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Systoles of hyperbolic manifolds

MIKHAIL V BELOLIPETSKY

SCOTT A THOMSON

We show that for every n > 2 and any � > 0 there exists a compact hyperbolic
n–manifold with a closed geodesic of length less than � . When � is sufficiently small
these manifolds are non-arithmetic, and they are obtained by a generalised inbreeding
construction which was first suggested by Agol for n D 4 . We also show that for
n > 3 the volumes of these manifolds grow at least as 1=�n�2 when �! 0 .

22E40, 53C22

1 Introduction

Let Hn denote the hyperbolic n–space. By a compact hyperbolic n–manifold we mean
a quotient space M D �nHn where � is a cocompact torsion-free discrete subgroup
of Isom.Hn/, the group of isometries of Hn . The systole of a compact Riemannian
manifold M , denoted by Syst1.M /, is the length of a closed geodesic of the shortest
length in M . We refer to a recent monograph by M Katz [9] for more information
about systoles and systolic geometry.

It is well-known that for any � > 0 there exist 2–dimensional compact hyperbolic
manifolds having a systole of length less than � , and examples of such manifolds of
any genus g > 2 can be easily constructed using Teichmüller theory. A similar result
for n D 3 can be achieved using Thurston’s hyperbolic Dehn surgery theorem [18,
Theorem 5.8.2]. For a long time the existence of compact hyperbolic manifolds with
arbitrarily short systoles in higher dimensions was an open problem. In a recent
paper [1], Agol suggested a very interesting construction which solves the problem for
nD 4. His paper was a starting point for our work.

Our main result is the following:

Theorem 1.1 For every n > 2 and any � > 0, there exist compact n–dimensional
hyperbolic manifolds M with Syst1.M / < � .
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The manifolds M are obtained by a variant of an inbreeding construction which was
first suggested by Agol for nD 4. We simplify the critical step in the argument of [1]
which makes extensive use of geometrical finiteness and related properties, and hence
limits his construction to some special examples. A principal ingredient in our proof
is a lemma of Margulis and Vinberg [14] which we generalise to cocompact discrete
subgroups of Isom.Hn/. The proof of this generalised Margulis–Vinberg lemma is the
main technical part of the proof of the theorem.

Systolic geometry studies relations between systole length and volume captured by
isosystolic inequalities (see [9]). Our second result provides an inequality of this type
for the manifolds from the proof of Theorem 1.1. To put it into context recall that
for n > 4 (in contrast with nD 2 and 3) there exist only finitely many non-isometric
hyperbolic n–manifolds of bounded volume (see Wang [19]). Hence when �! 0 for
these dimensions we will necessarily have Vol.M /!1. It is natural to ask how fast
the volume grows, and the following theorem gives the answer to this question for our
manifolds.

Theorem 1.2 For every n > 3 there exists a positive constant Cn (which depends only
on n), such that the systole length and volume of the manifolds obtained in the proof of
Theorem 1.1 satisfy

Vol.M /> Cn

Syst1.M /n�2
:

We can compare this inequality with the well known Gromov isosystolic inequality [9,
Theorem 12.2.2], which implies

Vol.M /> An Syst1.M /n;

where An is a positive constant which depends only on n. When the systole of M is
sufficiently large Gromov’s inequality gives a better bound for the volume; however,
when the systole is small the inequality of Theorem 1.2 becomes stronger.

The proof of this theorem uses important recent work of Bridgeman and Kahn on
orthospectra and volumes of hyperbolic n–manifolds [4]. In fact, we can show that it
is possible to achieve that Vol.M / grows exactly like a polynomial in 1=Syst1.M /

(see the discussion after the proof of Theorem 1.2 and Proposition 4.2). Therefore,
Theorem 1.2 captures the growth rate of the volume in our construction.

The paper is organised as follows: In Section 2, we prove Theorem 1.1 modulo the
generalised Margulis–Vinberg lemma. The proof of the lemma is given in Section 3. The
next section is dedicated to Theorem 1.2. We end with remarks regarding arithmeticity,
commensurability and related questions in Section 5.
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2 Proof of Theorem 1.1

Let � > 0. We first obtain a hyperbolic n–manifold M which contains a geodesic
segment of length at most �=2 that is orthogonal to two hypersurfaces.

Fix a totally real number field K�R, and let f be a non-singular .nC1/–ary quadratic
form of signature .n; 1/ defined over K . We assume that for Galois embeddings
� WK ,!R which are different from the original embedding, f � is positive definite.
It is well known that POf .R/ is isomorphic to the group of isometries Isom.Hn/ of
the hyperbolic n–space, and that POf .OK / (DOf .OK /=fC1;�1g) is an arithmetic
lattice in POf .R/, where OK denotes the ring of integers of K . The lattices obtained
this way (and subgroups of POf .R/ which are commensurable with them) are called
arithmetic subgroups of the simplest type. From now on let us assume that the degree
of the field K is at least 2; that is, K ¤ Q. Then by Godement’s compactness
criterion POf .OK / is cocompact. Now, by Selberg’s Lemma, one can find a torsion-
free subgroup � < POf .OK /, of finite index. Thus �nHn is a compact hyperbolic
n–manifold. (We refer to MacLachlan and Reid [12] for more details about arithmetic
subgroups and their properties.)

Consider the vector model of hyperbolic n–space associated with f . More precisely,
we can define an inner product on RnC1 by

(2-1) .u; v/D .u; v/f D
1
2

�
f .uC v/�f .u/�f .v/

�
:

After scaling we can assume that all coefficients of f are in OK , and, moreover, for
any u; v 2 OnC1

K
, we have .u; v/f 2 OK . This does not affect the generality of the

construction and will be our standing assumption. The form f has signature .n; 1/
which implies that .�; �/f is equivalent to a standard Lorentzian inner product on RnC1 ,
and therefore we can repeat the well-known construction of the vector model of Hn

using the inner product .�; �/f (see Ratcliffe [15, Chapter 3]).

Let us choose a vector e0 2KnC1 with f .e0/> 0. The intersection H0Dhe0i
?f \Hn

in the ambient space RnC1 is a hyperplane in Hn and, moreover, �0D Isom.H0/\� is
a cocompact discrete subgroup of Isom.H0/ (where we embed Isom.H0/ ,! Isom.Hn/

in the natural way). The latter holds because � is defined over K and H0 is a K–
rational hyperplane. Now we would like to find another K–rational hyperplane H1
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which is �=2–close to H0 but disjoint from it. This can be achieved as follows. A well-
known result of Margulis asserts that since the group � is arithmetic, its commensurator
is dense in POf .R/ [13, Theorem 1, page 2]. Indeed, this commensurator contains
POf .K/, so we can find  2 POf .K/ with the property that H1 (where H1 D

he1i
?f \Hn and e1 D  .e0/) is disjoint, but at most distance �=2 away, from H0 .

The hyperplane H1 is also K–rational so �1D Isom.H1/\� is a cocompact discrete
subgroup of Isom.H1/, and both �0nH0 and �1nH1 are immersed into �nHn as
totally geodesic hypersurfaces.

The generalised Margulis–Vinberg lemma (below) states that one can find a finite-index
subgroup � 0 < POf .OK / with the property that for every h 2 � 0 ,

either h.H0/DH0 or h.H0/\ .H0[H1/D∅:

Reversing the roles of H0 and H1 we can apply the lemma again to obtain a subgroup
� 00 such that for every h 2 � 00 , either h.H1/DH1 or h.H1/\ .H0[H1/D∅.

Let ƒ D � \ � 0 \ � 00 . Then the natural projections of H0 and H1 in the quotient
ƒnHn will be properly embedded and will not intersect. Thus the manifold LDƒnHn

contains properly embedded totally geodesic hypersurfaces ƒ0nH0 and ƒ1nH1 (where
ƒi D Isom.Hi/\ƒ, i D 0; 1) which are �=2–close. Let g be a geodesic segment
orthogonal to both of them, so as to fulfil our aim stated at the beginning of the proof.

To complete the proof, we ‘cut’ L along the hypersurfaces ƒ0nH0 and ƒ1nH1 .
Retaining the connected component containing g (if the cutting separates the manifold),
we have a manifold M 0 with a totally geodesic boundary and g orthogonal to this
boundary. Taking the double of M 0 results in a closed n–manifold M , and the segment
g becomes a closed geodesic of M of length at most � . This concludes the construction,
and completes the proof.

3 Generalised Margulis–Vinberg lemma

An earlier form of the result in this section appeared in a paper by Margulis and
Vinberg [14], and was also used by Kapovich, Potyagailo and Vinberg in a paper on
non-coherence of lattices [8]. The generalised version here considers the case where a
quadratic form is defined over a number field K=Q rather than being purely rational.
This generalisation is necessary for dealing with cocompact lattices, and leads to a
proof that uses an essentially different argument from that for K DQ.

As before, let K � R be a totally real algebraic number field of degree d , and f
a quadratic form over K of signature .n; 1/ and such that f �j is positive definite
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for all Galois embeddings �j WK ,! R, j D 2; : : : ; d which are different from the
original embedding (denoted by �1 ). Thus the group POf .OK / is an arithmetic lattice
in POf .R/.

Let H0; : : : ;Hk be pairwise disjoint hyperplanes in Hn defined by Hi DHn\heii
?f ,

ei 2KnC1 , i D 0; : : : ; k .

Lemma 3.1 There exists a finite index subgroup � 0 < POf .OK / such that for every
h 2 � 0;

either h.H0/DH0 or h.H0/\ .H0[ � � � [Hk/D∅:

Proof Write � D POf .OK /. Since multiplying the ei by the denominators of their
entries preserves their orthogonality with the Hi , we can assume the ei have entries in
OK . Thus, if h 2 � , then .h.e0/; ei/ 2OK . (Throughout this proof, inner products
and orthogonal complements are understood to be with respect to f as in (2-1).)

Assume that k D 1.

Let P be the principal ideal P D .ˇ/ � OK , where ˇ D 2C.e0; e1/ and C > 1 is
an integer to be determined later. The congruence subgroup �.P/ < � contains (by
definition) precisely those elements h 2 � with the property that

h� id .mod P/:

(Here we use the fact that POf can be identified with the matrix group O0f , the
subgroup of the orthogonal group Of which preserves the upper half-space.) Hence,
given h 2 �.P/, we find that

(3-1)
�
h.e0/; e1

�
D
�
e0; e1

�
C˛ˇ

for some ˛ 2OK (where ˛ depends on h). We wish to show that for every h 2 �1 D

�.P/ we have h.H0/\H1 D∅.

To be able to examine the intersections of the hyperplanes we use the following
inequality (see Ratcliffe [15, Theorem 3.2.6]): two hyperplanes in Hn , defined as
above by normal vectors v0 and v1 , intersect transversally if and only ifˇ̌

.v0; v1/
ˇ̌
<
p
.v0; v0/.v1; v1/:

So we find that the hyperplanes are disjoint or coincide completely if

(3-2)
ˇ̌
.v0; v1/

ˇ̌
>
p
.v0; v0/.v1; v1/:
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If ˛ D 0 in (3-1) then

(3-3)
ˇ̌�

h.e0/; e1

�ˇ̌
D
ˇ̌�

e0; e1

�ˇ̌
>
q
.e0; e0/.e1; e1/D

q�
h.e0/; h.e0/

�
.e1; e1/

(where the inequality follows from (3-2) and the initial condition H0\H1 D∅), and
hence the hyperplanes h.H0/ and H1 are either disjoint or equal. We will eliminate
the possibility of equality later in the proof.

If j˛j> 1, thenˇ̌�
h.e0/; e1

�ˇ̌
D
ˇ̌
.e0; e1/C˛ˇ

ˇ̌
>
ˇ̌
j˛jjˇj � j.e0; e1/j

ˇ̌
(by the triangle inequality for j � j)

D
ˇ̌
.e0; e1/

ˇ̌
�
ˇ̌
2C j˛j � 1

ˇ̌
>
ˇ̌
.e0; e1/

ˇ̌
(since C > 1):

The case j˛j < 1 requires more care. Writing x� for the conjugate of x 2 K by
� 2Gal.K=Q/, we have the norm N.x/ of x defined as the product

Q
�2Gal.K=Q/ x�

(see Lang [11, Chapter I, Section 5]); and if x 2OK then N.x/2Z so that jN.x/j> 1

for x 2OK n f0g [11, Chapter I, Corollary to Proposition 5]. Since ˛ 2OK n f0g and
j˛j< 1, the preceeding means that j˛�j j> 1 for some j 2 f2; : : : ; dg. For this j , we
get ˇ̌�

h.e0/; e1

��j ˇ̌
D
ˇ̌
.e0; e1/

�j C˛�jˇ�j
ˇ̌

>
ˇ̌̌
j˛�j jjˇ�j j � j.e0; e1/

�j j

ˇ̌̌
D
ˇ̌
ˇ�j

ˇ̌ ˇ̌̌̌
j˛�j j �

1

2C

ˇ̌̌̌
> 1

2

ˇ̌
ˇ�j

ˇ̌
D C

ˇ̌
.e0; e1/

�j
ˇ̌
:

We have

(3-4)
ˇ̌�

h.e0/; e1

��j ˇ̌> C
ˇ̌
.e0; e1/

�j
ˇ̌
D C

ˇ̌
.e0; e1/

�j
ˇ̌ ˇ̌�h.e0/; e1

��j ˇ̌ˇ̌�
h.e0/; e1

��j ˇ̌ :
Now since .�; �/f �j is positive definite (for j > 2), the Cauchy–Schwarz inequality
applies and we can use it to bound the denominator from above. (Note that we have
.u; v/� D .u� ; v� /f � .) Thus (3-4) becomes

ˇ̌�
h.e0/; e1

��j ˇ̌> C

ˇ̌
.e0; e1/

�j
ˇ̌ˇ̌�

h.e0/; e1

��j ˇ̌q�
h.e0/; h.e0/

��j .e1; e1/
�j

D C

ˇ̌
.e0; e1/

�j
ˇ̌ˇ̌�

h.e0/; e1

��j ˇ̌q
.e0; e0/

�j .e1; e1/
�j

:
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Multiplying each side of this inequality by all the
ˇ̌�

h.e0/; e1

��k
ˇ̌

for which k ¤ j

gives

(3-5)
ˇ̌
N
�
.h.e0/; e1/

�ˇ̌
> C

ˇ̌
N
�
.h.e0/; e1/

�ˇ̌
„ ƒ‚ …

.�/

ˇ̌
.e0; e1/

�j
ˇ̌p

.e0; e0/
�j .e1; e1/

�j
:

We can replace .�/ by
ˇ̌
N
�
.e0; e1/

�ˇ̌
, forˇ̌

N
�
.h.e0/; e1/

�ˇ̌
D
ˇ̌
N
�
.e0; e1/C 2C˛.e0; e1/

�ˇ̌
D
ˇ̌
N
�
.e0; e1/

�ˇ̌
�
ˇ̌
N.1C 2C˛/

ˇ̌
(by multiplicativity of the norm)

>
ˇ̌
N
�
.e0; e1/

�ˇ̌
(since 1C 2C˛ 2OK n f0g).(3-6)

Writing both norms in (3-5) as products of Galois conjugates, (3-5) and (3-6) give

dY
iD1

ˇ̌�
h.e0/; e1

��i
ˇ̌
> C

0@ dY
iD1

ˇ̌
.e0; e1/

�i
ˇ̌1A ˇ̌

.e0; e1/
�j
ˇ̌p

.e0; e0/
�j .e1; e1/

�j
;

so that by rearranging,

ˇ̌�
h.e0/; e1

�ˇ̌
> C

ˇ̌
.e0; e1/

�j
ˇ̌p

.e0; e0/
�j .e1; e1/

�j

0@ dY
iD2

ˇ̌
.e0; e1/

�i
ˇ̌ˇ̌�

h.e0/; e1

��i
ˇ̌
1A ˇ̌.e0; e1/

ˇ̌

> C

ˇ̌
.e0; e1/

�j
ˇ̌p

.e0; e0/
�j .e1; e1/

�j

0@ dY
iD2

ˇ̌
.e0; e1/

�i
ˇ̌p

.e0; e0/�i .e1; e1/�i

1Aˇ̌.e0; e1/
ˇ̌
:(3-7)

At this point by choosing C to be sufficiently large we can ensure that
ˇ̌�

h.e0; e1/
�ˇ̌
>ˇ̌

.e0; e1/
ˇ̌
. Notice that since ˛ depends on h, so too does j ; however, we can choose

C independently of h by assuming

(3-8) C >
Y
�j2S

.e0; e0/
�j .e1; e1/

�j

Œ.e0; e1/
�j �2

;

where S � f�2; : : : ; �dg is the set of all �j for which the corresponding factors in
(3-8) are greater than 1.

Thus we get
ˇ̌�

h.e0/; e1

�ˇ̌
>
ˇ̌
.e0; e1/

ˇ̌
>
p
.h.e0/; h.e0//.e1; e1/ as in the other two

cases for ˛ . This means that h.H0/ either coincides with, or does not intersect H1 .

To avoid the possibility of h.H0/ coinciding with H1 , we have to ensure that h.e0/¤

˙!e1 for some ! 2R>0 . If it exists, then this ! would be equal to
p
.e0; e0/=.e1; e1/

and there are two possible cases:
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(a) ! 62K , whence h.e0/D˙!e1 is impossible.

(b) ! 2K .

Let e0
1

be the vector obtained by scaling !e1 by
p
.e0; e0/.e1; e1/, so that e0

1
D

.e0; e0/e1 . Similarly, define e0
0
D
p
.e0; e0/.e1; e1/ e0 . Thus we have h.e0/D˙!e1

if and only if h.e0
0
/D˙e0

1
. We verify that e0

0
and e0

1
are in fact in OnC1

K
, using the

following:

(1) If x2OK and
p

x2K then
p

x2OK . Indeed, if xmCam�1xm�1C� � �Ca0D

0 is an equation (with coefficients in Z) giving rise to the algebraic integer x (see
Lang [11, Chapter I, Section 2]), then .

p
x/2mCam�1.

p
x/2.m�1/C� � �Ca0D0

holds and hence
p

x is an algebraic integer. Denote by A the set of all algebraic
integers, and note that OK D A\K (see [11, Chapter 1, Proposition 5]). Thus
since

p
x 2K we have

p
x 2OK .

(2) If
p

x=y 2K (for x;y 2K ), then
p

xy 2K , for
p

xy D y
p

x=y 2K .

Now for h.e0
0
/D˙e0

1
to hold we must have e0

0
C v D˙e0

1
where v � 0 modulo P .

If e0
0
C e0

1
and e0

0
� e0

1
are not congruent to 0 modulo P , then this coincidence will

not occur, and we can ensure this by choosing C sufficiently large.

It remains to check that h.H0/ and H0 either coincide or are disjoint. One can
repeat all of the above argument as far as (3-7), with e0 in place of e1 , and we find
that the ideal P 0 D 2.e0; e0/ actually suffices in place of P to ensure that we have
j.h.e0/; e0/j>

p
.h.e0/; h.e0//.e0; e0/ for every h 2 �.P 0/. Denote �.P 0/ by �0 .

If k > 2, then to separate all hyperplanes we apply the above argument to all other ei ,
(i D 2; : : : ; k ) so that we get �2; : : : ; �k which are also finite-index subgroups of � .
The group � 0 D �0\�1\ � � � \�k will then satisfy the conclusion of the lemma, and
is still of finite index in � .

Remark 3.2 If we assume that the hyperplanes H0; : : : ;Hk are not only disjoint
but also do not meet at infinity then the inequality in (3-3) becomes strict and the
coincidence of h.H0/ and Hi (for i D 1; : : : ; k ) is automatically avoided.

4 Proof of Theorem 1.2

Let M 0 be a compact hyperbolic n–manifold as in Section 2, for which M is a double.
By the construction, M 0 has a totally geodesic arc of length ` D 1

2
Syst1.M / with

endpoints in @M 0 . This value ` appears in the orthospectrum of M 0 as defined in the
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paper by Bridgeman and Kahn [4]. In order to bound the volume of M 0 , and hence
of M , we can apply the result of Bridgeman and Kahn which relates the volume and
orthospectrum of a compact hyperbolic n–manifold with non-empty totally geodesic
boundary.

Assuming n>3, by [4, Theorem 1] we have Vol.M 0/>Fn.`/, and by [4, Lemma 9(3)],
lim`!0 `

n�2Fn.`/DKn , where Fn is a continuous monotonically decreasing function
R>0!R>0 and Kn is an explicit positive constant given there. It follows that there
exists K0n > 0 such that if ` < 1, then

Fn.`/> K0n
`n�2

:

Therefore,

Vol.M /D 2 Vol.M 0/> 2n�1K0n
Syst1.M /n�2

;

if Syst1.M / < 2.

For Syst1.M /> 2, we can refer to the Kazhdan–Margulis theorem which asserts that
there is a constant An > 0 such that Vol.M /> An (see Kazhdan and Margulis [10]).
Hence we can take Cn Dmin.2n�1K0n; 2

n�2An/ and the theorem is proven.

Remark 4.1 It was pointed out by the referee that a similar bound holds in a more
general setting if the systole of M is hyperbolic. Indeed, the volume of a Margulis
tube about the systole of M can be bounded below by C=`n�2 in the case where
the corresponding element of �1.M / has no rotational part. We refer the reader to
Reznikov [16] for details.

It is interesting to see how close the inequality of Theorem 1.2 approximates the actual
growth of volume in our construction. In Section 2 the desired manifold M is obtained
as a double of M 0 , which in turn appears as a part of the quotient manifold LDƒnHn .
Hence

Vol.M /D 2 Vol.M 0/6 2 Vol.L/:

The volume of L depends on the index of ƒ in the initial group � which can be
estimated from the proof of the generalised Margulis–Vinberg lemma in Section 3.
Let us note that by the argument in Section 3 we can always make the index j� Wƒj
arbitrarily large, and hence cannot bound the volume of L from above. However,
we are rather interested in understanding how small the volume can get when � in
Theorem 1.1 is close to zero and here we can say more.
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Proposition 4.2 For every n > 2 there exists a sequence of manifolds fMig from
Theorem 1.1, such that when i !1, Syst1.Mi/! 0 and

Vol.Mi/6 Bn

Syst1.Mi/n
;

where Bn and n are positive constants depending on n.

Proof Consider a sequence of inbred manifolds Mi with Syst1.Mi/D �i! 0 when
i !1. For each Mi we have associated vectors e

.i/
0

and e
.i/
1

defined in Section 2
and an ideal P.i/ 2OK defined in Section 3. We haveˇ̌

N
�
P.i/

�ˇ̌
D .2Ci/

d
ˇ̌
N
��

e
.i/
0
; e
.i/
1

��ˇ̌
;

where Ci satisfies inequality (3-8). Recall that in Section 3 the vectors e
.i/
0

and e
.i/
1

are normalised so that they have coordinates in OK . This implies that when the angle
between e

.i/
0

and e
.i/
1

tends to 0, either
ˇ̌
N
��

e
.i/
0
; e
.i/
1

��ˇ̌
or the lower bound for Ci

will grow, and hence the absolute value of the norm
ˇ̌
N
�
P.i/

�ˇ̌
!1.

We give a more concrete example to provide the fMig for the conclusion of the
proposition. Let K D Q.

p
5/ and f D �

p
5x2

0
C x2

1
C � � � C x2

n . The sequence of
matrices

Ai D

0BBBBBBB@

i2C
p

5

i2�
p

5
0 � � � 0 �2i

i2�
p

5

0 1 0
:::

: : :
:::

0 1 0
�2i
p

5

i2�
p

5
0 � � � 0 i2C

p
5

i2�
p

5

1CCCCCCCA
can be shown to lie in O0f .K/ (the K–points of the subgroup of Of that preserves
Hn ), and clearly Ai! id as i !1. Let e0 D .0; 0; : : : ; 0; 1/, so that

Ai.e0/D

 
�2i

i2�
p

5
; 0 ; : : : ; 0 ;

i2C
p

5

i2�
p

5

!
2KnC1:

Rescaling e0 and Ai.e0/, we define

e
.i/
0
D .0; 0; : : : ; i2

�
p

5/ and e
.i/
1
D .�2i; 0; : : : ; 0; i2

C
p

5/;

which give�
e
.i/
0
; e
.i/
1

�
D i4

� 5 and
�
e
.i/
0
; e
.i/
0

�
D
�
e
.i/
1
; e
.i/
1

�
D .i2

�
p

5/2:

Then e
.i/
0

and e
.i/
1

can be seen to define disjoint hyperplanes in Hn by (3-2): note that
the inequality is strict.
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For our choice of K there is only one nontrivial Galois automorphism � W aC b
p

5 7!

a� b
p

5, so we also compute�
e
.i/
0
; e
.i/
1

��
D i4

� 5 and
�
e
.i/
0
; e
.i/
0

��
D
�
e
.i/
1
; e
.i/
1

��
D .i2

C
p

5/2:

The proof of Lemma 3.1 gives two ideals

P.i/
0
D
�
2
�
e
.i/
0
; e
.i/
0

��
and P.i/

1
D
�
2C
�
e
.i/
1
; e
.i/
1

��
;

and we require that

C > .i2C
p

5/

.i2�
p

5/
(see (3-8)):

We also need e
.i/
0
˙ e

.i/
1

to be nonzero modulo P.i/
1

. That is,

.�2i; 0; : : : ; 0; 2i2/ and .2i; 0; : : : ; 0;�2
p

5/

are not zero modulo P.i/
1

. Since P.i/
1
D
�
2C.i2 �

p
5/2
�
, this holds automatically.

Observe that if i is large, then C D 2 is sufficient. Note also that since P.i/
0

divides
P.i/

1
, we need only consider P.i/

1
and can take � 0i D�

�
P.i/

1

�
. (Actually by Remark 3.2

we needn’t make this justification but it is included here for completeness of exposition.)

Note that the proof of Theorem 1.1 requires Lemma 3.1 to be applied a second time,
with e

.i/
0

and e
.i/
1

interchanged. However, since both vectors are of the same length, the
ideal Q.i/

1
D
�
4
�
e
.i/
0
; e
.i/
0

��
is equal to P.i/

1
anyway, and so we can effectively ignore

this step.

Now from hyperbolic geometry, we have (see Ratcliffe [15, Theorem 3.2.8])

(4-1) cosh �
�
H
.i/
0
;H

.i/
1

�
D

ˇ̌�
e
.i/
0
; e
.i/
1

�ˇ̌e
.i/
0

e
.i/
1

 D i2C
p

5

i2�
p

5

where � is the distance between the hyperplanes H
.i/
0

and H
.i/
1

defined by e
.i/
0

and
e
.i/
1

respectively. We see that �! 0 as i !1.

In the manifold Mi obtained by the inbreeding construction, we have �iDSyst1.Mi/D

2�i where �i D �
�
H
.i/
0
;H

.i/
1

�
. Now, by (4-1),

�i D 2 cosh�1

 
i2C
p

5

i2�
p

5

!
:

Using a Taylor expansion we deduce that for some constant ı > 0 we have

�i �
ı

i
for large i :
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Writing P.i/
1
D .ˇ/ with ˇ D 4.i2�

p
5/2 , we haveˇ̌

N
�
P.i/

1

�ˇ̌
D 16.i2

�
p

5/2.i2
C
p

5/2 � B.ı=�i/
8

for some constant B > 0.

Now for a given P.i/ , note that
ˇ̌
N.P.i//

ˇ̌
is the number of elements in the residue

class ring OK=P.i/ (see Lang [11, Chapter I, Section 7]), so j� W� 0i j6 jN.P.i//j.nC1/2

since j� W � 0i j is the order of a matrix group over OK=P.i/ . Thus for some positive
constant D ,

Vol.Hn=� 0i/D Vol.Hn=�/ � j� W � 0i j6 D
�
B.ı=�i/

8
�.nC1/2

;

which is a polynomial in 1=Syst1.Mi/ of degree 8.nC 1/2 .

Other related constructions of extremal sequences of manifolds fMig are given in
detail in the second author’s forthcoming PhD thesis [17].

5 Remarks

5.1 Arithmeticity

If � in Theorem 1.1 is less than some �0>0, which depends only on the degree d of the
field K in the construction, and on the dimension n, then the manifolds M produced by
the theorem are non-arithmetic. This can be seen as follows: Assume that the manifold
M is arithmetic. The fundamental group �1.M

0/ (of the compact manifold M 0 with
boundary, of which M is a double) injects into �1.M / and both are Zariski dense in
PO.n; 1/ı . This is shown by Gromov and Piatetski-Shapiro [7, Sections 0.2 and 1.7].
By the commensurability criterion [7, Section 1.6] we conclude that �M D �1.M / is
commensurable with POf .OK /. Now we can follow a known argument relating the
lengths of geodesics of an arithmetic manifold M to eigenvalues of integral matrices
(see Gelander [6, Section 10]). This implies in our case that Syst1.M /> Cn;d , since
the integral polynomials which arise have their degree bounded above by d.nC 1/.
Hence if � < Cn;d , then M has to be non-arithmetic.

A conjecture of Lehmer from number theory claims that there exists a constant
m > 1 such that the Mahler measure M.P / of any non-cyclotomic integral monic
polynomial P satisfies M.P / > m. (Recall that the Mahler measure of an in-
tegral monic polynomial P of degree d with roots �1; �2; : : : ; �d is defined by
M.P / D

Qd
iD1 max.1; j�i j/.) Our argument shows that if Lehmer’s conjecture is

true then �0 in the statement above is an absolute constant which does not depend on
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K or n. We refer to Margulis [13, page 322] and Gelander [6, Section 10] for a related
discussion addressing arithmetic manifolds.

We have shown that our method provides a new construction of non-arithmetic hyper-
bolic n–manifolds for every dimension n. It has some similarities with the interbreeding
construction of Gromov and Piatetski-Shapiro [7] but at the same time is different from
the former. Following Agol [1] we call it an inbreeding construction.

5.2 Commensurability

If �! 0 then at most finitely many of the manifolds M provided by Theorem 1.1 will
be commensurable to each other. Indeed, assume that we have an infinite sequence of
commensurable non-arithmetic manifolds M1 D ƒ1nHn , M2 D ƒ2nHn , . . . , such
that Syst1.Mi/ D �i ! 0 when i ! 1. By Margulis’ Theorem [13, Theorem 1,
page 2], the commensurability group � of ƒi will be a lattice in Isom.Hn/ and hence
�nHn is a compact hyperbolic n–orbifold. We have

� �ƒ1; ƒ2; : : : ;

so the orbifold �nHn has systoles of arbitrarily short length, which is impossible. Note
that this argument works for any non-arithmetic manifolds with short geodesics, not
only those provided by our theorem.

5.3 Non-compact manifolds

The notion of systole being defined as the length of a shortest closed geodesic in
a manifold M generalises to non-compact finite volume hyperbolic n–manifolds.
In terms of the lattice ƒ � Isom.Hn/ uniformising M , the closed geodesics in M

correspond to the hyperbolic elements of ƒ, while ƒ also contains parabolics which
have zero displacement and correspond to the cusps. With these observations at hand
the results of this paper can be generalised to the finite volume non-compact hyperbolic
n–manifolds. The proofs are entirely similar and we omit them.

5.4 Some applications

Our non-arithmetic manifolds M contain properly embedded separating totally ge-
odesic hypersurfaces, and hence the fundamental group �1.M / has the structure of
a free product with amalgamated subgroup similar to the fundamental groups of the
Gromov–Piatetski-Shapiro manifolds [7]. This enables one to use our manifolds for
the construction of Belolipetsky and Lubotzky [3], which proves that every finite group
can be realised as the full isometry group of some compact hyperbolic n–manifold.
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Another immediate application is to the construction of some new non-coherent lattices
in Isom.Hn/, which can be achieved by applying the argument of Kapovich–Potyagailo–
Vinberg [8, Section 4] to the lattices provided by our construction. The details of this
application are explained in the second author’s forthcoming PhD thesis [17].

5.5 Other locally symmetric spaces and a conjecture of Lehmer

It is natural to ask what can be said about systoles of other locally symmetric manifolds.
This question pertains to the quotients of symmetric spaces X DH=K by torsion-free
lattices, where H is now a semisimple Lie group and K its maximal compact subgroup.

If all lattices in H are arithmetic and Lehmer’s conjecture (or its weaker version by
Margulis [13, Chapter IX, Section 4.21]) holds, then the systoles of the X –locally
symmetric manifolds will be bounded below by a constant which depends only on X

(see Gelander [6, Section 10]). The arithmeticity of lattices is known for groups of real
rank at least 2 by Margulis [13, Theorem 1, page 2], and for H D Sp.n; 1/ or F�20

4

by Corlette [5]. Hence the only case for which one may hope to have a version of our
result is when H D PU.n; 1/ and X is complex hyperbolic n–space.

There is also a reverse connection between Lehmer’s conjecture and systoles of arith-
metic locally symmetric manifolds. This is explained in detail for the low dimensional
hyperbolic manifolds in Machlachlan and Reid [12, Chapter 12.3] and the report by
the first author [2].
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