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Surface links which are coverings over the standard torus

INASA NAKAMURA

We introduce a new construction of a surface link in 4–space. We construct a surface
link as a branched covering over the standard torus, which we call a torus-covering
link. We show that a certain torus-covering T 2 –link is equivalent to the split union of
spun T 2 –links and turned spun T 2 –links. We show that a certain torus-covering T 2 –
link has a nonclassical link group. We give a certain class of ribbon torus-covering
T 2 –links. We present the quandle cocycle invariant of a certain torus-covering T 2 –
link obtained from a classical braid, by using the quandle cocycle invariants of the
closure of the braid.

57Q45; 57Q35

1 Introduction

A surface link is the image of a smooth embedding of a closed surface into the Euclidean
4–space R4 . It is known (see Kamada [22; 24]) that any oriented surface link can
be presented by the closure of a surface braid. Here, the closure of a surface braid
is a surface link of the following form. Let S2 be a standard 2–sphere in R4 , ie
the boundary of a standard 3–ball in R3 � f0g. The closure of a surface braid is a
surface link embedded in a tubular neighborhood N.S2/ of S2 in such a way that
the projection of it to S2 is a branched covering over S2 . We identify N.S2/ with
I � I �S2 , where I is an interval. For a surface link S of such a form, we consider
the singular set of the image of S by the projection to I �S2 , and the image of this
singular set by the projection to S2 forms a graph on S2 . An m–chart on S2 is such
a graph with certain additional data. We can present the original surface link by its
m–chart on S2 (see Kamada [23; 24]).

In this paper we introduce a “torus-covering link” as a new construction of a surface link,
by considering a standard torus instead of a standard 2–sphere. Let T be a standard
torus in R4 , ie the boundary of a standard solid torus in R3 � f0g. A torus-covering
link is a surface link embedded in a tubular neighborhood N.T / of T in such a way
that the projection of it to T is a branched covering over T . For a surface link of such
a form, we can define its m–chart on T in the same way as above. A torus-covering
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link can be presented by an m–chart on T . The aim of this paper is to study various
aspects of torus-covering links.

We introduce an equivalence relation, called the t –equivalence, among m–charts
on T , and show that two torus-covering links are equivalent if their m–charts on T

are t –equivalent (Theorem 2.5). A T 2 –link is a surface link whose components are
homeomorphic to tori. We show that a torus-covering T 2 –link is determined from two
commutative classical m–braids (Lemma 2.8), which we call basis m–braids, and we
denote by Sm.a; b/ the torus-covering T 2 –link with basis m–braids a and b . A vertex
of degree one (respectively six) of an m–chart is called a black vertex (respectively
a white vertex). A torus-covering T 2 –link is presented by an m–chart on T without
black vertices (Lemma 2.7). We show that an m–chart on T with neither black
nor white vertices presents the split union of spun T 2 –links and turned spun T 2 –
links (Theorem 2.16).

The link group of a surface link or a classical link is the fundamental group of the link
exterior. First we calculate the link group of Sm.a; b/ (Proposition 3.1). It is known
(see Livingston [26] and Boyle [8]) that a spun T 2 –link or a turned spun T 2 –link
has a classical link group; thus the split union of spun T 2 –links and turned spun
T 2 –links also has a classical link group. We will show that a certain 2–component
torus-covering T 2 –link has a nonclassical link group (Theorem 3.2). We show its
knot version as well: a certain torus-covering T 2 –knot has a nonclassical knot group
(Theorem 3.7). As a corollary, we can see that the torus-covering T 2 –link of Theo-
rems 3.2 or 3.7 is not equivalent to the split union of spun T 2 –links and turned spun
T 2 –links (Theorem 3.12).

An oriented surface link is called ribbon if it is the boundary of an immersed 3–manifold
with “ribbon singularities” (see Yanagawa [32]). We give a certain class of ribbon torus-
covering T 2 –links (Theorem 4.1). As a corollary, we can see that the torus-covering
T 2 –link of Theorem 3.12 is ribbon (Corollary 4.2).

It is known (see Asami and Satoh [2]) that the quandle cocycle invariant of a twist spun
2–knot of a classical knot K can be presented by using the quandle cocycle invariants
of a 1–tangle whose closure is K . From a similar viewpoint, we expect that an invariant
of Sm.b; �

2n/ can be presented by using invariants of an m–braid b , where � is a
half-twist of a bundle of m parallel strands. In Theorem 5.2 we present the quandle
cocycle invariant of Sm.b; �

2n/, by using the quandle cocycle invariants of the closure
of b . In Theorem 5.5, we calculate some concrete examples of Theorem 5.2. They
give torus-covering T 2 –knots whose triple point numbers are positive (Corollary 5.6).

The paper is organized as follows. In Section 2, we define a torus-covering link
(Definition 2.3) and show Theorem 2.5. Further we study torus-covering T 2 –links and
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show Theorem 2.16. In Section 3, we study link groups of torus-covering T 2 –links.
We show Theorem 3.2 and Theorem 3.7. Further we show Theorem 3.12. In Section 4,
we show Theorem 4.1. In Section 5, we calculate the quandle cocycle invariants and
show Theorem 5.2. Further we show Theorem 5.5, by using Mochizuki’s 3–cocycle.

2 Torus-covering links

A braided surface over a 2–disk was defined by Rudolph [30] and Kamada [24]. A
surface braid is a braided surface with some boundary condition, and a notion of an
m–chart on a 2–disk was introduced by Kamada [20; 24] to present a simple surface
braid. Equivalent simple surface braids have distinct chart presentations. The notion of
C–move equivalence between two m–charts on a 2–disk was introduced by Kamada [20;
23; 24] to give the equivalence class of an m–chart which represents the equivalence
class of a simple surface braid. In this section, we modify the definitions to define a
braided surface S over a closed surface †, an m–chart on † which presents S , and
the notion of C–move equivalence between two m–charts on †. Using these terms, we
define a torus-covering link, which is presented by an m–chart on the standard torus.
We define t –equivalence between two m–charts, and show that the torus-covering
links are equivalent if m–charts of them are t –equivalent (Theorem 2.5). Further we
study torus-covering T 2 –links. A torus-covering T 2 –link is presented by an m–chart
on T without black vertices (Lemma 2.7). We show Theorem 2.16: an m–chart on T

with neither black nor white vertices presents the split union of spun T 2 –links and
turned spun T 2 –links.

We work in the smooth category, and we assume that embeddings are locally flat. Let
D2 D I � I , where I D Œ0; 1�. A surface link is the image of a smooth embedding of
a closed surface into R4 . Two surface links are said to be equivalent if one is taken to
the other by an orientation-preserving self-diffeomorphism of R4 .

Definition 2.1 A closed surface S embedded in D2 �† is called a braided surface
over † of degree m if p†jS W S!† is a branched covering map of degree m, where
p†W D

2 �†!† is the projection to the second factor. A braided surface S is called
simple if #.S \p�1

†
.x//Dm� 1 or m for each x 2†. Take a base point x0 of †.

Two braided surfaces over † of degree m are equivalent if there is a fiber-preserving
ambient isotopy of D2 �† rel p�1

†
.x0/ which carries one to the other.

When a simple braided surface S is given, we obtain a graph on †, as follows.
Consider the singular set Sing.p1.S// of the image of S by the projection p1 to
I �†. Perturbing S if necessary, we can assume that Sing.p1.S// consists of double
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point curves, triple points, and branch points. Moreover we can assume that the singular
set of the image of Sing.p1.S// by the projection to † consists of a finite number of
double points such that the preimages belong to double point curves of Sing.p1.S//.
Thus the image of Sing.p1.S// by the projection to † forms a finite graph � on †
such that the degree of its vertex is either 1, 4 or 6. An edge of � corresponds to a
double point curve, and a vertex of degree 1 (respectively 6) corresponds to a branch
point (respectively a triple point).

For such a graph � obtained from a simple braided surface S , we give orientations
and labels to the edges of � , as follows. Let us consider a path l in † such that
l \ � is a point P of an edge e of � . Then S \ p�1

†
.l/ is a classical m–braid

with one crossing in p�1
†
.l/ such that P corresponds to the crossing of the m–braid.

Let �1; �2; : : : ; �m�1 be the standard generators of the m–braid group Bm . Let ��i
(i 2 f1; 2; : : : ;m� 1g, � 2 fC1;�1g) be the presentation of S \p�1

†
.l/. Then label

the edge e by i , and moreover give e an orientation such that the normal vector
of l corresponds (respectively does not correspond) to the orientation of e if � DC1

(respectively �1). We call such an oriented and labeled graph an m–chart of S .

In general, we define an m–chart on † as follows.

Definition 2.2 Let m be a positive integer, and let � be a finite graph on †. Then �
is called an m–chart on † if it satisfies the following conditions:

(i) Every edge is oriented and labeled by an element of f1; 2; : : : ;m� 1g.

(ii) Every vertex has degree 1, 4 or 6.

(iii) The adjacent edges around each vertex are oriented and labeled as shown in
Figure 1, where we depict a vertex of degree 1 by a black vertex, and a vertex of
degree 6 by a white vertex.

i i i
i

i

i

i

j

j

j j

j

black vertex

ji � j j D 1 ji � j j> 1

white vertex

Figure 1: Vertices in an m–chart

When an m–chart � on † is given, we can reconstruct a simple braided surface S

over † as follows. Let N.�/ be a neighborhood of � in †. Let us consider a trivial
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braided surface S D Qm � .†�N.�// over †�N.�/, where Qm is a set of m

interior points of D2 . We extend S over a neighborhood of each edge as follows.
Identify a neighborhood of an edge e with I�I such that e is identified with f1=2g�I .
Let i be the label attached to e , and let � DC1 (respectively �1) if the orientation
of e corresponds (respectively does not correspond) to the orientation of f0g�I . Then
let the braided surface S over the neighborhood of e be the braided surface which
has a presentation ��i � I and the image of the double point curve of p1.S/ by the
projection to † is e . Since � is as in Figure 1 around each vertex, S can be extended
naturally over a neighborhood of each vertex. See Carter and Saito [14] and Kamada
[21; 24] for more details. Thus we can construct a simple braided surface S over †
such that the original m–chart � is an m–chart of S .

Two m–charts on † are C–move equivalent if they are related by a finite sequence
of ambient isotopies of † rel p�1

†
.x0/ and CI, CII, CIII–moves shown in Figure 2;

see [24] for the complete set of CI–moves. It is shown as a minor modification of [20;
23; 24] that two simple braided surfaces over † of degree m are equivalent if and only
if m–charts of them are C–move equivalent.

CI–move

CII–move
ji � j j> 1

CIII–move
ji � j j D 1

(1) (2)

(3) (4)
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Figure 2: CI, CII, CIII–moves. For CI–moves, we give only several examples.

Now we define torus-covering links. Let T be the standard torus in R4 , ie the
boundary of the standard solid torus in R3 � f0g. Let us fix a point x0 of T , and take
a meridian m and a longitude l of T with the base point x0 . A meridian is an oriented
simple closed curve on T which bounds the 2–disk of the solid torus whose boundary
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is T . A longitude is an oriented simple closed curve on T which is null-homologous
in the complement of the solid torus in the three space R3 � f0g. Let N.T / be a
tubular neighborhood of T in R4 . Since T is the boundary of the standard solid torus
in R3 � f0g, the normal bundle of T in R3 � f0g is a trivial bundle. Let us identify
it with I �T . Then let us identify N.T / with I � I �T , where the second I is an
interval in the fourth axis of R4 . From now on, we identify N.T / with D2 �T .

Definition 2.3 A torus-covering link is a surface link in R4 presented by a simple
braided surface over T , where we regard the braided surface as in N.T /�R4 .

As we mentioned, for two m–charts on T , their presenting braided surfaces over T

are equivalent if the m–charts are C–move equivalent. Hence it follows that for two
m–charts on T , their presenting torus-covering links are equivalent if the m–charts
are C–move equivalent. Since each component of a torus-covering link is a branched
cover over a torus T , each component of a torus-covering link is of genus at least one.
See Propositions 2.11, 2.12 and 2.13 for some examples of torus-covering links. Note
that it is known (see Berstein and Edmonds [3; 4]) that any braided surface over T is
approximated by a simple braided surface over T .

Regarding S4 as the one-point compactification of R4 , we regard a surface link as
in S4 . Then N.T / D D2 � T is embedded in S4 . Let r D @D2 � f0g � f0g be a
curve on @N.T / D @D2 � T . Put E4 D cl.S4 �N.T //. Let r , m and l be the
curves on @E4 , which are identified with r, m and l under the natural identification
map i W @N.T / ! @E4 . The curves r, m and l represent a basis of H1.@E

4I Z/.
Let f W @E4!E4 be a diffeomorphism such that f�.r m l /D .r m l /Af , where
Af 2 GL.3;Z/Š �0Diffeo.@E4/. It is known (see Montesinos [28]) that the map f
can be extended to a self-diffeomorphism of E4 if and only if Af 2H , where:

H D

8<:
0@˙1 0 0

� ˛ 

� ˇ ı

1A 2 GL.3;Z/I ˛CˇC  C ı � 0 .mod 2/

9=;
Using this fact, we introduce an equivalence relation between two m–charts on T .

Definition 2.4 We say that two m–charts on T are t –equivalent if they are related
by a finite sequence of ambient isotopies of T , C–moves and a self-diffeomorphism
of T given by an element of:��

˛ 

ˇ ı

�
2 GLC.2;Z/I ˛CˇC  C ı � 0 .mod 2/

�
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Theorem 2.5 Two torus-covering links in S4 are equivalent if m–charts of them are
t –equivalent.

Proof Since C–move equivalent m–charts present equivalent torus-covering links, it
suffices to show in the cases for an ambient isotopy of T and a self-diffeomorphism g

of T of Definition 2.4.

An ambient isotopy of T induces a fiber-preserving ambient isotopy of N.T / which
relates the torus-covering links. This can be extended to the whole space by the Isotopy
Extension Theorem (see Hirsch [18]). The terminal map of the resulting isotopy is an
orientation-preserving diffeomorphism; thus the torus-covering links are equivalent.

Let � be an m–chart on T . Let S and S 0 be the torus-covering links presented
by � and g.�/ respectively. Let g0 be a self-diffeomorphism of N.T / induced by g ,
ie g0 D idD2 � gW N.T /! N.T /, where we regard N.T / as D2 � T . Since Ag0

is in GLC.3;Z/, the map g0j@N.T / can be considered as an orientation-preserving
self-diffeomorphism of @E4 . Since Ag0 is an element of H , g0j@N.T / can be extended
to E4 , and hence to S4 D N.T /[@N.T / E4 . This is an orientation-preserving self-
diffeomorphism of S4 which maps S to S 0 , and hence S and S 0 are equivalent
in S4 .

In particular, we have the following corollary. Let � , respectively � , be a self-
diffeomorphism of T given by:�

0 �1

1 0

�
; respectively

�
1 �1

0 1

�
Corollary 2.6 Two m–charts on T present equivalent torus-covering links if they
are related by a finite sequence of ambient isotopies of T , C–moves, and moves as
in Figure 3.

a

b

� b�1

a

�

a

b

�

a

a a b

�

(1) (2)

Figure 3: Equivalent moves of m–charts

Proof The moves as in Figure 3 (1) and (2) are related by � and �2 respectively. They
give t –equivalence between two m–charts on T . Thus the conclusion follows from
Theorem 2.5.
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Remark Teragaito [31] proved the same fact of the above corollary for the symmetry-
spun version. The case of �2 for turned spun T 2 –links was shown by Boyle [8], using
the result of Gluck [16].

A torus-covering T 2 –link is a torus-covering link whose components are homeomor-
phic to tori.

Lemma 2.7 A torus-covering T 2 –link S is presented by an m–chart without black
vertices. Thus S is an unbranched cover over T .

Proof Let � be an m–chart on T which presents S , and let b.�/ be the number of
black vertices in � . Then S is a branched cover over T with b.�/ branch points, and
the Euler characteristic of S is equal to �b.�/. Further, since the Euler characteristic
of tori is equal to zero, we have b.�/D 0.

Let us consider a torus-covering T 2 –link S . The intersections S \ p�1
T
.m/ and

S \p�1
T
.l/ are closures of classical braids. Cutting open the solid tori at the 2–disk

p�1
T
.x0/, we obtain a pair of classical braids. We call them basis braids.

Lemma 2.8 (1) The basis braids of a torus-covering T 2 –link are commutative.

(2) For any commutative m–braids a and b , there exists a unique torus-covering
T 2 –link with basis braids a and b .

For commutative m–braids a and b , we denote by Sm.a; b/ the torus-covering T 2 –
link with basis m–braids a and b .

Proof (1) Let Xm be the configuration space of unordered m distinct points of
a 2–disk D2 , ie the set of m–element subsets of D2 such that each m–element
subset consists of m distinct points. It is known (see Artin [1] and also Birman [5])
that �1.Xm/D Bm . Since a torus-covering T 2 –link is presented by an unbranched
covering of degree m over T by Lemma 2.7, it is presented by a map f W T !Xm .
The induced map f� gives a homomorphism Z˚ZŠ�1.T /!�1.Xm/DBm . Since
the basis braids are the images of generators of Z˚Z by this homomorphism, they
are commutative.

(2) For any commutative m–braids a and b , let us consider a map f W m[ l!Xm

such that the closed paths f jm and f jl in Xm represent a and b respectively. Since
a and b are commutative, aba�1b�1 is isotopic to the trivial braid, and it follows that
the closed path l in Xm representing aba�1b�1 is null-homotopic. Hence we can
take a 2–disk in Xm such that the boundary is l : thus f can be extended to a map
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from T to Xm . Since �2.Xm/D 0 (see Fadell and Neuwirth [15]), such an extension
is unique (up to equivalence). This means that there exists a unique torus-covering
T 2 –link with basis braids a and b .

By Corollary 2.6, we have the following corollary.

Corollary 2.9 For commutative m–braids a and b , the following equivalence rela-
tions hold:

Sm.a; b/� Sm.b
�1; a/; Sm.a; b/� Sm.a; a

2b/:

Proof Let � be an m–chart on T without black vertices and with basis braids a

and b . By Lemma 2.7 and Lemma 2.8 (2), � presents Sm.a; b/. By Corollary 2.6, the
torus-covering T 2 –links presented by � , �.�/ and �2.�/ are equivalent. The basis
braids of �.�/ are b�1 and a. Further, the basis braids of �2.�/ are a and a2b ; see
Figure 3. Thus we have the required equivalent relations.

Using this corollary, we can for example show the following proposition. We remark
the result before the statement of Corollary 5.7. An oriented surface link S is invertible
if S is equivalent to its orientation-reversed image �S .

Proposition 2.10 For any integers p and n, S4.�1�
p
2
�3; �

2n/ is invertible, where �
is a half-twist of a bundle of 4 parallel strands.

Proof Let us determine the basis braids of �Sm.a; b/, as follows. Put S D Sm.a; b/.
Then .�S/ \ p�1

T
.�m/ is the closure of �a D xa�1 , and .�S/ \ p�1

T
.�l/ is the

closure of �b D xb�1 . Here �x (x D m; l; a; b ) is the orientation-reversed image
of x , and xa (respectively xb ) is the m–braid obtained from a (respectively b ) by
replacing �i with ��1

i for each standard generator �i of Bm . Hence .�S/\p�1
T
.m/

and .�S/\p�1
T
.l/ are the closures of xa and xb respectively; thus the basis braids of

�S are xa and xb . From now on, put S D S4.�1�
p
2
�3; �

2n/. By the above argument
and Lemma 2.8 (2), �S is equivalent to S4.�

�1
1
��p

2
��1

3
; ��2n/. Applying the

first equivalent relation of Corollary 2.9 twice, we have Sm.a; b/ � Sm.b
�1; a/ �

Sm.a
�1; b�1/. Thus �S � S4.�3�

p
2
�1; �

2n/. Regarding the i –th string of the basis
braids as the .4�i/–th string (i D 1; : : : ; 4), we can regard the basis braids as �1�

p
2
�3

and �2n respectively; thus �S � S4.�1�
p
2
�3; �

2n/D S .

We show that some torus-covering T 2 –links are equivalent to known T 2 –links. Let b

an m–braid, and let Qm be the starting point set of b . Let us denote by yb the closure
of b .
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Proposition 2.11 The torus-covering T 2 –link Sm.b; e/ is equivalent to the spun
T 2 –link of yb .

The 4–space R4 is constructed by rotating the upper half plane R3
C D R2 � Œ0;1/

in R2 �R2 around the axis R2 � f0g. This structure is called an open book structure.
Let B3 be a 3–ball in R3

C , and let us naturally identify the orbit of B3 with B3 �S1

in R4 , where S1 is a circle. Let � W B3�S1!B3 be the projection. A surface link S

in B3�S1 can be considered as
S

t2S1 St �ftg, where St D�.S\.B
3�ftg//�B3 .

We call the collection fStgt2S1 the motion picture of S along S1 .

Let L be a classical link in B3 . The spun T 2 –link of L is the surface link defined by
the motion picture St DL for t 2 S1 (see Livingston [26] and Boyle [7; 8]).

In an open book structure of R4 , we naturally identify the orbit of B3 with B3 �S1 .
Let us consider un unknotted circle S1 � B3 with the base point x0 . The orbit of
this S1 is a standard torus. We identify it with T , by identifying S1�f0g �B3�f0g

with the meridian m, and fx0g�S1�B3�S1 with the longitude l. Further, we identify
N.T / with the orbit of the unknotted solid torus N.m/ D �.p�1

T
.m// in B3 . Put

D.x0/D �.p
�1
T
.x0//. Let us identify S1 with Œ0; 1�=�, where 0� 1. Let us assume

that the closure yb is in the solid torus N.m/ such that the identified corresponding
ends are in D.x0/. Further we regard a braided surface over T as in N.T /�R4 .

Proof of Proposition 2.11 Let S be the surface defined by the motion picture St D
yb

for t 2 S1 . By definition, S is the spun T 2 –link of yb . Since S is a braided surface
over T with no branch points, S is a torus-covering T 2 –link. Let us determine
the basis braids. Since �.S \p�1

T
.m//D S0\N.m/D yb , one basis braid is b . By

definition, we have S\p�1
T
.l/D

S
t2Œ0;1�.St\D.x0//�ftg. Since St\D.x0/DQm

for any t , S \ p�1
T
.l/ is the closure of the trivial m–braid e D Qm � Œ0; 1�. Thus

S is a torus-covering T 2 –link with basis m–braids b and e , and it follows from
Lemma 2.8 (2) that S is equivalent to Sm.b; e/.

Let us identify the 3–ball B3 with the unit ball in the xyz–space. Let us rotate a
classical link L in B3 around the z–axis once, and identify the resulting link with the
original link. The orbit of L forms a surface link, called the turned spun T 2 –link of L

(see Livingston [26] and Boyle [8]).

Proposition 2.12 The torus-covering T 2 –link Sm.b; b/ is equivalent to the turned
spun T 2 –link of yb .
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Proof We can assume that the solid torus N.m/ � B3 is fixed as a set when we
rotate it around the z–axis. Let fhugu2Œ0;1� be an isotopy of B3 which describes the
rotation of the solid torus N.m/ around the z–axis once. Let S be the surface defined
by the motion picture St D

S
u2Œ0;1� ht .yb/ for t 2 S1 . By definition, S is the turned

spun T 2 –link of yb . By the same argument with the proof of Proposition 2.11, S is a
torus-covering T 2 –link with S\p�1

T
.m/D yb . Regarding N.m/ as D2�S1 such that

D.x0/DD2�f0g, we have St\D.x0/Dht .yb/\.D
2�f0g/Dp.yb\.D2�ftg//�f0g

for t 2 Œ0; 1�, where pW D2 � S1 ! D2 is the projection; thus S \ p�1
T
.l/ DS

t2Œ0;1�.St \D.x0//� ftg D yb . Thus the basis braids of S are b and b , and
S � Sm.b; b/ by Lemma 2.8 (2).

Let L be a classical link in B3 such that rotating L around the z–axis by 2k�=n

results in the original L as a set. Then let us rotate L around the z–axis by 2k�=n,
and identify the resulting link with the original link. The orbit of L forms a surface
link, called a symmetry-spun T 2 –link (see Teragaito [31]).

Let bn be an m–braid in D2 � Œ0; 1� such that bn \ .D2 � Ij / D b , where Ij D

Œ.j � 1/=n; j=n� (j D 1; 2; : : : ; n).

Proposition 2.13 The torus-covering T 2–link Sm.b
n; bk/ is equivalent to a symmetry-

spun T 2 –link, which is constructed by turning bbn by 2k�=n around the axis while
spinning.

By Teragaito [31, Theorem 8], the symmetry-spun T 2 –link Sm.b
n; bk/ is equivalent

to either Sm.b
r ; e/ or Sm.b

r ; br /, where r D gcd.n; k/. This can be shown by
Corollary 2.9, too.

Proof Let fhugu2Œ0;1� be an isotopy of B3 which describes the rotation of the solid
torus N.m/ around the axis by 2k�=n. Let S be the surface defined by the motion
picture St D

S
u2Œ0;1� ht .yb/ for t 2 S1 . By definition, S is the symmetry-spun T 2 –

link in question. By the same argument with the proof of Proposition 2.11, we can see
that S is a torus-covering T 2 –link with S \p�1

T
.m/D bbn . Using the same notation

with the proof of Proposition 2.12, we have St \D.x0/ D ht .bbn/\ .D2 � f0g/ D

p.bbn\.D2�fkt=ng//�f0g for t 2S1 . So S\p�1
T
.l/D

S
t2S1.St\D.x0//�ftgD

cbk .
Thus the basis braids of S are bn and bk , and S � Sm.b

n; bk/ by Lemma 2.8 (2).

Let us call an edge of an m–chart a loop if it is connected with no vertices. Let us
consider an m–chart on T with no vertices.

Proposition 2.14 An m–chart on T with no vertices presents a spun T 2 –link or a
turned spun T 2 –link.
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Proof By Lemma 2.7, an m–chart with no vertices presents a torus-covering T 2 –link.
Let us determine the basis braids, as follows. An m–chart with no vertices consists
of a finite number of loops. By Lemma 2.15, we can assume that any loop does not
bound a 2–disk in T . Then, by an ambient isotopy of T , we can make all the loops
parallel and moreover geodesic. The m–chart is as in Figure 4; thus the basis braids

Figure 4

presented by � are bn and bk , for an m–braid b and integers n and k . Its presenting
torus-covering T 2 –link is equivalent to a symmetry-spun T 2 –link by Proposition 2.13;
thus it is equivalent to either a spun T 2 –link or a turned spun T 2 –link.

Lemma 2.15 An m–chart on T with no vertices is C–move equivalent to an m–chart
such that each loop does not bound a 2–disk in T .

Proof For a 2–disk D in T such that @D intersects an m–chart � transversely, if
there are no black vertices in � \D , then by a CI–move we can redraw the m–chart
within D as we like as long as it has no black vertices (see Kamada [24]). Hence,
if there is a loop which bounds a 2–disk in T , then we can remove it by applying a
CI–move around the neighborhood of the loop.

Proposition 2.14 can be extended to an m–chart on T with neither black nor white
vertices, as follows. The split union of two surface links S1 and S2 is a surface
link presented by the union of the copies of S1 and S2 such that for a 3–sphere S3

embedded in R4 , S1 is inside of S3 and S2 is outside. The 3–sphere S3 is called a
separating 3–sphere.

Theorem 2.16 An m–chart on T with neither black nor white vertices presents either
a spun T 2 –link, a turned spun T 2 –link or the split union of spun T 2 –links and turned
spun T 2 –links.

Let � be an m–chart with neither black nor white vertices. Then every vertex of �
is of degree 4. Since the diagonal edges around a vertex of degree 4 have the same
label and coherent orientation (see Figure 1), we can regard the union of connected
edges of � with the label i as an oriented immersed circle with the label i . Let us
call it just an immersed circle. Since the edges around a vertex of degree 4 have the
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labels i and j with ji � j j > 1, we can regard � as consisting of immersed circles
with transverse intersections such that each intersection is formed by two immersed
circles with the labels i and j with ji � j j> 1.

Proof Let � be an m–chart with neither black nor white vertices. Let i > 0 be the
minimum integer which does not appear as a label of � . Let �<i be a subgraph in T

consisting of the edges of � with the labels smaller than i . Further, attach to each
edge of this �<i the orientation and label induced from � . Since � can be regarded
as consisting of immersed circles, so can �<i ; thus �<i presents a new m–chart
on T with neither black nor white vertices. Similarly, let �>i be a subgraph in T

consisting of the edges of � with the labels larger than i , with induced labels and
orientations. Then �>i also presents a new m–chart on T with neither black nor white
vertices. Since � has no edge with the label i , � D �<i [�<i . By Lemma 2.17, the
torus-covering link presented by � is equivalent to the split union of two torus-covering
links presented by �<i and �>i .

If there is an immersed circle which bounds a 2–disk in T , then we can remove it
by applying a CI–move by the same argument of Lemma 2.15. Thus, taking new i if
necessary, we can assume that �<i satisfies the conditions of Lemma 2.18, ie (1) any
immersed circle does not bound a 2–disk in T , and (2) there is at least one immersed
circle with the label j for every label j < i . Thus �<i presents a spun T 2 –link or
a turned spun T 2 –link by Lemma 2.18. Using induction for i , we can see that �
presents a spun T 2 –link, a turned spun T 2 –link or the split union of spun T 2 –links
and turned spun T 2 –links.

Lemma 2.17 The torus-covering link presented by �<i[�>i is equivalent to the split
union of two torus-covering links presented by �<i and �>i .

Proof Let us denote by S , S1 and S2 the torus-covering links presented by �<i[�>i ,
�<i and �>i respectively. Consider the open book decomposition of R4 as in
Proposition 2.11. Let N1 (respectively N2 ) be a solid torus in N.m/ which contains
the j –th starting point of the basis braids of S for every j < i (respectively j > i ).
Since there are no edges of �<i [�>i with the label i , we can assume that S is in the
orbit .N1 [N2/�S1 such that S1 and S2 are contained in N1 �S1 and N2 �S1

respectively. Let us take a 2–disk in R3
C as in Figure 5. The orbit of this 2–disk forms

a separating 3–sphere. Thus S is the split union of S1 and S2 .

Lemma 2.18 Let � be an m–chart on T with neither black nor white vertices satis-
fying (1) any immersed circle does not bound a 2–disk in T , and (2) there is at least
one immersed circle with the label j for every label j . Then � presents either a spun
T 2 –link or a turned spun T 2 –link.
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R2
R3
C

N1

N2

Figure 5

Proof By the definition of an m–chart, there are no intersections between the immersed
circles with the labels j � 1 and j . Thus, together with (1), the immersed circles with
the labels j � 1 and j can be made parallel by an isotopy of T . Hence it follows
from (2) that each oriented immersed circle goes n times around the meridian m and
k times around the longitude l, or �n times around m and �� k times around l, for
some fixed integers n and k . Since there are only intersections of immersed circles
with the labels i and j with ji�j j> 1 as vertices of � , we can remove all the vertices
by CI–moves of type (4) (see Figure 2). Then the m–chart � presents either a spun
T 2 –link or a turned spun T 2 –link by Proposition 2.14.

We showed in Theorem 2.16 that an m–chart on T with neither black nor white
vertices presents either a spun T 2 –link, a turned spun T 2 –link or the split union of
spun T 2 –links and turned spun T 2 –links. We will show in Theorem 3.12 that there is a
torus-covering T 2 –link which is not equivalent to either a spun T 2 –link, a turned spun
T 2 –link or the split union of spun T 2 –links and turned spun T 2 –links. Its presenting
m–chart on T does not have black vertices (Lemma 2.7) but does have white vertices
(Corollary 4.3 (2)).

3 Knot groups and link groups

From now on in this paper, we consider torus-covering T 2 –links. By Lemma 2.8, the
basis braids of a torus-covering T 2 –link are commutative, and for any commutative
m–braids a and b , there exists a unique torus-covering T 2 –link with basis braids a

and b . In this section, first we compute the link group of Sm.a; b/ (Proposition 3.1).
Using this proposition, we will show that a certain 2–component torus-covering T 2 –
link has a nonclassical link group (Theorem 3.2). We show its knot version as well: a
certain torus-covering T 2 –knot has a nonclassical knot group (Theorem 3.7). Further
we show that the torus-covering T 2 –link of Theorems 3.2 or 3.7 is not equivalent to
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either a spun T 2 –link, a turned spun T 2 –link or the split union of spun T 2 –links and
turned spun T 2 –links (Theorem 3.12).

Before the statement of Proposition 3.1, we will give the definition of Artin’s auto-
morphism (see Kamada [24]). Let b be an m–braid in a cylinder D2 � Œ0; 1�, and let
Qm be the starting point set of b . Let fhugu2Œ0;1� be an isotopy of D2 rel @D2 such
that

S
u2Œ0;1� hu.Qm/� fug D b . Let AbW .D2;Qm/! .D2;Qm/ be the terminal

map h1 , and consider the induced map Ab
�W �1.D

2 �Qm/! �1.D
2 �Qm/. It is

known (see Artin [1]) that Ab is uniquely determined from b . We call Ab
� Artin’s

automorphism associated with b . Note that �1.D
2�Qm/ is naturally isomorphic to the

free group Fm generated by the standard generators x1;x2; : : : ;xm of �1.D
2�Qm/.

By Ab
� , the braid group Bm acts on �1.D

2�Qm/. It is presented by

A�i
� .xj /D

8̂<̂
:

xj xjC1x�1
j if j D i ;

xj�1 if j D i C 1;

xj otherwise;

A�
�1
i
� .xj /D

8̂<̂
:

xjC1 if j D i ,

x�1
j xj�1xj if j D i C 1,

xj otherwise,

and

where i D 1; 2; : : : ;m� 1 and j D 1; 2; : : : ;m.

Proposition 3.1 For commutative m–braids a and b , the link group of Sm.a; b/ is
presented by:

�1.R
4
�Sm.a; b//D hx1; : : : ;xm j xj DAa

�.xj /DAb
�.xj / for j D 1; 2; : : : ;m i

Proof Put S D Sm.a; b/. Let Qm be a set of m distinct interior points of D2 , and
let q0 be a point of @D2 . The space N.T /�S is a fiber bundle over T with the fiber
D2�Qm whose monodromy is given by Aa and Ab . Let us take commutative Aa

and Ab . Then we have

N.T /�S Š ..D2
�Qm/�I�I/=.x; 0;u/� .Aa.x/; 1;u/; .x;u; 0/� .Ab.x/;u; 1/

DM �I=.x;u; 0/� .Ab.x/;u; 1/

M D ..D2
�Qm/� I/=.x; 0/� .Aa.x/; 1/where

and x 2D2�Qm and u 2 I .

We compute �1.M /, as follows. Since M is a mapping torus whose monodromy is
given by Aa , by van Kampen’s theorem, we can see that �1.M / has a presentation
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obtained from �1.D
2 �Qm/ �Z by adding relations s�1xs D Aa

�.x/, where x 2

�1.D
2�Qm/, and s is the generator of Z, which is represented by the loop fq0g�S1

with the base point q0 . Since �1.D
2�Qm/ is a free group generated by the standard

generators x1;x2; : : : ;xm with the base point q0 , we have:

(3-1) �1.M /D hx1;x2; : : : ;xm; s j s
�1xj s DAa

�.xj / for j D 1; 2; : : : ;m i

We compute �1.N.T / � S/, as follows. Since N.T / � S D M � I=.x;u; 0/ �

.Ab.x/;u; 1/, where x2D2�Qm and u2I with .x;u/2M , N.T /�S is a mapping
torus whose monodromy is given by Ab� id. Thus we can see that �1.N.T /�S/ has
a presentation obtained from �1.M /�Z by adding relations t�1yt D .Ab

� � id�/.y/,
where y 2 �1.M / and t is the generator of Z. Hence together with (3-1), we can see
that �1.N.T /�S/ is presented by

(3-2) �1.N.T /�S/D

�
x1;x2; : : : ;xm;s; t

ˇ̌̌̌
s�1xj s DAa

�.xj /; t
�1xj t DAb

�.xj /;

t�1st D s; for j D 1;2; : : : ;m

�
where s and t are represented by the loops m and l respectively.

We compute �1.S
4 � S/, as follows. We have S4 � S D .N.T /� S/[@N.T / E4 .

The fundamental group �1.N.T /�S/ has the presentation (3-2). We obtain �1.E
4/,

as follows. Since N.T / is a tubular neighborhood of T , and T is the boundary of
the standard unknotted solid torus in R3 � f0g, we can see that the fundamental group
of E4 D cl.S4 �N.T // is the knot group of a trivial torus knot. Hence �1.E

4/

is an infinite cyclic group, where the generator r is represented by the loop r (see
Carter and Saito [14, Section 5.2]). Next we obtain �1.@E

4/, as follows. Since
@E4 D @N.T / D @D2 � T is a 3–dimensional torus S1 � S1 � S1 , �1.@N.T // is
isomorphic to Z˚Z˚Z, where the generators r 0 , m0 and l 0 are represented by the
loops r, m and l respectively. Let i1W @N.T /! N.T /� S and i2W @N.T /! E4

be inclusion maps. Since i1�.r
0/ D x1x2 � � �xm , i1�.m

0/ D s and i1�.l
0/ D t in

�1.N.T / � S/, and i2�.r
0/ D r , i2�.m

0/ D 1 and i2�.l
0/ D 1 in �1.E

4/, by van
Kampen’s theorem �1.S

4�S/D �1..N.T /�S/[@N.T /E4/ is presented by�
x1; : : : ;xm; s; t; r

ˇ̌̌̌
s�1xj s DAa

�.xj /; t�1xj t DAb
�.xj /; t�1st D s;

r D x1x2 � � �xm; s D 1; t D 1; for j D 1; 2; : : : ;m

�
which is the required formula.

Theorem 3.2 Put Sn D S4.�1�3; �
2n/, where � D �1�2�3�1�2�1 (see Figure 6)

and n is a positive integer. Then the link group of Sn is not a classical link group.
Moreover, Sn and Sm are not equivalent for n¤m.
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�D D half-
twist

Figure 6: A half-twist �

Since �2n is a central element of B4 and the closure of �1�3 is a classical link with
two components, the torus-covering T 2 –link Sn has two components. Each component
of Sn is equivalent to S2.�1; �

2n
1
/, which is equivalent to S2.�1; e/ by Corollary 2.9.

By Proposition 2.11, it is equivalent to the spun T 2 –knot of ��1 . Since ��1 is a trivial
knot, this is an unknotted T 2 –knot. Thus each component of Sn is an unknotted
T 2 –knot.

Proof By Proposition 3.1, the link group Gn of Sn is computed as follows. Let
x1; : : : ;x4 be the generators. The relations concerning the basis braid �1�3 are
x1 D x2 and x3 D x4 . The other relations concerning the basis braid �2n are:

x1 D .x1x2x3x4/
n x1 .x1x2x3x4/

�n

x2 D .x1x2x3x4/
n x2 .x1x2x3x4/

�n

x3 D .x1x2x3x4/
n x3 .x1x2x3x4/

�n

x4 D .x1x2x3x4/
n x4 .x1x2x3x4/

�n

Putting aD x1 D x2 and b D x3 D x4 , we have:

Gn D h a; b j .a
2b2/nb D b.a2b2/n; .a2b2/naD a.a2b2/n i

By Lemma 3.4, G1 is not a classical link group. Let us consider the case for n > 1.
For n> 1, let Zn be the subgroup of Gn generated by hn D .a

2b2/n . By Lemma 3.5,
Zn is the center of Gn for n > 1. Further, Zn is an infinite cyclic group; thus the
center of Gn is nontrivial.

We will show that Gn (n>1) is not a classical link group. Since the torus-covering T 2 –
link Sn consists of two components, we show that Gn is not a classical 2–component
link group, as follows. It is known (see Burde and Murasugi [9]) that if the center of
the group of a classical 2–component link L is nontrivial, then the link group of L is
isomorphic to one of the groups of type (a), (b) or (c) as follows:

(a) Z �Z,

(b) .Z �Z/�Z Z,

(c) .Z �Z/�Z .Z�Z Z/
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where Z is an infinite cyclic group, and Z D hhi is a “special” infinite cyclic group
which is the center of the link group of types (b) and (c). In type (b), the amalgamation
concerning the last factor ZD hqi is given by hD q˛ for an integer ˛ > 1. In type (c),
the last factor Z�ZZ is the group of the torus .˛; ˇ/–knot, ie Z�ZZDhx;y jx˛Dyˇ i

for coprime positive integers ˛ and ˇ , and the amalgamation is given by hD x˛ D yˇ .

Since an infinite cyclic group Zn is the center of Gn by Lemma 3.5, it suffices to show
that Gn (n > 1) is neither of type (b) nor (c). Further, in these cases, the center Z

equals Zn and hD hn .

Case (b) If Gn is of type (b), then Gn D .Zn �Z/ �Zn
Z D .hhni � hki/ �Zn

hqi,
where the amalgamation is given by hn D q˛ for an integer ˛ > 1. Put h0n D f .hn/

and q0 D f .q/ for a natural epimorphism

(3-3) f W Gn! Z=2Z�Z=2ZD ha0i � hb0i

where a0 D f .a/ and b0 D f .b/, which are the basis. Since hn D .a
2b2/n , we see

that h0nD 1. Since hnD q˛ , it follows that q0˛ D 1. If q0D 1, then f .Gn/D hf .k/i,
which is generated by at most one generator. However, f .Gn/ is generated by two
generators a0 and b0 . Hence q0 is nontrivial. Since ˛ > 1 and a nontrivial element of
f .Gn/DZ=2Z�Z=2Z has order 2 or 1 by Lemma 3.6, q0 has order 2; thus ˛D 2.
Consider the abelianization map

(3-4) �W Gn!Gn=ŒGn;Gn�D Z�Z

and put xa D �.a/ and xb D �.b/, which are the basis. Since hn D q2 and �.hn/ D

xa2nxb2n , it follows that �.q/D xanxbn . Consider the abelianization map

�0W f .Gn/D Z=2Z�Z=2Z! Z=2Z�Z=2Z

and put xa0 D �0.a0/ and xb0 D �0.b0/, which are the basis. Since �.q/ D xanxbn , it
follows that �0.q0/D 1 if n is even, and �0.q0/D xa0xb0 if n is odd; thus �0.q0/D 1 or
xa0xb0 . However, �0.q0/D xa0 or xb0 , as follows. Since hn D q2 , it follows that q02 D 1;
thus q0 D ��1a0� or ��1b0� for some � 2 f .Gn/ by Lemma 3.6. Thus �0.q0/ D xa0

or xb0 . This is a contradiction.

Case (c) If Gn is of type (c), then Gn D .Zn �Z/�Zn
.Z�Z Z/, where Z�Z ZD

hx;y jx˛Dyˇ i for coprime positive integers ˛ and ˇ , and the amalgamation is given
by hnD x˛D yˇ . Since hnD .a

2b2/n , we see that h0nD 1, where h0nD f .hn/. Since
hnDx˛Dyˇ , it follows that x0˛Dy0ˇD1, where x0Df .x/ and y0Df .y/. If x0D1

and y0D 1, then f .hx;y jx˛Dyˇ i/D 1 and it follows that f .Gn/ is generated by at
most one generator. However, f .Gn/ is generated by two generators a0 and b0 . Hence
we can assume that x0 is nontrivial. Since any element of f .Gn/DZ=2Z�Z=2Z has
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order 2 or1 by Lemma 3.6, it follows that ˛D2. Since hnDx2 and �.hn/Dxa
2nxb2n ,

it follows that �.x/D xanxbn , and hence �0.x0/D 1 or xa0xb0 by the same argument as
in Case (b). However, since hn D x2 , it follows that x02 D 1, and hence �0.x0/D xa0

or xb0 by the same argument as in Case (b). This is a contradiction. Thus Gn is not a
classical link group.

Now we will show that Sn and Sm are not equivalent for n¤m. The center Z1 of G1

is a free abelian group of rank 2 (see the proof of Lemma 3.4), while, for n> 1, the
center Zn of Gn is an infinite cyclic group by Lemma 3.5; thus it suffices to show in
the case when n;m> 1. The abelianization of Gn=Zn for n> 1 is Z�Z=2nZ; thus
Gn is not isomorphic to Gm for n¤m, and hence Sn 6� Sm for n¤m.

A 2–link is a surface link whose components are homeomorphic to 2–spheres. It is
known (see Hillman [17, Chapter 3, Corollary 2]) that if the center of a �–component
2–link group with � > 1 is nontrivial, then the center must be a torsion group. Hence
we have a corollary.

Corollary 3.3 The link group of the 2–component torus-covering T 2 –link of Theo-
rem 3.2 is not a 2–component 2–link group.

Proof For any n> 0, the center Zn of Gn is nontrivial and torsion free by Lemma 3.4
and Lemma 3.5; thus the conclusion follows from [17, Chapter 3, Corollary 2].

Lemma 3.4 The group G1 of Theorem 3.2 is not a classical link group.

Proof Let Z1 be the subgroup of G1 generated by fa2; b2g. We will show that Z1

is the center of G1 , as follows. Let N be a normal subgroup of G1 . If the center
of G1=N is trivial, then N contains the center of G1 . Since Z1 consists of central
elements, Z1 is a normal subgroup of G1 such that Z1 is contained in the center
of G1 . Hence it suffices to show that the center of the quotient group G1=Z1 is trivial.
Since G1=Z1 D Z=2Z�Z=2Z, the center of G1=Z1 is trivial; thus Z1 is the center
of G1 . Let us take the abelianization map � given by (3-4). Since �.a2/D xa2 and
�.b2/ D xb2 , the center Z1 is a free abelian group of rank 2; thus Z1 is generated
by two generators. Hence it follows from Burde and Murasugi [9] that if G1 is a
classical link group, then it is isomorphic to Z�Z (type (a)): G1 is commutative.
However, since the image of G1 by the natural epimorphism f given by (3-3) is a
noncommutative group Z=2Z�Z=2Z, G1 is not commutative. This is a contradiction.
Thus G1 is not a classical link group.
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Lemma 3.5 Let us consider the group Gn of Theorem 3.2. For n> 1, let Zn be the
subgroup of Gn generated by hn D .a

2b2/n . Then Zn is the center of Gn . Moreover
Zn is an infinite cyclic group.

Proof By the same argument as in the proof of Lemma 3.4, in order to show that Zn

is the center of Gn , it suffices to show that the center of the quotient group Gn=Zn is
trivial. We see that Gn=Zn D h a; b j .a

2b2/n D 1 i, which is an amalgamated product
hai�U h b;x j x

nD 1 i, where U Dha2iD hxb�2iDZ and the amalgamation is given
by a2 D xb�2 . Put H1 D hai and H2 D h b;x j x

n D 1 i. We can take f1; ag as a set
of right-handed coset representatives of U in H1 .

Let h be a central element of Gn=ZnDH1�U H2 . By Neumann [29] or Bogopolski [6,
Theorem 11.3, page 73], h is uniquely written as hDuaıc1ac2 � � � acta

� , where u2U

and c1; : : : ; ct are nontrivial elements of a set of right-handed coset representatives
of U in H2 and ı; � 2 f0; 1g, which is called a normal form. Since ahD ha, it follows
that auaıc1ac2 � � � acta

� D uaıc1ac2 � � � acta
�a. Since uaD au in the amalgamated

product H1 �U H2 , it follows that uaıac1ac2 � � � acta
� D uaıc1ac2 � � � actaa� , and

hence ac1ac2 � � � act D c1ac2 � � � acta as elements in H1 �U H2 .

If t > 0, then ac1ac2 � � � act and c1ac2 � � � acta are in distinct normal forms, which is
a contradiction. Hence t D 0 and h D uaı D ak for an integer k . Since hb D bh,
akb D bak . If k D 1, then ab D ba. In this case, if b is not in U , then we can take b

as a nontrivial right-handed coset representative of U in H2 . It follows that then ab

and ba are in distinct normal forms, which is a contradiction. If kD2lC1 (respectively
kD 2l ) for a nonzero integer l , then akbDuab and bak D ca (respectively akbDub

and bak D c ), where in both cases uD a2l 2 U and c D b.xb�2/l . In these cases,
if neither b nor c is in U and we can take b and c as distinct right-handed coset
representatives of U in H2 , then akb and bak have distinct normal forms uab and
ca (respectively ub and c ), which is a contradiction. Then it follows that k D 0 and
hence hD 1; thus the center of Gn=Zn is trivial.

It remains to show that neither b nor c D b.xb�2/l (l ¤ 0) is in U and we can
take b and c as distinct right-handed coset representatives of U in H2 . The group
H2 D h b; x j xn D 1 i is the free product of hbi and hx j xn D 1 i. By [29; 6, Theo-
rem 11.3, page 73] again, every element of H2 has a normal form bı

1
x1b2x2 � � � btx

�
t ,

where b1; b2; : : : ; bt (respectively x1;x2; : : : ;xt ) are nontrivial elements of hbi (re-
spectively hx j xn D 1 i) and ı; � 2 f0; 1g. Let us determine the normal forms of
b and c . Put l0 D jl j, a positive integer. We can see that b has a normal form b ,
and c D b.xb�2/l has a normal form b.xb�2/l0 (respectively b3x�1.b2x�1/l0�1 ) if
l > 0 (respectively l < 0). Further, an element of U D hxb�2i in H2 has a normal
form 1, .xb�2/m0 or .b2x�1/m0 , where m0 is a positive integer. Hence, by the
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uniqueness of normal forms, we can see that neither b nor c is in U . Similarly,
an element of Ub has a normal form b , .xb�2/m0�1xb�1 or .b2x�1/m0b , and an
element of Uc D Ub.xb�2/l has a normal form b.xb�2/l0 , b3x�1.b2x�1/l0�1 ,
.xb�2/m0�1xb�1.xb�2/l0 , .xb�2/m0�1xbx�1.b2x�1/l0�1 , .b2x�1/m0b.xb�2/l0

or .b2x�1/m0b3x�1.b2x�1/l0�1 . By the uniqueness of normal forms, we can see
that Ub ¤ Uc . Thus neither b nor c is in U and we can take b and c as distinct
right-handed coset representatives of U in H2 , and it follows that the center of Gn=Zn

is trivial. Therefore Zn is the center of Gn .

Let us take the abelianization map � given by (3-4). Since the image �.hn/ is xa2nxb2n ,
the center Zn (n> 1) is an infinite cyclic group.

Lemma 3.6 Let us consider the group Z=pZ�Z=qZ, the free product of Z=pZ and
Z=qZ, where p , q are positive integers greater than one. Then the order of a nontrivial
element Z=pZ �Z=qZ is either 1, a divisor of p or a divisor of q . Further, if the
order is finite, then the element can be written as a conjugate of an element of the same
order in Z=pZ or Z=qZ.

Proof Let z be a nontrivial element of Z=pZ�Z=qZ. By Neumann [29] or Bogopol-
ski [6, Theorem 11.3, page 73], z has a normal form

x1y1x2y2 � � �xtyt(3-5)

x1y1x2y2 � � �xt�1yt�1xt(3-6)

y1x2y2 � � �xtyt(3-7)

y1x2y2 � � �xt�1yt�1xt(3-8)

where t is an integer with t > 1 in (3-8) and t > 0 otherwise, and x1;x2; : : : ;xt

(respectively y1;y2; : : : ;yt ) are nontrivial elements of Z=pZ (respectively Z=qZ).

In cases (3-5) and (3-8), zl has a normal form which is not 1 for any positive integer l .
Thus the order of z is infinite.

In cases (3-6) and (3-7), we show the lemma using induction for t , as follows. If t D 1,
then z D x1 (respectively y1 ) for (3-6) (respectively (3-7)) and the order of z is a
divisor of p (respectively q ). Now let us assume that if t < s , then the order of any
element z with the normal form (3-6) or (3-7) is infinite or a divisor of p or q . Let us
consider z with the normal form (3-6) with t D s . If x1xt D 1, then x�1

1
zx1 has a

normal form (3-7) with t D s� 1; thus, by the assumption, the statement of the lemma
holds. If x1xt ¤ 1, then zl has a nontrivial normal form for any positive integer l ;
thus the order of z is infinite. For z with the normal form (3-7), we can apply the same
argument. Further we can see that if the order ord.z/ of z is finite, ie a divisor of p
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or q , then z can be written as ��1x� , where � 2Z=pZ�Z=qZ, and x is an element
of order ord.z/ in Z=pZ or Z=qZ.

We can consider the knot version of Theorem 3.2.

Theorem 3.7 Put Sn D S4.�1�3; �
2nC1/, where n is a positive integer. Then the

knot group of Sn is not a classical knot group. Moreover, Sn and Sm are not equivalent
for n¤m.

The torus-covering T 2 –knot S0 D S4.�1�3; �/ is unknotted (see Corollary 4.4).

Proof By Proposition 3.1, the knot group Gn of Sn is computed as follows. Let
x1; : : : ;x4 be the generators. Then the relations concerning the basis braid �1�3 are
x1 D x2 and x3 D x4 . The other relations concerning the basis braid �2nC1 are:

x1 D .x1x2x3x4/
n x1x2x3x4x�1

3 x�1
2 x�1

1 .x1x2x3x4/
�n

x2 D .x1x2x3x4/
n x1x2x3x�1

2 x�1
1 .x1x2x3x4/

�n

x3 D .x1x2x3x4/
n x1x2x�1

1 .x1x2x3x4/
�n

x4 D .x1x2x3x4/
n x1 .x1x2x3x4/

�n

Putting aD x1 D x2 and b D x3 D x4 , we have:

Gn D h a; b j b.a
2b2/n D .a2b2/na; a.a2b2/nC1

D .a2b2/nC1b i

Let us assume that Gn is a classical knot group. Let Zn be the subgroup of Gn

generated by hn D .a
2b2/2nC1 , which is a central element. By Lemma 3.8, Zn is

the center of Gn . Further, Zn is an infinite cyclic group. It is known (see Burde
and Zieschang [10]) that if the center of a classical knot group is nontrivial, then the
knot is a torus knot. Hence, by the assumption, Gn is isomorphic to a torus knot
group. Let Gp;q be the .p; q/–torus knot group isomorphic to Gn , where p and q

are coprime positive integers. Let Zp;q be the center of Gp;q . Then Gp;q D hx;y j

xp D yq i and Zp;q is generated by hD xp D yq . Put G0p;q DGp;q=Zp;q , which is
hx;y j xp D yq D 1 i D Z=pZ�Z=qZ. The abelianization of G0p;q is isomorphic to
Z=pZ�Z=qZ.

Consider the quotient group G0n D Gn=Zn . By (3-9) in the proof of Lemma 3.8,
G0n D h a;x j x2nC1 D .a2xn/2 D 1 i. The abelianization of G0n is presented by
h a;x jx2nC1D .a2xn/2D1; axDxa i, which equals h a ja4.2nC1/ iDZ=4.2nC1/Z.
Since Gp;q and Gn are isomorphic, so are the abelianizations of G0p;q and G0n . Hence,
comparing the order of the groups we see that pq D 4.2nC 1/. Since G0n has an
element of order 2nC 1 by Lemma 3.9, and the order of a nontrivial torsion element
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of G0p;q is a divisor of p or q by Lemma 3.6, it follows that 2nC 1 is a divisor of
p or q . Hence we can determine coprime positive integers p and q by p D 4 and
q D 2nC 1.

For any element z of order 2 in G0
4;2nC1

D Z=4Z�Z=.2nC 1/Z, z can be written
as z D z02 for some element z0 of order 4 by Lemma 3.10. Since y D a2xn 2G0n is
of order 2 by Lemma 3.9, and G0n and G0

4;2nC1
are isomorphic, there is an element

y0 2G0n with yD y02 , and hence G0nD h a;x;y
0 j x2nC1D 1; y04D 1; a2xnD y02 i.

Let Nw be the normal subgroup of G0
4;2nC1

generated by an element w of order
2nC 1. The quotient group G0

4;2nC1
=Nw does not depend on the choice of w and

G0
4;2nC1

=Nw DZ=4Z by Lemma 3.11. We will denote it by G0
4;2nC1

=N . Let Nx be
the normal subgroup of G0n generated by x . Since x has order 2nC 1 by Lemma 3.9,
G0n=Nx is isomorphic to G0

4;2nC1
=N DZ=4Z: G0n=Nx is abelian. Adding the relation

x D 1 to the presentation of G0n , we see that G0n=Nx D h a;y
0 j y04 D 1; a2 D y02 i.

Since there is a natural epimorphism f from G0n=Nx onto Z=2Z �Z=2Z with the
basis f .a/ and f .y0/, G0n=Nx is not abelian. This is a contradiction. Thus Gn is not
a classical knot group. Since the abelianization of G0n is Z=4.2nC1/Z, it follows that
Sn 6� Sm for n¤m.

Lemma 3.8 Let us consider the group Gn of Theorem 3.7. For n > 0, let Zn be
the subgroup of Gn generated by hn D .a

2b2/2nC1 . Then Zn is the center of Gn .
Moreover Zn is an infinite cyclic group.

Proof Since hn is a central element, by the same argument as in the proof of
Lemma 3.4, in order to show that Zn is the center of Gn , it suffices to show that the
center of G0n D Gn=Zn is trivial. The quotient group G0n D Gn=Zn is presented by
h a; b;x j x D a2b2; bxnD xna; axnC1D xnC1b; x2nC1D 1 i. By eliminating b by
b D xnax�n , we have

(3-9) G0n D h a;x j x
2nC1

D .a2xn/2 D 1 i

which is an amalgamated product hai�U hx;y jx
2nC1D1; y2D1 i, where U Dha2iD

hyx�niDZ and the amalgamation is given by a2Dyx�n . We can show that the center
of G0n is trivial by the following argument similar to the proof of Lemma 3.5, as follows.
Put H1 D hai and H2 D hx;y j x

2nC1 D 1; y2 D 1 i. Note that H2 is a free product
of hx j x2nC1D 1 i DZ=.2nC1/Z and hy j y2D 1 i DZ=2Z. By Neumann [29] or
Bogopolski [6, page73, Theorem 11.3], any element of G0n DH1 �U H2 has a normal
form uaıc1ac2 � � � acta

� , where u 2 U and c1; : : : ; ct are nontrivial elements of a set
of right handed coset representatives of U in H2 and ı; � 2 f0; 1g.

Let h be a central element of G0n . By the same argument as in the proof of Lemma 3.5,
by using normal forms, we see that hDak for an integer k . Since hxDxh, akxDxak .
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If kD 2lC1 (respectively 2l ) for a nonzero integer l , then akxD uax and xak D ca

(respectively akxD ux and xak D c ), where uD a2l 2U and cD x.yx�n/l in both
cases. If neither x nor c is in U and we can choose x and c as distinct right-handed
coset representatives of U in H2 , then in both cases akx and xak have distinct normal
forms, which is a contradiction. Then k D 0, and it follows that hD 1.

It remains to show that neither x nor c D x.yx�n/l (l ¤ 0) is in U and we can
choose x and c as distinct right-handed coset representatives of U in H2 . By [29; 6,
Theorem 11.3, page 73=, any element of the free product H2D hx j x

2nC1D 1 i�hy j

y2 D 1 i has a normal form xı
1
yx2y � � �xty

� , where x1;x2; : : : ;xt are nontrivial
elements of hx j x2nC1 D 1 i and ı; � 2 f0; 1g. Let us determine the normal forms
of x and c . Put l0 D jl j, a positive integer. We can see that x has a normal form
x , and c D x.yx�n/l has a normal form x.yx�n/l0 (respectively xnC1y.xny/l0�1 )
if l > 0 (respectively l < 0). Further, an element of U D hyx�ni has a normal
form either 1, .yx�n/m0 or .xny/m0 , where m0 is a positive integer. Hence, by the
uniqueness of normal forms, neither x nor c is in U . Similarly, if nD 1 (respectively
n> 1), then an element of Ux has a normal form either x , .yx�1/m0�1y or .xy/m0x

(respectively x , .yx�n/m0�1yx�nC1 or .xny/m0x ). Hence in both cases c is not an
element of Ux . Thus neither x nor c is in U and we can choose x and c as distinct
right-handed coset representatives of U in H2 , and it follows that the center of G0n is
trivial. Thus Zn is the center. Considering the abelianization map of Gn , we see that
Zn is an infinite cyclic group.

Lemma 3.9 The element x (respectively yD a2xn ) of G0n of Theorem 3.7 (see (3-9))
is of order 2nC 1 (respectively 2).

Proof By Lemma 3.8, G0n is an amalgamated product. Seeing the normal forms of
the powers of x and y , we can show that the order of x is 2nC 1 and the order of y

is 2.

Lemma 3.10 For any element z of order 2 in Z=4Z�Z=.2nC1/Z, z can be written
as z D z02 for some element z0 of order 4.

Proof The order of z is 2. It is a divisor of 4, and it is not a divisor of 2nC 1. Thus
it follows from Lemma 3.6 that z D ��1u2� , where � 2 Z=4Z�Z=.2nC 1/Z and u

is a generator of Z=4Z. Thus z can be written as z D z02 , where z0 D ��1u� . Since
the order of u is 4, so is the order of z0 .

Lemma 3.11 Put G0
4;2nC1

DZ=4Z�Z=.2nC1/Z, and let Nw be a normal subgroup
of G0

4;2nC1
generated by an element w of order 2nC 1. Then G0

4;2nC1
=Nw does not

depend on the choice of w , and G0
4;2nC1

=Nw D Z=4Z.
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Proof Since w has order 2nC 1, w D ��1vk� by Lemma 3.6, where � 2 Z=4Z �
Z=.2nC 1/Z and v is a generator of Z=.2nC 1/Z, and k is an integer such that vk

has order 2nC 1. Put X D f kl j l D 1; 2; : : : ; 2n g, where kl D kl mod 2nC 1. If
kl D kl 0 for l ¤ l 0 (0< l; l 0 < 2nC1), then kjl � l 0j � 0 mod 2nC 1, and it follows
that the order of w is a divisor of jl � l 0j< 2n. Then the order is smaller than 2nC 1,
which is a contradiction. Hence, if l ¤ l 0 (0< l; l 0 < 2nC1), then kl ¤ kl 0 . Since vk

has order 2nC1, vkl ¤ 1 for 0< l < 2nC1; thus x0 62X . Thus X D fx1;x2; : : : ; 2n g,
and hence X contains x1. Hence kl0 D x1 for some integer l0 , and it follows that
wl0 D ��1vkl0� D ��1v� . Since v D �wl0��1 , we have v 2Nw . Since Nw contains
the generator v of Nv , we have Nv � Nw . Similarly, since w D ��1vk� , we have
Nw �Nv . Hence Nv DNw . Thus G0

4;2nC1
=Nw DG0

4;2nC1
=Nv D Z=4Z.

Using the results of Theorem 3.2 and Theorem 3.7, we have the following theorem.

Theorem 3.12 For an integer l > 1, S4.�1�3; �
l/ is not equivalent to either a spun

T 2 –link, a turned spun T 2 –link or the split union of spun T 2 –links and turned spun
T 2 –links.

Proof Since the link group of the spun T 2 –link or the turned spun T 2 –link of a
classical link L is isomorphic to the link group of L (see Livingston [26] and Boyle [8]),
it is classical. Thus the link group of the split union of spun T 2 –links and turned spun
T 2 –links is also classical. However, the link group of S4.�1�3; �

l/ (l > 1) is not
classical by Theorem 3.2 and Theorem 3.7. Thus we have the conclusion.

4 Ribbon torus-covering T 2–links

In this section we show Theorem 4.1: for certain basis mn–braids, Smn.a; b/ is ribbon.
As a corollary, we can see that the torus-covering T 2 –link of Theorem 3.12 is ribbon
(Corollary 4.2).

Let M be a disjoint union of a finite number of handlebodies. The image of M into R4

by an immersion � is called a 3–ribbon (see Yanagawa [32]) if the singularity set
consists of ribbon singularities, ie the self-intersection of �.M / consists of a finite
number of mutually disjoint 2–disks, and for each 2–disk D , the preimage ��1.D/

consists of a pair of 2–disks D0 , D00 such that D0 \ D00 D ∅, D0 � IntM and
@D00DD00\@M . An oriented surface link is ribbon if it bounds a 3–ribbon (see [32]).

For an m–braid b , we denote by b.n/ the n–parallel of b , ie b.n/ is the mn–braid
obtained from b by replacing each string of b with its n parallel copies; see Figure 7.
For n–braids b1; b2; : : : ; bm , we denote by b1 ı b2 ı � � � ı bm the mn–braid depicted
in Figure 8.
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Figure 7: The 2–parallel .�2
1�
�1
2 /.2/ of the 3–braid �2

1�
�1
2

b1

b2

bm

Figure 8: The mn–braid b1 ı b2 ı � � � ı bm

Theorem 4.1 Let ˛ be a classical n–braid whose closure y̨ is a trivial knot. Let a

and b be mn–braids given by

aD

m‚ …„ ƒ
˛ ı˛ ı � � � ı˛

b D b0.n/ � .˛l1 ı˛l2 ı � � � ı˛lm/

where b0 is an m–braid and lj is an integer .j D 1; 2; : : : ;m/; note that a and b are
commutative. Then Smn.a; b/ is ribbon.

Proof Let the braid word presentation of b0 be b0 D ��1
i1
� ��2

i2
� � � ���i�

, where ik 2

f1; 2; : : : ;m� 1g and �k 2 fC1;�1g for k D 1; 2; : : : ; � . Let � W R3
C �S1!R3

C be
the projection. Let us take a solid torus N.m/ � R3

C and a disk D.x0/ � N.m/ as
in the proof of Proposition 2.11. Let us take the closure ya of a in N.m/ as shown in
Figure 9, where we take the m parallel copies of y̨ in such a position that the identified
corresponding ends are in D.x0/.

We consider a surface link S determined by the motion picture St D�.S\.R3
C�ftg//

along S1 , which is the orbit of the isotopy from ya to ya, given by the composition of
the following (1) and (2).

(1) Concerning b0.n/ , let us take the isotopy from ya to ya as follows. For each
.��k

ik
/.n/ , we consider the isotopy shown in Figure 10 if �k DC1, and its inverse

if �k D�1. Further, we consider the composition of them for all k .
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the m–th copy of y̨

the 2–nd copy of y̨

the 1–st copy of y̨

D.x0/

where ˛ D

Figure 9: The closure ya of a

the .ikC1/–st
copy of y̨

the ik–th
copy of y̨

Figure 10: We consider this isotopy (1), concerning .��kik
/.n/ , if �k DC1 .

(2) Concerning ˛l1 ı˛l2 ı � � � ı˛lm , let us take the isotopy from ya to ya which turns
the j –th copy of y̨ lj times as shown in Figure 11, for each j D 1; 2; : : : ;m.

Since each isotopy is from ya to ya, fStg, and hence S , is well-defined.

the j –th copy of y̨

lj rotation

Figure 11: The isotopy (2), concerning ˛l1 ı˛l2 ı � � � ı˛lm

Next we show that S is equivalent to Smn.a; b/, as follows. It suffices to see that
the orbit of St \D.x0/ forms b . The orbit of St \D.x0/ by the isotopy (1) is as in
Figure 12; thus it forms .��k

ik
/.n/ . Since the isotopy (2) turns the j –th copy of y̨ lj

times (j D 1; 2; : : : ;m), by the similar argument to the proof of Proposition 2.13, we
can see that the orbit of St \D.x0/ by this isotopy forms ˛l1 ı˛l2 ı � � � ı˛lm . Thus,
the orbit of St \D.x0/ as a whole forms .��1

i1
��2

i2
� � � ���i�

/.n/ � .˛l1 ı ˛l2 ı � � � ı ˛lm/,
which is b . Thus S is equivalent to Smn.a; b/ by Lemma 2.8 (2).
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.the .ikC1/–st y̨/\D.x0/

.the ik–th y̨/\D.x0/

Figure 12: The orbit of St \D.x0/ by the isotopy (1) concerning .��kik
/.n/ ,

if �k DC1

Now let us construct an immersed 3–manifold M such that @M D S , which is
determined by Mt D �.M \ .R3

C�ftg// as follows. Since y̨ is a trivial knot, we can
take a disk bounded by y̨ as shown in Figure 13. For each St , let Mt be the union
of such disks bounded by St . As the union of Mt , we naturally obtain an immersed
3–manifold M such that @M D S .

Figure 13: The disk bounded by y̨

In order to show that Smn.a; b/ is ribbon, it is sufficient to show that M is a 3–ribbon,
ie M has only ribbon singularities. Since M has no singularity in the motion picture
of the isotopy (2), it is sufficient to show that the singularity in the motion picture of
the isotopy (1) consists of ribbon singularities. Let us consider the singularity of M in
the motion picture of the isotopy (1) shown in Figure 10. This singularity is of the form
of the singularity of the motion picture shown in Figure 14, and hence this singularity
set is the disk itself. Therefore M has only ribbon singularities.

Corollary 4.2 For any integer l , S4.�1�3; �
l/ is ribbon.

Proof Put aD �1�3 and bD�l . Let ˛ be a 2–braid �1 . Then y̨ is a trivial knot, and
aD˛ı˛ . By definition, � .2/

1
D�2�1�3�2 . Since �D .�2�1�3�2/��1�3D�

.2/
1
��1�3 ,

and �i ��
.2/
1
D� .2/

1
��j for fi; j gDf1; 3g, together with the fact that �1 and �3 commute,

it follows that �l can be written as �l D � l .2/
1
�� l

1
� l

3
; thus bD b0.2/ � .˛l ı˛l/, where

b0D � l
1

. Thus the basis braids a and b have the required presentations of Theorem 4.1,
and hence S4.�1�3; �

l/ is ribbon by the theorem.
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~

Figure 14: The motion picture of an upward move of the disk (the left picture)
is equivalent to the motion picture of a downward move of a horizontal plane
(the right picture)

So the torus-covering T 2 –link of Theorem 3.12 is ribbon. Together with Theorem 3.12,
this indicates the following corollary.

Corollary 4.3 For an integer l > 1, S4.�1�3; �
l/ has the following properties:

(1) it can be presented by an m–chart on S2 without white vertices, however (2) any
m–chart on T presenting it has at least one white vertex.

Proof Put S D S4.�1�3; �
l/.

(1) Any ribbon surface link is presented by an m–chart on the standard 2–sphere S2

without white vertices (see Kamada [20; 24]). Since S is ribbon by Corollary 4.2, it is
presented by an m–chart on S2 without white vertices.

(2) By Lemma 2.7 and Theorem 2.16, if an m–chart on T presenting a torus-covering
T 2 –link does not have a white vertex, then it presents either a spun T 2 –link, a turned
spun T 2 –link or the split union of spun T 2 –links and turned spun T 2 –links. Since S

is not equivalent to such a surface link by Theorem 3.12, it cannot be presented by an
m–chart on T without white vertices.

Concerning S4.�1�3; �/, we have the following corollary, by using the 3–ribbon
constructed in the proof of Theorem 4.1.

Corollary 4.4 The torus-covering T 2 –knot S4.�1�3; �/ is unknotted.

A 1–handle attaching to a surface link S is a 3–ball h embedded in R4 such that
S \ h is a pair of 2–disks in @h. The closure (as a set) of .S [ @h/� .S \ h/ is a
surface link. We call it the surface link obtained from S by a 1–handle surgery along
a 1–handle h. A 2–handle attaching to S is a 3–ball h embedded in R4 such that
S\h is an annulus in @h. The closure (as a set) of .S[@h/�.S\h/ is a surface link.
We call it the surface link obtained from S by a 2–handle surgery along a 2–handle h.
The inverse operation of a 1–handle surgery is a 2–handle surgery, and vice versa.
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Proof By Corollary 4.2, S4.�1�3; �/ is equivalent to S D @M in the proof of
Theorem 4.1. We use the notation of the theorem. By Corollary 4.2, ˛ is the 2–
braid �1 , and the basis braids are the 4–braids given by ˛ ı ˛ and .�1/

.2/ � .˛ ı ˛/.
Since @M0 D S0 is the closure of ˛ ı˛ , it consists of two components; thus the part
of M of the motion picture of the isotopy (1) consists of two connected components.
Let us denote by h one of the components containing the first copy of y̨ in @M0 . Since
h is an embedded 3–ball such that S \ h is an annulus in @h (see Figure 10), it is a
2–handle on S . Let M 0 D cl.M � h/, and put S 0 D @M 0 . Then S 0 is the surface
link obtained from S by a 2–handle surgery along h. Since a 2–handle surgery is the
inverse operation of a 1–handle surgery, h is a 1–handle on S 0 , and S is obtained
from S 0 by a 1–handle surgery along h. Since the singularity set of M is contained
in h (see the proof of Theorem 4.1), M 0 is an embedded 3–ball with no singularity;
thus S 0 is an unknotted sphere. It is known (see Boyle [7, Corollary 5]) that if a
surface knot is unknotted, then the result of a 1–handle surgery for any 1–handle is
also unknotted. Thus S , hence S4.�1�3; �/, is unknotted.

5 Quandle cocycle invariants

It is known (see Asami and Satoh [2]) that the quandle cocycle invariant of a twist-
spun 2–knot of a classical knot K can be presented by using the quandle cocycle
invariants of a 1–tangle whose closure is K . In this section we present the quandle
cocycle invariant of Sm.b; �

2n/ for an m–braid b (Theorem 5.2), by using the quandle
cocycle invariants of the closure of b . Here � is a half-twist of a bundle of m parallel
strands. In Theorem 5.5, we calculate some concrete examples.

This section is organized as follows. In Section 5.1, we review the quandle cocycle
invariants and the shadow cocycle invariants. Further, we give a certain 2–cocycle,
which is determined from a 3–cocycle. Using these terms, we give the statement
of Theorem 5.2. In Section 5.2, we study triple points of Sm.b; �

2n/, and prove
Theorem 5.2. In Section 5.3, we show Theorem 5.5, using a dihedral quandle and
Mochizuki’s 3–cocycle.

5.1 Quandle cocycle invariant of Sm.b; �2n/

A quandle (see Joyce [19]) is a set Q with a binary operation � satisfying the following
conditions:

(i) For any x 2Q, x �x D x .

(ii) For any x; y 2Q, there exists a unique z 2Q such that x D z �y .

(iii) For any x; y; z 2Q, .x �y/� z D .x � z/� .y � z/.
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From now on, assume that Q is a finite quandle, ie a quandle consisting of finitely
many elements.

For an oriented classical link L or an oriented surface link S , let us denote by D a
diagram of L or S , ie the image of L or S by a generic projection to R2 or R3 . In
order to indicate crossing information of the diagram, we break the under-arc or the
under-sheet into two pieces missing the over-arc or the over-sheet. Then the diagram is
presented by a disjoint union of arcs, or compact surfaces which are called broken sheets.
Let B.D/ be the set of such arcs or broken sheets. A Q–coloring for a diagram D

of L or S is a map C W B.D/!Q as in Figure 15. The image by C is called the
color.

x

y
x �y

x

y

x �y

Figure 15: A Q–coloring C , where x , y and x �y are the colors of arcs or
broken sheets given by C

Let G be an abelian group. A 2–cocycle with the coefficient group G is a map
f W Q2!G satisfying

f .s;u/Cf .s �u; t �u/D f .s; t/Cf .s � t;u/

f .s; s/D 0and

for any s; t;u 2Q. A 3–cocycle is a map f W Q3!G satisfying

f .s; t;u/Cf .s �u; t �u; v/Cf .s;u; v/D f .s � t;u; v/

Cf .s; t; v/Cf .s � v; t � v;u� v/;

f .s; s; t/D 0 and f .s; t; t/D 0

for any s; t;u; v 2Q.

For a Q–coloring C for a diagram D of a classical link L or a surface link S , we
briefly review the quandle cocycle invariant as follows (for details see Carter, Jelsovsky,
Kamada, Langford and Saito [11]), where G is written multiplicatively. For the case
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of a classical link, at each crossing r of the diagram D , the weight Wf .r IC / at r for
a 2–cocycle f is given as in Figure 16. Put

f̂ .LIC /D
Y

r2X2.D/

Wf .r IC /

where X2.D/ is the set of the crossings of D . For the case of a surface link, at each
triple point t of the diagram D , the weight Wf .t IC / at t for a 3–cocycle f is given
as in Figure 17 (see [11, Sections 10 and 11] and also Carter and Saito [14, Proposition
4.43 (3)]). Put

f̂ .S IC /D
Y

t2X3.D/

Wf .t IC /

where X3.D/ is the set of the triple points of D . It is known [11] that f̂ .LIC / or

x

y x �y

xy

x �y

positive crossing
weight D f .x;y/

negative crossing
weight D f .x;y/�1

Figure 16: The weight at a crossing, where x , y and x �y are the colors of
arcs by C , and f is a 2–cocycle

x x x x x
xy

y y y y yz z z z z z

x�y

x�z

y�z

x�z

y�z
x�y

z z z z z zy�z y�z y�z y�z y�z y�z.x�y/�z .x�y/�z .x�z/�.y�z/
D .x�y/�z

.x�z/
�.y�z/

.x�z/
�.y�z/

.x�y/�z
D .x�z/
�.y�z/

weight D f .x;y; z/ weight D f .x;y; z/�1

Figure 17: The weight at a triple point, where the triple point is presented by
a motion picture around it, and x , y , z , etc are the colors by C , and f is a
3–cocycle

f̂ .S IC / is an invariant of L or S . We call it the quandle cocycle invariant of L

or S associated with a Q–coloring C (see [11]). Since B.D/ is a finite set, so is
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the set of Q–colorings for D . Let ColQ.D/ be the set of all the Q–colorings. Then
define f̂ .L/ or f̂ .S/ by

f̂ .X /D
X

C2ColQ.D/
f̂ .X IC / 2 ZŒG�

where X D L or S , and f is a 2–cocycle (respectively 3–cocycle) if X D L (re-
spectively X D S ). We call f̂ .X / the quandle cocycle invariant of X associated
with f [11].

Next we define a shadow coloring for a classical link. For a diagram of a classical
link with a given Q–coloring, its shadow color is determined from the color of the
unbounded region (see Carter, Kamada and Saito [13]), which we will call the base
color.

Let C be a Q–coloring for a diagram D of a classical link L. A shadow coloring of D

extending C with the base color x 2Q is a map C �x W B
�.D/!Q, where B�.D/ is

the union of B.D/ and the set of regions of R2 separated by the immersed strings of
the diagram D , satisfying the following conditions:

(i) C �x restricted to B.D/ is coincident with C .

(ii) The color of the regions are as in Figure 18.

(iii) The color of the unbounded region is x .

By [13], C �x exists uniquely for given C and x . For a 3–cocycle f , let us define the
weight at a positive (respectively negative) crossing r by W �

f
.r IC;x/D f .w;y; z/

(respectively f .w;y; z/�1 ) in G , where y , z and w are the colors shown in Figure 18.
Put:

‰�f .LIC;x/D
Y

r2X2.D/

W �f .r IC;x/

It is known [13] that ‰�
f
.LIC;x/ is an invariant of L. We will call ‰�

f
.LIC;x/ the

shadow cocycle invariant of L associated with the Q–coloring C and the base color x

(see [13]).

Let Ry W Q!Q be a map defined by Ry.x/D x�y for x;y 2Q. Further, let R∅D

idQ . We will denote Ryl
ı � � � ıRy2

ıRy1
by R.y1;y2;:::;yl / for .y1;y2; : : : ;yl/ 2Ql .

For quandles Q and Q0 , a map �W Q! Q0 is called a quandle homomorphism if
�.x �y/D �.x/��.y/ for any x;y 2Q. By the condition (iii) of a quandle, for any
yD .y1;y2; : : : ;yl/, Ry is a quandle homomorphism.
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y

z y � z

yz

y � z

w

w �y w � z

.w �y/� z
D.w � z/� .y � z/

w

w �y
w � z

.w �y/� z
D.w � z/� .y � z/

Figure 18: A shadow coloring

For a G –valued 3–cocycle f and yD .y1; : : : ;yl/ 2Ql , let yfyW Q
2!G be the map

defined by:

(5-1) yfy.s; t/D

lX
jD1

f .R.y1;:::;yj�1/.s/;R.y1;:::;yj�1/.t/;yj /

Lemma 5.1 Assume that Ry D idQ . Then the map yfy is a 2–cocycle.

Proof We show that yfy satisfies the condition of a 2–cocycle, ie

yfy.s;u/C yfy.s �u; t �u/D yfy.s; t/C yfy.s � t;u/;

as follows. Put:

F D yfy.s;u/C yfy.s �u; t �u/� yfy.s; t/� yfy.s � t;u/

Since f is a 3–cocycle, f satisfies:

f .s;u; v/Cf .s �u; t �u; v/�f .s; t; v/�f .s � t;u; v/

D f .s � v; t � v;u� v/�f .s; t;u/

As we mentioned, R.y1;:::;yj�1/ is a quandle homomorphism; thus we have:

F D

lX
jD1

�
f .R.y1;:::;yj�1/.s/�yj ;R.y1;:::;yj�1/.t/�yj ;R.y1;:::;yj�1/.u/�yj /

�f .R.y1;:::;yj�1/.s/;R.y1;:::;yj�1/.t/;R.y1;:::;yj�1/.u//
�

Since R.y1;:::;yj�1/.s/�yj DR.y1;:::;yj /.s/, we have

F D f .Ry.s/;Ry.t/;Ry.u//�f .R∅.s/;R∅.t/;R∅.u//

which is zero from R∅ D id and the assumption Ry D id. Thus yfy is a 2–cocycle.

For xD .x1; : : : ;xm/ and x0 D .x0
1
; : : : ;x0m/, let us denote .x1; : : : ;xm;x

0
1
; : : : ;x0m/

by xx0 .
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Theorem 5.2 For a given Q–coloring of yb , let xi .iD1; 2; : : : ;m/ be the color of the
i –th initial arc of the m–braid b . Put xD .x1; : : : ;xm/, and put yD x1x2 � � � xn , where
x1D x and xj DRxj�1

.xj�1/ .j > 1/. Assume that for any C 2ColQ.yb/, RyD idQ .
Then the quandle cocycle invariant of Sm.b; �

2n/ associated with a 3–cocycle f is
presented by

f̂ .Sm.b; �
2n//D

X
C2ColQ.yb/

ˆ yfy.
ybIC / �

mY
iD1

nY
jD1

‰�f .
ybIRj�1

x .C /;Rj�1
x .xi//

�1

where ˆ yfy.
ybIC / is the quandle cocycle invariant of yb , and ‰�

f
.ybIC;x/ is the shadow

cocycle invariant of yb . Here x is determined from C and b , and yfy is the 2–cocycle
determined from f and y by (5-1).

5.2 Proof of Theorem 5.2

5.2.1 Triple points of Sm.b; �
2n/ Regarding the tubular neighborhood N.T / of T

as I � I � T , we take for the surface diagram D of Sm.b; �
2n/ the image of the

braided surface by the projection to I �T �R3�f0g. Cutting N.T / by p�1
T
.m[ l/,

we can see that Sm.b; �
2n/ is described by a braided surface over a 2–disk presenting

b ��2n �b�1 ���2n! e ; thus b ��2n!�2n �b , where we use the same notation c for
a diagram of a classical braid c . Thus the triple points of D appear when we slide b

along �2n , ie when we transform b ��2n to �2n � b fixing the diagram of �2n . Each
triple point appears when a Reidemeister move of type III occurs. Since the braid �2

is isotopic relative the boundary to the form as in Figure 19, Sm.b; �
2n/ is equivalent

to the form such that the basis braid �2n is n powers of �2 as in Figure 19. Since
equivalent surface links have the same quandle cocycle invariant, we can assume that the
diagram of �2 is as in Figure 19. Sliding b along �2n is equal to sliding b along �2

n times. When we slide b through the j –th �2 (j D 1; 2; : : : ; n), a crossing r of b

slides over m arcs, and then under m arcs of �2 (see Figure 20). Each time when
r slides over or under an arc, a Reidemeister move of type III occurs; thus a triple
point of D appears. Let tj ;C

1
.r/; : : : ; tj ;C

m .r/, tj ;�
1

.r/; : : : ; tj ;�
m .r/ be the triple points

which appear in this order.

For a given 3–cocycle f and a Q–coloring C , we have the following lemma. Before
a crossing r slides over an arc, around r there are three strings. Two strings form r ,
and they separate the other string into three arcs. According to the orientation, let us
call the first arc of the three arcs the initial arc over which r slides. For the colors x

and y as in Figure 16, we call the pair .x;y/ the color of the crossing r by C (see
Carter, Jelsovsky, Kamada, Langford and Saito [11]).
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x1

x2

xm

x1 �x1

x2 �x1

xm �x1

.x1 �x1/�x2

.x2 �x1/�x2

.xm �x1/�x2

Rx.x1/

Rx.x2/

Rx.xm/

y

y

Rx.y/D.���..y�x1/�x2/���/�xm
Rx.y/

Figure 19: The braid �2

r r r r

(1) (2)

Figure 20: (1) A crossing r slides over an arc, and (2) r slides under an arc

Lemma 5.3 The weight of t j ;C
i .r/ is f .z;x;y/�� , and the weight of t j ;�

i .r/ is
f .x;y; z/� , where z is the color of the initial arc over or under which r slides when it
forms the triple point, and .x;y/ is the color of r before sliding over or under the arc,
and � DC1 (respectively �1) if r is a positive (respectively negative) crossing.

Proof Put tCD t j ;C
i .r/. If r is a positive crossing, then the motion picture around tC

is as in Figure 21. Thus, for this case, the weight of tC is f .z;x;y/�1 ; see Figure 17.
If r is a negative crossing, then around tC is as in Figure 22, which is equivalent to
the right figure of Figure 23. Thus the weight of tC is f .z;x;y/; see Figure 17. The
weight of t j ;�

i .r/ is obtained likewise.

5.2.2 Proof of Theorem 5.2 We take the surface diagram D of Sm.b; �
2n/ as in

Section 5.2.1. First we show that ColQ.D/ and ColQ.yb/ has one-to-one correspon-
dence, as follows. Here, we have the assumption that for any C 2 ColQ.yb/, Ry D id.
For a given Q–coloring C of D , by restricting C to the diagram of the closure of
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x x x

x x x

y y y

y y y

z z z

z z z

r r

Figure 21: Around tC if r is a positive crossing

x x x
y y y

z z z

x �y x �y x �y
z �x z �y

.z �x/�y .z �x/�y

.z �y/� .x �y/
D .z �x/�y

r r

Figure 22: Around tC if r is a negative crossing

x x x

x x x

y y y

y y y

y y y

y y yz z z z z zx�y x�y x�y

x�y x�y x�y

z�x

z�xz�y

z�y

.z�x/�y .z�x/�y .z�y/�.x�y/
D.z�x/�y

.z�x/�y .z�x/�y .z�y/�.x�y/
D.z�x/�y

1

1

1

1

1

1

2

2

2 2

2

2
�

Figure 23: The motion picture of Figure 22 and its presenting white vertex
(the left figure) are equivalent to those of the right figure

the basis braid b , we have a Q–coloring of yb . Conversely, let us consider a given
C 2 ColQ.yb/. Let us give the other basis braid �2n a Q–coloring such that the colors
of the initial arcs are x. Since the color of the i –th initial arc of the j –th �2 is the
i –th element of xj by Lemma 5.4, it follows that Ry.x/ are the colors of the terminal
arcs of �2n . Since RyD id, C can be extended uniquely to the diagram of the closure
of �2n ; thus to the closures of the basis braids of Sm.b; �

2n/. Since Sm.b; �
2n/ is
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determined from the basis braids by Lemma 2.8 (2), C can be extended uniquely to
the surface diagram D .

Now we show the required formula, as follows. By definition:

f̂ .Sm.b; �
2n/IC /D

Y
r2X2.yb/

mY
iD1

nY
jD1

�
Wf .t

j ;C
i .r/IC / �Wf .t

j ;�
i .r/IC /

�
First we calculate Y

r2X2.yb/

mY
iD1

nY
jD1

Wf .t
j ;C

i .r/IC /;

as follows. Since the color of the i –th initial arcs of the j –th �2 is Rj�1
x .xi/

(i D 1; 2; : : : ;m, j D 1; 2; : : : ; n) by Lemma 5.4, it follows that the Q–coloring of b

before sliding the j –th �2 is Rj�1
x .C /. The color of a crossing r 2X2.yb/ does not

change when r slides over an arc. When r forms the triple point t j ;C
i .r/, the color

of the initial arc over which r slides is the color w depicted in Figure 18, determined
from a shadow coloring extending Rj�1

x .C / with the base color which is the color of
the .mC1�i/–th initial arc of the j –th �2 , ie with the base color Rj�1

x .xmC1�i/ by
Lemma 5.4; see Figure 24. Thus

Wf .t
j ;C

i .r/IC /DW �f .r IR
j�1
x .C /;Rj�1

x .xmC1�i//
�1

by Lemma 5.3, so:Y
r2X2.yb/

mY
iD1

Wf .t
j ;C

i .r/IC /D

mY
iD1

‰�f .
ybIRj�1

x .C /;Rj�1
x .xi//

�1

Hence: Y
r2X2.yb/

mY
iD1

nY
jD1

Wf .t
j ;C

i .r/IC /D

mY
iD1

nY
jD1

‰�f .
ybIRj�1

x .C /;Rj�1
x .xi//

�1

Next we calculate Y
r2X2.yb/

mY
iD1

nY
jD1

Wf .t
j ;�

i .r/IC /;

as follows. For each crossing r 2 X2.yb/, the color .x;y/ of r by C changes to
.x � z;y � z/, ie the color by Rz.C /, when r slides under an arc as in Figure 20 (2),
where z is the color of the arc under which r slides. Let us denote the k –th element of
yD x1 � � � xn by yk (kD 1; 2; : : : ;mn). When r slides under the i –th initial arc of the
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r1

r2

r3

x0mC1�i x0mC1�i x0mC1�i x0mC1�i

w1

w2

w3

where

b D

Figure 24: The color wk of the initial arc over which a crossing rk slides,
when it forms t

j ;C
i .rk/ , where x0mC1�i is the color of the .mC1�i/–th

initial arc of the j –th �2

j –th �2 , r has slid under the arcs from the first initial arc of the first �2 to the .i�1/–
th initial arc of the j –th �2 , whose colors are presented by .y1;y2; : : : ;ym.j�1/Ci�1/

by Lemma 5.4. Thus, when r forms the triple point t j ;�
i .r/, the color of r before

sliding under an arc is the color by R.y1;:::;ym.j�1/Ci�1/.C /. The arc under which r

slides is the i –th initial arc of the j –th �2 ; thus its color is the i –th element of xj , ie
ym.j�1/Ci , by Lemma 5.4. Hence it follows from Lemma 5.3 that Wf .t

j ;�
i .r/IC /D

f .R.y1;:::;yk�1/.x/;R.y1;:::;yk�1/.y/;yk/
� , where k Dm.j �1/C i and .x;y/ is the

color of r by C , and �DC1 (respectively �1) if r is a positive (respectively negative)
crossing; thus

mY
iD1

nY
jD1

Wf .t
j ;�

i .r/IC /DW yfy.r IC /;

and we have: Y
r2X2.yb/

mY
iD1

nY
jD1

Wf .t
j ;�

i .r/IC /Dˆ yfy.
ybIC /

Hence we have the required formula.

Lemma 5.4 In the situation of Theorem 5.2, the color of the i –th initial arc of the
j –th �2 is the i –th element of xj . Further, xj DRj�1

x .x/.

Proof The color of the i –th initial arc of the j –th �2 is the i –th element of x
(respectively Rxj�1

.xj�1/) if j D 1 (respectively j > 1), where i D 1; 2; : : : ;m

and j D 1; 2; : : : ; n (see Figure 19); thus it is the i –th element of xj . Since there
exists a unique shadow coloring for a given Q–coloring and a base color (see Carter,
Kamada and Saito [13]), RRx.x/.y/ D Rx.y/ for any y 2 Q; see Figure 19. Thus
xj DRx.xj�1/DRj�1

x .x/.
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5.3 Concrete calculations

The dihedral quandle of order p , denoted by Rp , is the set f0; 1; : : : ;p � 1g with
the binary operation x � y D 2y � x .mod p/. Mochizuki [27] showed that for any
odd prime p , the 3–cocycles for Rp with the coefficient group Z=pZ forms a group
isomorphic to Z=pZ. Its generator is reduced (see Asami and Satoh [2]) to a map
given by:

�p.s; t;u/D v
.s�t/..2u�t/pCtp�2up/=p

2 h v j vp
D 1 i D Z=pZ

We call �p Mochizuki’s 3–cocycle. We identify the group ring ZŒZ=pZ� with the
Laurent polynomial ring ZŒv; v�1�=.vp � 1/.

Theorem 5.5 For an odd prime p , we have:

ˆ�p .S4.�1�
p
2
�3; �

2n//D p

p�1X
iD0

v4ni2

2 ZŒv; v�1�=.vp
D1/

The triple point number of a surface link S is the minimum number of triple points
among all possible diagrams of S . By definition, the quandle cocycle invariant of a
surface link with the triple point number zero has an integer value. Thus we have the
following corollary.

Corollary 5.6 If n is not divisible by p , the triple point number of S4.�1�
p
2
�3; �

2n/

is positive.

Proof of Theorem 5.5 Let us give a Rp –coloring for the diagram of the basis 4–braid
b D �1�

p
2
�3 . By the definition of a Rp –coloring, we have x1 D x2 and x3 D x4 . We

will denote the colors by x and y respectively; we have xD .x;x;y;y/. By a direct
calculation, we can see that

.z �w/�w D z

for any z; w 2Rp ; thus R.w;w/D id. Thus it follows that RxDR.y;y/ ıR.x;x/D id.
Hence, by Theorem 5.2:

ˆ�p.S4.�1�
p
2
�3;�

2n//D
X

C2ColQ.yb/

.ˆy�px
.ybIC //n �.‰��p

.ybIC;x/�‰��p
.ybIC;y//�2n(5-2)

y�px.s;t/D

4Y
iD1

�p.R.x1;:::;xi�1/.s/;R.x1;:::;xi�1/.t/;xi/where
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We calculate ˆy�px
.ybIC /, as follows. Since x1 D x2 D x and x3 D x4 D y , we can

see that R.x1;x2/ D id and R.x1;x2;x3/ DRy . Thus:

y�px.s; t/D �p.s; t;x/ � �p.s �x; t �x;x/ � �p.s; t;y/ � �p.s �y; t �y;y/ 2 Z=pZ

By a direct calculation (see Asami and Satoh [2]), we can see that �p satisfies

�p.s �u; t �u;u/D �p.s; t;u/
�1

for any s; t;u 2Rp . Thus y�px D 1, and hence ˆy�px
.ybIC /D 1 for any C .

We calculate ‰��p
.ybIC;x/ � ‰��p

.ybIC;y/, as follows. In [2], they calculated that
‰��p

.ybIC;x/ D v�.x�y/2 , using the diagram of the right figure of Figure 25. Since

x

x

x
x

x

x

x

x

y

y

y

y

y
b c c

cwhere D

p

�D

Figure 25: The shadow coloring for yb with the base color x

the diagram of yb with the Rp –coloring C with the base color y is transformed
as in Figure 26 by Reidemeister moves, ‰��p

.ybIC;y/ D v�.y�x�y/2 , which equals
v�.y�.2y�x//2 D v�.x�y/2 . Thus ‰��p

.ybIC;x/ �‰��p
.ybIC;y/D v�2.x�y/2 .

x x

y

y y

y y y

x �y

x �yc c c
� �

Figure 26: The shadow coloring for yb with the base color y
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Hence, by (5-2):

ˆ�p .S4.�1�
p
2
�3; �

2n//D
X

x;y2Rp

v4n.x�y/2

D p

p�1X
iD0

v4ni2

2 ZŒv; v�1�=.vp
D1/

The quandle cocycle invariant ˆ�p .S4.�1�
p
2
�3; �

2n// has the same value with that
of the orientation-reversed mirror image of 4n–twist spun .2;p/–torus knot �4nTp

(see Asami and Satoh [2]). An oriented surface link S is invertible if S is equivalent
to its orientation-reversed image �S , and .�/–amphicheiral if S is equivalent to
its orientation-reversed mirror image �S� . The 4n–twist spun 2–knot �4nTp is
equivalent to its mirror image �4nT �p (see Litherland [25]), and in [2] they showed
the following fact: for an odd prime p with p � 3 .mod 4/, if n is not divisible
by p , then ˆ�p .�

4nTp/ ¤ ˆ�p .��
4nT �p / (see also Carter, Jelsovsky, Kamada and

Saito [12]). This means that under the above conditions �4nTp is not invertible. Though
S4.�1�

p
2
�3; �

2n/ is invertible for any p and n (see Proposition 2.10), comparing the
quandle cocycle invariants, we have the following corollary.

Corollary 5.7 For an odd prime p with p � 3 .mod 4/, if n is not divisible by p ,
then S4.�1�

p
2
�3; �

2n/ is not .�/–amphicheiral.

Acknowledgements The author would like to thank Professors Takashi Tsuboi and
Elmar Vogt for suggesting this topic, and Professors Akio Kawauchi, Tomotada Ohtsuki
and the referee for their valuable advice. The author is supported by GCOE, Kyoto
University.

References
[1] E Artin, Theory of braids, Ann. of Math. .2/ 48 (1947) 101–126 MR0019087

[2] S Asami, S Satoh, An infinite family of non-invertible surfaces in 4–space, Bull.
London Math. Soc. 37 (2005) 285–296 MR2119028

[3] I Berstein, A L Edmonds, On the construction of branched coverings of low-
dimensional manifolds, Trans. Amer. Math. Soc. 247 (1979) 87–124 MR517687

[4] I Berstein, A L Edmonds, On the classification of generic branched coverings of
surfaces, Illinois J. Math. 28 (1984) 64–82 MR730712

[5] J S Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82,
Princeton Univ. Press (1974) MR0375281

Algebraic & Geometric Topology, Volume 11 (2011)

http://www.ams.org/mathscinet-getitem?mr=0019087
http://dx.doi.org/10.1112/S0024609304003832
http://www.ams.org/mathscinet-getitem?mr=2119028
http://dx.doi.org/10.2307/1998776
http://dx.doi.org/10.2307/1998776
http://www.ams.org/mathscinet-getitem?mr=517687
http://projecteuclid.org/getRecord?id=euclid.ijm/1256046154
http://projecteuclid.org/getRecord?id=euclid.ijm/1256046154
http://www.ams.org/mathscinet-getitem?mr=730712
http://www.ams.org/mathscinet-getitem?mr=0375281


Surface links which are coverings over the standard torus 1539

[6] O Bogopolski, Introduction to group theory, EMS Textbooks in Math., European Math.
Soc., Zürich (2008) MR2396717 Translated, revised and expanded from the 2002
Russian original

[7] J Boyle, Classifying 1–handles attached to knotted surfaces, Trans. Amer. Math. Soc.
306 (1988) 475–487 MR933302

[8] J Boyle, The turned torus knot in S4 , J. Knot Theory Ramifications 2 (1993) 239–249
MR1238874

[9] G Burde, K Murasugi, Links and Seifert fiber spaces, Duke Math. J. 37 (1970) 89–93
MR0253313

[10] G Burde, H Zieschang, Eine Kennzeichnung der Torusknoten, Math. Ann. 167 (1966)
169–176 MR0210113

[11] J S Carter, D Jelsovsky, S Kamada, L Langford, M Saito, Quandle cohomology
and state-sum invariants of knotted curves and surfaces, Trans. Amer. Math. Soc. 355
(2003) 3947–3989 MR1990571

[12] J S Carter, D Jelsovsky, S Kamada, M Saito, Computations of quandle cocycle
invariants of knotted curves and surfaces, Adv. Math. 157 (2001) 36–94 MR1808844

[13] J S Carter, S Kamada, M Saito, Geometric interpretations of quandle homology, J.
Knot Theory Ramifications 10 (2001) 345–386 MR1825963

[14] J S Carter, M Saito, Knotted surfaces and their diagrams, Math. Surveys and Monogr.
55, Amer. Math. Soc. (1998) MR1487374

[15] E Fadell, L Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111–118
MR0141126

[16] H Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc.
104 (1962) 308–333 MR0146807

[17] J Hillman, 2–knots and their groups, Australian Math. Soc. Lecture Ser. 5, Cambridge
Univ. Press (1989) MR1001757

[18] M W Hirsch, Differential topology, Graduate Texts in Math. 33, Springer, New York
(1994) MR1336822 Corrected reprint of the 1976 original

[19] D Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23
(1982) 37–65 MR638121

[20] S Kamada, Surfaces in R4 of braid index three are ribbon, J. Knot Theory Ramifica-
tions 1 (1992) 137–160 MR1164113

[21] S Kamada, 2–dimensional braids and chart descriptions, from: “Topics in knot theory
(Erzurum, 1992)”, (M E Bozhuyuk, editor), NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci. 399, Kluwer, Dordrecht (1993) 277–287 MR1257915

[22] S Kamada, A characterization of groups of closed orientable surfaces in 4–space,
Topology 33 (1994) 113–122 MR1259518

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.4171/041
http://www.ams.org/mathscinet-getitem?mr=2396717
http://dx.doi.org/10.2307/2000807
http://www.ams.org/mathscinet-getitem?mr=933302
http://dx.doi.org/10.1142/S0218216593000155
http://www.ams.org/mathscinet-getitem?mr=1238874
http://dx.doi.org/10.1215/S0012-7094-70-03713-0
http://www.ams.org/mathscinet-getitem?mr=0253313
http://dx.doi.org/10.1007/BF01362170
http://www.ams.org/mathscinet-getitem?mr=0210113
http://dx.doi.org/10.1090/S0002-9947-03-03046-0
http://dx.doi.org/10.1090/S0002-9947-03-03046-0
http://www.ams.org/mathscinet-getitem?mr=1990571
http://dx.doi.org/10.1006/aima.2000.1939
http://dx.doi.org/10.1006/aima.2000.1939
http://www.ams.org/mathscinet-getitem?mr=1808844
http://dx.doi.org/10.1142/S0218216501000901
http://www.ams.org/mathscinet-getitem?mr=1825963
http://www.ams.org/mathscinet-getitem?mr=1487374
http://www.ams.org/mathscinet-getitem?mr=0141126
http://www.ams.org/journals/bull/1961-67-06/S0002-9904-1961-10703-9/S0002-9904-1961-10703-9.pdf
http://www.ams.org/mathscinet-getitem?mr=0146807
http://www.ams.org/mathscinet-getitem?mr=1001757
http://www.ams.org/mathscinet-getitem?mr=1336822
http://dx.doi.org/10.1016/0022-4049(82)90077-9
http://www.ams.org/mathscinet-getitem?mr=638121
http://dx.doi.org/10.1142/S0218216592000082
http://www.ams.org/mathscinet-getitem?mr=1164113
http://www.ams.org/mathscinet-getitem?mr=1257915
http://dx.doi.org/10.1016/0040-9383(94)90038-8
http://www.ams.org/mathscinet-getitem?mr=1259518


1540 Inasa Nakamura

[23] S Kamada, An observation of surface braids via chart description, J. Knot Theory
Ramifications 5 (1996) 517–529 MR1406718

[24] S Kamada, Braid and knot theory in dimension four, Math. Surveys and Monogr. 95,
Amer. Math. Soc. (2002) MR1900979

[25] R A Litherland, Symmetries of twist-spun knots, from: “Knot theory and manifolds
(Vancouver, B.C., 1983)”, (D Rolfsen, editor), Lecture Notes in Math. 1144, Springer,
Berlin (1985) 97–107 MR823283

[26] C Livingston, Stably irreducible surfaces in S4 , Pacific J. Math. 116 (1985) 77–84
MR769824

[27] T Mochizuki, Some calculations of cohomology groups of finite Alexander quandles, J.
Pure Appl. Algebra 179 (2003) 287–330 MR1960136

[28] J M Montesinos, On twins in the four-sphere. I, Quart. J. Math. Oxford Ser. .2/ 34
(1983) 171–199 MR698205

[29] H Neumann, Generalized free products with amalgamated subgroups. II, Amer. J.
Math. 71 (1949) 491–540 MR0030522

[30] L Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math.
Helv. 58 (1983) 1–37 MR699004

[31] M Teragaito, Symmetry-spun tori in the four-sphere, from: “Knots 90 (Osaka, 1990)”,
(A Kawauchi, editor), de Gruyter, Berlin (1992) 163–171 MR1177421

[32] T Yanagawa, On ribbon 2–knots: The 3-manifold bounded by the 2–knots, Osaka J.
Math. 6 (1969) 447–464 MR0266193

Research Institute for Mathematical Sciences, Kyoto University
Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan

inasa@kurims.kyoto-u.ac.jp

Received: 25 June 2009 Revised: 1 March 2011

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.1142/S0218216596000308
http://www.ams.org/mathscinet-getitem?mr=1406718
http://www.ams.org/mathscinet-getitem?mr=1900979
http://dx.doi.org/10.1007/BFb0075013
http://www.ams.org/mathscinet-getitem?mr=823283
http://projecteuclid.org/getRecord?id=euclid.pjm/1102707249
http://www.ams.org/mathscinet-getitem?mr=769824
http://dx.doi.org/10.1016/S0022-4049(02)00323-7
http://www.ams.org/mathscinet-getitem?mr=1960136
http://qjmath.oxfordjournals.org/content/34/2/171.full.pdf+html
http://www.ams.org/mathscinet-getitem?mr=698205
http://www.jstor.org/pss/2372346
http://www.ams.org/mathscinet-getitem?mr=0030522
http://dx.doi.org/10.1007/BF02564622
http://www.ams.org/mathscinet-getitem?mr=699004
http://www.ams.org/mathscinet-getitem?mr=1177421
http://ir.library.osaka-u.ac.jp/metadb/up/LIBOJMK01/ojm06_02_15.pdf
http://www.ams.org/mathscinet-getitem?mr=0266193
mailto:inasa@kurims.kyoto-u.ac.jp

	1. Introduction
	2. Torus-covering links
	3. Knot groups and link groups
	4. Ribbon torus-covering T²-links
	5. Quandle cocycle invariants
	5.1. Quandle cocycle invariant of S_m(b,Deltaˆ2n)
	5.2. Proof of Theorem 5.2
	5.2.1. Triple points of S_m(b,Deltaˆ2n)
	5.2.2. Proof of Theorem 5.2

	5.3. Concrete calculations

	References

