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4–fold symmetric quandle invariants of 3–manifolds

TAKEFUMI NOSAKA

The paper introduces 4–fold symmetric quandles and 4–fold symmetric quandle
homotopy invariants of 3–manifolds. We classify 4–fold symmetric quandles and
investigate their properties. When the quandle is finite, we explicitly determine a
presentation of its inner automorphism group. We calculate the container of the
4–fold symmetric quandle homotopy invariant. We also discuss symmetric quandle
cocycle invariants and coloring polynomials of 4–fold symmetric quandles.

57M12, 57M25, 57M27, 57N70, 58K65; 55Q52, 22A30, 11E57, 55R40, 05E15

1 Introduction

A quandle is a set with a certain binary operation satisfying a self-distribute law.
Quandles are adapted to the oriented link theory. For an oriented link L�S3 , Joyce [16]
defined the link quandle QL as an analog of the fundamental group �1.S

3 nL/. For
a quandle X , a quandle homomorphism QL ! X is called an X –coloring of L.
From algebraic topology, given a quandle X , Fenn, Rourke and Sanderson [9] defined
the rack space analogous to the classifying space of groups. They [10; 11] show
that the second homotopy group is isomorphic to a bordism group consisting of all
“framed X –colorings”. Then, a quandle homotopy invariant of oriented links can be
defined by an invariant valued in the group ring ZŒ�2.BX /�, where the space BX is a
certain modification of the rack space. On the other hand, quandle cocycle invariants
of oriented links introduced by Carter et al [3] using 2–cocycles of H 2.BX IA/ are
computable and practical; they can, however, be derived from the quandle homotopy
invariant (see, eg, Carter, Kamada and Saito [4] and Fenn and Rourke [8]).

In another direction, Hatakenaka [13] reformulated certain Dijkgraaf–Witten invariants
of 3–manifolds [5] as quandle cocycle invariants. To see this, she made use of the fact
that any 3–manifold is a 4–fold simple branched covering of the 3–sphere branched
along a link L. Then the associated simple monodromy representation onto S4 can be
regarded as an S –coloring of L, which we call a labeled link. Here S WD f.ij / 2S4g

is a quandle with the conjugate operation. Hence, we may consider any 3–manifold
to be a labeled link. Further, it is known (see Apostolakis [1] and Bobtcheva and
Piergallini [2]) that homeomorphism classes of 3–manifolds are in 1–1 correspondence
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with the set of labeled links modulo some “MI and MII moves” (see Figure 3). The
key point is that, using these facts, she presented the Dijkgraaf–Witten invariants of
3–manifolds as some invariants of labeled links.

In this paper, our purpose is to construct and study an invariant of 3–manifolds obtained
from the quandle homotopy invariant of labeled links. The idea behind the construction
is simple: since any 3–manifold can be regarded as a labeled link of L, we define a
quandle X over S , and consider X –colorings obtained by lifting the S–coloring to
be an invariant of the 3–manifold. For this, noting that the monodromies are unrelated
to orientations of links, we focus on symmetric quandles introduced by Kamada [17]
which are suitable for unoriented links. Then we obtain an axiomatization necessary
to construct invariants of 3–manifolds in terms of symmetric quandles, and define a
4–fold symmetric quandle to be a symmetric quandle which is unchanged under MI
and MII moves mentioned above (Section 3.1). Further, for a finite 4–fold symmetric
quandle X , we construct a 4–fold symmetric homotopy invariant valued in a group
ring ZŒ…4f

2;�.X /�. Here, the group …4f
2;�.X / is defined as a certain link cobordance

group which is invariant under MI, MII moves (Definition 3.3), and turns out to be a
quotient group of �2.BX / (see Section 6.1).

Although we have obtained the invariant of 3–manifolds, the definition seems teleolog-
ical and abstract. Particularly, it is a problem to study what the container …4f

2;�.X / is.
To deal with this, our next step is to resolve 4–fold symmetric homotopy invariants
into concrete objects.

We first classify the 4–fold symmetric quandles as follows. We define a cored group to
be a pair of a group G and a central element c 2 Z.G/ satisfying c2 D e . A cored
group .G; c/ gives rise to a 4–fold symmetric quandle denoted by zGc (Example 4.1),
which is a slight generalization of quandles considered by Hatakenaka [13]. Roughly
speaking, zGc is like to be a principal G –bundle over S with an involution. Conversely,
given a 4–fold symmetric quandle X , we find a cored group .G; c/ related to X by
a 4–fold symmetric quandle isomorphism X Š zGc (Theorem 4.2). As a corollary,
we obtain a category equivalence between a category of cored groups and a category
of (two-pointed) 4–fold symmetric quandles (Corollary 4.3). The corollary says that
the symmetric structure introduced by Kamada [17] makes our work of 3–manifold
invariants broader. In conclusion, as a result of Theorem 4.2, we may consider only
4–fold symmetric quandles of the forms zGc later.

We next investigate some properties of zGc . In general, any “connected” quandle X is
known to be determined by the inner automorphism group Inn.X / (see Section 5.1).
We show the quandle zGc is connected and of type 4 (Lemmas 3.5, 3.7). Further, for
a finite cored group .G; c/, we explicitly determine Inn. zGc/ using a wreath product
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G4 ÌS4 (Theorem 5.4). More precisely, putting the commutator subgroup ŒG;G�
of G , Inn. zGc/ is isomorphic to a quotient group IG;c=ZG;c , where

IG;c D f .x;y; z; wI �/ 2G4 ÌS4 j c
.sgn.�/�1/=2xyzw 2 ŒG;G� g;

ZG;c D f .z; z; z; zI e/ 2G4 ÌS4 j z
4
2 ŒG;G�; z 2Z.G/ g:

Following the theory of Eisermann [7; 6], the explicit presentation of Inn. zGe/ helps
later a computation of “quandle cocycle invariants” explained below.

Next, we give two approaches to estimate the container …4f
2;�.
zGc/ of our invariant. One

shows that for a finite cored group .G; c/, …4f
2;�.
zGc/ is a finite abelian group whose

elements are annihilated by 212 � 34 � jGj12jŒG;G�j4 (Theorem 6.2). To prove this, we
take a viewpoint that …4f

2;�.
zGc/ is a quotient of the homotopy group �2.BX /, and use

the author’s results on �2.BX / in [21]. Also, this viewpoint concretely enable us to
compute …4f

2;�.
zGc/ with .G; c/D .Z=2Z; 0/ and .Z=2Z; 1/ in Section 6.3. In another

direction, we discuss the 4–fold symmetric quandle homotopy invariant of 2–fold and
3–fold simple branched covering spaces of S3 (Section 6.2). As an application, we
obtain a combinatorial estimate whether a 3–manifold is a double branched covering
of S3 or not (Proposition 7.4), although we find no such examples by using the estimate
(Problem 7.5).

However, it is difficult to compute explicitly the group …4f
2;�.
zGc/ and our invariant. Our

purpose in Sections 7–8 is to reduce the invariant to other computable invariants. For an
abelian group A, we define a 4–fold symmetric quandle 2–cocycle of zGc with (local)
coefficients A. This cocycle is a modification of the (symmetric) quandle cocycles
given in Kamada et al [3; 18]. Using a 4–fold symmetric quandle cocycle, we define
a 4–fold symmetric quandle cocycle invariant of 3–manifolds. Similar to quandle
cocycle invariants of links, any 4–fold symmetric quandle cocycle invariant of zGc is
derived from the 4–fold symmetric quandle homotopy invariant (Proposition 7.3). As
a corollary of the above estimate of …4f

2;�.
zGc/, if A˝Z=.6jGj/ZŠ 0 (eg, ADQ),

the associated 4–fold symmetric quandle cocycle invariants are trivial (Remark 5).
Therefore, for a discovery of a new invariant, we shall assume A˝Z=.6jGj/Z¤ 0.

A benefit of the 4–fold symmetric quandle cocycle invariants is computable given a
presentation of a 4–fold quandle symmetric 2–cocycle. However, in practice it is not
easy to find such 2–cocycles; hence, it is not easy to calculate the cocycle invariants
either in general. Then, as a simple case, we confine ourselves to quandle cocycles of zGe

with trivial coefficients, when c D e . To begin, as to zGe , we show that any symmetric
quandle cocycle introduced by Kamada and Oshiro [18] is 4–fold, if the coefficient
group is annihilated by 2 (Proposition 8.1). Furthermore, we obtain a calculation of 4–
fold symmetric quandle cocycle invariants without having been given the presentations
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of 4–fold symmetric quandle cocycles as follows. To see this, we focus here on
the coloring polynomial introduced by Eisermann [7]; he showed that the coloring
polynomial is the universal among cocycle invariants of knots, and is computable
without knowing an explicit presentation of quandle cocycles. However, the problem is
that, in order to study the coloring polynomial, we have to determine the container of the
polynomial. Under the influence of his work, we then modify the coloring polynomial
as an invariant of 3–manifolds. Further, we show that the polynomial produces some 4–
fold symmetric quandle cocycle invariants with trivial coefficients (see Proposition 8.3).
In addition, we determine an explicit presentation of the container (Proposition 8.4).
As examples, we concretely compute the containers of some groups (Examples 8.6,
8.7, 8.8). Consequently, we obtain a method to calculate 4–fold symmetric quandle
cocycle invariants with trivial coefficients. However, unfortunately, we have not been
able to find examples of nontrivial invariants yet (Problem 8.9).

This paper approaches the 4–fold symmetric quandle homotopy invariant in an algebraic
context. In the next paper [14], using results in this paper, Hatakenaka and the author
will give some topological approaches and applications of our invariant, and compare
our invariant with the Dijkgraaf–Witten invariant and with the Chern–Simons invariant.
It is true that the definition of our invariant seems a little abstract and universal, but
studying universal objects is useful to relate other objects in mathematics.

This paper is organized as follows. In Section 2, we review the definitions of symmetric
quandles and 4–fold branched covering spaces. In Section 3, we introduce a 4–fold
symmetric quandle homotopy invariant, and investigate properties of 4–fold symmetric
quandles. In Section 4, we classify 4–fold symmetric quandles. In Section 5, we
determine the inner automorphism group of any finite 4–fold symmetric quandle. In
Section 6, we estimate the group …4f

2;�.
zGc/. In Section 7, we introduce and study

the 4–fold symmetric quandle cocycle invariant. In Section 8, we discuss coloring
polynomials. Section 9 is an Appendix: we compare the symmetric quandle homotopy
invariant of 3–manifolds with that of links.
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2 Review of symmetric quandles and covering presentations

We begin reviewing some of notation on the symmetric quandles introduced by Ka-
mada [17, Section 2.1], and a relation between labeled diagrams and 3–manifolds in
Section 2.2.

2.1 Symmetric quandles and symmetric colorings

A quandle is a set X with a binary operation .x;y/! x �y satisfying the following:

(Q1) For any x 2X;x �x D x .

(Q2) For any x;y 2X , there exists a unique element z 2X such that z �y D x .

(Q3) For any x;y; z 2X , .x �y/� z D .x � z/� .y � z/.

A quandle X is of type n, if it satisfies .� � � .x �y/�y � � � /�y D x (star n–times on
the right with y ) for any x;y 2 X . For example, any group G is a quandle by an
operation a� b WD ba�1b for a; b 2G , whose type is 2.

For a quandle X , an X –coloring of an oriented link diagram Do is a map

C W farcs of Dog !X

satisfying the condition shown in Figure 1 at each crossing of Do . We denote the set of
X –colorings of Do by ColX .Do/. It is well-known that if oriented link diagrams Do

and D0o0 are related by Reidemeister moves, then there exists a canonical bijection
between ColX .Do/ and ColX .D0o0/ (see, eg, [8]). Therefore, for a finite quandle X ,
the cardinality of ColX .Do/ is an invariant of oriented links.

˛ ˇ



C.˛/�C.ˇ/D C. /

Figure 1: The condition of a coloring at each crossing

Next, we review symmetric quandles and symmetric colorings introduced by Ka-
mada [17]. For a quandle X , a map �W X ! X is a good involution, if it is an
involution (ie, � ı � = idX ) such that

(Q4) For any x;y 2X , it satisfies �.x �y/D �.x/�y and .x �y/� �.y/D x .

Such a pair (X , �) is called a symmetric quandle.
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Let D be an unoriented link diagram on R2 . Divide over-arcs at crossings of D . We
call the resulting arcs semiarcs of D . Put the two normal orientations on each semiarc
such as ˛1; ˛2 in Figure 2. For a symmetric quandle .X; �/, an X�–coloring of D is
a map C W fthe two orientations on semiarcs of Dg !X satisfying the following two
conditions:

(X1) For the two normal orientations ˛1 , ˛2 of the same semiarc as shown in Figure 2,
the colors satisfy C.˛1/ D �

�
C.˛2/

�
. (Since the color of an arc with one

orientation determines the another, we will later draw the only one color of the
two.)

(X2) For the four semiarcs coming from over-arcs of D at each crossing illustrated in
Figure 2, the four orientations satisfy C.ı/D C.˛/�C.ˇ/ and C.ˇ/D C. /.

˛1

˛2

C.˛1/D �.C.˛2//

˛ ˇ

 ı
 C.ı/D C.˛/�C.ˇ/

C.ˇ/D C. /

arcs at a crossing the semiarcs

Figure 2: The condition of a symmetric coloring on semiarcs and at each
crossings

Note that, by the axiom (Q4), the second condition (X2) is well-defined from the choice
of those orientations. Let ColX ;�.D/ denote the set of all X�–colorings of D . If two
unoriented link diagrams D1 and D2 are related by Reidemeister moves, then we have
a natural bijection between ColX ;�.D1/ and ColX ;�.D2/ (see Kamada and Oshiro [18,
Proposition 6.2]).

We explain a bijection below (1). Denote by Do the unoriented link diagram D

equipped with an orientation. For a symmetric quandle .X; �/, an X –coloring of Do

is naturally extended to an X�–coloring of D , using the above conditions (X1)–(X2).
We thus have a canonical map

(1) PX W ColX .Do/ �! ColX ;�.D/:

Conversely, given an X�–coloring of D , if we restrict the X�–coloring to the orienta-
tions of Do , then we have an X –coloring of Do as an inverse of the map (1). Hence
the map (1) turns out to be bijective (see [18, Theorem 6.7] for detail).

Let us review homomorphisms of quandles. A map f W X ! Y between two quandles
is called a quandle homomorphism if f .a � b/ D f .a/ � f .b/ for any a; b 2 X . A
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quandle homomorphism f W X!Y between symmetric quandles .X; �X / and .Y; �Y /

is symmetric, if f .�X .x// D �Y .f .x// for any x 2 X . By elementary calculation,
the preimage of a symmetric subquandle of Y is also a symmetric subquandle of X .

Finally, we give some remarks on a specified quandle denoted by S , which plays a
key role in this paper. The quandle S is defined to be elements of the symmetric
group S4 on two letters with the conjugation: .ab/� .cd/D .cd/�1.ab/.cd/ for any
.ab/; .cd/ 2S4 . S has a unique symmetric quandle structure with �D idS (see also
Corollary 3.6 in the case X D S ). Note that S D f.ij / 2S4g, and that S is of order 6

and of type 2. Then, for an Sid –coloring, the two orientations of each semiarcs have
the same color. So we often draw Sid –colorings such as a picture of semiarcs without
orientation, similar to Figure 3.

2.2 Covering presentations

In this section, we briefly review covering presentations of 3–manifolds. We consider
a d –fold simple covering of S3 branched over a link L. Throughout this paper, the
word “3–manifold” will always mean a connected, compact, oriented 3–dimensional
manifold without boundary, and d –fold branched coverings are assume to be simple
(in the sense of Hilden [15]). It is shown by Hilden [15] and Montesinos [20] that any
3–manifold M is a 3–fold branched covering space of S3 along a knot. However, for
the purpose to construct invariants of 3–manifolds, in this paper we mainly deal with
4–fold branched coverings.

Given a 4–fold covering of S3 branched over a link L � S3 , we have the associ-
ated simple monodromy representation �W �1.S

3 nL/!S4 (see, eg, Prasolov and
Sossinsky [22] or Rolfsen [23]). Here a homomorphism �W �1.S

3 nL/!S4 is said
to be simple, if this is surjective and sends each meridian to a transposition in S4 . Put
a link diagram D of L. An Sid –coloring of D whose image (� S ) generates S4

will be called a labeled diagram. By Wirtinger presentation of �1.S
3 nL/, simple

homomorphisms �1.S
3 nL/!S4 naturally correspond to labeled diagrams of D

(see, eg, [22, Section 24]). In summary, any 3–manifold can be regarded as a labeled
diagram. We often denote a labeled diagram by D� with respect to D and � in this
paper. Conversely, given a labeled diagram D� of a link L, since S4 is generated by
S �S4 , we obtain a simple monodromy representation �1.S

3nL/!S4 (see Rolfsen
[23] for detail). Then we have a 3–manifold M as the resulting 4–fold branched
covering of the link L.

It is known (see, eg, [22, Section 24.5]) that MI and MII moves of labeled diagrams,
shown in Figure 3, do not change the topological type of the branched covering spaces.
Conversely, Apostolakis [1] and Bobtcheva and Piergallini [2] showed:
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Theorem 2.1 ([1], a special case of [2, Theorem 3]) Two 4–fold simple coverings
of S3 branched over links represent the same 3–manifold up to homeomorphic, if and
only if their associated labeled diagrams can be related by a finite sequence of MI, MII
and Reidemeister moves on R2 .

MI move MII move

.ij / .j k/ .ij / .j k/

.ij / .j k/

.ik/

.kl/.ij /

.kl/.ij /

.ij / .kl/

Figure 3: MI, II moves of labeled diagrams

In this paper, constructions of invariants of 3–manifolds are based on Theorem 2.1.

Finally, we give some remarks on 2–fold and 3–fold branched coverings of S3 . A
labeled diagram D� is said to be 2–fold if D� DD12 tU23 tU34 forms, as shown
in Figure 4 satisfying that its subdiagram D12 is labeled by .12/ 2 S , where U23

(resp. U34 ) is a trivial knot diagram labeled by .23/ 2 S (resp. .34/ 2 S ). One notices
that if M is a double covering of S3 branched over a link L, then we can choose
a 2–fold labeled diagram of L which presents M . On the other hand, a labeled
diagram D� is said to be 3–fold, if D� DDR3

tU34 as shown in Figure 4 satisfying
that DR3

is labeled by f.12/; .23/; .13/g � S . Since any 3–manifold M is a 3–fold
branched covering of a knot, M is represented by a 3–fold labeled diagram.

D12 DR3

.23/ .34/ .34/

Figure 4: A 2–fold labeled diagram and a 3–fold labeled diagram

3 4–Fold symmetric quandle homotopy invariant

In Section 3.1, we introduce a 4–fold symmetric quandle, and define a 4–fold symmetric
quandle homotopy invariant. In Section 3.2, we investigate some properties of 4–fold
symmetric quandles.
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3.1 Definitions

In this section, we first introduce 4–fold symmetric quandles. Further, we will define a
group …4f

2;�.X /, and a 4–fold symmetric quandle homotopy invariant valued in the
group ring ZŒ…4f

2;�.X /�.

Definition 3.1 A 4–fold symmetric quandle is a triple (X;pX ; �) satisfying

(F1) (X; �) is a symmetric quandle.

(F2) The map pX W X ! S is a symmetric quandle epimorphism. For .ij / 2 S , let
us denote the preimage p�1

X
.ij /�X by Xij .

(F3) If i; j ; k are distinct, then for any xij 2Xij ;yjk 2Xjk , we have xij �yjk D

�.yjk/�xij .

(F4) If i; j ; k; l are distinct, then for any zij 2Xij ; wkl 2Xkl , we have zij�wklDzij .

Throughout this paper, the symbols 1 � i; j ; k; l � 4 mean distinct indices. For
simplicity, we often denote by X a 4–fold symmetric quandle.

We define colorings of labeled diagrams. For a 4–fold symmetric quandle X , we
note that the quandle homomorphism pX W X ! S induces .pX /�W ColX ;�.D/ !
ColS;id.D/. Then, for a labeled diagram D� 2 ColS;id.D/, we denote the preimage
.pX /

�1
� .D�/ by ColX ;�.D�/, and call an element of ColX ;�.D�/ an X�–coloring

of D� .

The following proposition indicates that the axioms (F3) and (F4) correspond to MI
and MII moves, respectively.

Proposition 3.2 Let (X;pX ; �) be a 4–fold symmetric quandle. If two labeled di-
agrams are related by a finite sequence of MI, MII and Reidemeister moves on R2 ,
then there is a bijection between the sets of X�–colorings of the labeled diagrams. In
particular, for a 3–manifold M presented by a labeled diagram D� , if X is finite, then
the cardinality of the X�–colorings jColX ;�.D�/j<1 is a topological invariant of M .

Proof If two link labeled diagrams are related by Reidemeister moves on R2 , then
we obtain the required bijection by the routine argument.

Then it is sufficient to give the proof for a single MI or MII move. First, let us consider
the case where a labeled diagram D� changes into another one D0�0 by a single MII
move. Put an X�–coloring of D0�0 such as the right of Figure 5. It follows from the
axiom (F4) that the right (or left) top and bottom arcs have the same X�–color. Then,
we have an X�–coloring of D� corresponding to the X�–coloring of D0�0 . Conversely,

Algebraic & Geometric Topology, Volume 11 (2011)



1610 Takefumi Nosaka

D� D0�0
zij wkl zij wkl

zij wkl

Figure 5: X�–colorings of D� and D0�0 related by a single MII move

given an X�–coloring of D� , we can obtain an X�–coloring of D0�0 in a similar
manner. Therefore this allows us to obtain a bijection ColX ;�.D�/' ColX ;�.D0�0/.

Finally, assume that D� changes into D0�0 by a single MI move. Put an X�–coloring
of D0�0 such as the right of Figure 6 below. If the left and right top arcs are colored

D� D0�0
aij

aij
bjk

bjk

aijbjk � aij

�.aij /�.bjk � aij /

�.bjk � aij /�.aij /� �.bjk � aij /

bjk � aij
aij � �.bjk � aij /

.bjk � aij /�

.aij � �.bjk � aij //
�.bjk � aij /�
.aij � �.bjk � aij //

�.aij /��.bjk � aij /

aij bjk

�.aij / �.bjk/

Figure 6: X�–colorings of D� and D0�0 related by a single MI move

by aij 2 Xij and bjk 2 Xjk , respectively, then by the rule of X�–colorings the
left and right bottom arcs are colored by �.bjk � aij / � .aij � �. bjk � aij // and
�.aij /� �.bjk � aij /, respectively. By the axiom (F3) we have

�.aij /� �.bjk � aij /D .bjk � aij /� �.aij /D bjk :

Further, it follows from this equality and (F3) that

�.bjk �aij /�.aij ��.bjk �aij //D �.�.aij /�bjk/��.bjk/D.aij �bjk/��.bjk/Daij :

Hence, since the right (or left) top and bottom arcs have the same X�–color, we obtain
an X�–coloring of D� on the left in Figure 6. In summary, given an X�–coloring
of D0�0 , we have obtained that of D� , and vice versa. Similarly, the correspondence
gives rise to a bijection ColX ;�.D�/' ColX ;�.D0�0/.
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In addition, we will provide the invariant ColX ;�.D�/ with a grading by an abelian
group …4f

2;�.X / as follows. For this, for a symmetric quandle .X; �/, we first define a
group …2;�.X /, modifying a certain group introduced by Fenn, Rourke and Sanderson
[9; 10] denoted by D.2;BX /. …2;�.X / is defined to be the set of all X�–colorings
of all link diagrams in R2 modulo Reidemeister moves and symmetric concordance
relations, where the symmetric concordance relations are local moves shown in Figure 7.
The set …2;�.X / has a binary operation …2;�.X /�…2;�.X /!…2;�.X / given by
disjoint union. Precisely, given X�–colorings C1 and C2 , choose copies in disjoint
half spaces, then define C1 � C2 to be C1 t C2 . This operation is well-defined and
makes …2;�.X / into an abelian group. Here, the inverse element of a representative
X�–coloring C is the mirror image of C , and the identity element of …2;�.X / is the
empty set. From the definition of …2;�.X /, we have a natural map

(2) „X .DI �/W ColX� .D/ �!…2;�.X /;

that is, „X .DI �/ maps an X�–coloring C to the canonical class ŒC � 2…2;�.X /.

a �.a/

a �.a/

a

�.a/�.a/

a

a �.a/

∅

Figure 7: The symmetric concordance relations

Next, let X be a 4–fold symmetric quandle. We put a subgroup of …2;�.X / generated
by all X�–colorings of all trefoils and of all Hopf links shown in Figure 8, where
indices i; j ; k; l run over all distinct natural numbers � 4 and xij ;yjk ; zij ; wkl run
over Xij ; Xjk ; Xij ; Xkl , respectively. Let …4f

2;�.X / denote the quotient group
modulo the subgroup. Then we put the natural projection p4fW …2;�.X /!…4f

2;�.X /,
and consider a composite map

(3) „4f
X .D� I �/W ColX ;�.D�/

„X .D� I�/
�������!…2;�.X /

p4f

��!…4f
2;�.X /;

where we denote by „X .D� I �/ the restriction of „X .DI �/ to ColX ;�.D�/.

Definition 3.3 Let X be a finite 4–fold symmetric quandle. Let D� be a labeled
diagram. Then a 4–fold symmetric quandle homotopy invariant of D� is the expression

„4f
X .D�/ WD

X
C2ColX;�.D�/

„4f
X .D� IC / 2 ZŒ…4f

2;�.X /�:
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xij �yjk yjk

xij zij wkl

Figure 8: X�–colorings of the trefoil and Hopf link

This is an invariant of 3–manifolds as follows.

Theorem 3.4 Let D� and D0�0 be labeled diagrams related by a finite sequences of MI,
MII and Reidemeister moves. For a finite 4–fold symmetric quandle X , „4f

X
.D�/D

„4f
X
.D0�0/ 2 ZŒ…4f

2;�.X /�. In particular, for a 3–manifold M presented by D� , the
4–fold symmetric quandle homotopy invariant „4f

X
.D�/2ZŒ…4f

2;�.X /� is a topological
invariant of M .

Proof Recall the natural bijection BW ColX ;�.D�/!ColX ;�.D0�0/ of Proposition 3.2.
Then, it suffices to show that „4f

X
.D� IC / D „4f

X
.D0�0 IB.C // 2 …

4f
2;�.X / for any

C 2 ColX ;�.D�/.

First, for two X�–colorings related by Reidemeister moves on R2 , the required equality
follows from the definition of …2;�.X /. Next, if the two X�–colorings are related by
a single MI move as shown in Figure 6, we obtain

„4f
X
.D� IC /D

aij bjk

aij bjk

aij bjk

bjk

aij

aij � bjk

D C D„4f
X
.D0�0 IB.C //

2…4f
2;�.X /;

where we use symmetric concordance relations along the dashed lines in the second
equality. Finally, if two X�–colorings are related by a single MII move illustrated in
Figure 5, then we similarly conclude

„4f
X
.D� IC /=

zij wkl

zij wkl

zij wkl

zij wkl

D C D„4f
X
.D0�0 IB.C //

2…4f
2;�.X /,

which completes the proof.
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Therefore we often denote the invariant of a 3–manifold M by „4f
X
.M /. Speaking of

the invariants, it is important to calculate the container …4f
2;�.X /. We will estimate or

calculate …4f
2;�.X / in Section 6.

3.2 Properties of 4–fold symmetric quandles

In this section, we discuss some properties of 4–fold symmetric quandles (X;pX ; �).
As before, we prepare a bijection (4) below. By the axiom (Q2), for qki 2 Xki , we
have a bijection .� � qki/W X ! X which sends x to x � qki . Since the projection
pX W X ! S is a quandle homomorphism, pX commutes with the right operation
.� � qki/. Hence the restriction on Xjk of .� � qki/

(4)
�
� � qki

�
W Xjk �!Xij

is bijective. Further, by the axioms (Q3) and (Q4), this map (4) is a symmetric quandle
isomorphism. Therefore, for any .ij / 2 S , each symmetric subquandles Xij are
symmetric quandle isomorphic one another.

Lemma 3.5 Let X be a 4–fold symmetric quandle. Fix xij 2Xij .

(i) For k ¤ i; j and yjk 2Xjk , .xij �yjk/�yjk D �.xij /.

(ii) For any zij 2Xij , .xij�zij /�zij Dxij . The subquandle Xij �X is, particularly,
of type 2.

(iii) X is a quandle of type 4. Namely, for any a; b 2X; ...a� b/� b/� b/� b D a.

Proof (i) By the axiom (F3), we have

.xij �yjk/�yjk D
�
�.yjk/�xij

�
�yjk D

�
�.xij /� �.yjk/

�
�yjk D �.xij /;

where the last equality is obtained from the axiom (Q4).

(ii) By the bijection (4), there exists pjk 2Xjk such that xij D pjk � qki . Then we
obtain

.xij � zij /� zij D
�
.pjk � qki/� zij

�
� zij D

�
.pjk � zij /� zij

�
�
�
.qki � zij /� zij

�
D �.pjk/� �.qki/D �.qki/�pjk D pjk � qki D xij ;

where the second equality is obtained from (Q3), the third is obtained from (i) and the
last line follows from the axiom (F3).

(iii) Fix aD xij 2Xij . When b 2Xjk , by (i) we have�
..a� b/� b/� b

�
� b D �..a� b/� b/D .� ı �/.a/D a:
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Next, if b 2Xij , then it follows from (ii) that ...a� b/� b/� b/� b D .a� b/� b D a.
Finally, when b 2Xkl , it is clear that ...a�b/�b/�b/�b D a by the axiom (F4). To
summarize, for any a; b 2X , they satisfy the required conditions.

Corollary 3.6 A 4–fold symmetric quandle X is of type 2 if and only if the good
involution � is the identity map of X .

Proof When �¤ idX , X is not of type 2 by Lemma 3.5(i). Conversely, if �D idX ,
then X is immediately of type 2 from the definition of the good involution � .

Next, we discuss inner automorphism groups of quandles denoted by Inn.X /. Given a
quandle X , recall the bijection .� � z/W X ! X for any z 2 X , by the axiom (Q2).
Then, the group Inn.X / is defined by a subgroup of SjX j generated by the right actions
.�� z/ for z 2X . A quandle X is said to be connected, if the action of Inn.X / on X

is transitive. Also, we consider a natural map

(5) innX W X �! Inn.X / given by innX .x/D .� �x/:

In general, innX is not injective and it is difficult to determine Inn.X /. However, in the
case of X DS , one can verify that Inn.X /ŠS4 , and that the map innX coincides with
the natural inclusion S ,!S4 . Thereby the map innX is injective, and the quandle S
is connected. More generally, these properties hold for 4–fold symmetric quandles:

Lemma 3.7 Any 4–fold symmetric quandle X is connected.

Proof Put arbitrary a; b 2X . Denote a by 3xij 2Xij . Let us connect a to b case by
case. First, we consider the case bDyjk 2Xjk , where i ¤k . Then by the axioms (Q4)
and (F3), we have a connection between xij and yjk as follows:

yjk D .yjk � �.xij //�xij D .xij �yjk/�xij :

Finally we consider the other cases. Namely, b 2Xij[Xkl , where i; j ; k; l are distinct.
Then, as a result of the previous case, for zjk 2 Xjk , we can connect a with zjk .
Iterating the process, since zjk can be connected to b , we have connected between a

and b , which has dealt with all cases of a; b 2X .

Lemma 3.8 For a 4–fold symmetric quandle X , the map innX is injective.

Proof Let a; b 2X . Assume x � aD x � b for any x 2X . We have to show aD b .
Applying the epimorphism pX W X ! S to the assumption, we have pX .x/�pX .a/D

pX .x/�pX .b/ 2 S . Since innS is injective, we obtain pX .a/D pX .b/. Without loss
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of generality, we may assume pX .a/D .12/ 2 S . Put �23 2X23 . By the axioms (Q4)
and (F3), we thus conclude

aD .a� �23/� �.�23/D .�.�23/� a/� �.�23/

D .�.�23/� b/� �.�23/D .b � �23/� �.�23/D b:

In Section 5 we determine Inn.X / and innX for a finite 4–fold symmetric quandle X

(Theorem 5.4 and Corollary 5.5).

Lastly, we discuss 4–fold symmetric quandle homomorphisms. For 4–fold symmetric
quandles .X;pX ; �/ and .Y;pY ; �

0/, a symmetric quandle homomorphism  W X!Y

is said to be 4–fold, if pX D pY ı .

Lemma 3.9 Let X , Y be 4–fold symmetric quandles. Fix .˛; ˇ/ 2 X12 � X23 ,
.p; q/ 2 Y12 �Y23 .

(i) For any pair .x;y/ 2 Y12 � Y23 , there exists S 2 Inn.Y / such that x � S D p

and y �S D q .

(ii) Such S 2 Inn.Y / induces a bijection

(6) .� �S/�W Hom.˛;ˇ/.x;y/4sQnd .X;Y /' Hom.˛;ˇ/.p;q/4sQnd .X;Y /;

where Hom.˛;ˇ/.x;y/4sQnd .X;Y / stands for the set of 4–fold homomorphisms from
X to Y which send .˛; ˇ/ to .x;y/.

Proof To prove (i), we fix � 2 Y24 . Define

Ty;q WD

�
� �

�
.q �y/� �0.�/

��
� .y � �/ 2 Inn.Y /;

Ux;p WD

�
� �

�
.p �x/� �0.�/

��
� .x � �/ 2 Inn.Y /:

Note x � Ty;q D x , since x �
�
.q � y/ � �0.�/

�
D x and x � .y � �/ D x by (F4).

Furthermore, by the axiom (F3) we obtain

y �Ty;q D

�
y �

�
.q �y/� �0.�/

��
� .y � �/

D

��
.q �y/� �0.�/

�
� �0.y/

�
� .y � �/

D

��
.q �y/� �0.y/

�
�
�
�0.�/� �0.y/

��
� .y � �/

D

�
q �

�
�0.y/� �

��
� .y � �/D q:

Similarly, we can verify x � Ux;p D p and q � Ux;p D q . Hence, S WD Ty;q � Ux;p 2

Inn.Y / satisfies the desired conditions.
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It remains to show (ii). Such S 2 Inn.Y / induces a 4–fold isomorphism .� �S/W Y ŠY .
Hence, this induces a bijective map .� � S/�W Hom4sQnd.X;Y / ' Hom4sQnd.X;Y /.
Then the restriction on Hom.˛;ˇ/.x;y/4sQnd .X;Y / is the required bijection (6).

4 Classification of 4–fold symmetric quandles

In this paper, we mainly deal with a pair of a group G and its central element c 2Z.G/

satisfying c2 D e , where Z.G/ is the center of G . We call such a pair of .G; c/ a
cored group1. For a cored group (G; c ), we present an example of 4–fold symmetric
quandle (Example 4.1). Further, we classify 4–fold symmetric quandles (Theorem 4.2).
As a corollary, we give a category equivalence between a category of two-pointed
4–fold symmetric quandles and a category of cored groups (Corollary 4.3). We give a
slight reduction of 4–fold symmetric homotopy invariant (Lemma 4.4).

4.1 Classification and a category equivalence

A 4–fold symmetric quandle arises from a cored group (G; c ) in the following manner.

Example 4.1 Let G be a group and c 2 Z.G/ a central element. Putting T12 WD

f.i; j /2Z2 j 1� i; j � 4; i ¤ j g, we define zGc to be a quotient set G�T12=�, where
the equivalence relation � on .G � T12/ is defined by .g; .i; j // � .g�1c; .j ; i//;

for any .i; j / 2 T12 and g 2 G . Further, we provide zGc with a binary operation
�W zGc �

zGc!
zGc defined by Table 1 below. To summarize, by a discussion similar to

the proof by Hatakenaka [13, Proposition 3.4.], it can be verified that zGc is a quandle.
Note that if G is finite, then zGc has order 6jGj.

Let us assume c2D e . Put a map �W zGc!
zGc given by �.g; .i; j //D .gc; .i; j // and

a natural projection p zGc
W zGc! S which sends .g; .i; j // to .ij / 2 S . Then the triple

. zGc ;p zGc
; �/ is a 4–fold symmetric quandle.

.g; t/ .g0; t 0/ .g; t/� .g0; t 0/

.g; .i; j // .g0; .i; j // .g0g�1g0; .i; j //

.g; .i; j // .g0; .j ; k// .gg0; .i; k//

.g; .i; j // .g0; .k; l// .g; .i; j //

Table 1: The binary operation � in zGc . Here, in each line, i; j ; k; l are all
distinct and t; t 0 2 T12 .

1We here name the pair after a shape of an apple with the cored center.
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Notice that the quandle zGc is of type 2 if and only if c D e by Corollary 3.6. We
remark that in the case of c D e , zGe is the quandle introduced by Hatakenaka [13,
Section 3.2] without good involution. Then, the quandle zGc is a slight generalization
and a symmetric quandle version of [13].

However, any 4–fold symmetric quandle turns out to be one of the type zGc : we classify
4–fold symmetric quandles as follows:

Theorem 4.2 Let .X;pX ; �/ be a 4–fold symmetric quandle. Then X12 has a group
structure G related to X by a 4–fold symmetric quandle isomorphism X Š zGc for
some central element c 2G . As a special case, if the good involution � is the identity
map, then the 4–fold symmetric quandle .X;pX ; id/ reduces to one of the quandle
introduced by Hatakenaka [13].

We defer its proof to the next section. As an application, in order to state Corollary 4.3,
we prepare some notation of categories. Let .G; c/ and .G0; c0/ be two cored groups.
A group homomorphism f W G!G0 is said to be cored, if f .c/D c0 . Grpc denotes
the category whose objects are cored groups, and arrows are cored homomorphisms.
Restricting to the case of c D e , Grpc contains the category of groups, denoted by
Grp , as a full subcategory.

On the other hand, a two-pointed 4–fold symmetric quandle is defined to be a pair
of a 4–fold symmetric quandle X and two points .x12;x23/ 2 X12 � X23 . For
two-pointed 4–fold symmetric quandles .X;x12;x23/ and .X 0;x0

12
;x0

23
/, a 4–fold

homomorphism  W X �! X 0 is two-pointed, if  .x12/ D x0
12

and  .x23/ D x0
23

.
When X DX 0 , a two-pointed 4–fold isomorphism  W .X;x12;x23/�! .X;x0

12
;x0

23
/

is said to be equivalent, if there exists S 2 Inn.X / such that the restrictions satisfy
 jX12[X23[X13

D .��S/jX12[X23[X13
. Let Qnd4s denote the category composed of

4–fold symmetric quandles modulo the equivalence relation. Further, we define Qnd4

to be a full subcategory of Qnd4s consisting of 4–fold symmetric quandles whose
good involutions are the identity maps.

Corollary 4.3 The functor T which takes a cored group .G; c/ to zGc gives an equiv-
alence of categories between Grpc and Qnd4s . Further, the restriction of the functor
to Grp induces an equivalence of categories between Grp and Qnd4 .

Proof It follows from Theorem 4.2 and Lemma 3.9 (i) that any two-pointed 4–
fold symmetric quandle .X;x12;x23/ is equivalent to

�
zGc ; .e; .1; 2//; .e; .2; 3//

�
for

some cored group .G; c/. Hence, it suffices to show that the functor T is full and
faithful as follows. For a 4–fold homomorphism  W zGc �!

zG0c0 , we will construct
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a cored homomorphism ‰W G �! G0 satisfying T .‰/ D  as follows. Since we
consider  modulo the above equivalence, using Lemma 3.9 (i), we may assume
that  .e; .1; 2// D .e0; .1; 2// and  .e; .2; 3// D .e0; .2; 3//. From the definition in
Table 1, we have

(7)  .g; .1; 2//� .h; .2; 3//D  .gh; .1; 3// 2 zG0c0 ;

for any g; h 2G . We put a natural projection � W zG0c0!G0 . By applying (7) to g D e

(resp. h D e ), we have �. .h; .2; 3/// D �. .h; .1; 3/// (resp. �. .h; .1; 2/// D
�. .h; .1; 3/// ). Hence, we obtain

(8) �
�
 .g; .1; 2///

�
��
�
 .h; .2; 3//

�
D �

�
 .gh; .1; 3//

�
2 zG0:

Further, notice  .c; .1; 2//D .c0; .1; 2// by the symmetric structure. Therefore a map
‰W G �!G0 given by ‰.g/D �

�
 .g; .1; 2///

�
is a cored homomorphism.

Next, we claim that T .‰/ is equivalent to  . Denote �.e; .3; 4// 2G0 by � . Define
an equivalent 4–fold isomorphism T�W zG

0
c0 !

zG0c0 by

T�.g
0; .1;2//D .g0; .1;2//; T�.g

0; .2;3//D .g0; .2;3//; T�.g
0; .1;3//D .g0; .1;3//;

T�.g
0; .1;4//D .g0�; .1;4//;T�.g

0; .2;4//D .g0�; .2;4//;T�.g
0; .3;4//D .g0�; .3;4//:

Then, T�ıT .‰/D as required, which implies the fullness of T . Also, the discussion
easily results the faithfulness of T .

The latter part results from a similar argument as well.

Remark 1 Let X;Y be 4–fold symmetric quandles. Let .a; b; c/ 2X12�X23�X34

and .˛; ˇ;  /2 Y12�Y23�Y34 . By this proof, we remark that, the set of the homomor-
phisms in Qnd4s between X and Y is in 1–1 correspondence with the set of 4–fold
homomorphisms X ! Y sending .a; b; c/ to .˛; ˇ;  /. Namely, HomQnd4s

.X;Y /'

Hom.a;b;c/;.˛;ˇ; /4sQnd .X;Y /:

Remark In general, the category of quandles is bigger than the category of symmetric
quandles, since some quandles have no good involution. For example, let M be a
connected Alexander quandles, ie, M is a ZŒT˙�–module with a quandle operation
x �y D T xC .1�T /y and satisfies M D .1�T /M as a ZŒT˙�–module. Then it is
easy to see that M has no good involution if and only if T 2M ¤M .

Then the results can be summarized as follows:�
4–fold symmetric
quandles of type 2

�
�

�
4–fold symmetric

quandles

�
�

�
symmetric
quandles

�
�

�
quandles

�

Š Š

fgroupsg � fcored groupsg
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With the illustration, we give an interpretation of our 4–fold symmetric quandles and a
comparison with Hatakenaka’s work [13]. She introduced a quandle zGe in the case
c D e without using a good involution. Therefore Theorem 4.2 and Corollary 4.3
suggests that a 4–fold symmetric quandle without good involution is under the category
of groups, and that the symmetric quandle structure makes a progress of her construction
of 3–manifold invariants wider.

Also, we compare symmetric quandle homotopy invariants of 3–manifolds with those
of oriented links. The author [21] studied quandle homotopy invariants of oriented links.
The invariant is defined by using only a finite quandle without good involution (see [21,
Section 2]). Similarly, for any finite symmetric quandle .X; �/, we can also define the
symmetric quandle homotopy invariant of unoriented links (see Section 9). However,
some quandle has no good involution, and the symmetric homotopy invariant of .X; �/
is derived from the homotopy invariant of X without good involution (Proposition 9.1).
In conclusion, the symmetric structure develops the quandle homotopy invariant of
links no wider.

However, Theorem 4.2 raises a limitation of our philosophy. Section 3.1 teleologically
develops an axiomatization so as to construct invariants of 3–manifolds M in term of
symmetric quandles, and introduces 4–fold symmetric quandles. Then it is important
to discuss how broad the class of 4–fold symmetric quandles is. Theorem 4.2 directly
suggests that the axioms are limited by cored groups in the categorical context. Hence,
for a further invariant, we need to introduce other axioms with various ideas.

Incidentally, we give a slight reduction of the 4–fold symmetric homotopy invariant
of X D zGc (Lemma 4.4). Let D� be a 3–fold labeled diagram. We fix three arcs
˛12; ˛23; ˛34 of D� labeled by .12/; .23/; .34/2S , respectively. For .x12;x23;x34/2

X12�X23�X34 , we define Colx12;x23;x34

X ;�
.D�/ to be the subset of ColX ;�.D�/ such

that the arcs ˛ij are colored by xij , respectively.

Lemma 4.4 Let .G; c/ be a cored group, and zGc the associated 4–fold symmetric
quandle. Let D� and ˛ij be as above. Then there exists a bijection

Col zGc ;�
.D�/' jGj

3
�Cole12;e23;e34

zGc ;�
.D�/;

where we denote .e; .i; j //2 zGc by eij . Further, if G is finite, then the 4–fold quandle
homotopy invariant of a 3–manifold M is equal to

(9) „4f
zGc
.M /D jGj3

X
C2Col

e12;e23;e34
zGc ;�

.D�/

„4f
zGc
.D� IC /:
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Proof Since the subdiagram of D� colored by .34/ 2 S is a trivial knot, for any
r 2X34 , we have a bijection

Cole12;e23;r
zGc ;�

.D�/! Cole12;e23;e34

zGc ;�
.D�/:

Further, by Lemma 3.9, for any p 2X12; q 2X23 , there exists S 2 Inn. zGc/ such that
p �S D e12 and q �S D e23 . Thus we have a bijection

Colp;q;r
zGc ;�

.D�/! Cole12;e23;e34

zGc ;�
.D�/

for any .p; q; r/ 2X12 �X23 �X34 . Hence, we obtain

Col zGc ;�
.D�/' jGj

3
�Cole12;e23;e34

zGc ;�
.D�/

as required.

Note for any zGc –coloring C and S 2 Inn. zGc/, we have an equality

„4f
zGc ;�

.D� IC /D„
4f
zGc ;�

.D� IC �S/

from the definition of …2;�. zGc/ (see also [21, Lemma 5.6; 11, Proposition 5.2]). So

„4f
zGc
.M /D

X
.p;q;r/2

X12�X23�X34

X
C2Colp;q;r

zGc ;�
.D�/

„4f
zGc
.D� IC /D jGj

3
X

C2Col
e12;e23;e34
zGc ;�

.D�/

„4f
zGc
.D� IC /:

4.2 Proof of Theorem 4.2

The hasty reader may skip the proof, since the discussion is an ad hoc method.

Proof We first equip X12 with a group structure step by step.

Step 1 To begin with, we construct a symmetric subquandle zK of X . We fix three
elements p12 2 X12 , p23 2 X23 , p34 2 X34 . Put p13 D p12 � p23 2 X13 , p24 D

p23 �p34 2X24 and p14D .p12 �p23/�p34 2X14 . Define qij to be �.pij / for any
.ij / 2 S . Then, by using Lemma 3.5, we can verify that a subset

zK WD fpij ; qij j .ij / 2 S g

is a symmetric subquandle. We remark that if � ¤ id, then the subquandle is zK Š
AZ=2Zc with c ¤ e , and that if �D id, then zK Š S , since pij D qij .

Define a binary operation of X12 by a composite

?W X12 �X12

idX12
�.��p12/

���������!X12 �X12

idX12
�.��q13/

���������!X12 �X23
�
�!X13

.��q23/
����!X12;

x12 ?y12 D
�
x12 � ..y12 �p12/� q13/

�
� q23;(10)

for x12;y12 2X12 . We claim that the operation satisfies the axioms of a group.

Algebraic & Geometric Topology, Volume 11 (2011)



4–fold symmetric quandle invariants of 3–manifolds 1621

Step 2 We will show the associativity as follows. Notice that, for ˛12 2X12; ˇ23 2

X23; 34 2X34 , the axiom (F4) says

(11) .˛12 �ˇ23/� 34 D .˛12 � 34/� .ˇ23 � 34/D ˛12 � .ˇ23 � 34/:

Operating ...��q23/�p34/�q23/ 2 Inn.X / to this equality, the left hand side equals

(12)
�
..˛12 �ˇ23/� q23/� ..34 � q23/�p34/

�
� q23:

Put x12; y12; z12 2 X12 . Applying ˛12 D x12; ˇ23 D .y12 � p12/ � q13; 34 D

...z12 �p12/� q13/� q34/�p23 to (12), one then obtains���
x12 � ..y12 �p12/� q13/

�
� q23

�
�
�
.z12 �p12/� q13

��
� q23 D .x12 ?y12/ ? z12:

On the other hand, by applying ...� � q23/�p34/� q23/ to the right hand side in (11),
we have

(13)
��
˛12 � .ˇ23 �34/

�
�p34

�
�q23D

�
˛12 �

�
.ˇ23 �p34/� .34 �p34/

��
�q23;

where we use (Q3) and (F4). We now calculate 34 � p34 and ˇ23 � p34 . When
34 D ...z12 �p12/� q13/� q34/�p23 , we remark that

34�p34 D

���
.z12�p12/�.p23�p12/

�
�q34

�
�p34

�
�.p23�p34/

D
�
.z12�p23/�p12

�
�p24 D .z12�p23/�.p12�p24/D .q23�z12/�p14

D �.q23�z12/��.p14/D .p23�z12/�q14 D .z12�q23/�q14;

where the first equality follows from (Q4) and q13 D p23 �p12 , the third equality is
derived from (F4) and other equalities are obtained from (F3).

Furthermore, we easily have ˇ23�p34D .y12�p12/�.q13�p34/D .y12�p12/�q14 .
Therefore the right hand side in (13) is equal to�

x12�
��
.y12�p12/�.z12�q23/

�
�q14

��
�q23D

�
x12�

�
.y12�p12/�.z12�q23/

��
�q23;

where we use .y12 �p12/� .z12 �q23/ 2X23; and the axioms (Q4). We claim that the
right hand side equals x12 ? .y12 ? z12/. Indeed, by definition,

x12?.y12?z12/D
�
x12�

����
y12�

�
.z12�p12/�q13

��
�q23

�
�p12

�
�q13

��
�q23

D

�
x12�

��
y12�

�
.z12�p12/�q13

��
�p12

��
�q23

D

�
x12�

�
.y12�p12/�

��
.z12�p12/�q13

�
�p12

���
�q23

D

�
x12�

�
.y12�p12/�.z12�q23/

��
�q23;
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where the second equality is obtained from Lemma 4.5 (i), the third follows from (Q3)
and the last is obtained by an easy calculation as

�
.z12 �p12/�q13

�
�p12D z12 �q23 .

Step 3 Here we claim that p12 2 X12 is a right identity element. Indeed, for any
x12 2X12 ,

x12 ?p12 D
�
x12 � ..p12 �p12/� q13/

�
� q23 D .x12 �p23/� q23 D x12;

where the second equality is obtained from .p12 �p12/� q13 D p23 .

Step 4 Further, we assert that the right inverse element of x122X12 is x12�p122X12 .
Actually,

x12 ? .x12 �p12/D
�
x12 �

��
.x12 �p12/�p12

�
� q13

��
� q23

D
�
x12 � .x12 � q13/

�
� q23

D
�
.�.x12/� q13/�x12

�
� q23

D

��
p13 � �.x12/

�
�x12

�
� q23 D p13 � q23 D p12;

where the second equality is obtained from Lemma 3.5 (ii), and the third and forth
equalities are obtained from the axiom (F3).

Therefore, the binary map ? provides X12 with a group structure. Let G denote a
set X12 with the binary operation ?. Since we can easily check x12 ?q12 D �.x12/D

q12 ?x12 by direct calculation, q12 belongs to the center of G . In particular, taking
x12D q12 , we find q12?q12D �.q12/Dp12 . The pair of .G; q12/ is therefore a cored
group. Denote q12 2 X12 by c . Then our goal is to construct a symmetric quandle
isomorphism zGc ŠX as follows.

First, notice that, through the equality (10), the restricted operation �W X12 �X23 �!

X13 is determined by the group operation ? and the right operation from the sub-
quandle zK in Step 1. Furthermore, for any distinct elements i; j and k , the binary
operation �W Xij �Xjk �!Xik is also determined by the operation ? and zK . Indeed,
for example, in the case of .i; j ; k/D .1; 2; 4/, the operation �W X12 �X24 �!X14

is given by

x12 �y24 D
�
.x12 �y24/�p34

�
� q34 D

�
x12 � .y24 �p34/

�
� q34;

for any x12 2X12; y14 2X14 , noting y24 �p34 2X23 . It also holds for other cases
in a similar manner.
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Next, we will investigate the subquandle operation �W X12 �X12 �!X12 . We claim
y12 ?x�1

12
?y12 D x12 �y12 for any x12;y12 2X12 . Indeed,

.y12?x�1
12 /?y12 D

���
.y12�.x12�q13/

�
�q23

�
�
�
.y12�p12/�q13

��
�q23

D

���
y12�.x12�q13/

�
�q23

�
�q23

�
�

��
.y12�p12/�q13

�
�q23

�
D
�
�.y12/�.x12�q13/

�
�.y12�q13/

D
�
.x12�q13/�y12

�
�.p13�y12/

D
�
.x12�y12/�.q13�y12/

�
�
�
�.q13/�y12

�
D x12�y12;

where the second equality is obtained from (Q3), the third equality is derived from
Lemma 4.5 (ii) and Lemma 3.5 (ii), the forth equality is obtained from the axiom (F3).
In conclusion, the operation �W X12�X12�!X12 is determined by the group structure;
further, so is the operation �W Xij �Xij �! Xij for any .ij / 2 S via the quandle
isomorphism (4).

In summary, the binary operation � and the good involution � on X is determined by
the group structure G and the subquandle zK . Further, note that the above discussion
and the construction of zGc are parallel. Hence, it is not hard to construct a symmetric
quandle isomorphism zGc ŠX , and is thus left to the reader.

Lemma 4.5 Let pij ; qij 2X be as above. Then we have two equalities:

(i)
�
.� � q23/�p12

�
� q13 D ��p12 2 Inn.X /:

(ii)
�
.� �p12/� q13

�
� q23 D �� q13 2 Inn.X /:

Proof By direct calculation with using the axioms (Q3), (Q4) and (F3). For example,
(ii) follows from�

.� �p12/� q13

�
� q23 D

�
.� � q13/� .p12 � q13/

�
� q23

D
�
.� � q13/�p23

�
� q23 D �� q13:

5 Inner automorphism group Inn. zGc )

Following Theorem 4.2, any 4–fold symmetric quandle is isomorphic to zGc for some
cored group (G; c ). We then deal with only zGc in this section. Our goal is to determine
the inner automorphism group Inn. zGc/ of a finite cored group .G; c/ (Theorem 5.4).
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5.1 Preliminaries

For this, following Joyce [16], we first review the homomorphism (15) below. Let
K � I be groups. If x0 2 I commutes with any elements of K , then the left quotient
set KnI has a quandle structure given by

(14) Œ˛�� Œˇ� WD Œx�1
0 ˛ˇ�1x0ˇ�;

for representatives ˛; ˇ 2 I . Conversely, any connected quandle X conforms to this
model as follows. Recall that Inn.X / transitively acts on X by definition. Fix x0 2X .
Let Z.x0/ be the stabilizer group of x0 : in other word, Z.x0/ is the centralizer
subgroup of innX .x0/2 Inn.X /. We equip the group Inn.X / with a quandle operation
given by (14) with I D Inn.X / and KDfeg. Then, it is shown by Joyce [16, Theorem
7.1] that the natural map

(15) Inn.X / �!X given by g 7�! x0 �g

is a quandle homomorphism, and induces a quandle isomorphism Z.x0/n Inn.X /ŠX .
In conclusion, the quandle structure of X is determined by the two groups Inn.X /
and Z.x0/. Hence, it is important for the study of a connected quandle X to compute
Inn.X /.

Changing into our work, we let .G; c/ be a cored group. Since the associated quan-
dle zGc is connected by Lemma 3.7, zGc fits with the above model. To say it more
concretely (Proposition 5.3), we prepare some notation. We consider what is called the
wreath product G4ÌS4 . To be concise, the group operation in G4ÌS4 is defined by

.g1;g2;g3;g4I �/ � .g
0
1;g
0
2;g
0
3;g
0
4I �
0/ WD .g1g0�.1/;g2g0�.2/;g3g0�.3/;g4g0�.4/I ��

0/

where �; � 0 2 S4 and gi ;g
0
i 2 G .i 2 f1; 2; 3; 4g/, and we divide the components

between G4 and S4 by semicolons “;”. We now consider a group homomorphism

G4 ÌS4 �!G=ŒG;G� given by .x;y; z; wI �/ 7�! c.sgn.�/�1/=2xyzw;

where ŒG;G� is the commutator subgroup of G . Then the kernel is presented by the
formula

(16) IG;c WD f.x;y; z; wI �/ 2G4 ÌS4 j c
.sgn.�/�1/=2xyzw 2 ŒG;G�g:

We denote .c; e; e; eI .12// 2 IG;c by z0 . Let KG;c denote the centralizer subgroup of
z0 2 IG;c . Then, by elementary calculation, we can verify that KG;c is given by

(17) f.x;x; z; wI �/ 2 IG;c j � D e or .12/.34/g

[f.x; cx; z; wI �/ 2 IG;c j � D .12/ or .34/g:
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Let us provide the left quotient KG;cnIG;c with a quandle structure obtained from (14).

Next, we consider a map �W G �T12 �!G4 ÌS4 defined by

(18) �.g; .i; j //D .a
g
1
; a

g
2
; a

g
3
; a

g
4
I .ij //;

where we put a
g

|
D cg for |D i , a

g

|
D g�1 for |D j , and a

g

|
D e otherwise. Then

this passes to a map �W zGc �! IG;c . Further, using the map �, we define a map
�G;c W

zGc �!KG;cnIG;c by

(19)

�G;c.g; .1; 2//D Œ.cg; e;g�1; eI .12//�; �G;c.g; .3; 4//D Œ.e;g
�1; cg; eI .13/.24//�;

�G;c.g; .2; 3//D Œ�.g; .1; 3//�; �G;c.g; .1; 3//D Œ�.g; .2; 3//�;

�G;c.g; .1; 4//D Œ�.g; .2; 4//�; �G;c.g; .2; 4//D Œ�.g; .1; 4//�:

Noting z0 D �.e; .1; 2//, it is not hard to see that, for any .g; .i; j // 2 zGc ,

(20) Œ�.g; .i; j //�D �G;c.g; .i; j //
�1
� Œz0� � �G;c.g; .i; j // 2KG;cnIG;c :

Also, we put a subset �S WD f.1; 3/; .2; 3/; .1; 4/; .2; 4/g � Z2 . Notice that, for any
.g; .i; j // 2 zGc with .i; j / 2 �S , we have

(21) �G;c.g; .i; j //D Œ�.g; .i; j //
�1
� z0 ��.g; .i; j //� 2KG;cnIG;c :

5.2 Presentation of Inn. zGc/

In order to determine Inn. zGc/, the following is a key proposition.

Proposition 5.1 Let .G; c/ be a cored group. Then the map �G;c above is a quandle
epimorphism.

Proof First, using (20) above, we can verify that �G;c is a quandle homomorphism
by direct calculation. For example, �G;c.g; .1; 2//� �G;c.h; .2; 3// is equal to��

z�1
0 � .cg; e;g�1; eI .12//

�
�
�
�G;c.h; .2; 3//

�1
� z0 � �G;c.h; .2; 3//

��
D Œ.e;g;g�1; eI e/ ��.h; .2; 3//�D Œ.e;g;g�1; eI e/ � .e; ch; h�1; eI .23//�

D Œ.e; cgh;g�1h�1; eI .23//�D Œ.e; e; h�1g�1hg; eI e/ � .e; cgh;g�1h�1; eI .23//�

D Œ.e; cgh; .gh/�1; eI .23//�D �G;c.gh; .1; 3//D �G;c

�
.g; .1; 2//� .h; .2; 3//

�
:

For other cases, the verifications can be done by similar calculations, and are thus left
to the reader.
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It remains to show �G;c is a surjection. By Lemma 5.2 below, any ‡ 2IG;c is presented
by ‡D�.g1; .i1;j1// � � ��.gn; .in;jn//; for some .g1; .i1;j1//; : : : ; .gn; .in;jn//2 zGc

with .i1; j1/; : : : ; .in; jn/ 2 �S . In addition, by the equalities (14) and (21), we obtain

�.g1; .i1; j1// � � ��.gn; .in; jn//

D z1�n
0 �

�
� � �
�
�.g1; .i1; j1//��.g2; .xi2; j2//

�
� � �

�
��.gn; .xin; jn//;

where we put x1D 2 and x2D 1. Consider this equality modulo KG;c . By (19), Œ‡� is
derived from the following as required:

Œ‡�D
h��
� � �
�
�G;c.g1; .xi1; j1//� �G;c.g2; .i2; j2//

�
� � �
��
� �G;c.gn; .in; jn//

i
D

h
�G;c

��
� � �
�
.g1; .xi1; j1//� .g2; .i2; j2//

�
� � � �

�
� .gn; .in; jn//

�i
2KG;cnIG;c :

Lemma 5.2 Let .G; c/ be a cored group. The group IG;c is generated by elements of
the forms �.g; .i; j // with g 2G and .i; j / 2 �S . In particular, IG;c is generated by
the image of �W zGc! IG;c given by (18).

Proof Put .x;y; z; wI �/ 2 IG;c . By direct calculation, .x;y; z; wI �/ is equal to

�.z�1; .1; 3// ��.w�1; .2; 4// ��.c; .2; 4// ��.wy; .2; 3// � .e; wyzx; e; eI .23/.13/�/:

Since c.sgn.�/�1/=2wyzx 2 ŒG;G�, there exist a1; : : : ; an; b1; : : : ; bn 2G such that

wyzx D c.sgn.�/�1/=2anbna�1
n b�1

n an�1bn�1a�1
n�1b�1

n�1 � � � a1b1a�1
1 b�1

1 :

Denote the right side by An;� . Hence, it is enough for the proof to show that any
such elements .e;An;� ; e; eI �/ can be presented by a product of some elements of
the forms �.g; .i; j // with g 2G and .i; j / 2 �S . We will show this by induction on
n� 0.

To begin, if nD 0, then we can easily show it by elementary calculation. Let n� 1.
Assume it holds for An�1;� . By direct calculation, we see that .e;An;� ; e; eI �/ equals

�
�
anbn; .2; 3/

�
��
�
an; .2; 3/

�
��
�
e; .2; 3/

�
��
�
bn; .2; 3/

�
� .e;An�1;� ; e; eI �/:

By assumption, An;� satisfies the required condition. This completes the proof.

We consider the map �G;c in the case where G is finite.

Proposition 5.3 Let .G; c/ be a finite cored group. Then the map �G;c W
zGc !

KG;cnIG;c is a quandle isomorphism zGc ŠKG;cnIG;c .
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Proof From the definitions, we immediately notice that

jIG;cjD24�jGj3 �jŒG;G�j; jKG;cjD4�jGj2 �jŒG;G�j; j zGcjD jKG;cnIG;cjD6�jGj:

Since the above �G;c is a quandle epimorphism, �G;c is isomorphic.

Following Proposition 5.3, we will determine Inn. zGc/ of a finite cored group .G; c/.
For this, we now introduce a group defined by

ZG;c WD f .z; z; z; zI e/ 2G4 ÌS4 j z
4
2 ŒG;G�; z 2Z.G/ g:

By direct calculation, we see that ZG;c is precisely the center of IG;c .

Theorem 5.4 Let .G; c/ be a cored group. If the epimorphism �G;c is isomorphic,
then there exists a group isomorphism Inn. zGc/ Š IG;c=ZG;c . In particular, if G is
finite, Inn. zGc/Š IG;c=ZG;c .

Proof Let us regard a natural right action of IG;c on KG;cnIG;c as a group homomor-
phism IG;c! Aut.KG;cnIG;c/ sending ‡ 2IG;c to .� �‡/. We claim that the image is
contained in Inn.KG;cnIG;c/. Put an arbitrary ‡ 2 IG;c . Then by Lemma 5.2 we have
‡ D �.g1; .i1; j1// � � ��.gn; .in; jn// for some .g1; .i1; j1//; : : : ; .gn; .in; jn// 2 zGc

with .i1; j1/; : : : ; .in; jn/ 2 �S . Hence, using (14) and (20), for any X 2KG;cnIG;c ,
we have

X �‡ D Œz�nC1
0

� � ŒX ��.g1; .i1; j1// � � ��.gn; .in; jn//�

D

h��
� � �
�
X � �G;c.g1; .i1; j1//

�
� � � �

�
� �G;c.gn; .in; jn//

�i
2KG;cnIG;c ;

noting z0 2 KG;c by definition. From the definition of Inn.KG;cnIG;c/, the above
equalities mean Œ� �‡�2 Inn.KG;cnIG;c/ as required. We claim that the homomorphism
IG;c ! Inn.KG;cnIG;c/ is surjective. Indeed, for any Ã 2 IG;c , by definition the
equality

� � ŒÃ�D
�
� � .Ã�1z0Ã/

�
2 Aut.KG;cnIG;c/

means that any generator � � ŒÃ� of Inn.KG;cnIG;c/ is derived from Ã�1z0Ã 2 IG;c .

To complete the proof, it is enough to show that the kernel is ZG;c . To see this, note that
the right action of Inn. zGc/ on zGc is effective by definition. Therefore it is sufficient
to show that if an element ‡ 2 IG;c satisfies X �‡ DX for any X 2KG;cnIG;c , then
‡ 2ZG;c . Further, note that, for any representative Ã 2 IG;c of X 2KG;cnIG;c , the
above equality X �‡ D X means ŒÃ �‡�D ŒÃ� 2KG;cnIG;c : in other words,

(22) Ã‡�1Ã�1
2KG;c for any Ã 2 IG;c :
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Therefore it suffices to show that if ‡ 2 IG;c satisfies the condition (22), then ‡ 2ZG;c .

Let us assume (22). When Ã is the identity element of IG;c , the condition (22)
immediately means ‡ 2KG;c . Further, we can verify PS4

.‡/D e 2S4 by applying
ÃD �.e; .2; 3// and ÃD �.e; .3; 4// to the condition (22), where PS4

is the natural
projection PS4

W G4 ÌS4 ! S4 . Hence, it follows from the presentation (17) that
‡ 2KG;c is of the form

‡ D .x;x; z; wI e/ 2G4 ÌS4;

for some x; z; w 2G . Put g 2G . Further, by applying ÃD �.g; .2; 3// to (22),

KG;c 3 �.g; .2; 3// �‡
�1
��.g; .2; 3//�1

D .x�1;gz�1g�1;g�1x�1g; w�1
I e/:

In particular, we have x�1 D gz�1g�1 . Therefore we obtain z D x and x 2Z.G/,
since g 2 G is arbitrary. Similarly, by applying Ã D �.g; .2; 4// to (22) again, we
obtain x D w . In summary, ‡ equals to .x;x;x;xI e/ 2ZG;c as desired.

We give a corollary of Theorem 5.4, when G is finite. To begin with, we give a concrete
presentation of inn zGc

given in (5):

Corollary 5.5 Let .G; c/ be a finite cored group. Then, under the identification
Inn. zGc/Š IG;c=ZG;c , the map inn zGc

W zGc! Inn. zGc/ coincides with a composite

zGc

�
�! IG;c

proj
�! IG;c=ZG;c ;

where � is obtained from (18).

Proof By the construction of the isomorphism Inn. zGc/Š IG;c=ZG;c .

Hence, we notice that inn zGc
.x �Ã/DÃ�1 � inn zGc

.x/ �Ã 2 Inn. zGc/ for any x 2 zGc ,
Ã 2 Inn. zGc/. Namely, the pair ( zGc , IG;c=ZG;c ) is an “augmented quandle” (see
Joyce [16, Section 9]), which is also called a crossed zGc –set.

6 Estimate of …4f
2 ;�
. zGc/ and of 4–fold symmetric quandle ho-

motopy invariant

In this section, we estimate the group …4f
2;�
. zGc/ of a finite 4–fold symmetric quan-

dle zGc (see Section 3.1 for the definition). Further, we give an estimate for the 4–fold
symmetric quandle homotopy invariants of double and 3–fold branched covering spaces.
Also, we calculate …4f

2;�
. zGc/ when j zGcj D 12.
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6.1 Estimate of …4f
2 ;�.X/

To begin, for a quandle X , we will review …2.X / and the quandle space BX . …2.X /

is defined to be a set of all X –coloring of all diagrams modulo concordance relations
and Reidemeister I, II, III moves, where concordance relations are shown in Figure 9.
…2.X / has a multiplication given by disjoint union, which turns …2.X / into an abelian
group, similar to …2;�.X / in Section 3.1.

a

a

aa

a

∅

Figure 9: The concordance relations

On the other hand, for a quandle X , Fenn, Rourke and Sanderson [9; 10; 11] introduced
the rack space, and examined a relation between its second homotopy group and the
concordance relations of X –colorings of framed links (see [11, Theorem 3.9] for
more detail). As a modification of unframed links, the author [21] used the quandle
space BX and showed:

Theorem 6.1 ([21, Theorem A.2]; see also [10, Theorem 4.11 ]) There exists an
isomorphism …2.X /Š �2.BX /:

Using this, for a symmetric quandle .X; �/, we will address a relation between …2.X /

and …2;�.X /. Recall the bijection (1) in Section 2. Note that the symmetric concor-
dance relations in Section 3.1 are stronger than the concordance relations mentioned
above. Therefore, by running over all X – and X�–colorings of all diagrams, the
bijections (1) induce

(23) S…2
W …2.X / �!…2;�.X /:

Remark that S…2
is a surjective homomorphism by construction. For a 4–fold symmet-

ric quandle zGc , let us estimate …4f
2;�.
zGc/ using Theorem 6.1 and the surjection (23).

Theorem 6.2 Given a finite cored group .G; c/, let zGc be the associated 4–fold
symmetric quandle. Then …4f

2;�.
zGc/ is a finite abelian group whose elements are

annihilated by 212 � 34 � jGj12 � jŒG;G�j4 . In particular, if n 2N is prime to 6jGj, then
Z=nZ˝…4f

2;�.
zGc/D 0.
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Proof Theorem 6.1 says …2. zGc/Š �2.BzGc/. Since zGc is a connected quandle by
Lemma 3.7, it immediately follows from Nosaka [21, Theorem 3.6(ii)] that �2.BzGc/

is a finite abelian group whose elements are of order jInn. zGc/j
4 . Recall that Inn. zGc/

is a quotient subgroup of IG;c and jIG;cj D 24 � jGj3 � jŒG;G�j by Theorem 5.4. Hence,
jInn. zGc/j

4 is a divisor of 212 � 34 � jGj12 � jŒG;G�j4 . Therefore …2. zGc/ is a finite
abelian group whose elements are of order 212 �34 � jGj12 � jŒG;G�j4 . Hence, …2;�. zGc/

inherits this property from …2. zGc/ through the surjection (23); hence, so the quotient
…4f

2;�.
zGc/ does.

Although this theorem shows that …4f
2;�.
zGc/ is finite, it is a rough estimate. It is difficult

to calculate explicitly …4f
2;�.
zGc/ in general.

6.2 Double branched covering and 3–fold branched covering

In this section, we give some approaches of the 4–fold symmetric homotopy invariant of
double and 3–fold coverings branched over links L. To begin with, put the associated
2–fold labeled diagram D� as in Figure 4. For a finite 4–fold symmetric quandle
.X;pX ; �/, recall the subquandle X12Dp�1

X
.12/�X . Therefore, any X�–coloring C

of D� is regarded as an X12 –coloring by definition. Hence, we may consider that the
image of the natural map defined in (2) is contained in …2;�.X12/: that is, the map (2)
can be regarded as

(24) „X12
.D� I �/W ColX ;�.D�/ �!…2;�.X12/;

which sends an X�–coloring C of D� to the canonical class ŒC �. Then, the map „4f
X

given in (3) factors through …2;�.X12/ as follows:

(25) „4f
X .D� I �/W ColX ;�.D�/

„X12
.D� I�/

��������!…2;�.X12/
.i12/�
���!…2;�.X /

p4f

�!…4f
2;�.X /;

where .i12/� is the induced map from the inclusion i12W X12 ,! X . Therefore, for
the research of a 4–fold symmetric homotopy invariant of a double branched covering
of S3 , it is important to study …2;�.X12/. For example, we consider the case of
G D Z=mZ.

Proposition 6.3 Let m be an odd number, and .G; e/D .Z=mZ; 0/. For the 4–fold
symmetric quandle X D zGe , the group …2;�.X12/ is a quotient of Z=mZ.

Proof Note that the quandle operation of X12 D Z=mZ is x � y D 2y � x . Since
it is shown by the author [21, Remark 4.4] that …2.X12/ is a quotient of Z=mZ, it
follows from the epimorphism (23) that …2;�.X12/ is also a quotient of Z=mZ.
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Remark Hatakenaka and the author [14, Section 5.3] will construct an epimorphism
…2;�.X12/! Z=mZ, which implies …2;�.X12/Š Z=mZ. Further, by the construc-
tion of the epimorphism, we can show that the homotopy invariant of the double
branched coverings is equal to a scalar multiple of the Dijkgraaf–Witten invariant
of Z=mZ.

We denote by P4f the following composite homomorphism used in [14]:

(26) …2.X12/
S…2
���!…2;�.X12/

.i12/�
����!…2;�.X /

p4f

��!…4f
2;�.X /:

Besides, the invariant of 3–fold branched covering spaces conforms to a factorization
similar to (25), as follow. Recall that any 3–manifold M can be presented by a 3–
fold labeled diagram D� (see Section 2.2). Therefore, for a finite 4–fold symmetric
quandle X , we may regard any X�–coloring C of D� as a p�1

X
.R3/–coloring,

where R3 D f.12/; .23/; .31/g. To study the homotopy invariant, we now introduce a
quotient group of …2;�.p

�1
X
.R3// modulo X�–colorings of trefoils shown in Figure 8.

Denote the quotient group by …3f
2;�.X /. The inclusion iR3

W p�1
X
.R3/ ,!X induces

.iR3
/�W …

3f
2;�.X /!…4f

2;�.X /. Hence, the map (3) factors through …3f
2;�.X / as follows:

„4f
X .D� I �/W ColX ;�.D�/

„
p�1

X
.R3/

.DI�/

����������!…2;�.p
�1
X .R3//

proj
��!…3f

2;�.X /
.iR3

/�
����!…4f

2;�.X /:

Consequently, for the study of a 4–fold symmetric homotopy invariant of 3–manifolds,
it is important to study …3f

2;�.X /.

As the simplest case, we let G D .Z=2Z/m . Define a map �R3
W zGc �! p�1

zGc
.R3/ by

�R3

�
g; .1; 2/

�
D
�
g; .1; 2/

�
;�R3

�
g; .2; 3/

�
D
�
g; .2; 3/

�
;�R3

�
g; .1; 3/

�
D
�
g; .1; 3/

�
;

�R3

�
g; .3; 4/

�
D
�
g; .1; 2/

�
;�R3

�
g; .1; 4/

�
D
�
g; .2; 3/

�
;�R3

�
g; .4; 2/

�
D
�
g; .1; 3/

�
:

We can see that �R3
is a symmetric quandle homomorphism. By definition we have

that �R3
ı iR3

is the identity on p�1
zGc
.R3/. Then the induced map

.�R3
ı iR3

/�W …2;�.p
�1
zGc
.R3// �!…2;�.p

�1
zGc
.R3//

implies that …2;�.p
�1
zGc
.R3// is a direct summand of …2;�. zGc/. Further, we see

that …3f
2;�.X / is a direct summand of …4f

2;�.X / as well. In conclusion, to search
the 4–fold symmetric quandle homotopy invariant of G D .Z=2Z/m , it suffices to
determine …3f

2;�.X /.
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6.3 4–fold symmetric quandle homotopy invariant in the case G D Z=2Z

As a simplest case, we give an estimate for the 4–fold quandle homotopy invariants in
two cases of .G; c/D .Z=2Z; 0/ and .Z=2Z; 1/. To see this, it suffices to calculate
…3f

2;�.
zGc/ by the previous argument.

Proposition 6.4 If .G; c/D .Z=2Z; 1/, then …3f
2;�.
zGc/ is a quotient of Z=4Z.

Proof Note that the subquandle p�1
zGc
.R3/ is isomorphic to the quandle which the

author used in [21, Section 4.4]. According to [21, Proposition 4.9], …3f
2;�.p

�1
zGc
.R3// is

either Z=24Z˚Z=4Z or a quotient of Z=96Z, and the part Z=24Z or Z=96Z is gen-
erated by a zGc –coloring of the trefoil shown in Figure 10 ; hence, so is …3f

2;�.p
�1
zGc
.R3//

by the epimorphism (23). Under modulo zGc –colored trefoils, …3f
2;�.p

�1
zGc
.R3// is a

quotient of Z=4Z.

.0;.1; 2// .0;.1; 3//

.0;.2; 3//

Figure 10: The AZ=2Z1 –coloring of the trefoil

For another quandle, we obtain:

Proposition 6.5 If .G; c/D .Z=2Z; 0/, then …3f
2;�.
zGc/Š Z=2Z or 0.

Proof Note that the subquandle p�1
zGc
.R3/ is isomorphic to S . Then the author showed

[21, Proposition 4.12] that …2.S/ is generated by such two zGc –colorings of the trefoil
and of Hopf link shown in Figure 11. Hence, …3f

2;�.
zGc/ is generated by such a zGc –

colorings of Hopf link. To complete the proof, we claim that the zGc –colorings are
annihilated by 2. Indeed,

2

.0;.1; 2// .1;.1; 2// .0;.1; 2// .0;.1; 2//

.1;.1; 2// .1;.1; 2//

.0;.1; 2//

.1;.1; 2//

D D D 0 2…3f
2;�
. zGc/;

where we use concordance relations along the dashed lines in the second equality.

Remark In [14, Section 5.3], Hatakenaka and the author show that …3f
2;�.
zGc/ŠZ=2Z

and that the 4–fold quandle homotopy invariant of zGc coincides with Dijkgraaf–Witten
invariant of G D Z=2Z.
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.0;.1; 2// .0;.1; 3//

.0;.2; 3//
.0;.1; 2// .1;.1; 2//

Figure 11: Two AZ=2Z0 –colorings of the trefoil and Hopf link

Remark 2 Let .G; c/D .feg; e/. Note zGeŠS . Then we can show that …4f
2;�.
zGe/Š0,

similar to Proposition 6.5. Indeed, since …2. zGe/ is generated by two colorings of the
trefoil and Hopf link such as Figure 8, …4f

2;�.
zGe/ vanishes by definition. Hence, it

goes without saying that the 4–fold symmetric quandle homotopy invariant is trivial.

7 4–Fold symmetric quandle cocycle invariant

However, it is difficult to directly calculate the 4–fold symmetric homotopy invariants
valued in …4f

2;�.X /, since so is the computation of …4f
2;�.X /. For a reduction of

the invariants to a computable invariant, we introduce 4–fold symmetric quandle
2–cocycles, modifying symmetric quandle 2–cocycles introduced by Kamada and
Oshiro. Under the influence of their work, we define a 4–fold symmetric quandle
cocycle invariant of 3–manifolds. This is a slight generalization of the state sum
invariant considered in Hatakenaka [13, Section 3.3]. Further, we show that the 4–fold
symmetric cocycle invariant is derived from the 4–fold symmetric homotopy invariant
(Proposition 7.3).

7.1 Review of symmetric quandle cocycles and weights

In this section, we review the symmetric quandle cocycle introduced by Kamada
and Oshiro [17; 18]. For a symmetric quandle .X; �/, an .X; �/–set is a set ƒ
equipped with a map �W ƒ�X �! ƒ satisfying .� � x/ � x0 D .� � x0/ � .x � x0/

and .� � x/ � �.x/ D � for any � 2 ƒ and x;x0 2 X . For example, when ƒ D X

with the quandle operation, X is an .X; �/–set itself. For an abelian group A and an
.X; �/–set ƒ, a map � W ƒ�X �X �!A is called a symmetric quandle 2–cocycle,
if it satisfies the following three conditions:

(C1) For any .�;x;y; z/ 2ƒ�X 3;

�.�;y; z/�1
� �.��x;y; z/ � �.�;x; z/

D �.��y;x �y; z/ � �.�;x;y/ � �.�� z;x � z;y � z/�1:

(C2) For any .�;x/ 2ƒ�X , �.�;x;x/D 1A:
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(C3) For any .�;x;y/ 2ƒ�X 2;

�.�;x;y/D �.��x; �.x/;y/�1; �.�;x;y/D �.��y;x �y; �.y//�1:

Let us review a symmetric quandle cocycle invariant of unoriented links introduced by
Kamada and Oshiro as follows. Let D be an unoriented diagram. An Xƒ–coloring
of D is defined to be an X�–coloring of D with an assignment of elements of ƒ to
each complementary regions of D such that, for each regions separated by the arc
with a color x 2 X as shown in Figure 12, � � x= �0 holds, where � and �0 2 ƒ.
Fix �0 2 ƒ. An Xƒ–coloring of D is said to be at �0 , if the unbounded region
containing the infinity point is assigned by �0 . Denote by ColXƒ.D/�0

the set of all
Xƒ–colorings of D at �0 .

x Œ��

Œ�0�

��x D �0

Figure 12: Coloring condition for regions

Given an X –coloring of D , we obtain the associated Xƒ–coloring of D at �0 whose
assignments of each complementary regions are automatically determined by the rule
in Figure 12. Therefore we obtain a bijection between ColX ;�.D/ and ColXƒ.D/�0

(cf Kamada and Oshiro [18, Section 6]). Also, when X is a 4–fold symmetric quandle,
for a labeled diagram D� , we denote by ColXƒ.D�/�0

the set of all Xƒ–colorings
of D at �0 whose restricted X�–coloring is contained in ColX ;�.D�/. Similarly, we
can obtain a bijection ColX ;�.D�/' ColXƒ.D�/�0

.

For a symmetric quandle 2–cocycle � , we will provide Xƒ–colorings of D at �0 with
a grading by A. Let C be an Xƒ–coloring of D at �0 . For a crossing v of C , we
choose one of the four complementary regions of D around v . If the region is assigned
by � 2ƒ, then the weight of v is defined to be �.�;x;y/� 2A, where x;y 2X and
the sign � 2 fC1; �1g are determined by the orientations as shown in Figure 13.

x

Œ�� y x

Œ�� y

�.�;x;y/C1
�.�;x;y/�1

Figure 13: Weight of a crossing v
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It is known [18, Lemma 6.2] that the weight of any crossing does not depend on
the choice of four complementary regions and these orientations. Now we give
ˆ� .DIC /�0

2 A by the sum of the weights of all crossing of D . Then the sum
can be considered as a map

(27) ˆ� .DI �/�0
W ColXƒ.D/�0

�!A:

It is shown [18, Theorem 6.3] that, given an Xƒ–coloring C1 (resp. C2 ) of an unori-
ented diagram D1 (resp. D2 ), if C1 and C2 are related by some finite sequences of
Reidemeister moves, then ˆ� .D1IC1/�0

Dˆ� .D2IC2/�0
2A. Then the symmetric

2–cocycle invariant of an unoriented link L is defined by

ˆ� .L/�0
WD

X
C2Colƒ.D/�0

ˆ� .DIC /�0
2 ZŒA�:

However, it is not so easy to find a nontrivial symmetric quandle 2–cocycle in general.

Remark 3 It is known [18, Theorem 6.7] that this invariant ˆ� .L/�0
coincides with

the original (shadow) cocycle invariant ˆori
�
.L/�0

introduced by [3; 4].

7.2 Definition: 4–fold symmetric quandle cocycle invariant

In analogy, for a 4–fold symmetric quandle, we will construct an invariant of 3–
manifolds. For this, we now introduce 4–fold symmetric 2–cocycles:

Definition 7.1 Let .X;pX ; �/ be a 4–fold symmetric quandle, and ƒ an .X; �/–set.
A symmetric quandle 2–cocycle � W ƒ �X �X �! A is 4–fold, if it satisfies the
following two conditions:

(C4) For any � 2ƒ, xij 2Xij and yjk 2Xjk , the cocycle � satisfies

�.�;xij ;yjk/ � �.�;yjk ;xij �yjk/ � �.�;xij �yjk ;xij /D 1A:

(C5) For any �2ƒ, zij 2Xij and wkl 2Xkl , the cocycle � satisfies �.�; zij ; wkl/ �

�.�;wkl ; zij /D 1A:

Definition 7.2 Let X be a finite 4–fold symmetric quandle, ƒ an .X; �/–set, and
D� a labeled diagram. Fix �0 2ƒ. For a 4–fold symmetric quandle 2–cocycle � , the
4–fold symmetric quandle cocycle invariant of D� is defined by

ˆ� .D�/�0
D

X
C2ColXƒ .D�/�0

ˆ� .DIC /�0
2 ZŒA�:
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Proposition 7.3 Let X be a finite 4–fold symmetric quandle, and ƒ an .X; �/–
set. We fix a 4–fold symmetric quandle 2–cocycle � 2Map.ƒ�X �X;A/. Then
there exists a homomorphism H� W …4f

2;�.X / ! A satisfying that, for any labeled
diagram D� ,

(28) H� .„4f
X .D�//Dˆ� .D�/�0

2 ZŒA�:

In particular, ˆ� .D�/�0
is a topological invariant of the 3–manifold M presented

by D� .

Proof We will construct a homomorphism (29) below. For an Xƒ–coloring C1

(resp. C2 ) of an unoriented diagram D1 (resp. D2 ), if C1 and C2 are related by a sym-
metric concordance relation as in Figure 7, then ˆ� .D1IC1/�0

Dˆ� .D2IC2/�0
2A.

Hence, running over all Xƒ–colorings of all unoriented diagrams D , the map (27)
induces

(29) SH� W …2;�.X / �!A:

From the definitions of the multiplication of …2;�.X / and of the weights, this map SH�
is multiplicative. Furtherer, notice that the left hand sides in (C4) and (C5) are the
weights of Xƒ–colored trefoils and Hopf links in Figure 8, respectively. Therefore
the homomorphism SH� induces H� W …4f

2;�.X /!A as required. To summarize this
argument, we put a commutative diagram:

ColXƒ.D�/�0

ˆ� .D;�/
''

D ColX ;�.D�/
„X .D� I�/ // …2;�.X /
SH�

uu

proj // …4f
2;�.X /

H�
rr

A

where we identify ColXƒ.D�/�0
with ColX ;�.D�/ mentioned above. Hence, for any

C 2 ColXƒ.D�/�0
, we have H�

�
„4f

X
.D� IC /

�
D ˆ� .D� IC /�0

2 A, which implies
(28) as desired.

We give some remarks about Proposition 7.3.

Remark 4 (Cohomologous 2–cocycles) We consider a map ı1W Map.ƒ�X;A/�!

Map.ƒ�X �X;A/ defined by

(30) ı1.f /.�;x;y/ WD f .�;y/ �f .��x;y/�1
�f .�;x/�1

�f .��y;x �y/;

for f 2Map.ƒ�X;A/. ı1 is called the coboundary map. It is known [18, Theorem 6.3]
that if f 2Map.ƒ�X;A/ satisfies f .�;x/D f .��x; �.x// for any .�;x/2ƒ�X ,
then � D ı1.f / is a symmetric 2–cocycle and the resulting map (29) is the zero map.
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Moreover, we can verify that such � D ı1.f / is 4–fold by direct calculation. Hence,
for the detection of a nontrivial 4–fold cocycle invariant, we have to find a cocycle in
Map.ƒ�X �X;A/ modulo the image of ı1 .

Remark 5 We comment on the choice of the coefficient group A. For a finite
cored group .G; c/, we showed that …4f

2;�.
zGc/ is a finite abelian group whose el-

ements are annihilated by 212 � 34 � jGj12 � jŒG;G�j4 (Theorem 6.2). Therefore if
A˝Z .Z=.6 � jGj/Z/D 0 (eg, ADQ), then the 4–fold symmetric quandle cocycle
invariant is trivial by Proposition 7.3. Here the invariant is said to be trivial, if ˆ� .D�/

is contained in ZŒ1A��ZŒA�. Therefore, we shall assume that A˝Z.Z=.6�jGj/Z/¤0.

Remark Given a group 3–cocycle  of G in a certain condition, Hatakenaka regarded
G4 as a . zGe; �/–set and constructed a 4–fold symmetric quandle cocycle. Further,
she reconstructed Dijkgraaf–Witten invariant with respect to  as a 4–fold symmetric
quandle cocycle invariant (see Hatakenaka [13, Theorem 4.2]). Hence, such Dijkgraaf–
Witten invariant is derived from „4f

X
.M /. However, in general, it is shown that so is

all the Dijkgraaf–Witten invariant by her and the author [14].

Besides, for an application, some 4–fold cocycle invariants are used to estimate whether
a 3–manifold can be presented by a double branched covering or not.

Proposition 7.4 Let D� be a labeled diagram which presents a 3–manifold M . Let
X be a finite 4–fold symmetric quandle. Let � 2 Map.ƒ�X �X;A/ be a 4–fold
symmetric quandle 2–cocycle. If the cocycle invariant ˆ� .M / 62ZŒ1A� and the induced
cocycle .i12/

�.�/2Map.ƒ�X12�X12;A/ is the zero map, then M is not any double
branched covering space of S3 . Here i12W X12 ,!X is the inclusion.

Proof Assume D� is 2–fold. Then we may regard that any zGc –colorings of D� are
contained in X12 . Hence, each X –colorings can be coupled together with the induced
cocycle .i12/

�.�/. Then the cocycle invariant ˆ� .M / lies in ZŒ1A�, which implies a
contradiction.

Known approaches of such estimates are homological arguments (see, eg, Fox [12]).
For example, Sakuma [24] discussed whether surface bundles over S1 are double
branched coverings of S3 by considering their Heegaard splittings. On the other hand,
our method is combinatorial and elementary for the estimate. However, unfortunately,
we find no such 4–fold symmetric quandle cocycles yet.

Problem 7.5 Find a nontrivial 4–fold symmetric quandle cocycle of some .G; c/
satisfying the condition in Proposition 7.4. Using such cocycles, find some 3–manifolds
except surface bundles over S1 that are not any double branched coverings of S3 .
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8 4–Fold symmetric quandle cocycle invariants with trivial
coefficients

This section discusses 4–fold symmetric quandle cocycle invariants with trivial ( zGc ; �)-
sets when cD e . In Section 8.1, we show that any symmetric 2–cocycle over Z=2Z is
4–fold. In Section 8.2, we review the coloring polynomial introduced by Eisermann [7].
In Section 8.3, we apply the polynomial over Z=2Z to labeled diagrams. In conclusion,
we can calculate 4–fold symmetric quandle cocycle invariants of 3–manifolds of zGe

without knowing presentations of the cocycles (Remark 6).

8.1 Symmetric quandle 2–cocycles with a trivial .X; �/–set

In this section, we assume that an .X; �/–set ƒ is composed of a single point �0 as a
trivial action from X . We omit writing the letter ƒD f�0g, and regard a 2–cocycle
� 2Map.ƒ�X 2;A/ as a map from X 2 . Then, the 2–cocycle condition (C1) can be
reformulated as

(31) �.x; z/ � �.x � z;y � z/D �.x �y; z/ � �.x;y/ 2A;

for any x;y; z 2 X . Remark that, if � D idX , (C3) means �.x;y/2 D 1A for any
x;y 2X . Let us prepare a proposition:

Proposition 8.1 Let X be a 4–fold symmetric quandle. If a2 D 1A for a 2A, then
any symmetric 2–cocycle � 2Map.X 2;A/ is 4–fold. In particular, if �D idX , then
any symmetric 2–cocycle is 4–fold.

Proof We first show that � satisfies the condition (C4). Applying x D z D xij 2

Xij ; y D yjk 2Xjk to (31), by the axiom (C2) we obtain

�.xij ;yjk �xij /D �.xij ;yjk/ � �.xij �yjk ;xij /:

Further, using the axiom (C3), the left hand side becomes

�.xij � .yjk �xij /; �.yjk �xij //
�1
D �..yjk �xij /� �.xij /;xij �yjk/

�1

D �.yjk ;xij �yjk/
�1;

where the second equality is obtained from (F3). The equalities imply (C4).

Next, for the axiom (C5), by applying x D xij 2Xij ;y D ykl 2Xkl to (31), we have
�.xij ;ykl/D �.xij �z;ykl �z/ for any z 2X . Hence, for any ‡ 2 Inn.X / we obtain

(32) �.xij ;ykl/D �.xij �‡;ykl �‡/:

Algebraic & Geometric Topology, Volume 11 (2011)



4–fold symmetric quandle invariants of 3–manifolds 1639

Put �jk 2 Xjk , and define ‡xy D .� � �jk/ �
�
ykl � .xij � �jk/

�
2 Inn.X /. Then by

elementary calculation we have xij �‡xy D ykl and ykl �‡xy D xij . Therefore by
applying ‡ D ‡xy to (32), (C5) follows from (C3), ie,

�.xij ;ykl/D �.xij �‡xy ;ykl �‡xy/D �.ykl ;xij /D �.ykl ;xij /
�1:

Remark For a nontrivial . zGc ; �/–set, some symmetric quandle cocycles of zGc are
not 4–fold. For example, we let G D .Z=2Z/m and AD Z=3Z. Put the map �R3

in
Section 6.2. Then the composite

zGc

�R3
�! p�1

zGc
.R3/

p zGc
�!R3

is a symmetric quandle homomorphism. Noting that R3 is a dihedral quandle of
order 3, recall a 3–cocycle �R3

of R3 found in Mochizuki’s paper [19]. Then by the
presentation of �R3

, the cocycle �R3
can be regarded a symmetric quandle 2–cocycle

with an .R3; idR3
/–set. Then the induced cocycle .p zGc

ı�R3
/�.�R3

/ is a symmetric
quandle 2–cocycle of zGc . However, we see that the 2–cocycle invariants of trefoils
are nonzero, which means that .p zGc

ı�R3
/�.�R3

/ is not 4–fold.

8.2 Preliminaries: the coloring polynomial of knots

We review the coloring polynomial introduced by Eisermann [7]. Further, we modify
his construction to apply to symmetric quandle 2–cocycles.

Let X be a finite connected quandle. We assume that X is of type 2 and that
innX W X �! Inn.X / given in (5) is injective. Put x0 2X . Let D be a knot diagram
on R2 of an oriented knot K . Fix mK 2 �1.S

3 nK/ obtained from a meridian of K .
Denote by ColmK ;x0

X
.D/ the set of X –colorings of D which sends the arc associated

with mK to x0 2X . Then it is known [7, Lemma 3.14] that there is a natural bijection

��W ColmK ;x0

X
.D/ �! HommK ;x0

grp .�1.S
3
nK/; Inn.X //;

where HommK ;x0
grp .�1.S

3 n K/; Inn.X // stands for the set of the homomorphisms
sending mK to innX .x0/ 2 Inn.X /. Eisermann introduced the following invariant of
knots:

(33) Px0
Inn.X /.K/ WD

X
C2Col

mK ;x0
X

.D/

�C .lK / 2 ZŒInn.X /�;

where lK 2 �1.S
3 nK/ is derived from the longitude of K . Px0

Inn.X /.K/ is called a
coloring polynomial of K . Note that lK lies in the commutator subgroup Œ�1.S

3 n

K/; �1.S
3nK/� and commutes with mK . Hence, �C .lK /2Z.x0/\ŒInn.X /; Inn.X /�,
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where Z.x0/ is the centralization subgroup of innX .x0/. Let H be a quotient group
of Z.x0/ \ ŒInn.X /; Inn.X /�, and let �H W Z.x0/ \ ŒInn.X /; Inn.X /� ! H be the
projection. Then we put

(34) Px0
Inn.X /;H .K/ WD

X
C2Col

mK ;x0
X

.D/

�H

�
�C .lK /

�
2 ZŒH �:

Remark that Z.x0/\ ŒInn.X /; Inn.X /� is not always abelian. Then we consider

(35) Hab WD
�
Z.x0/\ ŒInn.X /; Inn.X /�

�
ab; H2Z WDHab=2Hab:

Eisermann showed [7, Theorem 3.24] that this invariant Px0

Inn.X /;Hab
.K/ is equivalent

to some 2–cocycle invariant. We will modify the theorem for symmetric quandles of
type 22.

Proposition 8.2 (Symmetric quandle version of [7, Theorem 3.24]) Let .X; idX / be a
finite connected symmetric quandle of type 2. Assume that innX W X �! Inn.X / is
injective. Then X admits a symmetric quandle 2–cocycle �2Z 2Map.X 2;H2Z/ such
that ˆ�2Z

.DIC /D �H2Z.�C .mK // 2H2Z for any C 2 ColmK ;x0

X
.D/. In particular,

ˆ�2Z
.K/D jX j �Px0

Inn.X /;H2Z
.K/ 2 ZŒH2Z�.

Before proving Proposition 8.2, we discuss a construction of the required 2–cocycle
�2Z following Eisermann [7, Lemma 3.16]. First, we set

(36) QX WD f.a;g/ 2X � ŒInn.X /; Inn.X /� j aD x0 �gg:

We see that the set QX is a symmetric quandle of type 2 with the following operations:

.a;g/� .b; h/ WD
�
a� b; g � innX .a/

�1
� innX .b/

�
; �.a;g/ WD .a;g/;

and that the natural projection QX !X is a symmetric quandle epimorphism (see [7,
Lemma 3.24]). We can check that the fiber is Z.x0/\ ŒInn.X /; Inn.X /�. Note that its
normal subgroup Ker.�H2Z/ freely acts on each fiber. Then we can verify that the left
quotient Ker.�H2Z/nQX is also a symmetric quandle, and has a symmetric epimor-
phism pQ2Z W Ker.�H2Z/nQX !X by definition. Remark the following property of
pQ2Z :

(37) � pQ2Z.zx/DpQ2Z.zy/ implies za�zxDza�zy for any za; zx; zy 2Ker.�H2Z/nQX :

2If X is not of type 2 , then the result similar to Proposition 8.2 is not always true. For example, let
X D zGc with .G; c/D .Z=2Z; 1/ . The polynomial Px0

Inn.X /;H2Z
.K/ of the trefoil knot K is nontrivial,

while we can verify that zGc has no nontrivial symmetric quandle cocycle by the help of the computer.
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Put an arbitrary section sX W X !Ker.�H2Z/nQX . Then we define a map �2ZW X
2!

H2Z by the following relation:

(38) sX .a/� sX .b/D �2Z.a; b/ � sX .a� b/ 2H2Z;

for a; b 2 X . Then it is known [7, Lemma 3.1] that the property (37) enables the
resulting �2Z to satisfy the conditions (C1) and (C2). Further, it is known (see [7,
Theorem 3.19]) that �2Z does not depend on the choice of the section sX up to
cohomologous in the sense of Remark 4.

Proof First, in order to show that �2Z is a symmetric quandle 2–cocycle, it suffices
to show that �2Z satisfies (C3). By applying � � sX .b/ to the equality (38), we have

sX .a/D �2Z.a; b/ �
�
sX .a� b/� sX .b/

�
D �2Z.a; b/ � �2Z.a� b; b/�1

� sX .a/;

where we use (38) again for the last equality. This implies (C3).

Next, we put the symmetric quandle cocycle invariant ˆ�2Z
.K/. Recall that the invari-

ant coincides with the original cocycle invariant ˆori
�2Z
.K/ by Remark 3. Eisermann

showed [7, Theorem 3.25] that ˆori
�2Z
.K/D jX j �Px0

Inn.X /;H2Z
.K/ 2 ZŒH2Z�. Hence,

ˆ�2Z
.K/Dˆori

�2Z
.K/D jX j �Px0

Inn.X /;H2Z
.K/ 2 ZŒH2Z�, which completes the proof.

Remark 6 The point of Proposition 8.2 is as follows. In general, it is difficult to
find a presentation of a 2–cocycle � 2 Map.X 2;Z=2Z/. However, the invariant
of Px0

Inn.X /;H2Z
.K/ is computable without knowing the presentation, and, further,

admits every 2–cocycle invariant valued in Z=2Z. Therefore, if we determined
the group Z.x0/\ ŒInn.X /; Inn.X /�, then we could calculate the universal invariant
Px0

Inn.X /;H2Z
.K/.

8.3 Coloring polynomials of 4–fold symmetric quandles of type 2

We return to the theme of 4–fold symmetric cocycle invariants. Let G be a finite group.
Recall that the quandle zGe is connected and of type 2 by Lemma 3.7 and Corollary 3.6.
Following the previous section, we give an invariant of 3–manifolds which derives out
of every symmetric quandle 2–cocycle invariants of zGe . Denote .e; .i; j // 2 zGe by
eij for simplicity.

Recall that any 3–manifold M is a 3–fold simple covering of S3 branched over a
knot K (see Section 2.2). Then, we may assume that the labeled diagram D� is 3–fold
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shown in Figure 4, and that the subdiagram DR3
is a knot diagram of K . Let mK and

lK 2 �1.S
3 nK/ be a meridian and a longitude of K , respectively. Then we define

(39) Pe12
zGe;H2Z

.D�/D
X

C2Col
e12;e23;e34
zGe ;�

.D�/

�H2Z.�C .lK // 2 ZŒH2Z�;

where H2Z is given in (35).

Proposition 8.3 Let zGe and H2Z be as above. Let �2Z be the resulting symmetric 2–
cocycle in Proposition 8.2. Let a 3–fold labeled diagram D� present a 3–manifold M .
Then, �2Z is 4–fold, and the 4–fold symmetric cocycle invariant ˆ� .M / is equal to
jGj3 �Pe12

zGe;H2Z
.D�/ 2 ZŒH2Z�. In particular, the polynomial (39) is an invariant of M .

Proof By Proposition 8.1, �2Z is 4–fold. Put the map H�2Z
W …4f

2;�.X /!H2Z in
Proposition 7.3. By Lemma 4.4, we have

ˆ�2Z
.M /DH�2Z

.„4f
zGe
.D�//D jGj

3
X

C2Col
e12;e23;e34
zGe ;�

.D�/

H�2Z
.„4f

X .D� IC //

D jGj3
X

C2Col
e12;e23;e34
zGe ;�

.D�/

ˆ�2Z
.D� IC /:

Further, by Proposition 8.2 we conclude that this equals

jGj3
X

C2Col
e12;e23;e34
zGe ;�

.D�/

�H2Z.�C .lK //D jGj
3
�Pe12
zGe;H2Z

.D�/:

Hence, it is important for the calculation of the invariant Pe12
zGe;H2Z

.D�/ to compute
Z.e12/\ ŒInn. zGe/; Inn. zGe/� and the container H2Z (see also Remark 6). For this, we
recall here some notation IG;e , KG;e , ZG;e used in Section 5:

IG;e D
˚
.x;y; z; wI �/ 2G4 ÌS4 j xyzw 2 ŒG;G�

	
;

KG;e D
˚
.x;x; z; wI �/ 2 IG;e j � 2 fe; .12/; .34/; .12/.34/g

	
;(40)

ZG;e D
˚
.z; z; z; zI e/ 2G4 ÌS4 j z 2Z.G/; z4

2 ŒG;G�
	
:(41)

We will show:

Proposition 8.4 Let G be a finite group. Then there exists a group isomorphism

Z.e12/\ ŒInn. zGe/; Inn. zGe/�Šf.x;x; z; wI �/2G4ÌZ=2Z j x2zw 2 ŒG;G� g=ZG;e;

where we identify a subgroup fe; .12/.34/g �S4 with Z=2Z.
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Proof To begin with, recall Inn. zGe/ŠIG;e=ZG;e by Theorem 5.4 and the presentation
of KG;e in (17). Since KG;e is the centralizer group of .e; e; e; eI .12// 2 IG;e and
ZG;e is the center of IG;e , we can easily verify Z.e12/DKG;e=ZG;e . Further, we note
Œ.IG;e=ZG;e/; .IG;e=ZG;e/�D ŒIG;e; IG;e �=ZG;e: We thus have a group isomorphism

(42) Z.e12/\ ŒInn. zGe/; Inn. zGe/�Š .KG;e \ ŒIG;e; IG;e �/=ZG;e:

Next, we explicitly present the commutator subgroup ŒInn. zGe/; Inn. zGe/� as follows. By
Lemma 8.5 below, the abelianization of Inn. zGe/ is Z=2Z. Put E WD feg. Recall that
Inn. zEe/ŠS4 and that the abelianization of S4 is given by the signature S4!Z=2Z.
Hence, putting the natural map G!E , the induced composite Inn. zGe/! Inn. zEe/Š

S4! Z=2Z gives rise to the abelianization of Inn. zGe/. Therefore,

ŒInn. zGe/; Inn. zGe/�Š f.x;y; z; wI �/ 2G4 ÌA4 j xyzw 2 ŒG;G�g=ZG;e;

where A4 is the alternation group of order 12. Then, the presentation (40) gives rise to

KG;e\ ŒIG;e; IG;e �Df .x;x; z; wI �/2G4ÌA4 jx
2zw 2 ŒG;G�; � D e or .12/.34/ g:

Combing this formula with (42), we conclude the required formula.

Lemma 8.5 For a connected quandle X of type m, the abelianization of Inn.X / is a
quotient of Z=mZ.

Proof Recall the associated group of X defined by the group presentation As.X / WD
hx 2X j x �y D y � .x �y/i. Then As.X / has a canonical right action on X . Hence
we have an epimorphism pAIW As.X /! Inn.X /.

Let us consider an epimorphism "X W As.X /! Z given by the length of words. Since
X is connected, "X gives rise to the abelianization of As.X / by definition, that is,
"X W As.X /=ŒAs.X /;As.X /� Š Z. Let us fix x0 2 X , and put a section s"X of "X
which sends 1 to x0 . Since X is of type m, the composite pAI ı s"X induces an
epimorphism Z=mZ! Inn.X /=ŒInn.X /; Inn.X /�, which completes the proof.

In order to compute the abelianization of Z.e12/ \ ŒInn. zGe/; Inn. zGe/�, the exact
sequence (43) below is useful. For this, we consider the central group extension

0 �!ZG;e
i
�!KG;e \ ŒIG;e; IG;e � �! .KG;e \ ŒIG;e; IG;e �/=ZG;e �! 0:

Using the Lyndon–Hochschild–Serre spectral sequence of the group extension, we have
an exact sequence

(43) ZG;e
i�
�!H1.KG;e \ ŒIG;e; IG;e �IZ/

!H1.Z.e12/\ ŒInn. zGe/; Inn. zGe/�IZ/! 0:
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Here we identify H1.KIZ/ with the abelianization of K . For the last term, the key is
to determine the induced map i� .

As examples, we compute Hab and H2Z in the cases where G is perfect, cyclic or
quaternion group. However, the computations are easily done by using the sequence (43)
and Proposition 8.4. We will roughly explain the computations.

Example 8.6 Let G be a finite perfect group, that is, G D ŒG;G�. We thus see
KG;e \ ŒIG;e; IG;e �ŠG � .G2 ÌZ=2Z/ by Proposition 8.4. Then the abelianization
of KG;e \ ŒIG;e; IG;e � is Z=2Z. In particular, H2Z Š Z=2Z.

As a special case, let us consider the group composed of a single point feg. By
Remark 2 we see that the 4–fold cocycle invariant of feg is trivial for any 3–manifolds.
Put the terminal map G ! feg. The induced map on H2Z is then an isomorphism
on Z=2Z. In conclusion, for a finite perfect group G , the polynomial Pe12

zGe;H2Z
.D�/

turns out to be a trivial invariant.

Example 8.7 Let G D Z=nZ. Proposition 8.4 indicates that the abelianization

KG;e \ ŒIG;e; IG;e �D f.x;x; z; z
�1x�2

I �/ 2G4 ÌZ=2Zg �!G˚G=2G˚Z=2Z;

is given by .x;x; z; z�1x�2I �/ 7! .x; Œz�; �/. The group H2Z can be computed by
the induced map i� in (43). Without the detailed proof, we state only the conclusion:

H2Z Š

8̂<̂
:

Z=2Z n odd;

.Z=2Z/2 nD 2 �m or 4 �m; where m is odd;

.Z=2Z/3 nD 2k �m; where m is odd and k > 2:

Example 8.8 Let G be the quaternion group Q8 . Regarding Q8 as a subset of the
quaternion field H , Q8 is composed of f˙1; ˙i; ˙j ; ˙kg. Notice that, for any
x 2 Q8 , x2 D ˙1 and that the center of Q8 is ŒQ8;Q8� D f˙1g. It follows from
Proposition 8.4 that a homomorphism

KG;e \ ŒIG;e;IG;e �

D f.x;x; z;˙zI �/ 2G4 ÌZ=2g ! .Q8/ab˚ .Q8/ab˚Z=2˚Z=2;

.x;x; z;˙zI �/ 7�! .Œx�; Œz�; sgn.˙/; �/;

is the abelianization of KG;e \ ŒIG;e; IG;e �. Note that ZG;e D f.g;g;g;gI e/ 2

G4 Ì Z=2Z j g D ˙1 g, and that i� in the sequence (43) is injective. Therefore,
noting .Q8/ab Š .Z=2Z/2 , we have reached the conclusion of H2Z Š .Z=2Z/5 .
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Although we can calculate the invariant Pe12
zGe;H2Z

.D�/ of 3–manifolds without knowing
the presentations of 4–fold symmetric quandle cocycles, unfortunately, we have not
been able to find examples of a nontrivial invariant. On the other hand, Hatakenaka
and the author [14] will show that our 4–fold symmetric quandle homotopy invariant
of zGe is at least as strong as Dijkgraaf–Witten invariants [5] of G .

Problem 8.9 Find an example of a nontrivial 4–fold symmetric quandle cocycle
invariant which is stronger than the Dijkgraaf–Witten invariant of G . Develop an
algorithm to construct 4–fold symmetric quandle cocycles of zGc , similar to those of
Alexander quandles in Mochizuki [19].

9 Appendix: (Symmetric) quandle homotopy invariant of
links

In this section, we discuss symmetric quandle homotopy invariants of unoriented
links. Fenn, Rourke and Sanderson [9; 10; 11] introduced the rack space of a quandle,
and studied an invariant of framed links valued in its second homotopy group. The
author [21] calculated the homotopy groups of some quandles and studied invariants
of oriented links. We first review (resp. symmetric) quandle homotopy invariants of
(resp. un)oriented links. Our goal is to show that the symmetric quandle homotopy
invariants are derived from the quandle homotopy invariants without good involution
(Proposition 9.1).

To begin with, we review the quandle homotopy invariants. Let X be a finite quandle,
and let Do be an oriented link diagram. Then the quandle homotopy invariant of Do is

„o
X .Do/D

X
C2ColX .Do/

„o
X .DoIC / 2 ZŒ…2.X /�;

where …2.X / is the group defined in Section 6.1 and the map „o
X
.DoI �/W ColX .Do/!

…2.X / sends an X –coloring to the canonical class. Remark that, although the quandle
homotopy invariants considered in the author [21] are defined by a topological method,
it is shown [21, Theorem A.2] that they entirely coincide with our invariants „o

X
.Do/.

Next, we construct the symmetric quandle homotopy invariants in a similar fashion.
Let .X; �/ be a finite symmetric quandle, and let D be an unoriented link diagram.
Then the symmetric quandle homotopy invariant of D is defined by the expression

„X .D/D
X

C2ColX;�.D/

„X ;�.DIC / 2 ZŒ…2;�.X /�;
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where …2;�.X / is the group defined in Section 3.1, and „X ;�.DI �/W ColX ;�.D/!
…2;�.X / is a map given by (2). This is invariant under Reidemeister moves.

Proposition 9.1 Let X be a finite quandle, and let D be an unoriented diagram. The
symmetric quandle homotopy invariant of D is derived from the quandle homotopy
invariant. More precisely, for any good involution � of X and any orientation of D ,
the homomorphism S…W …2.X / �!…2;�.X / in (23) gives rise to

(44) „X .D/D S….„o
X .Do// 2 ZŒ…2;�.X /�;

where Do means the diagram D with the orientation.

Proof Recall the bijection PX given in (1) and the construction of S… . Then, we
have the commutative diagram

ColX .Do/
PX //

„o
X
.DoI�/

��

ColX ;�.D/

„X .DI�/

��
…2.X /

S… // …2;�.X /

which immediately gives (44).

We will give a summary of (symmetric) quandle homotopy invariants as follows.
Kamada and Oshiro [18, Section 6] introduced the symmetric quandle cocycle invariants
of 1–dimensional links. Similar to Proposition 7.3, the symmetric quandle cocycle
invariants are derived from symmetric quandle homotopy invariants, and, hence, are
from the quandle homotopy invariants without good involution by Proposition 9.1. In
conclusion, the symmetric quandle structure has no expansion in the quandle homotopy
invariant of 1–dimensional links.
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