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Multiple genus 2 Heegaard splittings: a missed case

JOHN BERGE

MARTIN SCHARLEMANN

A gap in a paper by Rubinstein and the second author [5] is explored: new examples
are found of closed orientable 3–manifolds with possibly multiple genus 2 Heegaard
splittings. Properties common to all the examples in that paper are not universally
shared by the new examples: some of the new examples have Hempel distance 3, and
it is not clear that a single stabilization always makes the multiple splittings isotopic.

57M15, 57N10

1 Introduction

In 1998, Rubinstein and the second author [5] studied the question of when there could
be more than one distinct genus 2 Heegaard splitting of the same closed orientable
3–manifold. The goal of the project was modest: to provide a complete list of ways
in which such multiple splittings could be constructed, but with no claim that each
example on the list did in fact have multiple non-isotopic splittings (there could be
isotopies from one splitting to another that are not apparent). Nor was there a claim
that the list had no redundancies; a 3–manifold and its multiple splittings might appear
more than once on the list. Such a list would still be useful, for if every example on the
list could be shown to have a certain property, then that property would be true for any
closed orientable 3–manifold M that has multiple genus 2 splittings. Two examples
were given in [5]:

� If M is atoroidal then the hyperelliptic involutions determined by the two genus
2 Heegaard splittings commute.

� Any two genus 2 Heegaard splittings of M become isotopic after a single
stabilization.

Despite this modest goal, the argument in [5] contains a gap1 . In 2008, the first author
discovered a class of examples that do not appear on the list and which, moreover, have

1The error is on page 533: The last sentence of the first paragraph of Case 2 should have read, “The
same curves cannot then be twisted in X since M is hyperbolike." This leaves open an additional
possibility for PX , PY , see the paper by the second author [7].
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mathematical properties that distinguish them in important ways from the examples that
do appear in [5]. It is true that, even for the new examples, the hyperelliptic involutions
commute. But we know of no argument showing that the new examples all share the
second property above; that is, we cannot show that the newly discovered multiple
splittings necessarily become isotopic after a single stabilization (though they do after
two stabilizations).

A third property, shared by all examples in [5] but not by some of the new examples,
is not listed above because the notion of Hempel distance of Heegaard splittings (see
Hempel [3]) did not exist at the time [5] was written. But a retrospective look (see
Section 6 below) will verify that all the splittings described in [5] have Hempel distance
no greater than 2, whereas results of the first author [2] illustrate that at least some
of the new examples have Hempel distance 3. (This also verifies that the gap in the
argument in [5] actually led to missed examples.)

Here is an outline: In Section 2 we describe a general method for constructing closed
orientable 3–manifolds that appear to have multiple genus 2 Heegaard splittings; these
examples (called Dehn-derived) are based around Dehn surgery on a pair of strategically
placed curves. It is shown in [7] that these examples do fill the gap in [5]. It follows
from the construction that the hyperelliptic involutions of the alternate splittings always
coincide.

It is not immediately obvious that curves supporting Dehn-derived examples can be
found, but in Sections 3 and 4 we give three specific classes of examples. The classes
are denoted MH (Section 3), M�I and Mhybrid (Section 4). (MH can be viewed as
a third variation of [5, Example 4.2].) For the examples MH and Mhybrid a single
stabilization suffices to make the alternate splittings equivalent, but this property is at
least not apparent in most cases of M�I .

In Section 5 it is shown, using new results of the first author [1], that any Dehn-derived
example is in fact of type MH , M�I or Mhybrid . Finally, in Section 6 we verify that
all of the old examples that are listed in [5] are of Hempel distance 2, whereas at least
some Dehn-derived examples are of distance 3. (It is easy to see that all Dehn-derived
examples are of distance no more than 3.)

Acknowledgement The second author was partially supported by an NSF grant.

2 Dehn derived multiple splittings

A primitive k –tuple of curves in the boundary of a genus g handlebody H is a
collection �1; : : : ; �k � @H of k � g disjoint simple closed curves so that, for some
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properly embedded collection D1; : : : ;Dk of disks in H , j�i\Dj jD ıij ; 1� i; j � k .
It is easy to see that the closed complement in H of such a collection of meridian
disks is a genus g� k handlebody. In particular, if k D g then �1; : : : ; �g is called a
complete set of primitive curves and the corresponding collection of disks D1; : : : ;Dg

is called a complete set of meridian disks. The closed complement of a complete set of
meridian disks in H is a 3–ball.

Suppose ƒ D �1; : : : ; �k � @H is a primitive k –tuple of curves in H and let
˛1; : : : ; ˛k be the properly embedded collection of curves in H obtained by pushing
ƒ slightly into the interior of H . We can view H as the boundary connect sum of
a genus g� k handlebody H 0 and k solid tori W1; : : : ;Wk , with �i a longitude of
Wi and so ˛ i a core curve of Wi . Then Dehn surgery on ˛ i �Wi still gives a solid
torus. Hence any Dehn surgery on the family of curves ˛1; : : : ; ˛k leaves H still a
handlebody.

Definition 2.1 Suppose M0 D Ha [S Hb is a Heegaard splitting of a closed 3–
manifold M0 . A simple closed curve � � S is doubly primitive if � is a primitive
curve in both handlebodies Ha and Hb .

Suppose M0 is a closed orientable 3–manifold and that M0 DHa[S Hb is a genus
2 Heegaard splitting of M0 . Suppose further that �1; �2 � S are two disjoint doubly
primitive curves in S .

Proposition 2.2 Suppose M is a manifold obtained by some specified Dehn surgeries
on �1 and �2 . For i D 1; 2, let Ai (resp. Bi ) be the manifold obtained from the
handlebody Ha (resp. Hb ) by pushing the curve �i into int.Ha/ (resp. int.Hb/) and
performing the specified Dehn surgery on the curve.

Then A1[S B2 and A2[S B1 are two (possibly different) genus 2 Heegaard splittings
of M .

Proof Ai (resp. Bi ) is obtained from Ha (resp. Hb ) by Dehn surgery on a pushed
in copy ˛ i of a single primitive curve in S . It was just observed that this makes each
Ai (resp. Bi ) a handlebody.

Definition 2.3 Two genus 2 Heegaard splittings X [Q Y and A[P B of a closed
3–manifold M are called Dehn derived (from the splitting M0 D Ha [S Hb via
�1[�2 � S ) if the two splittings are created as in Proposition 2.2.

Corollary 2.4 Suppose M DA[P BDX [Q Y are a Dehn-derived pair of Heegaard
splittings. Then the two hyperelliptic involutions of M , one determined by the Heegaard
splitting A[P B and the other by the Heegaard splitting X [Q Y , coincide.
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Proof Let M0 DHa[S Hb be the Heegaard split 3–manifold from which the two
splittings of M are Dehn derived, via �1 [ �2 � S . The hyperelliptic involution
preserves the isotopy class (though perhaps reversing the orientation) of any simple
closed curve in S . We may then position �i so that the curves are preserved (perhaps
reversing orientation) by the hyperelliptic involution on M0 DHa[S Hb . Then the
hyperelliptic involution on M0 naturally induces a single hyperelliptic involution on
M .

3 A simple set of examples

It is not immediately obvious how to create examples of a Dehn-derived pair of splittings
or, very naively, whether examples even exist. In this section we present and briefly
discuss an important concrete class of examples.

Consider a genus 2 handlebody H , constructed from two 0–handles by connecting
them with three 1–handles. With this structure H has a natural Z3 symmetry, shown
as 2�

3
rotation about the green axis in Figure 1. Let �1 � @H be the red curve shown

in the figure and �2; �3 be the other two simple closed curves to which �1 is carried by
the Z3 symmetry. Then each �i is a primitive curve on @H and, indeed, any two of
the curves, say �1; �2 constitute a complete set of primitive curves (that is, a primitive
pair). In this case the corresponding pair of meridian disks are the meridian disks of
the two 1–handles through which �3 passes.

Let SH be the genus 3 handlebody obtained by removing from H a neighborhood of
the arc in which the axis of symmetry intersects one of the 0–handles. It is easy to see
that in SH the collection �1; �2; �3 � @ SH is a complete set of primitive curves, that is
a primitive 3–tuple.

To construct some Dehn-derived pairs of Heegaard splittings, begin with two genus 2

handlebodies A and B , on each of whose boundaries lie three disjoint simple closed
curves corresponding to �1; �2; �3� @H . Let �ia� @A (resp. �ib� @B ) be the curve
corresponding to �i in A (resp. B ), for each 1 � i � 3. Adopting (for comparison
purposes) notation from [5, Section 4.2], let ˛na; ˛ sa; �a �A be the triple of curves
obtained by pushing �1a; �2a; �3a into the interior of A and let ˛nb; ˛ sb; �b �B be
the triple of curves obtained by pushing �1b; �2b; �3b into the interior of B . Let N

be a manifold constructed by identifying an annular neighborhood of �1a in @A with
an annular neighborhood of �1b in @B and an annular neighborhood of �2a in @A

with an annular neighborhood of �2b in @B . (After the identification, call the annuli
An and As with core curves �1; �2 respectively.) Then identify the two 4–punctured
spheres @A� .An[ As/ and @B � .An[ As/ by any homeomorphism.
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Figure 1

This construction defines a genus 2 Heegaard structure on N , of course, but it also
defines a genus 2 Heegaard splitting on M0 , the manifold obtained from N by arbitrary
Dehn surgery on just the two curves �a �A and �b �B , for surgery on these pushed-
in primitive curves leaves A and B still handlebodies, handlebodies which we denote
respectively Ha and Hb . What’s more, the curves �1; �2 are each primitive in both
Ha and Hb (though they are not necessarily a primitive pair in either). Thus the
Heegaard splitting M0 D Ha [Hb gives rise to two potentially different genus 2

Heegaard structures on any manifold MH that is obtained by simultaneously doing
further Dehn surgery on the two curves �1; �2 . That is, a manifold MH obtained by
arbitrary Dehn surgery on all four curves �1; �2; �a; �b �N has two possibly distinct
genus 2 Heegaard splittings, Dehn derived from the Heegaard splitting M0DHa[Hb .
One Heegaard structure MH D A1 [B2 is obtained by pushing �1 to ˛na � intA
and �2 to ˛ sb � intB before doing Dehn surgeries on the four curves; the other
MH D A2 [B1 is obtained by pushing �1 to ˛nb � intB and �2 to ˛ sa � intA
before doing the Dehn surgeries. In each case, exactly two of the four Dehn surgered
curves lie in each handlebody A and B before the Dehn surgery, and in that handlebody
are a pushed-in primitive pair.
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Proposition 3.1 The two Heegaard splittings A1[B2 and A2[B1 of MH become
isotopic after at most a single stabilization.

Proof Let xA and xB be the genus 3 handlebodies derived from A and B respectively,
just as SH was derived from H . Here is a natural genus 3 Heegaard splitting of MH :
in contrast to the construction above, push both �1 to ˛na and �2 to ˛ sa , so both
curves (as well as �a ) lie in A before doing the Dehn surgeries. Although A may no
longer be a handlebody after the Dehn surgeries, it follows from the discussion above
that the result on xA of the surgery on the three curves ˛na; ˛ sa; �a �

xA�A is still
a genus three handlebody xA0 . The complement of xA0 in MH is also a handlebody
B0 : a single 1–handle is added to B and surgery is done on the single curve �b � B .
Thus MH D

xA0[B0 is a genus 3 Heegaard splitting of MH .

It’s fairly easy to see that this Heegaard splitting is a stabilization of A1[B2 (and so,
symmetrically, A2 [B1 ). Indeed, an alternate way to construct xA0 [B0 is to begin
with A1[B2 and add to A1 (and so subtract from B2 ) a regular neighborhood of the
curve ˛ sb � int.B/ and a straight arc from @B to ˛ sb . From this point of view, the
inclusion B0 � B2 defines a genus 3 Heegaard splitting of the genus 2 handlebody
B2 , and any such Heegaard splitting is necessarily stabilized (see the paper by the
second author and Thompson [8, Lemma 2.7]). The pair of stabilizing disks are also a
pair of stabilizing disks for xA0[B0

4 A second construction, and a hybrid

Here is another natural, but less naive, way to find disjoint pairs of primitive curves
on the boundary of a genus 2 handlebody and so to create a Dehn-derived pair of
Heegaard splittings. Let F denote a torus with the interior of a disk removed. Then
F � I is a genus 2 handlebody. For  any properly embedded essential simple closed
curve in F ,  � f0g (or symmetrically  � f1g) is a primitive curve in the handlebody
F � I . Indeed, for ı a properly embedded arc in F intersecting  once, ı � I is a
meridian disk in F � I that intersects  � f0g exactly once.

Following this observation, and the example of the previous section, here is a recipe for
constructing candidate 3–manifolds. Begin with two copies A and B of the surface F

and choose two essential (not necessarily disjoint) simple closed curves ˛0; ˛1 �A

and two essential (not necessarily disjoint) simple closed curves ˇ0; ˇ1 � B . Let
�0a D ˛0 � f0g � @.A� I/; �1a D ˛1 � f1g � @.A� I/; �0b D ˇ0 � f0g � @.B �

I/; �1b D ˇ1 � f1g � @.B � I/. Identify an annular neighborhood of �0a in A� f0g

with an annular neighborhood of �0b in B�f0g and call the core curve of the resulting
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annulus �0 . Similarly identify an annular neighborhood of �1a in A� f1g with an
annular neighborhood of �1b in B�f1g and call the core curve of the resulting annulus
�1 . Complete the identification of @.A� I/ with @.B � I/ along the remaining 4–
punctured sphere arbitrarily. Call the resulting closed 3–manifold M0 , with Heegaard
splitting M0 D .A� I/[ .B � I/.

The 3–manifold M�I obtained from M0 by doing arbitrary Dehn surgeries to the
simple closed curves �0 and �1 has a Dehn-derived pair of Heegaard splittings: one
comes from first pushing �0 into A� I and �1 into B � I before the Dehn surgery,
the other comes from first pushing �1 into A� I and �0 into B � I before the Dehn
surgery.

Remarks on stabilization It is not apparent to us that a single stabilization will make
the two Dehn-derived splittings of M�I equivalent. The argument of Proposition 3.1
does not immediately carry over: if both curves �0a and �1a are pushed into A� I

there is no apparent arc so that the complement A� I of a neighborhood of the arc
in A� I is a genus 3 handlebody after an arbitrary Dehn surgery on the pushed in
�0a and �1a . If there is a proper arc  in A that intersects both curves ˛0 �A and
˛1 �A in a single point, then the complement A� I after pushing the interior of 
into A� I is a genus 3 handlebody, and so a single stabilization suffices, but having
such an arc  is not the general situation. (What is required for such an arc  to exist
is that the slopes of ˛0 ˛1 in A are a distance at most two apart in the Farey graph
(see Minsky [4, Figure 1]). In that case  has the slope that is incident to the slopes of
both ˛0 and ˛1 in the Farey graph.)

On the other hand, it is relatively easy to show that two stabilizations suffice to make the
two splittings equivalent. To see this, push both �0 and �1 into A�I and connect them
to respectively A�f0g and A�f1g by straight arcs. Then add a regular neighborhood of
the arcs and of the pushed in curves �0 and �1 to B�I to create a genus 4 handlebody
B � I and simultaneously subtract the regular neighborhood from A�I to get the genus
4 handlebody A� I . The resulting genus 4 Heegaard splitting M0 DA� I [B � I

becomes a Heegaard splitting HCa [HC
b

of M�I after the prescribed Dehn surgery on
�0 and �1 . Using the argument of Proposition 3.1 it is easy to see that the Heegaard
splitting HCa [HC

b
destablizes to the genus 3 splitting obtained by instead pushing

�0 into B � I and then adding to B � I a regular neighborhood of �1 � .A� I/ and
a straight arc attaching it to A� f1g. The argument of Proposition 3.1 applied again
shows that this Heegaard splitting destabilizes to the genus 2 splitting in which �0 is
pushed into B � I and �1 into A� I , one of the Dehn-derived splittings. But this
destabilization process is clearly symmetric: we could equally well have destabilized
to the other genus 2 splitting, in which �0 is pushed into A� I and �1 into B � I ,
and this is the other Dehn-derived splitting.
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A further, call it a hybrid example of a Dehn-derived pair of splittings comes by
combining the two constructions above: Identify annular neighborhoods of �1; �2� @H

from Section 3 with annular neighborhoods of �0b; �1b � @.B � I/ and identify the
rest of @H with the rest of @.B � I/ in any way. This gives a closed 3–manifold N

with a Heegaard splitting H [ .B�I/. Let M0 be a 3–manifold obtained by doing an
arbitrary Dehn surgery on �3 � @H , after pushing it into int.H /. Then M0 has the
genus 2 Heegaard splitting (exploiting the notation used above) M0 DHa[ .B � I/.
Let Mhybrid be a closed 3–manifold obtained from M0 by arbitrary Dehn surgeries on
the two remaining curves �1; �2 � @Ha �M0 . The Dehn-derived pair of Heegaard
splittings for Mhybrid is obtained by alternatively pushing �1 into Ha and �2 into
B�I or vice versa. A single stabilization suffices to make the two splittings equivalent,
essentially by the same argument as for MH , in Proposition 3.1.

5 A taxonomy of Dehn-derived splittings

Sections 3 and 4 give concrete examples of pairs of Dehn-derived fillings. In this section
we show that these examples in fact constitute all pairs of Dehn-derived splittings.
The argument exploits Berge’s classification of pairs of primitive curves on genus 2

handlebodies [1], though the classification here is slightly different.

Let H be a genus 2 handlebody, with �1; �2; �3 � @H the disjoint simple closed
curves described in Section 3. Denote by � the curve in the interior of H obtained
by pushing �3 into H and let Hsurg denote the handlebody obtained from H by a
specified Dehn surgery on � � int.H /. As in Section 4, let F denote a torus with the
interior of a disk removed.

Proposition 5.1 (Berge) Suppose ˛ and ˇ are disjoint non-parallel primitive curves
on the boundary of a genus 2 handlebody H . Then either

(A) there is a Dehn surgery on � �H and a homeomorphism hW H !Hsurg so that
h.˛/D �1 � @Hsurg and h.ˇ/D �2 � @Hsurg or

(B) there is a homeomorphism hW H ! F � I so that h.˛/� F � f0g and h.ˇ/�

F � f1g.

Proof This classification is a variant of that described in [1]. The Type II pair there,
as well as some pairs of Type I, are exactly as described in alternative (B). The interest
is in the third example of a Type I pair, in [1, Lemma 3.8 (3) via Figure 3]. In that
example, H is viewed as divided into two solid tori by a separating disk D ; let �a and
�b be longitudes of the two solid tori into which D divides H . Then ˇ is parallel to
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�b , and ˛ is the band sum, via a band that crosses D once, of �b with a torus knot
on the solid torus containing �a . This picture is equivalent to letting ˛ be the band
sum �a#�b (through D ) of �b with �a , and then performing a Dehn surgery on a
disjoint copy of �a that has been pushed into H , to become a core of the solid torus
on which �a lies. Now translate: relabel �b � @H as �2 and �a � @H as �3 . Then
�a#�b corresponds to �1 . The construction just described is then to push �3 into the
interior of H and perform some surgery to get Hsurg . Afterwards ˛ corresponds to
�1 � @Hsurg and ˇ corresponds to �2 � @Hsurg . This is exactly alternative (A).

Following Proposition 5.1 there is a fairly clear description of the cases of multiple
Heegaard splittings that are missing from [5]. According to [7] the only missing cases
are pairs of splittings that are Dehn-derived from an initial splitting HAX [HBY

of a manifold M0 . First determine which of alternatives (A) and (B) apply to the
pairs of surgery curves as they lie on the boundaries of the respective handlebodies:
fa1; c2g �HAX or fa2; c1g �HBY . If both are of type (A) then the pair of splittings
is Dehn-derived as in the construction of MH in Section 3. If both are of type (B) then
the pair of splittings is Dehn-derived as in the construction of M�I in Section 4. If
one is of type (A) and one of type (B) then the pair of splittings is Dehn-derived as in
the construction of Mhybrid in Section 4.

It is worth mentioning that there is another view of a pair of primitive curves lying on
a handlebody as in (A) of Proposition 5.1, a view that more closely resembles that in
(B): Let ˛; ˇ;  be simple closed curves in F so that each pair of curves intersects
in exactly one point. (For example, choose curves in F of slopes 0; 1;1.) Then it is
fairly easy to see that the three curves ˛ � f0g; ˇ � f1g;  � f1

2
g lie in the handlebody

F � I just as �1; �2; � lie in H in the description preceding Proposition 5.1. So the
primitive curves in description (A) can be made to look like a special case of those in
description (B), but with the cost that an extra Dehn surgery has to be performed on a
specific curve in the interior of F � I . This is the twisted product view of [1, 3.2].

6 Distance

It would seem possible that the Dehn-derived pairs of Heegaard splittings exhibited
above could coincidentally all be contained among the examples already listed in [5],
for there is no claim that the types of examples of multiple Heegaard splittings we have
offered here and in [5] do not overlap. But in fact there is an invariant which does show
that at least some Dehn-derived pairs of Heegaard splittings described above did not
already occur in a different guise in [5]. This invariant had not yet been introduced
when [5] was written and is called the (Hempel) distance of the Heegaard splitting (see
Hempel [3]). We briefly review:
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Definition 6.1 A Heegaard splitting H1[S H2 has Hempel distance at most n if there
is a sequence c0; : : : ; cn of essential simple closed curves in the splitting surface S so
that

� for each i D 1; : : : ; n, ci \ ci�1 D∅
� c0 bounds a disk in H1

� cn bounds a disk in H2

If the splitting has distance � n but not � n� 1, then the distance d.S/D n.

A Heegaard splitting of distance 0 is called reducible; one of distance � 1 is called
weakly reducible. Any Heegaard splitting of a reducible manifold is reducible. A
Heegaard splitting of distance � 2 is said to have the disjoint curve property (see
Thompson [9]); any Heegaard splitting of a toroidal 3–manifold has the disjoint curve
property [3; 9]. A weakly reducible genus 2 Heegaard splitting is also reducible, so an
irreducible Heegaard splitting of genus 2 has distance at least 2 [9].

In the other direction we have:

Proposition 6.2 Suppose the manifold M has a Dehn-derived pair of Heegaard split-
tings. Then each of these Heegaard splittings has Hempel distance at most 3.

Proof Suppose the splittings are Dehn-derived from a splitting M0 D Ha [S Hb

via the disjoint pair of simple closed curves �1; �2 � S . With no loss of generality,
consider the splitting M DA[S B obtained by pushing �1 into int.Ha/ and �2 into
int.Hb/ before doing Dehn surgery on the �i . Since �1 is primitive in Ha there is
a properly embedded essential disk Da �Ha that is disjoint from �1 . (For example
Da can be obtained from a meridian disk D1 �Ha that intersects �1 in a single point
by band-summing together two copies of D1 along a subarc of �1�D1 .) Da is then
also disjoint from the curve ˛1 �Ha obtained by pushing �1 into int.Ha/, so Da

remains intact as a meridian of A after surgery on ˛1 . Hence @Da and �1 are disjoint
curves in @A.

Symmetrically, there is a meridian Db � B so that @Db and �2 are disjoint curves
in @B . Then the sequence @Da; �1; �2; @Db shows that the splitting A[S B has
distance at most 3.

Proposition 6.3 All examples of multiple Heegaard splittings appearing in [5, Section
4] have Hempel distance � 2.
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Proof Following the comments above we can restrict attention to irreducible, atoroidal
manifolds. We briefly run through the examples as they appear in [5, Section 4].
Typically the description of an example H1 [S H2 in [5] consists of two parts: A
collection of annuli A� S along which @H1 and @H2 are identified, followed by an
arbitrary identification of @H1�A with @H2�A. From this point of view the simple
closed curves @A� S that separate one sort of region from the other will be called
the seams of the Heegaard splitting. We will observe that in [5] some seam is always
disjoint from an essential disk in H1 and an essential disk in H2 . This demonstrates
that the splitting has the disjoint curve property and so has distance � 2.

To be specific: In [5, Subsection 4.1], [5, Subsection 4.2, Variation 1] and [5, Subsection
4.4, Variations 1 and 2], the meridians of the 1–handles ea and eb are disjoint from
the seams. [5, Subsection 4.2, Variation 2] is slightly more complicated. It is a bit
like the construction in Section 3 above: Handlebodies A and B are identified along
neighborhoods of all three curves �i ; i D 1; 2; 3, Dehn surgery is done to all three,
with �1; �2 pushed into A and �3 into B (then vice versa). But there is a meridian of
A disjoint from �1 and �2 and a meridian of B disjoint from �1 and �3 , so a seam
parallel to �1 demonstrates that the splitting of [5, Subsection 4.2, Variation 2] has the
disjoint curve property.

The manifolds in [5, Subsection 4.3] and [5, Subsection 4.4, Variations 3, 4, and 7]
are all toroidal, so they are of distance � 2. What remains are [5, Subsection 4.4,
Variations 5 and 6] and we adopt the terminology there. In Variation 5, with, say,
�a �A� , the seams that are the boundary of the 4–punctured sphere @A�\ @� are
all disjoint from the meridian of the 1–handle eb � B and, in A� , any one of these
seams together with �a lie in A� as two of the �i ’s of Section 3 above lie in H . In
particular, there is a meridian of A� disjoint from both the seam and from �a . Thus
that seam again illustrates that the splitting has the disjoint curve property.

The argument for Variation 6 is much the same. First note that if, in that Variation,
Dehn surgeries are done on two curves parallel to � , then the resulting manifold has a
Seifert piece and so has distance � 2. So the only change we need to consider from
Variation 5 is Dehn surgery on a single curve parallel to � . If that curve lies in B the
argument for Variation 5 suffices; if it is in A� this merely forces us to pick a specific
seam in the argument for Variation 5, a seam parallel to the new surgery curve.

In contrast, some of the examples constructed in this paper can be shown to have
distance 3, so they cannot have appeared in any case considered in [5]. See [2]
(also [6]) for details.
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