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Poincaré duality and periodicity

JOHN R KLEIN

WILLIAM RICHTER

We construct periodic families of Poincaré complexes, partially solving a question of
Hodgson, and infinite families of Poincaré complexes whose top cell falls off after
one suspension but which fail to embed in a sphere of codimension one. We give a
homotopy theoretic description of the four-fold periodicity in knot cobordism.

57P10, 57Q45; 55Q25, 55P91

1 Introduction

Let X n be a finite oriented Poincaré complex of dimension � 3. We may suppose (see
Wall [23, Theorem 2.4]) that X DK[˛ Dn where K is a CW complex of dimension
� n�1, and ˛W Sn�1 ! K is the attaching map for the top cell of X . Since K is
unique up to homotopy, we call K the spine of X . Hodgson [11] posed the question:

Question 1 (Hodgson) Given an n–dimensional Poincaré complex X n with spine
K , is there an .nC2/–dimensional Poincaré complex Y nC2 with spine †K?

By Poincaré duality, the obvious dimension of Y is n C 2. The answer is often
no, for example, the cofibers of the Hopf invariant one maps CP2 D S2 [� D4 ,
HP2 D S4 [� D8 and S8 [� D16 , whose spines are S2 , S4 and S8 respectively.
These examples are generalized by the class pointed out to us by Jim Davis:

Example 1.1 Let X be a connected 4k –dimensional Poincaré complex with odd
Euler characteristic. Let K be the spine of X . Then there is no Poincaré complex Y

of dimension 4kC 2 having spine †K , because the Euler characteristic of Y would
have to be odd (since �.X /� �.Y / mod 2). But the Euler characteristic of Y must
be even, since its intersection form is skew symmetric. Thus Y can’t exist.

The Poincaré complexes CP2k and HP2k are in this class. The class is closed with
respect to taking products. Furthermore, if X 4k is in the above class and Y 4k has
even Euler characteristic, then the connected sum X #Y is in the class.
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Question 1 sometimes has a positive answer: for example, the torus Sp�Sq has spine
Sp _Sq . We formulate a slightly weaker version of Hodgson’s question.

Question 2 Given a Poincaré complex X with spine K , does there exist an integer
j > 0 and a Poincaré complex Y whose spine is †j K?

Adams’s Hopf invariant one theorem [1] and X D S8[� D16 shows that Question 2
can have a negative answer. Question 2 has an affirmative answer for those X whose
top cell splits off after a single suspension, and for j even:

Theorem A Let X n be a Poincaré complex with spine K such that the top cell of
X splits off after one suspension. Then there exists a Poincaré complex Y nC4 whose
spine is †2K and whose top cell splits off after one suspension.

If a Poincaré complex embeds in codimension one, then its top cell splits off after
one suspension: if X n � SnC1 is a codimension one Poincaré embedding, then the
Pontryagin–Thom construction gives a degree one map SnC1!†X which splits off
the top cell of X . We answer Question 1 for this class of Poincaré complexes:

Theorem B Suppose X as above has spine K . Then †K is the spine of a Poincaré
complex Y , and Y has a codimension one Poincaré embedding in SnC3 .

The hypothesis of Theorem B implies that of Theorem A. We show that the converse
need not hold: we will construct infinite families of Poincaré complexes whose top
cell falls off after one suspension, but which fail to Poincaré embed in a sphere in
codimension one. Note however by a result of Browder [6] that any such example must
necessarily embed in codimension two.

See Section 2 for the definition of Whitehead products, and let x;yW Sn! Sn _Sn

be the inclusions into each summand. Our first infinite family is given by the “Kervaire”
PL manifolds (see Kosinski [15, page 120, Corollary 4.7]).

Proposition C For any odd whole number n¤ 1; 3; 7, the mapping cone of the map

Œx;x�C Œy;x�C Œy;y�W S2n�1
! Sn

_Sn

is a 2n–dimensional Poincaré complex which does not embed in codimension one but
whose top cell falls off after one suspension.
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We assume the reader is familiar with Toda’s book [22]. Recall that at the prime 2 one
has an EHP-sequence with connecting map P W ��C2.S

2nC1/! ��.S
n/. Then P is

represented by a map �2S2nC1!Sn after localizing at 2, so given a map f W SjC2!

S2nC1 , one may consider the 2–local map P .f /W Sj ! Sn . The following result
provides criteria for constructing infinite families of examples.

Proposition D Given a map ˛W SpCqC1 ! S2qC1 of order 2rC1 , with q even,
p � 2q and r > 1, let A be the cofiber of the map

Œy;x�CyP .˛/W SpCq�1
! Sp

_Sq:

If 2r kills the image of EW �p.S
q/! �pC1.S

qC1/, then A is a .pCq/–dimensional
Poincaré complex whose top cell falls off after one suspension. However, A does not
embed in codimension one.

The Poincaré complex A19 with attaching map Œy;x�CyP .E5�/W S18! S13 _S6

is an example of Proposition D, as Toda’s first table [22, page 186] shows the image of
EW �13.S

6/! �14.S
7/ has order at most 4, whereas E5� 2 �20.S

13/ has order 16.

Recall the Adams self-map W W M nC8
16�
! M n

16�
of the Moore space which exists

for n > 10 for stability reasons [2, Lemma 12.5]. We also need an unstable Adams
self-map:

Lemma 1.2 For n� 9, there exists a map V W M nC8
8�
!M n

8�
so that the composite

SnC7 i
�!M nC8

8�

V
��!M n

8�

j
�! Sn

is homotopic to 2� .

We will use complex K–theory to give a simple proof of the following result, known
to Mahowald [18, Theorem 1.5], and possibly also known to Barratt and Toda.

Theorem E (1) There exist homotopy classes Nk 2 �8k.S
5/ of order 8, where

N1 D � , and for k > 1, Nk is the composite

S8k i
�!M 8kC1

8�

V ı.k�1/

������!M 9
8�

�]

��! S5;

where �] is given by a nullhomotopy of 8�W S8! S5 .

(2) There exist homotopy classes Sk 2 �8k.S
9/ of order 16, where S2 D � , and

for k > 2, Sk is the composite

S8k i
�!M 8kC1

16�

W ı.k�2/

�������!M 17
16�

�]

��! S9;

where �] is given by a nullhomotopy of 16� .
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Note that Mahowald has a powerful framework that explains and extends these ele-
ments [18, Theorem 1.5]. Using these two families and Proposition D, we obtain

Corollary F The cofibers of the maps

Œy;x�CyP .Sk/W S
8k�2

! S8k�5
_S4

Œy;x�CyP .Nk/W S
8k�2

! S8k�3
_S2

are .8k�1/–dimensional Poincaré complexes whose top cells fall off after one suspen-
sion, but do not embed in codimension one.

(Here, xW Sp! Sp _Sq and yW Sq! Sp _Sq denote the evident inclusions.)

The surgery exact sequence shows the above examples have the homotopy type of
smooth manifolds. Other Poincaré complexes whose top cell falls off after one suspen-
sion are provided by closing up Seifert surfaces of high dimensional knots. However,
we lack criteria for deciding when these fail to embed in codimension one.

In Section 2 we review Boardman and Steer’s work on Hopf invariants and prove
Theorem A. We give a criterion for Poincaré duality when the top cell splits off after
one suspension. In Section 3 we prove Theorem B, and in Section 4, Propositions D
and C. In Section 5 we discuss Toda brackets and prove Theorem E and Corollary F.
We explain in Section 6 how a variant of Theorem A gives rise to a periodicity operator
for knot theory, inducing the four-fold periodicity of the knot cobordism groups. In
Section 7, we discuss our linear notion of periodicity, and explain some exponential
periodicity of Mahowald.

Acknowledgements The authors are grateful to Mark Mahowald for his insight and
guidance. We are also indebted Brayton Gray and Bob Bruner for helping us understand
how Adams’s work [2] proves Theorem E. The first author wishes to thank Andrew
Ranicki for help with the surgery theory literature, Diarmuid Crowley for discussions
in connection with Proposition D, and Matthias Kreck and Peter Teichner for pointing
out that †RP2 is the spine of SU.3/=SO(3).

The first author was partially supported by the National Science Foundation.

2 Poincaré duality and Hopf invariants

The spaces in this paper are assumed to have the homotopy type of CW complexes.
Basepoints are always assumed to be non-degenerate. If X is a based space then †X

denotes its reduced suspension, and �X denotes its based loop space. The smash
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product of based spaces A and B is denoted A^B . Let ŒA;B� denote the (based)
homotopy classes of maps from A to B , and let fA;Bg be the abelian group of stable
homotopy classes of maps from A to B .

See Wall [23] for the definition of a Poincaré complex. We consider only finite
oriented Poincaré complexes. If X is an n–dimensional Poincaré complex, there is a
fundamental class ŒX � 2Hn.X / giving a cap product isomorphism

(1) \ŒX �W H k.X /
Š
�!Hn�k.X / for all integers k .

If X is a 1–connected finite complex with a class ŒX � 2Hn.X / satisfying (1), then X

is a Poincaré complex. Similar remarks hold for Poincaré pairs.

If A and B have the homotopy type of finite complexes, then a (stable) map d W Sn!

A^B is an S –duality map if and only if the slant product homomorphism

=d�ŒS
n�W zH�.A/! zHn��.B/

is an isomorphism in all degrees. Here zH� means reduced singular homology, and
ŒSn� 2 zHn.S

n/ denotes the generator.

We rely on Boardman and Steer’s treatment of Hopf invariants in [4], much as we did
earlier [20]. Let B be a based space. The suspension map EW B!�†B is adjoint to
the identity. The James Hopf invariant H W �†B!�†.B ^B/ is a natural map [4,
3.10] with H ıE canonically null homotopic. (We will not need this, but

B
E
��!�† B

H
�!�†.B ^B/

is a metastable homotopy fiber sequence.) H gives a natural map H W Œ†A; †B�!

Œ†A; †B ^B�. The Hopf invariant �W Œ†A; †B�! Œ†2A; †B ^†B� is the natural
map [4, 3.15] given by suspending H . Boardman and Steer stress the Cartan formula [4,
Theorem 3.15, Definition 2.1]:

(2) �.f Cg/D �.f /Cf �gC�.g/ 2 Œ†2A; †B^†B�; for f;gW †A �!†B ;

where the cup product term f �g means the composite

†2A
†2�A
����!†2.A^A/

shuffle
���!†A^†A

f^g
���!†B ^†B:

Following [4], we use right suspensions, so †A WDA^S1 , and suppress shuffle maps.
Note that by shuffling the suspension coordinates around we can show that

(3) f �g D 0 2 Œ†2A; †B ^†B� if †f D 0 2 Œ†2A; †2B�
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Let �K W K ^K!K ^K be the twist map (which switches factors). The proof of [4,
Theorem 3.17] (which assumed B is a suspension) generalizes to prove

(4) .f ^f / ı†2�A D .1� �†B/ ı�.f /C†
2�B ı†f 2 Œ†

2A; †B ^†B�:

As Boardman and Steer stress, the following diagrams commute up to homotopy, for
maps f;gW †A �!†B , because the twist �S1 on S1 ^S1 has degree -1.

(5)

†2B ^B
shuffle
����! †B ^†B

�†2�B

??y �†B

??y
†2B ^B

shuffle
����! †B ^†B

†2A †B ^†B

†B ^†B

//
f �g

$$
�g�f

��

�†B

For maps f W †P!X and gW †Q!X , the Whitehead product [4, 4.2] Œf;g�W †P ^

Q!X is defined as the unique homotopy class so that the composite

†.P �Q/
†�12
���!†P ^Q

Œf;g�
���!X

is the commutator .f ı†�1;g ı†�2/. We extend [4, Theorem 4.6] to the case when
P and Q are not required to be suspensions:

Lemma 2.1 Given maps f W †P !†B and gW †Q!†B , the Whitehead product
Œf;g�W †P ^Q!†X has Hopf invariant

(6) �.Œf;g�/D .1C �†X / ı .f ^g/W †2P ^Q �!†X ^†X:

In particular, for the Whitehead product Œ�; ��W †X ^X !†X , we have

�.Œ�; ��/D 1C �†X W †
2X ^X �!†X ^†X:

Proof The map †�12W †.P �Q/ ! †.P ^Q/ is a stably split surjection, so it
suffices to prove (6) pulled back to †.P �Q/. Write f1 D f ı†�1 and g D g ı

†�2W †P�Q!†X . By definition, Œf;g�ı†�12D .f1;g2/2 Œ†.P�Q/; †X �. Write
.f1;g2/DF�G , where FDf1Cg2 and GDg2Cf1 . Then FD .f1;g2/CG . By (3),
the cup product .f1;g2/ �G is nullhomotopic, because †.f1;g2/ is nullhomotopic.
Thus

�.f1/Cf1 �g2C�.g2/D �..f1;g2//C�.g2/Cg2 �f1C�.f1/

by the Cartan formula (2). By (5) and f1 �g2 being a suspension, we have

�..f1;g2//Df1 �g2�g2 �f1D .1C�†X /ıf1 �g2D .1C�†X /ı.f ^g/ı†2�12:
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Given a map f W †A!†B with cofiber X , the diagram

(7)
†A

f
����! †B ����! X

@
����! †2A

�

??y ??y�.˛/
X ^X  ���� †B ^†B

is homotopy commutative [4, Theorem 5.14]. This immediately implies the following.

Proposition 2.2 Let L be a connected finite complex of dimension � n � 3, and
˛W Sn�1! †L a based map with cofiber X . Then X is a Poincaré complex if and
only if �.˛/W Sn!†L^†L is an S –duality map.

Suppose the cofiber of the based map ˛W Sn�1!K is a Poincaré complex X whose
top cell splits off after one suspension, so we have a degree one map �W SnC1!†X .
Then †i _ �W †K _ SnC1 ! †X is a homotopy equivalence and defines a map
f W †X !†K so that the composite f ı†i W †K!†K is homotopic to the identity,
and the composite f ı �W SnC1!†K is nullhomotopic.

Proposition 2.3 If X is a Poincaré complex, the composite is an S –duality map:

SnC2 †�
��!†2X

�.f /
���!†K ^†K

1��†K
�����!†K ^†K:

Proof Applying the symmetrization formula (4) to f W †X !†K gives

.f ^f / ı†2�X D .1� �†K / ı�.f /C†
2�K ı†f 2 Œ†

2X; †K ^†K�:

Since f ı � is nullhomotopic, right composition with †� gives

.f ^f / ı†2�X ı†�D .1� �†K / ı�.f / ı†� 2 ŒS
nC2; †K ^†K�:

Relative Poincaré duality is given by a map z�W X �!K^K , so the composite †z�ı�
is an S –duality map. But �X W X !X ^X is homotopic to the composite

�X W X
z�
��!K ^K

i^i
���!X ^X:

Thus .f ^f /ı†2�X is homotopic to †2 z�. Hence .f ^f /ı†2�X ı†� is homotopic
to †2 z� ı†� , which is an S –duality map.

Proof of Theorem A As above, let X n DK [˛ Dn be a Poincaré complex whose
top cell splits off after one suspension by a degree one map �W SnC1!†X . Suspend
twice the S –duality map of Proposition 2.3. By using (5), we see the composition

(8) SnC4 †3�
��!†4X

†2�.f /
�����!†2K ^†2K

1C�
†2K

������!†2K ^†2K
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is an S –duality map. Define ˇW SnC3!†2K as the composition

ˇW SnC3 †2�
��!†3X

†�.f /
����!†.†K ^†K/

Œ�;��
��!†2K:

Let Y be the cofiber of ˇ . Lemma 2.1 and naturality shows �.ˇ/ is composition (8).
Therefore �.ˇ/ an S –duality map. By Proposition 2.2, Y is an .nC4/–dimensional
Poincaré complex. Clearly the top cell splits off Y nC4 after one suspension, because
the suspension of a Whitehead product is nullhomotopic.

Note that in above proof we could have tried unsuccessfully to construct an .nC2/–
dimensional Poincaré complex as the cofiber Z of the composition

 W SnC1 �
�!†X

H .f /
����!†.K ^K/

Œ�;��
��!†K:

The composition formula [4, Theorem 3.16] calculates �. / to be the composition

SnC2 †�
��!†2X

�.f /
���!†K ^†K

1C�†K
�����!†K ^†K:

Since we have 1C �K instead of 1� �K , we don’t know that �.ˇ/ is an S –duality
map, so we can’t conclude that Z is an .nC2/–dimensional Poincaré complex.

3 Periodicity in the codimension one case

In this section we will prove Theorem B, solving Question 1 for the class of Poincaré
complexes having codimension one embeddings in the sphere. For the definition of
Poincaré embedding see, for example, Klein [14]. Let X n be a connected oriented
n–dimensional Poincaré complex which is Poincaré embedded in SnC1 . Theorem B
is a direct consequence of the following.

Proposition 3.1 If L denotes the spine of X , then †L is the spine of a Poincaré
complex Y , and Y has a codimension one Poincaré embedding in SnC3 .

Proof The proof will rely on the decompression construction of [14, Section 2.3]. By
Spanier–Whitehead duality, the complement of X � SnC1 has two components, call
them M and W . The normal data define inclusions X !M and X !W which
form Poincaré pairs of dimension nC 1. Then we have a homotopy pushout diagram

(9)

X ����! W??y ??y
M ����! SnC1
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which gives a Poincaré embedding of M with complement W .

The fiberwise suspension SM X of X over M is the double mapping cylinder SM X D

M �0[X � Œ0; 1�[M �1; together with the evident map SM X !M [14, page 609].
Note that M �0 provides a section M ! SM X , and the map X !W induces a map
SM X ! †W given by collapsing each copy of M to a point. Then the homotopy
pushout diagram

SM X ����! †W??y ??y
M ����! SnC2

is a Poincaré embedding of M in SnC2 with complement †W . This is the decom-
pression of M in SnC2 , which is well understood if M is a closed submanifold of
SnC1 , and X is the sphere bundle of the normal bundle. Reversing the roles of M

and †W , we decompress once more to get a Poincaré embedding

S†W SM X ����! †W??y ??y
†M ����! SnC3 :

Set Y D S†W SM X , and note that the maps Y !†M and Y !†W have sections.
The sum of these gives a map †M _†W ! Y which is seen to be .nC1/–connected
by application of the Mayer–Vietoris sequence to the diagram. The relative Hurewicz
theorem shows that Y is obtained from †M _†W by attaching an .nC2/–cell. So
†M _†W D†.M _W / is the spine of Y .

For a harder proof similar to the proof of Theorem A, define Y as the cofiber of the

composite SnC1 D
�! †M ^W

Œy;x�
���! †M _†W (using the S –duality map D of

Lemma 4.1 below), whose Hopf invariant is an S –duality map by Lemma 2.1. Y

is a Poincaré complex by Proposition 2.2. There are obvious maps Y ! †M and
Y !†W , which one can show determines a Poincaré embedding in SnC2 .

4 Proof of Propositions D and C

Lemma 4.1 Let AD .Sp_Sq/[˛DpCq be a three cell complex satisfying Poincaré
duality, where p; q > 1. If A has a Poincaré embedding in SpCqC1 , then there is a
homotopy equivalence A' Sp �Sq .
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Proof Given a codimension one Poincaré embedding of A, its complement has
two components M and W . We have a homotopy pushout and a splitting after one
suspension [20]

A
g

����! W

f

??y ??y
M ����! SpCqC1

†A
†fC†gC†h
���������!

'
†M _†W _SpCqC1;

where hW A! SpCq is the pinch onto the top cell. By the van Kampen theorem, M

and W are 1–connected. We will show that M and W are homotopy equivalent to
the spheres Sp and Sq , and that the map F D f � gW A!M �W is a homotopy
equivalence. Let A0D Sp _Sq . Since A0 is a co-H space, the restriction of F to A0

factors up to homotopy through the wedge by a map F0 D xf CygW A0!M _W .
By the stable splitting, F0 is a homotopy equivalence by the Whitehead theorem.

Assume p ¤ q . Since

ZŠHp.A0/
F�
��!
Š

Hp.M /˚Hp.W /;

one of the summands is 0. Assume Hp.M / Š Z and Hp.W / D 0. By Alexander
duality, Hq.M /D 0 and Hq.W /ŠZ. Since F� is an isomorphism, all other reduced
homology groups of M and W vanish. Thus we have homotopy equivalences M 'Sp

and W ' Sq .

Assume p D q . Now Z˚ZŠHp.A0/ŠHp.M /˚Hp.W /, and all other reduced
homology groups of M and W vanish. By Alexander duality, neither M nor W is
contractible, so we have ZŠHp.M /ŠHp.W /, and again M ' Sp and W ' Sq .

Thus we have shown that F is a homology isomorphism except in degree pCq , where
F is degree one because (see Klein [13, Proposition 2.3] and [20, Section 2]) Alexander
duality is induced by the S –duality map

DW SpCqC1 collapse
����!†A

†�
��!†A^A �!†M ^W ' SpCqC1:

Therefore, composing F with the homotopy equivalences M ' Sp and W ' Sq

gives a homotopy equivalence A! Sq �Sp .

Proof of Proposition D The space A is a Poincaré complex of dimension p C q

since the cup product structure on A is determined by the term Œy;x� appearing in
the attaching map, that is, the cohomology ring of A is just the cohomology ring of
Sp �Sq .
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In order to prove that there does not exist a codimension one Poincaré embedding,
using Lemma 4.1 it will suffice to show that there is no map A!Sq which has degree
one on the q–cell. Assume that such a map exists. By the cofibration sequence

SpCq�1 Œy;x�CyP.˛/
���������! Sp

_Sq
�!A;

there must be a map f W Sp! Sq so the following composite is nullhomotopic:

(10) SpCq�1 Œy;x�CyP.˛/
���������! Sp

_Sq f_1
���! Sq:

This composite is Œ�; f �CP .˛/ 2 �pCq�1.S
q/, by naturality of Whitehead products.

But Œ�; f � is homotopic to the composite

SpCq�1 †q�1f
�����! S2q�1 Œ�;��

��! Sq;

by the Barcus–Barratt theorem [3] and the fact (see Cohen [9]) that at the prime 2,
all higher Whitehead products vanish. Now Œ�; ��W S2q�1 ! Sq is homotopic (see
Whitehead [25]) to the composite P ıE2W S2q�1! Sq . Thus Œ�; f �D P .†qC1f / 2

�pCq�1.S
q/. Since our composite (10) is nullhomotopic, we have P .†qC1f C˛/D

0 2 �pCq�1.S
q/. By the exactness of the EHP sequence, †qC1f C ˛ D H.ˇ/ 2

�pCq�1.S
2qC1/ for some ˇ 2 �pCq�1.S

qC1/. By James’s theorem (see Cohen [9]),
2H.ˇ/D 0, since q is even, so

2˛C 2EqC1f D 0 2 �pCqC1.S
2qC1/:

Multiplying this equation above by 2r�1 gives the contradiction 2r˛ D 0.

Proof of Proposition C Recall that n is an odd integer ¤ 1; 3; 7. Let A be the
cofiber of the map appearing in the statement of Proposition C. Then the top cell
of A falls off after one suspension since the attaching map is a sum of Whitehead
products. Furthermore, A is a 2n–dimensional Poincaré complex since the cup product
structure on A is determined by the term Œy;x� appearing in the attaching map, that is,
H�.A/ŠH�.Sn �Sn/.

Assume A has a Poincaré embedding in S2nC1 . By Lemma 4.1, there is a homotopy
equivalence A' Sn �Sn . The projection of this equivalence onto the first factor is a
map f W A! Sn such that f �.x/ extends to a basis of H n.A/, where x 2H n.Sn/

is a generator. Thus the restriction of f to the n–skeleton A0 is a map of the form
a�_ b�W Sn _Sn! Sn , with a and b relatively prime. By the cofibration sequence
defining A, the composite

S2n�1 Œx;x�CŒy;x�CŒy;y�
������������! Sn

_Sn a�_b�
���! Sn
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is nullhomotopic. By naturality of Whitehead products, this composite is

Œa�; a��C Œb�; a��C Œb�; b��D Œ�; ��a2
C Œ�; ��abC Œ�; ��b2

D Œ�; ��.aC abC b/;

using the left-distributivity of composition. Since n is odd, 2Œ�; ��D 0 (see Cohen [9]),
but since n ¤ 1; 3; 7, the Hopf invariant one theorem (see Adams [1]) implies that
Œ�; ��¤ 0. Hence Œ�; �� has order 2. Thus aCabCb � 0 .mod 2/, so .aC1/.bC1/�

1 .mod 2/. Thus both a and b are even. But a and b are relatively prime, so we have
a contradiction. Hence A does not embed in codimension one.

5 Proof of Theorem E and Corollary F

The cofiber of a map  W Su�1! Sv is called the Moore space M u
 , and the cofiber

Y [g CX of a map gW X!Y will also be written Mg . The generator of �s
7
ŠZ=16 is

� 2 �15.S
8/, and by Toda [22, Proposition 5.15] 2� 2 �s

7
desuspends to the generator

� 0 2 �14.S
7/Š Z=8. Let � W †W !Z belong to the Toda bracket fh;g; f g of the

sequence

W
f
�!X

g
�! Y

h
�!Z:

The map � is defined as a composite

SW
f[
�!Mg

h]

�!Z

defined using nullhomotopies of gf and hg . The diagram

(11)

Mf

j
����! †W

g]

??y ??y�
Y

h
����! Z

is homotopy commutative (see Adams [2, Diagram (5.1)]), where g]W Mf �! Y is
defined using the same nullhomotopy of gf . Suppose the Toda bracket fh;g; f g
contains 0. Then some � D h] ıf[ is nullhomotopic. By diagram (11), the composite

Mf

g]

�! Y
h
�!Z

is nullhomotopic, and so defines a map V D .g]/[W †Mf �!Mh . Thus the composite

†X
†i
�!†Mf

V
�!Mh

j
�!†Y

is homotopic to †g . We now have the following.
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Proof of Lemma 1.2 Toda [22, Cororollary 3.7] shows the Toda bracket f8�;E� 0; 8�g
of the sequence

S8 8�
 � S8 E� 0

 �� S15 8�
 � S15

contains 0. Thus we have a map

M 17
8�

V
�!M 9

8�

so that composite j ıV ıi is homotopic to E2� 0 , which is homotopic to 2� 2�16.S
9/.

The other maps with n> 9 are obtained by suspending V .

Proof of Theorem E For the Sk family, we require only that the Adams self-map is
a K–theory isomorphism [2].

Recall the Toda bracket fh;g; f g of a sequence W
f
�!X

g
�! Y

h
�!Z . Any map

� W †W !Z making diagram (11) homotopy commute must belong to fh;g; f g: we
know some element of the Toda bracket �0 2 fh;g; f g makes diagram (11) homotopy
commute, and by exactness of the cofibration sequence

Mf !†W
†f
��!†X;

we know that � D �0 C p ı†f 2 Œ†W;Z�, for some element p 2 Œ†X;Z�. But
p ı†f 2 Œ†W;Z� belongs to the indeterminacy of fh;g; f g. Hence � 2 fh;g; f g.

By Bott periodicity, �2n.BU/ Š Z and �2n�1.BU/ D 0, for n > 0. The generator
�nW S

2n �! BU is the n–fold exterior power of the bottom generator �1 2 BU , which
comes of course from S2 DCP1 �CP1 D BU.1/� BU .

Given f 2 �2m�1S2k with qf D 0, consider the Toda bracket f�k ; f; q�g � Z of the
sequence

BU
�k
 � S2k f

 � S2n�1 q�
 � S2n�1:

The indeterminacy is q�2n.BU/D qZ� Z, as f has finite order. We often mod out
by the indeterminacy and write f�k ; f; q�g 2 Z=q . We can use these Toda brackets
to establish the order of an element. Suppose, for example, that 16f D 0, and we
show that f�k ; f; 16�g 2 Z=16 has order 16. Then we can show f must have order
16. By a Toda bracket identity, the image of f�k ; f; 16�g 2 Z=16 under the projection
Z=16! Z=2 is 1D f�k ; f 8�; 2�g 2 Z=2. Hence 8f D f 8� must be nonzero.
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By the above, r 2 f�k ; f; qg if and only if the following diagram homotopy commutes:

(12)

M 2n
q�

j
����! S2n

f ]

??y ??yr�n

S2k
�k
����! BU

Adams defined the complex Adams operation ‰2W BU! BU , which defines a ring
homomorphism in zKU .X / D ŒX;BU� satisfying two properties: ‰2.�n/ D 2n�n 2

�2n.BU/, and ‰2.x/D x [ x 2KU.X / .mod 2/, for any class x 2KU.X /. Then
.‰2� 2k/�k D 0, and we have the Toda bracket identity

(13) .‰2� 2k/f�k ; f; qg D f.‰2� 2k/; �k ; f gq 2 �2nBU Š Z:

The Toda bracket f.‰2� 2k/; �k ; f g is essentially Adams’s complex e–invariant, and
it has indeterminacy 2k times an odd number (2n�k � 1, in fact). It easily follows
from Adams [2], or the properties above, that f.‰2� 2k/; �k ; �g is 2k�2 times an odd
number, for k � 2, and thatf.‰2�2k/; �k ; �g is 2k�4 times an odd number, for k � 4.
Then it follows from (13) that

Lemma 5.1 The Toda bracket f�k ; �; 16g 2 Z=16 of the sequence

BU
�k
 � S2k �

 � S2kC7 16
 � S2kC7 has order 16.

The Toda bracket f�k ; �; 16g 2 Z=8 of the sequence

BU
�k
 � S2k �

 � S2kC3 8
 � S2kC3 has order 4.

Proof Choose r�kC4 2 f�k ; �; 16g. Then for a, b odd,

2kar�kC4 D .‰2� 2k/r�kC4 D f.‰2� 2k/; �k ; �g16D 2k�4b16�kC4

modulo the indeterminacy 2kC4 , so r is odd. � is handled similarly.

Thus the composite (recall that j ıW D �] )

M 2kC8
16�

W
�!M 2k

16�

j
�! S2k �k

�! BU

is homotopic to

M 2kC8
16�

j
�! S2kC8

r�kC4

����! BU;
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where r is odd. This is what is meant by saying that W is a (2–local) K–theory
isomorphism. Now suspend Sk 7 times:

S8kC7 i
�!M 8kC8

16�

W ı.k�2/

������!M 24
16�

�]

�! S16:

By induction, the composite

M 8kC8
16�

W ı.k�2/

������!M 24
16�

�]

�! S16 �8
�! BU

is homotopic to an odd multiple of the generator

M 8kC8
16�

j
�! S8kC8

�4kCk

����! BU:

By (12), f�8;Sk ; 16�g 2 Z=16 is odd, and hence of order 16. Thus f�8;Sk8�; 2�g D

1 2 Z=2, and we have proved that Sk has order 16.

The case of Nk is similar, but harder. By Lemma 5.1 and (12), the composite

M 12
8�

�]

�! S8 �4
�! BU

is homotopic to twice an odd multiple of

M 12
8�

j
�! S12 �6

�! BU:

Suspend Nk 3 times:

S8kC3 i
�!M 8kC4

8�

V ı.k�1/

�����!M 12
8�

�]

�! S8:

The composite

M 8kC4
8�

V ı.k�1/

�����!M 12
8�

�]

�! S8 �4
�! BU

is homotopic to twice an odd multiple of

M 8kC4
8�

j
�! S8kC4

�4kC2

����! BU

and we conclude that Nk has order at least 4, which is good enough for our Poincaré
embedding results.

Remark 5.2 Although the classes Nk and Sk were known to Mahowald, no proof of
Theorem E is in the literature. See the appendix of Čadek and Crabb [7] for related
computations.
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Proof of Corollary F For the Poincaré complexes defined using Nk , we consider the
image of suspension homomorphism EW �p.S

2/! �pC1.S
3/. The composite

�p.S
3/

��
�!
Š
�p.S

2/
E
�! �pC1.S

3/

coincides with x 7!E��Ex and E� has order two. Hence, the image of EW �p.S
2/!

�pC1.S
3/ is killed by 2. By Proposition D, this gives the result, since Nk has order 8.

(Alternatively, we could have used Selick [21], since S3 has exponent 4.)

In the case of the Poincaré complexes defined using Sk , we need to consider the image
EW �p.S

4/! �pC1.S
5/. By Selick’s theorem, S5 has exponent 8, and therefore the

image of E is killed by 8. Since Sk has order 16, and the conclusion follows once
again by application of Proposition D.

6 Periodicity in high dimensional knot theory

We show how Theorem A gives a homotopy-theoretic periodicity operator from n–
knots to .nC4/–knots, inducing the four-fold periodicity in the knot cobordism groups
(see Levine [17]). Knot periodicity has been geometrically described by Bredon [5],
Cappell and Shaneson [8] and Kauffman [12].

Fix n� 1. By a (smooth) Seifert surface we mean an codimension one compact smooth
submanifold V nC1 � SnC2 in which @V WD†n is a homotopy n–sphere.

Two Seifert surfaces Vi � SnC2 with i D 1; 2 are said to be equivalent if there is a
diffeomorphism of SnC2 which transfers V1 to V2 .

Remark 6.1 If †n�SnC2 is a codimension two knot, then it has a Seifert surface. If
the fundamental group of the complement of the knot is infinite cyclic, then there exists
a Seifert surface for it which is simply connected (see Levine [16]). Conversely, if there
is a 1–connected Seifert surface, then the complement has infinite cyclic fundamental
group. One says in this instance that the knot is 1–simple.

Homotopy Seifert surfaces

Fix n� 2. A homotopy Seifert surface of dimension nC 1 is a diagram of spaces

Sn ˛
// K p�

pC +3 C

in which

� ˛ is an inclusion making .K;Sn/ into a Poincaré pair.
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� K and C are 1–connected and have the homotopy type of finite CW complexes;

� p� ı˛ D pC ı˛ ;

� The homomorphism .pC/�� .p�/�W H�.K/!H�.C / is an isomorphism in
positive degrees, where H� denotes singular homology.

(Compare Farber [10] and the paper by the author [19].) Denote these data by .˛;p˙/.
An equivalence .˛;p˙/

�
�! .˛0;p0

˙
/ (with p0

˙
W K0! C 0 ) consists homotopy equiv-

alences aW K ! K0 and bW C ! C 0 such that q˙ ı a D b ı p˙ and ˛0 D a ı ˛ .
Two homotopy Seifert surfaces will be called equivalent if there is a finite chain of
equivalences connecting them.

Lemma 6.2 If .˛;p˙/ is a homotopy Seifert Surface, then †˛ is nullhomotopic.
Furthermore, the homotopy class of the nullhomotopy is preferred.

Proof The map †pC�†p�W †K!†C is a homology isomorphism and therefore
a homotopy equivalence by the Whitehead theorem. Call this map h. Then hı†˛ has
a preferred nullhomotopy. The nullhomotopy for †˛ is now obtained by choosing a
homotopy inverse for h.

The relation between smooth Seifert and homotopy surfaces

Let V nC1 � SnC2 be a simply connected Seifert surface with @V D†. We will show
how to construct an associated homotopy Seifert surface.

Fix an orientation preserving †ŠSn homeomorphism (here we are using the Poincaré
conjecture). Choose a compact tubular neighborhood U of V and define C to be the
complement of the interior of U . Then @U � C . Identify U with V �I . Then @U is
identified with V � 0[†n � I [V � 1.

Let K� WDV �0[†n�Œ0; 1=2� and KCDV �1[†n�Œ1=2; 1�. Then K� and KC are
homeomorphic by a preferred homeomorphism hW K�!KC . Set K WDK� and let
˛W Sn!K be the identification Sn'†�1=2 followed by the inclusion †�1=2�K� .
Define p�W K! C to be the inclusion, and pCW K! C to be hW K DK�!KC
followed by the inclusion KC � C . By construction p˙ coequalize ˛ and .K;Sn/ is
a Poincaré pair. The homomorphism .pC/�� .p�/� is seen to be an isomorphism in
positive degrees using the pushout diagram

@.V � I/ ����! C??y ??y
V � I ����! SnC2
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as follows: let D0 be the result of removing the top cell of @.V � I/. Then D0 is
identified with K _K up to homotopy. With respect to this identification we have a
homotopy pushout

K _K ����! C??y ??y
K ����! RnC2

where K _K ! K is the fold map and K _K ! C is the map .p�;pC/. The
conclusion now follows from the Mayer–Vietoris sequence for the pushout.

Theorem 6.3 Assume n� 5. Then the above induces a bijection between the set of
equivalence classes of 1–connected smooth Seifert surfaces in SnC2 and the set of
equivalence classes of homotopy Seifert surfaces of dimension nC 1.

Proof (Existence) We need to show that the every homotopy Seifert surface arises
up to equivalence from a smooth one. Let .˛;p˙/ be a homotopy Seifert surface,
with ˛W Sn!K and p˙W K! C . Let D.K/ denote the double mapping cylinder
K � 0[Sn� I [K � 1, and let pW D.K/! C be the map defined by p� on K � 0,
pC on K � 1 and the constant homotopy of the map p� ı˛ on Sn � I . Without loss
in generality, we can assume pW D.K/! C is a cofibration. Let

N D .K � I/[D.K / C :

Then N has an orientation preserving homotopy equivalence to SnC2 . Furthermore,
we have a Poincaré triad .N IK � I;C ID.K//.

The scheme will be to use the diagram of smooth structure sets

S.N IK � I;C ID.K// S.N /Š S.SnC2/

S.K;Sn/ S.K � I;D.K//:

//
ˆ1

Š

��
ˆ2

//Š

�I

The h or s decorations on the structure sets are unnecessary since we are in the simply
connected case. Here, for an n–dimensional Poincaré pair .X; @X / of 1–connected
complexes, S.X; @X / denotes the set generated by homotopy equivalences of pairs
.M; @M /! .X; @X / subject to the relation of h–cobordism. Similarly, S.N IK �
I;C ID.K// is the smooth structure set on the Poincaré triad .N IK � I;C ID.K//.
The function labeled ˆi are forgetful maps, and ˆ1 is an isomorphism by codimension
one splitting (see Wall [24, Theorem 12.1]). The function labeled “�I ” is given by
taking cartesian product with the unit interval. It too is an isomorphism by the � –�
theorem [24, Theorem 3.3].
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We proceed as follows. Choose the identity structure on SnC2 and use the top isomor-
phism of the displayed diagram to give a smooth triad structure

.SnC2
IU;C 0I @U /

�
�! .N IK � I;C ID.K//

Then use the bottom isomorphism of the diagram to write .U; @U / as .V �I; @.V �I//

up to diffeomorphism where † WD @V is a homotopy n–sphere. Then we have a
smooth triad .SnC2IV � I;C 0; @.V � I// yielding a smooth 1–connected Seifert
surface V � 1=2� SnC2 . It is clear that the homotopy Seifert surface associated with
the smooth one is equivalent to the one we started with.

(Uniqueness) The proof will also appeal to the diagram appearing the proof of
existence. Let .˛;p˙/ be a homotopy Seifert surface as above and suppose that
Vi � SnC2 are 1–connected Seifert surfaces, i D 0; 1, whose associated homotopy
Seifert surfaces admit equivalences to .˛;p˙/. The equivalences yield a pair of two
smooth triad structures

.SnC2
IVi � I;C 0i ; @.Vi � I//

�
�! .N IK � I;C ID.K// ;

and by using the injectivity of ˆ1 , we infer that the two smooth triad structures are
equivalent. We infer (by straightening h–cobordisms) that there is a diffeomorphism

 W .SnC2
IV0 � I;C 00; @.V0 � I//Š .SnC2

IV1 � I;C 01; @.V1 � I// :

Using the injectivity of the function �I , it follows that the restricted diffeomorphism
 W V0 � I ! V1 � I is pseudoisotopic to one of the form � � id, where �W V0! V1

is a diffeomorphism. Choose such a pseudoisotopy and let

H W @.V0 � I/� Œ0; 1�
Š
�! @.V1 � I/� Œ0; 1�

be its restriction to the boundary. Choose collar neighborhoods Ti Š @.Vi � I/� Œ0; 1�

of @.Vi � I/ � Vi � I . Then H defines a diffeomorphism T0 Š T1 which extends
to a diffeomorphism H 0W V0 � I ! V1 � I by taking � � id on the complement of
T0 . Extend H 0 to a diffeomorphism of SnC2 using  W C 0

0
! C 0

1
. The constructed

diffeomorphism of SnC2 takes V0� 1 to V1� 1, so we get an equivalence of between
the smooth Seifert surfaces.

Knot periodicity

We define an operator which associates to a homotopy Seifert surface in dimension
nC 1 another one of dimension nC 5.

Let .˛;p˙/ be a homotopy Seifert Surface of dimension nC 1, where ˛W Sn!K

and p˙W K! C . Theorem A produces an attaching map ˇW SnC4! †2K whose
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cofiber satisfies Poincaré duality. The proof shows that †2p� ı ˇ and †2pC ı ˇ

are homotopic via a preferred homotopy f W Sn � I ! C (the verification of this is
straightforward but tedious; we therefore omit it). The maps ˇW SnC4! †2K and
†2p˙W †

2K!†2C are close to defining a homotopy Seifert surface. However, there
are two defects: (1) p˙ is only known to coequalize ˇ up to homotopy, and (2) ˇ is
not a cofibration. We will show how to fix these problems.

Factor the map ˇ by a cofibration ˇ0W Sn!Z followed by a homotopy equivalence
hW Z ! †2K . Let p0

˙
W Z ! C be †2p˙ ı h. Then f defines a homotopy from

p0� ıˇ
0 to p0C ıˇ

0 . By the homotopy extension property, we obtain a map q�W Z!C

such that q� ı ˇ
0 D .†2pC/ ı ˇ

0 . Set qC D †
2pC . Then .ˇ0; q˙/ is a homotopy

Seifert surface.

We now sketch a proof that the assignment .˛;p˙/ 7! .ˇ0; q˙/ yields four-fold period-
icity in knot cobordism. Although the verification is somewhat tedious, the basic idea is
that the intersection pairing of X DK[˛DnC1 together with the homomorphism that
pC induces on homology completely determines the smooth knot cobordism class of
.˛;p˙/ (here we are implicitly using Theorem 6.3 to identify .˛;p˙/ with a smooth
Seifert surface to make sense of the smooth knot cobordism class of the homotopy
Seifert surface). Then the result is established once we show that the intersection pairing
of Y WD .†2K/[ˇDnC5 has the same intersection pairing as X up to regrading (since
q˙ and p˙ induce the same homomorphisms on homology). That is idea. Some
details follow.

Note that the basepoint for Sn gives basepoints for K and C . The maps D.K/!

K � I !K and D.K/! C combine to a give a map D.K/!K �C , which we
follow up with the quotient map K �C !K ^C to obtain a map D.K/!K ^C .
The commutative diagram

C  ���� D.K/ ����! K??y ??y ??y
�  ���� K ^C ����! �

induces a map of homotopy pushouts d W SnC2 ! †K ^ C which is an S –duality
map, which in turn yields the Alexander duality isomorphism H�.K/ŠH nC1��.C /

in positive degrees. Then the homology class d�.ŒS
nC1�/ 2HnC1.K^C / determines

a class d] 2H nC1.K ^C / which are Alexander dual via the duality map d ^ d . Let

ıW Hj .K/˝HnC1�j .C /! Z

be given by ı.a˝ b/D d].a� b/. Then ı is the Alexander pairing.
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Definition 6.4 The Seifert pairing

ˆW Hj .K/˝HnC1�j .K/! Z

of .˛;p˙/ is given by ˆ.x˝y/D ı..pC/�.x/˝y//.

To establish periodicity, it will be enough by Levine [17] to show that that the Seifert
pairings for .˛;p˙/ and .ˇ0; q˙/ coincide. To keep the discussion simple, we will
only verify this when K is a suspension (this is sufficient because Levine showed that
every smooth n–knot is cobordant to one having a Seifert surface which is b.nC1/=2c–
connected (see Levine [16]), and such Seifert surfaces desuspend by the Freudenthal
theorem). We may therefore assume that K is b.nC 1/=2c–connected, K is a sus-
pension †L, and C is also identified with †L using pC�p�W †L! C . Then map
˛W Sn!†L factors as

Sn y̨
�!†L^L

P
�!†L

where P is the Whitehead product. Furthermore, the composite

SnC1 † y̨
��!†L^†L

1C�†L
�����!†L^†L

is an S –duality map. Likewise, the proof of Theorem A shows that the attaching map
ˇW SnC4!†2L is given by

SnC4 †4 y̨
���!†.†2L/^ .†2L/

P
�!†.†2L/:

It is clear from this description that the intersection pairings for X nC1 DK[˛ DnC1

and Y D†2K[ˇDnC5 coincide after regrading, since the cup product structure of X

is completely determined by the homomorphism induced by �W D .1C�†L/ı.†y̨/ on
homology. More precisely, by Boardman and Steer [4], there is a homotopy commutative
diagram

X
�

����! X ^X??y x??
SnC1

�
����! †L^†L;

where � is the diagonal (inducing the cup product), the left vertical map is the pinch
map onto the top cell, and the right vertical map is the inclusion.

Notice the inclusion K!X induces an isomorphism in homology in degrees ¤ nC1.
Furthermore there is a map †X !†C which is a homology isomorphism in degrees
¤ nC 1. The latter map is defined as follows: the Poincaré embedding gives an
equivalence between †X with the cofiber SnC2[Cone.C /; compose this equivalence
with the connecting map SnC2[Cone.C /!†C appearing in Barratt–Puppe sequence.
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(In terms of the splitting, †X '†K_SnC2 , the restriction of the map †X !†C to
†K is identified with the homotopy equivalence †pC�†p� , whereas the restriction
to the SnC2 summand is trivial.)

Thus the intersection pairing of X can be rewritten in positive degrees as

Hj .X /˝HnC1�j .X /ŠHj .K/˝HnC1�j .C /! Z ;

where the second homomorphism is the Alexander pairing ı . Thus, the intersection
pairing of X and the Alexander pairing of the Poincaré embedding associated with
.˛;p˙/ coincide in positive degrees. A similar statement holds for Y .

Since the intersection pairings for X and Y coincide (after regrading), the Alexander
pairings arising from .˛;p˙/ and .ˇ0; q˙/ also coincide. Since q˙ coincides with
p˙ on homology, the Seifert pairings of .˛;p˙/ and .ˇ0; q˙/ coincide.

7 The period of a finite complex

Theorem A is not the most general result. If X DRP3 , then the spine of X is RP2 ,
and the top cell of X splits off after two suspensions but not one. On the other hand,
†2RP2 is the spine of V2.R

5/, the Stiefel manifold of 2–frames in R5 .

If X n is a Poincaré complex with spine K such that the top cell of X splits off after
one suspension, then Theorem A can be iterated to produce a sequence of Poincaré
complexes Yj of dimension nC 4j having spine †2j K . In this way, we obtain a
periodic family of Poincaré complexes. This motivates

Definition 7.1 A finite complex K is said to be j –periodic for some positive integer
j if there is an integer c and a sequence of Poincaré complexes X1;X2; : : : such that
the spine of Xi is †cCij K . If K is j –periodic for some j , we say that K is periodic.
If K is not periodic, we declare it to be aperiodic.

The period of K , denoted period.K/, is the smallest positive integer r such that K is
r –periodic. If there is no such r , then we write period.K/D1.

(1) If K is periodic, then K is self Spanier–Whitehead dual. This is a direct
consequence of Proposition 2.2 below.

(2) period.Sk/ D1, since there are only a finite number of Hopf invariant one
elements.
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(3) period.RP2/� 2, because the spine of the Stiefel manifold V2.R
3C2i/ (consist-

ing of two-frames in R3C2i ) is †2iRP2 . Furthermore, †RP2 is the spine of
SU.3/=SO.3/, but Mahowald has pointed out to us that this is the only odd sus-
pension of RP2 which is the spine of a Poincaré complex. So, period.RP2/D 2.

(4) If K is the spine of a Poincaré complex which embeds in codimension one, then
Theorem B shows period.K/D 1.

(5) If K is the spine of a Poincaré complex whose top cell splits off after a single
suspension, then period.K/� 2, by Theorem A.

(6) Let K be the spine of a 4k –dimensional Poincaré complex X , such that the
Euler characteristic �.K/ is even. Then †K cannot be the spine of a Poincaré
complex of dimension 4kC 2 by Example 1.1. Hence, period.K/ > 1.

(7) If K D spine.X / and LD spine.Y / for Poincaré complexes X n and Y n , then
K _L is periodic and period.K _L/ � lcm.period.K/; period.L// : To see
this, set r D period.K/ and set sD period.L/. Let ` denote their least common
multiple. Define Zi WDX.i`/=r #Y.i`/=s , where Xi has spine †ir K and Yi has
spine †isK . Then Zi has spine †i`.K _L/. Equality generally fails: for
example, period.Sp/D1D period.Sq/, but period.Sp _Sq/D 1.

Our notion of periodicity is linear, in that the gaps between the number of suspensions
of K appearing in the definition is constant. The following, due to Mahowald (pri-
vate communication), is an example of a 2–cell complex which exhibits exponential
periodicity, in the sense that the gaps grow at an exponential rate.

Theorem (Mahowald) Let K DHP2 be the homotopy cofiber of the �W S7! S4 .
Let ı.i/D 2iC2 . Then †ı.i/K is a spine of a Poincaré complex for i > 0. Furthermore,
one cannot fill in the gaps: if †j K is the spine of a Poincaré complex, for some j > 0,
then j D 2iC2 for some i .

We ask a final question: When is a finite complex periodic?
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