 on
S�[ .Œ�1; 0/��/. Furthermore, u�1.0/D F�1.0/D f0g �� .

To show u2Cjduj2 > 0, it suffices to check near u�1.0/D f0g �� . Note, however,
that in a neighbourhood of f0g �� , F.s; t/D C s , for some positive constant C , and
thus duD cos.F /dF D cos.C s/Cds , which is nonvanishing in a neighbourhood of
f0g �� . This completes the proof of Proposition 6.

We now prove the key Lemma 7. This involves constructing a weakly subharmonic
function on each of SC and S� , strictly subharmonic away from the dividing curves,
but harmonic near the boundary.

Proof of Lemma 7 Observe first that SC and S� admit Stein structures since they are
open Riemann surfaces, ie they each admit exhausting strictly subharmonic functions,
for which the boundary of S˙ is a level set. Furthermore, recall that @SCD � D @S� ,
with opposite orientations. We now apply the following Lemma (whose proof we defer)
to each of SC and S� .

Lemma 8 Let .†; j / be a compact Riemann surface with boundary.

Suppose f W †! R is bounded below, f �1.�1/D @† and �d.df ı j /D !0 is an
area form compatible with j . (By the maximum principle, it follows that f is bounded
above by �1.)

Then, with z†D†[ .Œ�1; 0�� @†/, there exist � > 0, a nonpositive smooth function,
gW z†! .�1; 0�; an extension of j to z†, and a volume form ! on z† compatible
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with j , with the following properties:

j D i on Œ�1; 0��†

g D f on †

g < 0 on †[ .Œ�1; 0/� @†/

gjŒ��;0��@†W .s; t/ 7! 2s

!jŒ��;0��@† D ds ^ dt

�d.dg ı j /� 0 on †[ .Œ�1; 0�� @†/

�d.dg ı j /D ! on †:

Let g˙ be the (weakly) subharmonic functions, and let !˙ be the area forms from
Lemma 8.

Define the following function on S D S�[ .Œ�1; 1���/[SC by

(1) F D

8̂<̂
:

g� on S�[ .Œ�1; 0�� @S�/;

�gC.�s; t/ on Œ0; 1�� @SC;

�gC on SC:

Note that F then defines a smooth function on S , since for some � > 0, g�.s; t/D 2s

for .s; t/ 2 Œ��; 0�� @S� and �gC.�s; t/D 2s for .s; t/ 2 Œ0; ��� @SC . Furthermore,
the area form defined by

(2) ! D

(
w� on S�[ .Œ�1; 0�� @S�/;

wC on .Œ0; 1�� @SC/[SC

is a smooth area form on S .

It then follows that

d.dF ı j /D�! on S�

� 0 on S�[ .Œ�1; 0�� @S�/

D 0 on Œ��; ����

� 0 on .Œ0; 1�� @SC/[SC

D ! on SC:

By scaling F , we may set jF j<�=2. Furthermore, by construction, F.s; t/D C s for
s close to 0 in Œ�1; 1��� , and C > 0 a constant.

We now present the proof of Lemma 8. This uses the fact that the Stein structure on †
may be extended smoothly to a cylindrical end glued at the boundary. (Recall that a
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Stein structure consists of the data of a complex structure and an exhausting Morse
function, plurisubharmonic with respect to the complex structure.) We then deform
the standard model of the cylindrical end to obtain the desired weakly subharmonic
function to have linear growth at the end. In essence, this deformation smoothes a
strictly monotone, piecewise-smooth, weakly convex function on R to obtain a smooth,
weakly convex function with a prescribed zero.

Proof of Lemma 8 Denote by @k†, k D 1; : : : ;N , the components of the bound-
ary @†. First, complete † by gluing the cylinder Œ�1;C1/�S1 to each boundary
component @k†. Denote each of these cylinders by Zk .

Now extend the (strictly) subharmonic function f to Zk by the function given in the
cylinder coordinates by

fk.s; t/DAk.e
s
�1= e/� 1

and extend the complex structure to the cylinders by i . Note that the resulting function is
only continuous, and piecewise differentiable. For each k , by choosing the constant Ak

sufficiently large, the normal derivative of fk from the left at s D�1 may be arranged
to be strictly less than the normal derivative of fk from the right. Thus, this continuous
function satisfies the mean-value-inequality on †[ .Œ�1;1/� @†/. Convolving with
an approximate identity will give a smooth function, subharmonic if sufficiently C 0

close to the original function, and equal to the original function outside of a sufficiently
small neighbourhood of @†. We may therefore take f to be smooth.

This then extends the symplectic form by !0DAk es ds^dt . Denote these extensions
again by f , j , and !0 , which are now defined on †[ .Œ�1;1/� @†/. By scaling f
(and thus !0 ) as necessary, we may assume Ak <

1
2

.

We now claim that for each k , there exists a function GAk
W Œ�1; 1�! R with the

following properties:

(1) G0
Ak
.s/ > 0 for all s 2 Œ�1; 1�,

(2) G00
Ak
.s/� 0 for all s 2 Œ�1; 1�,

(3) GAk
.s/DA.es �1= e/� 1 for s near �1,

(4) GAk
.s/D 2s for s near 0.

To construct such a function GAk
, for each k , we choose a monotone increasing

function ˇW Œ�1; 1�! Œ0; 1� for which ˇ.s/ D 0 for s near �1 and ˇ.s/ D 1 for s

near 0. We then define

GAk
.s/D

Z s

0

.1�ˇ.s0//Ak es0

Cˇ.s0/2 ds0:
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For a correct choice ˇ , we may obtain that GAk
.�1/D�1. From this, it follows that

GAk
has the required properties.

Introduce the following function, g defined on †[ .Œ�1; 0�� @†/ by

g D

(
f on †;

GAk
on Œ�1; 0�� @k†:

Then, observe

(3) d.dg ı j /D

(
�!0 on †,

�G00
Ak
.s/ ds ^ dt on Œ�1; 0�� @k†:

Also note that in any of the .s; t/ coordinates near @k†, g.s; t/D 2s for s sufficiently
close to 0.

Define

! D

(
!0 on †,

�k.s/ ds ^ dt on Œ�1; 0�� @k†,

where �k.s/> 0, with the properties that �k.s/DAk es for s near ˙1 and �k.s/D 1

for s near 0. Therefore, from Equation (3), there exists a nonnegative function
KW †[ .Œ�1; 0�� @†/!R so that

d.dg ı j /D�K!:

Furthermore, K D 1 on † and K D 0 for s near 0 in Œ�1;1/� @†. This therefore
constructs the desired g and ! .
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