On the mapping space homotopy groups and the free loop space homology groups

Takahito Naito

Abstract

Let X be a Poincaré duality space, Y a space and $f: X \rightarrow Y$ a based map. We show that the rational homotopy group of the connected component of the space of maps from X to Y containing f is contained in the rational homology group of a space $L_{f} Y$ which is the pullback of f and the evaluation map from the free loop space $L Y$ to the space Y. As an application of the result, when X is a closed oriented manifold, we give a condition of a noncommutativity for the rational loop homology algebra $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ defined by Gruher and Salvatore which is the extension of the Chas-Sullivan loop homology algebra.

55P35, 55P50; 55P62

1 Introduction

We assume that all topological spaces in this paper have a base point. Let M be a simply connected d-dimensional closed oriented manifold and $L M$ the free loop space of M. We denote by aut $_{1} M$ the path component of the monoid of the self-homotopy equivalences of M containing the identity map.

In [8], Félix and Thomas constructed the injective map from the rational homotopy group of aut ${ }_{1} M$ to the rational homology group of $L M$:

$$
\begin{equation*}
\pi_{*}\left(\operatorname{aut}_{1} M\right) \otimes \mathbb{Q} \longrightarrow H_{*-1+d}(L M ; \mathbb{Q}) \tag{1-1}
\end{equation*}
$$

Now recall that Jones [13] proved that $H^{*}(L M ; \mathbf{k})$ is isomorphic as a vector space to the Hochschild homology of the singular cochain algebra $S^{*}(M ; \mathbf{k})$ of M over a field \mathbf{k} :

$$
H^{*}(L M ; \mathbf{k}) \cong \mathrm{HH}_{*}\left(S^{*}(M ; \mathbf{k}) ; S^{*}(M ; \mathbf{k})\right)
$$

and the dual of the above isomorphism and the Poincare duality of M yield an isomorphism of graded vector spaces $H_{*+d}(L M ; \mathbf{k}) \cong \mathrm{HH}^{-*}\left(S^{*}(M ; \mathbf{k}) ; S^{*}(M ; \mathbf{k})\right)$. We now note that the cochain algebra $S^{*}(M ; \mathbb{Q})$ over \mathbb{Q} is weakly equivalent to a free commutative differential graded algebra over $\mathbb{Q},(\Lambda V, d)$, called a Sullivan model for M; see the end of Section 5, and so $H_{*+d}(L M ; \mathbb{Q}) \cong \operatorname{HH}^{-*}(\Lambda V ; \Lambda V)$.

On the other hand, Block and Lazarev [1] and Lupton and Smith [14] constructed an isomorphism from the n-th rational homotopy groups of aut ${ }_{1} M$ to the $(-n)-$ th homology of the differential graded module of derivations of ΛV :

$$
\pi_{n}\left(\operatorname{aut}_{1} M\right) \otimes \mathbb{Q} \stackrel{\cong}{\cong} H^{-n}\left(\operatorname{Der}^{*}(\Lambda V, \Lambda V)\right)
$$

Also, we see that there is a map $J_{1}^{*}: H^{*}\left(\operatorname{Der}^{*}(\Lambda V, \Lambda V)\right) \rightarrow \mathrm{HH}^{*+1}(\Lambda V ; \Lambda V)$; see Section 5 for a proper definition. The result of Félix and Thomas [8] also shows that a topological meaning of the map J_{1}^{*} is the map (1-1). That is, we get the following commutative square:

The objective of this paper is to give a generalization of their works such as that mentioned below.

Let X and Y be simply connected spaces with homologies over \mathbf{k} of finite type and $f_{1}, f_{2}: X \rightarrow Y$ based maps. Here, the complex $S^{*}(X ; \mathbf{k})$ is regarded as a $S^{*}(Y ; \mathbf{k})-$ bimodule; that is a right and left $S^{*}(Y ; \mathbf{k})$-structure is via f_{1}^{*} and f_{2}^{*}, respectively. Denote by $P\left(Y ; f_{1}, f_{2}\right)$ a pullback of the diagram

where $\left(p_{0}, p_{1}\right)$ is the map defined by $\left(p_{0}, p_{1}\right)(\varphi)=(\varphi(0), \varphi(1))$. Our first result is described as follows.

Theorem 1.1 There is an isomorphism of \mathbf{k}-vector spaces

$$
\Theta_{X}: \mathrm{HH}_{*}\left(S^{*}(Y ; \mathbf{k}) ; S^{*}(X ; \mathbf{k})\right) \xrightarrow{\cong} H^{*}\left(P\left(Y ; f_{1}, f_{2}\right) ; \mathbf{k}\right)
$$

In the proof, we use a cubical singular cochain complex instead of singular cochain algebra. In [4], Chen proved Theorem 1.1 in the case in which $\mathbf{k}=\mathbb{R}$. Our proof of the theorem is using ideas of Chen. As the relevant result of Theorem 1.1, we refer to the paper of Hess, Parent and Scott [12, Theorem 3.1]. They proved an integral version of the theorem, which also takes into account comultiplicative structure, that is,

Theorem 1.1 is a weaker assertion than their results. However, the important thing is that the isomorphism of Theorem 1.1 is given by the map Θ_{X} described in Section 4.

Assume that X is a \mathbf{k}-Poincaré duality space of formal dimension d; see Section 5 . Let $\operatorname{map}(X, Y ; f)$ be the path component of the space of free maps from X to Y containing the based map $f: X \rightarrow Y$ and denote by $L_{f} Y$ the space $P(Y ; f, f)$, especially. We consider the natural map

$$
g: \Omega \operatorname{map}(X, Y ; f) \times X \longrightarrow L_{f} Y, \quad g(\gamma, x)(t)=\gamma(t)(x)
$$

and the composite map for $n \geq 2$

$$
\begin{aligned}
& \Gamma_{1}: \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k} \cong \\
& \xrightarrow{h} \pi_{n-1}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbf{k} \\
& H_{n-1}(\Omega \operatorname{map}(X, Y ; f) ; \mathbf{k}) \xrightarrow{\Gamma} H_{n+d-1}\left(L_{f} Y ; \mathbf{k}\right) .
\end{aligned}
$$

Here ΩZ is the based loop space of Z, h is the Hurewicz map, Γ is the map defined by $\Gamma(a)=H(g)(a \otimes[X])$ and $[X] \in S_{d}(X ; \mathbf{k})$ the fundamental class of X.

Let $\rho:(T V, d) \rightarrow S^{*}(Y ; \mathbf{k})$ be a minimal free associative model for $S^{*}(Y ; \mathbf{k})$ (see Halperin and Lemaire [11]) and $\operatorname{Der}^{*}\left(T V, S^{*}(X ; \mathbf{k}) ; f^{*} \circ \rho\right)$ the complex of $\left(f^{*} \circ \rho\right)-$ derivations; see Section 5 for a proper definition. The next theorem is our main result of this paper.

Theorem 1.2 If X is a \mathbf{k}-Poincaré duality space of formal dimension d, then, for any $n \geq 2$, there exists an isomorphism of \mathbf{k}-vector spaces Θ_{X}^{*} from $H_{*+d}\left(L_{f} Y ; \mathbf{k}\right)$ to $\mathrm{HH}^{*}\left(T V ; S^{*}(X ; \mathbf{k})\right)$ and a \mathbf{k}-linear map Θ_{1} from $\pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k}$ to $H^{-n}\left(\operatorname{Der}^{*}\left(T V, S^{*}(X ; \mathbf{k}) ; f^{*} \circ \rho\right)\right)$ such that the following square is commutative:

If $\mathbf{k}=\mathbb{Q}, X=Y$ and f is the identity map, then the diagram in Theorem 1.2 coincides with the diagram (1-2); see the proof of Corollary 1.3. Thus Theorem 1.2 is regarded as a generalization of [8]. We here note that, in general, the map Θ_{1} in Theorem 1.2 is not isomorphism. In the last paragraph, we use Theorem 1.2 to deduce the following corollary.

Corollary 1.3 If \mathbf{k} is \mathbb{Q}, then the map Γ_{1} is injective.

In [3], Chas and Sullivan constructed a product on $\mathbf{H}_{*}(L M):=H_{*+d}(L M)$ called the loop product and $\mathbf{H}_{*}(L M)$ is a commutative graded algebra. By Gruher and Salvatore [10], when X is a simply connected d-dimensional closed oriented manifold, we see that $\mathbf{H}_{*}\left(L_{f} Y\right)$ also has a graded algebra structure similar to the construction of loop products. As an application of the main result, we give a condition of a noncommutativity for $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ in rational cases. For details see Section 6.

The organization of this paper is as follows. In Section 2, we recall the Hochschild homology and cohomology. Section 3 gives a fundamental definition and facts on cubical singular chain complexes. Section 4 concentrates on the proof of Theorem 1.1. In Section 5, we prove the main result. Moreover, fundamental facts on rational homotopy theory and a proof of Corollary 1.3 are presented. Noncommutativity for $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ is described in Section 6.

2 Hochschild homology and cohomology

We begin with the definition of the Hochschild chain complex. Let (A, d) be a differential graded algebra over a field \mathbf{k} with augmentation $\varepsilon: A \rightarrow \mathbf{k}$ and $\bar{A}=\operatorname{Ker} \varepsilon$ an augmentation ideal of A. Denote by $s \bar{A}$ the suspension of \bar{A}, that is $(s \bar{A})^{n}=\bar{A}^{n+1}$ and $T(s \bar{A})$ the tensor algebra on $s \bar{A}$. The two-sided normalized bar construction is the complex

$$
\overline{\mathbf{B}}(A ; A ; A)=A \otimes T(s \bar{A}) \otimes A
$$

with the differential $d_{\overline{\mathbf{B}}}=d_{1}+d_{2}$ defined by

$$
\begin{array}{r}
\begin{array}{r}
d_{1}\left(a\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right] b\right)=d(a)\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right] b-\sum_{i=1}^{k} \\
(
\end{array}(-1)^{\varepsilon_{i}} a\left[a_{1}\left|a_{2}\right| \cdots\left|d\left(a_{i}\right)\right| \cdots \mid a_{k}\right] b \\
\\
+(-1)^{\varepsilon_{k+1}} a\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right] d(b), \\
d_{2}\left(a\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right] b\right)=(-1)^{|a|} a a_{1}\left[a_{2}|\cdots| a_{k}\right] b+\sum_{i=2}^{k}(-1)^{\varepsilon_{i}} a\left[a_{1}|\cdots| a_{i-1} a_{i}|\cdots| a_{k}\right] b \\
-(-1)^{\varepsilon_{k}} a\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k-1}\right] a_{k} b .
\end{array}
$$

Here $\varepsilon_{i}=|a|+\sum_{j<i}\left|s a_{j}\right|$ and an element $a \otimes\left(s a_{1} \otimes s a_{2} \otimes \cdots \otimes s a_{k}\right) \otimes b$ in $\overline{\mathbf{B}}(A ; A ; A)$ is denoted by $a\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right] b$. We denote $\overline{\mathbf{B}}_{n}(A ; A ; A)$ by $A \otimes(s \bar{A})^{\otimes n} \otimes A$ for $n \geq 0$.

Let $A^{\text {op }}$ be the opposite graded algebra of A and $A^{e}=A \otimes A^{\text {op }}$. Recall that any A-bimodule can be considered as a left (or right) A^{e}-module.

Lemma 2.1 [5, Lemma 4.3] The left A^{e}-module map

$$
\varepsilon_{A}: \overline{\mathbf{B}}(A ; A ; A) \rightarrow A
$$

defined by $\varepsilon_{A}([])=1$ and $\varepsilon_{A}\left(\left[a_{1}\left|a_{2}\right| \cdots \mid a_{k}\right]\right)=0$ for $k>0$ is a semifree resolution of A as a left A^{e}-module.

Let $\left(M, d_{M}\right)$ be a differential graded A-bimodule, that is also a right A^{e}-module. The Hochschild chain complex of A with coefficient in M is the complex

$$
C_{*}(A ; M)=\left(M \otimes_{A^{e}} \overline{\mathbf{B}}(A ; A ; A), D=d_{M} \otimes 1+1 \otimes d_{\overline{\mathbf{B}}}\right)
$$

The homology of $C_{*}(A ; M)$ is denoted by $\mathrm{HH}_{*}(A ; M)$ called the Hochschild homology. Similarly, the Hochschild cochain complex of A with coefficient in M is the complex

$$
C^{*}(A ; M)=\left(\operatorname{Hom}_{A^{e}}(\overline{\mathbf{B}}(A ; A ; A), M), D^{\prime}\right)
$$

where $D^{\prime}(\varphi)=d_{M} \circ \varphi-(-1)^{|\varphi|} \varphi \circ d_{\overline{\mathbf{B}}}$ for $\varphi \in \operatorname{Hom}_{A^{e}}(\overline{\mathbf{B}}(A ; A ; A), M)$ and the Hochschild cohomology is the homology of $C^{*}(A ; M)$, written by $\operatorname{HH}^{*}(A ; M)$.

3 Cubical singular chain complex

Let $I^{n}=[0,1]^{n}$ be the n times product of the closed unit interval, $[0,1]$. An $n-c u b e$ in a topological space Z is a continuous map $I^{n} \rightarrow Z$. An n-cube $\sigma: I^{n} \rightarrow Z$ is degenerate if there exist a integer $i, 1 \leq i \leq n$, and an ($n-1$)-cube $\sigma^{\prime}: I^{n-1} \rightarrow Z$ such that $\sigma\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\sigma^{\prime}\left(t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{n}\right)$ for any $\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in I^{n}$. Note that all 0 -cube are nondegenerate. We denote by $C_{n}(Z ; \mathbf{k})$ the free \mathbf{k}-module generated by the set of all nondegenerate n-cubes in Z. We define the map

$$
\lambda_{i}^{\varepsilon}: I^{n-1} \longrightarrow I^{n} ;\left(t_{1}, t_{2}, \ldots, t_{n-1}\right) \longmapsto\left(t_{1}, \ldots, t_{i-1}, \varepsilon, t_{i}, \ldots, t_{n-1}\right)
$$

for $\varepsilon=0,1$ and $1 \leq i \leq n$. Let $\partial=\sum_{i=1}^{n}\left(\lambda_{i}^{0 *}-\lambda_{i}^{1 *}\right): C_{n}(Z ; \mathbf{k}) \rightarrow C_{n-1}(Z ; \mathbf{k})$. Then ∂ is a well-defined differential of $C_{*}(Z ; \mathbf{k})$ (see Massey [15, page 13]) and the chain complex $\left(C_{*}(Z ; \mathbf{k}), \partial\right)$ is called the cubical singular chain complex of Z. The cubical singular cochain complex of Z over \mathbf{k} is the complex $C^{n}(Z ; \mathbf{k})=$ $\operatorname{Hom}_{\mathbf{k}}^{-n}\left(C_{*}(Z), \mathbf{k}\right)$. The differential $d: C^{n-1}(Z ; \mathbf{k}) \rightarrow C^{n}(Z ; \mathbf{k})$ is defined by $d(\varphi)=$ $\varphi \partial$ for $\varphi \in C^{n-1}(Z ; \mathbf{k})$.

Remark 3.1 We see that the cubical singular chain complex $C_{*}(Z ; \mathbf{k})$ is quasiisomorphic to the singular chain complex $S_{*}(Z ; \mathbf{k})$ by the method of acyclic models of Selick [18, Theorem 5.2.3'].

The Alexander-Whitney map and the Eilenberg-Zilber map are also defined in cubical singular chain complexes [15, pages 133, 137]. The Eilenberg-Zilber map

$$
\text { EZ: } C_{n}\left(Z_{1} ; \mathbf{k}\right) \otimes C_{m}\left(Z_{2} ; \mathbf{k}\right) \longrightarrow C_{n+m}\left(Z_{1} \times Z_{2} ; \mathbf{k}\right)
$$

is defined by $\operatorname{EZ}(\varphi \otimes \psi)=\varphi \times \psi$ where φ (resp. ψ) is an n (resp. m)-cube. The Alexander-Whitney map is defined as follows. Let J be any subset of $\{1,2, \ldots, n+m\}$ and J^{c} be the complementary subset of J. If $J=\left\{j_{1}, j_{2}, \ldots, j_{l}\right\}$, then denote $\lambda_{J}^{\varepsilon}=\lambda_{j_{1}}^{\varepsilon} \lambda_{j_{2}}^{\varepsilon} \cdots \lambda_{j_{l}}^{\varepsilon}$. For any $(n+m)$-cube $\sigma: I^{n+m} \rightarrow Z_{1} \times Z_{2}$, we define a map AW: $C_{n+m}\left(Z_{1} \times Z_{2} ; \mathbf{k}\right) \rightarrow\left(C_{*}\left(Z_{1} ; \mathbf{k}\right) \otimes C_{*}\left(Z_{2} ; \mathbf{k}\right)\right)_{n+m}$ by

$$
\operatorname{AW}(\sigma)=\sum_{J}(-1)^{\varepsilon(J)}\left(\operatorname{pr}_{1} \sigma \lambda_{J^{c}}^{0}\right) \otimes\left(\operatorname{pr}_{2} \sigma \lambda_{J}^{1}\right) \in\left(C_{*}\left(Z_{1} ; \mathbf{k}\right) \otimes C_{*}\left(Z_{2} ; \mathbf{k}\right)\right)_{n+m}
$$

where $\operatorname{pr}_{i}: Z_{1} \times Z_{2} \rightarrow Z_{i}$ is the projection and $\varepsilon(J)$ is the cardinal number of the set $\left\{(i, j) \in J \times J^{c} \mid j<i\right\}$. We can see that EZ and AW are chain maps; see [15, pages 133, 138].

In the rest of this section, we recall the map called the integration map or the slant product. Let $\sigma \in C_{q}\left(Z_{1} ; \mathbf{k}\right)$, then define a map $\int_{\sigma}: C^{n+q}\left(Z_{1} \times Z_{2} ; \mathbf{k}\right) \rightarrow C^{n}\left(Z_{2} ; \mathbf{k}\right)$ by $\left(\int_{\sigma}(x)\right)(\varphi)=x(\sigma \times \varphi)$ for any $\varphi \in C_{n}\left(Z_{2} ; \mathbf{k}\right)$. The equality

$$
\begin{equation*}
d\left(\int_{\sigma} x\right)=(-1)^{q}\left(\int_{\sigma} d x-\int_{\partial \sigma} x\right) \tag{3-1}
\end{equation*}
$$

is easily seen as follows:

$$
\begin{aligned}
\left(\int_{\sigma} d x\right)(\varphi)=d x(\sigma \times \varphi) & =x(\partial \sigma \times \varphi)+(-1)^{q} x(\sigma \times \partial \varphi) \\
& =\left(\int_{\partial \sigma} x\right)(\varphi)+(-1)^{q} d\left(\int_{\sigma} x\right)(\varphi)
\end{aligned}
$$

We note that the Equation (3-1) is a particular version of Stokes' theorem.

4 Proof of Theorem 1.1

In this section, we denote $C^{*}(-; \mathbf{k})$ by $C^{*}(-)$ for convenience. We begin recalling the $C^{*}(Y)$-bimodule structure on $C^{*}(X)$ defined for $v \in C^{*}(X)$ and $\omega, \omega^{\prime} \in C^{*}(Y)$ by

$$
\omega^{\prime} \cdot v \cdot \omega=f_{2}^{*}\left(\omega^{\prime}\right) v f_{1}^{*}(\omega)
$$

Let $\Delta^{n}=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}^{n} \mid 0 \leq t_{1} \leq t_{2} \leq \cdots \leq t_{n} \leq 1\right\}$ be the standard n-simplex and $\kappa_{n}: I^{n} \rightarrow \Delta^{n}$ be a nondegenerate cubical chain defined by

$$
\kappa_{n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right), \quad x_{i}=1-t_{1} t_{2} \cdots t_{i}
$$

We now consider a map $\alpha_{k}: \Delta^{k} \times P\left(Y ; f_{1}, f_{2}\right) \longrightarrow X \times Y^{\times k}$ defined by

$$
\alpha_{k}\left(\left(t_{1}, t_{2}, \ldots, t_{k}\right), \gamma\right)=\left(\chi(\gamma), \gamma\left(t_{1}\right), \gamma\left(t_{2}\right), \ldots, \gamma\left(t_{k}\right)\right)
$$

Then we obtain the following composition map Θ_{X}^{n}

$$
\begin{aligned}
& \Theta_{X}^{n}: C^{*}(X) \otimes_{C^{*}(Y)^{e}} \overline{\mathbf{B}}_{n}\left(C^{*}(Y) ; C^{*}(Y) ; C^{*}(Y)\right) \xrightarrow{s_{n}} C^{*}(X) \otimes C^{*}(Y)^{\otimes n} \\
& \xrightarrow{\mathrm{AW}} C^{*}\left(X \times Y^{\times n}\right) \xrightarrow{\int_{\kappa n} \alpha_{n}^{*}} C^{*}\left(P\left(Y ; f_{1}, f_{2}\right)\right),
\end{aligned}
$$

where $\quad s_{n}\left(\nu \otimes \omega\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{n}\right] \omega^{\prime}\right)=(-1)^{\varrho} \omega^{\prime} v \omega \otimes \omega_{1} \otimes \omega_{2} \otimes \cdots \otimes \omega_{n}$,

$$
\varrho=\left|\omega^{\prime}\right|\left(|v|+|\omega|+\sum_{j=0}^{n}\left|s \omega_{j}\right|\right)+\sum_{j=0}^{n-1} \sum_{i=1}^{j}\left(|\nu|+\left|s \omega_{i}\right|\right)
$$

and put $\Theta_{X}=\sum_{n \geq 0} \Theta_{X}^{n}: C_{*}\left(C^{*}(Y) ; C^{*}(X)\right) \rightarrow C^{*}\left(P\left(Y ; f_{1}, f_{2}\right)\right)$. Essentially, the map Θ_{X} is the map in Félix, Oprea and Tanré [7, Theorem 9.64] which is defined using iterated integrals.

Lemma 4.1 The map Θ_{X} is a chain map.

Proof The Equation (3-1) enables us to give

$$
\begin{aligned}
d \Theta_{X}^{n} & =(-1)^{n} \int_{\kappa_{n}} d \alpha_{n}^{*} \mathrm{AW} s_{n}-(-1)^{n} \int_{\partial \kappa_{n}} \alpha_{n}^{*} \mathrm{AW} s_{n} \\
& =(-1)^{n} \int_{\kappa_{n}} \alpha_{n}^{*} \mathrm{AW} d s_{n}+(-1)^{n+1} \int_{\kappa_{n-1}} \alpha_{n-1}^{*} \mathrm{AW} \delta s_{n}
\end{aligned}
$$

where the map $\delta: C^{*}(X) \otimes C^{*}(Y)^{\otimes n} \rightarrow C^{*}(X) \otimes C^{*}(Y)^{\otimes(n-1)}$ is defined by $\delta\left(v \otimes \omega_{1} \otimes \cdots \otimes \omega_{n}\right)=v f_{1}^{*}\left(\omega_{1}\right) \otimes \omega_{2} \otimes \cdots \otimes \omega_{n}$

$$
\begin{aligned}
& +\sum_{i=2}^{n}(-1)^{i-1} v \otimes \omega_{1} \otimes \cdots \otimes \omega_{i-1} \omega_{i} \otimes \cdots \otimes \omega_{n} \\
& +(-1)^{\left|\omega_{n}\right|\left(|v|+\sum_{i=1}^{n-1}\left|\omega_{i}\right|\right)+n} f_{2}^{*}\left(\omega_{n}\right) v \otimes \omega_{1} \otimes \cdots \otimes \omega_{n-1}
\end{aligned}
$$

A straightforward calculation shows $(-1)^{n} d s_{n}=s_{n}\left(d \otimes 1+1 \otimes d_{1}\right)$ and $(-1)^{n-1} \delta s_{n}=$ $s_{n-1}\left(1 \otimes d_{2}\right)$. We hence have $d \Theta_{X}=\Theta_{X} D$.

Let $\rho:(T V, d) \rightarrow C^{*}(Y)$ be a minimal free associative model for $C^{*}(Y)$ [11], that is, $T V$ is a tensor algebra over \mathbf{k}, ρ is a quasi-isomorphism of differential graded algebras,
$V=\left\{V^{p}\right\}_{p \geq 2}$, each V^{p} is finite dimensional and d is decomposable; $d(V) \subset T^{\geq 2} V$. Since the map

$$
C_{*}\left(\rho ; C^{*}(X)\right): C_{*}\left(T V ; C^{*}(X)\right) \rightarrow C_{*}\left(C^{*}(Y) ; C^{*}(X)\right)
$$

is a quasi-isomorphism by [5, Proposition 2.4], it is only necessary to show that the composition map $\Theta_{X} \circ C_{*}\left(\rho ; C^{*}(X)\right)$ is a quasi-isomorphism to prove Theorem 1.1. We put $\bar{\Theta}_{X}=\Theta_{X} \circ C_{*}\left(\rho ; C^{*}(X)\right)$.

We begin with the Hochschild chain complex $C_{*}\left(T V ; C^{*}(X)\right)$ and filter it by

$$
F^{p}=C^{\geq p}(X) \otimes_{(T V)^{e}} \overline{\mathbf{B}}(T V ; T V ; T V)
$$

Lemma 4.2 The spectral sequence associated the above filtration, denote by $\left(E_{r}, d_{r}\right)$, satisfy $E_{2}^{p, q} \cong H^{p}(X) \otimes \mathrm{HH}_{q}(T V ; \mathbf{k})$ as \mathbf{k}-vector spaces.

Proof Recall that there is an isomorphism as follows:

$$
\begin{aligned}
& E_{0}^{p, q}=\frac{\left(F^{p}\right)^{p+q}}{\left(F^{p+1}\right)^{p+q}} \cong C^{p}(X) \otimes\left(\mathbf{k} \otimes_{(T V)^{e}} \overline{\mathbf{B}}(T V, T V, T V)^{q}\right) \\
&=C^{p}(X) \otimes C_{q}(T V ; \mathbf{k}), \\
& v \otimes \omega\left[\omega_{1}|\cdots| \omega_{n}\right] \omega^{\prime} \longmapsto(-1)^{\left|\omega^{\prime}\right|\left(|\nu|+|\omega|+\sum_{i}\left|s \omega_{i}\right|\right)} \omega^{\prime} \nu \omega \otimes\left(1 \otimes\left[\omega_{1}|\cdots| \omega_{n}\right]\right) .
\end{aligned}
$$

If the degrees of ω or ω^{\prime} are not zero, then $v \otimes \omega\left[\omega_{1}|\cdots| \omega_{n}\right] \omega^{\prime}$ is zero in $E_{0}^{p, q}$. It follows that the above correspondence is one-to-one. The differential $d_{0}: E_{0}^{p, q} \rightarrow E_{0}^{p, q+1}$ is the induced map of the differential of the Hochschild chain complex $C_{*}\left(T V ; C^{*}(X)\right)$. Since $\overline{T V^{0}}=0$, we have $d_{0}=1 \otimes D$ where D is the differential of $C_{*}(T V ; \mathbf{k})$ and so $E_{1}^{p, q} \cong C^{p}(X) \otimes \mathrm{HH}_{q}(T V ; \mathbf{k})$. The differential d_{1} is defined by

$$
\begin{aligned}
d_{1}: E_{1}^{p, q}=H^{p+q}\left(F^{p} / F^{p+1}\right) & \xrightarrow{\partial^{*}} H^{p+q+1}\left(F^{p+1}\right) \\
& \xrightarrow{\pi_{*}} H^{p+q+1}\left(F^{p+1} / F^{p+2}\right)=E_{1}^{p+1, q}
\end{aligned}
$$

where ∂^{*} is the connecting homomorphism and $\pi: F^{p+1} \rightarrow F^{p+1} / F^{p+2}$ is the quotient map. For any $\sum \sigma \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \in H^{p+q}\left(F^{p} / F^{p+1}\right)$, we have

$$
d_{1}\left(\sum \sigma \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)=\sum d(\sigma) \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]
$$

since $\overline{T V}^{0}=0$ and $\overline{T V}^{1}=0$. Therefore, we conclude that $d_{1}=\partial \otimes 1$ and it means that $E_{2}^{p, q} \cong H^{p}(X) \otimes \mathrm{HH}_{q}(T V ; \mathbf{k})$.

We next recall the Serre spectral sequence associated to the fibration $\chi: P\left(Y ; f_{1}, f_{2}\right) \rightarrow X$. For any nondegenerate p-cube $\sigma: I^{p} \rightarrow X$, a $(q+p)$-cube $\bar{\sigma}: I^{q} \times I^{p} \rightarrow P\left(Y ; f_{1}, f_{2}\right)$ is a fibered q-cube over σ if the diagram

is commutative. Denote by \widetilde{F}_{p} the subcomplex of $C_{*}\left(P\left(Y ; f_{1}, f_{2}\right)\right)$ generated by nondegenerate cubes fibered by some $\sigma \in C_{\leq p}(X)$ and put

$$
\begin{equation*}
\widetilde{F}^{p}=\left\{\varphi \in C^{*}\left(P\left(Y ; f_{1}, f_{2}\right)\right)|\varphi|_{\tilde{F}_{p-1}}=0\right\} \tag{4-1}
\end{equation*}
$$

Then, we get a spectral sequence, written by $\left(\widetilde{E}_{r}, \tilde{d}_{r}\right)$, associated to the filtration which is called the Serre spectral sequence.

Proposition 4.3 [19, Chapter II 8, Proposition 6] There is an isomorphism of \mathbf{k} vector space

$$
\widetilde{E}_{2}^{p, q} \cong H^{p}(X) \otimes H^{q}(\Omega Y)
$$

Lemma 4.4 The map $\bar{\Theta}_{X}$ is filtration preserving. Moreover, the morphism of spectral sequences induced by $\bar{\Theta}_{X}$ is of the form

$$
1 \otimes H\left(\bar{\Theta}_{\mathrm{pt}}\right)^{ \pm}: E_{2}^{p, n-p} \longrightarrow \widetilde{E}_{2}^{p, n-p}
$$

at the 2-terms. Here, pt is the one point space and the map $H\left(\bar{\Theta}_{\mathrm{pt}}\right)^{ \pm}$from $\mathrm{HH}_{*}(T V ; \mathbf{k})$ to $H^{*}(\Omega Y)$ is defined by

$$
H\left(\bar{\Theta}_{\mathrm{pt}}\right)^{ \pm}\left(\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)=(-1)^{p(k+n-p)} H\left(\bar{\Theta}_{\mathrm{pt}}\right)\left(\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)
$$

Proof Given $v \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \in F^{p}$ and n-cube $\bar{\sigma}: I^{n} \rightarrow P\left(Y ; f_{1}, f_{2}\right)$ in \widetilde{F}_{p-1} where $n=|\nu|+\sum_{i}\left|\omega_{i}\right|-k$. By the definition of \widetilde{F}_{p-1}, there exists a nondegenerate m-cube $\sigma(m<n)$ such that the following square commutes:

Then, we have
$\bar{\Theta}_{X}\left(\nu \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)(\bar{\sigma})=\left(v \otimes \rho\left(\omega_{1}\right) \otimes \rho\left(\omega_{2}\right) \otimes \cdots \otimes \rho\left(\omega_{k}\right)\right) \operatorname{AW}\left(\alpha_{k}\left(\kappa_{k} \times \bar{\sigma}\right)\right)$.

It is only necessary to show $\operatorname{AW}\left(\alpha_{k}\left(\kappa_{k} \times \bar{\sigma}\right)\right)=0$ in $C_{|\nu|}(X) \otimes \otimes_{i} C_{\left|\omega_{i}\right|}(Y)$. We may write

$$
\mathrm{AW}\left(\alpha_{k}\left(\kappa_{k} \times \bar{\sigma}\right)\right)=\sum \pm \psi \otimes \psi_{1} \otimes \psi_{2} \otimes \cdots \otimes \psi_{k}
$$

where ψ is a $|\nu|$-cube in X and ψ_{i} is a $\left|\omega_{i}\right|$-cube in Y. By the definition of the Alexander-Whitney map, there is a subset $J=\left\{j_{1}<j_{2}<\cdots<j_{|\nu|}\right\}$ of $\{1,2, \ldots, n+k\}$ such that the diagram is commutative:

We put $\lambda_{J^{c}}^{0}(t)=\left(\left(u_{1}, u_{2}, \ldots, u_{k}\right),\left(u_{k+1}, u_{k+2}, u_{k+n}\right)\right) \in I^{k} \times I^{n}$ for any $t \in I^{|\nu|}$. If $\left(u_{1}, u_{2}, \ldots, u_{k}\right) \neq 0$ for some t, we see that ψ is a degenerate cube by the commutativity of the above diagram. Hence, $\psi=0$ in $C_{|\nu|}(X)$. If $\left(u_{1}, u_{2}, \ldots, u_{k}\right)=0$ for any t, that is the composition map

$$
j: I^{|\nu|} \xrightarrow{\lambda_{J c}^{0}{ }^{c}} I^{k} \times I^{n} \xrightarrow{\mathrm{pr}_{2}} I^{n}
$$

is the inclusion, then we see the commutativity of the diagram

Since $m \leq p-1<p \leq|v|, \psi$ is a degenerate cube. Therefore, we conclude that $\operatorname{AW}\left(\alpha_{k}\left(\kappa_{k} \times \bar{\sigma}\right)\right)=0$. This finishes a proof of the first assertion.
Recall that $E_{0}^{p, q} \cong C^{p}(X) \otimes C_{q}(T V, \mathbf{k})$ and $\widetilde{E}_{0}^{p, n-p} \cong \operatorname{Hom}_{\mathbf{k}}\left(\left(\widetilde{F}_{p}\right)^{n} /\left(\widetilde{F}_{p-1}\right)^{n}, \mathbf{k}\right)$. We consider the case $|\nu|=p$ and $\bar{\sigma} \in\left(\widetilde{F}_{p}\right)^{n} /\left(\widetilde{F}_{p-1}\right)^{n}$, that means the σ is a p-cube. Then, the diagram (4-2) shows that $\psi=\sigma$. Therefore we have

$$
\operatorname{AW}\left(\alpha_{k}\left(\kappa_{k} \times \bar{\sigma}\right)\right)=\sigma \otimes(-1)^{p(k+n-p)} \operatorname{AW}\left(\alpha_{k}\left(\kappa_{k} \times\left.\bar{\sigma}\right|_{I^{n-p}}\right)\right)
$$

in $C_{|\nu|}(X) \otimes \bigotimes_{i} C_{\left|\omega_{i}\right|}(Y)$ where the $\operatorname{sign}(-1)^{p(k+n-p)}$ is appeared by the AlexanderWhitney map and so

$$
\bar{\Theta}_{X}\left(v \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)(\bar{\sigma})=v(\sigma) \otimes(-1)^{p(k+n-p)} \bar{\Theta}_{\mathrm{pt}}\left(\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)\left(\left.\bar{\sigma}\right|_{I^{n-p}}\right)
$$

The equality shows the second assertion.
Before proving Theorem 1.1, we recall the following theorem.

Theorem 4.5 (McCleary [16, Theorem 3.26]) Let E_{r} and \widetilde{E}_{r} be first quadrant spectral sequences of cohomological type over a field \mathbf{k} and $\phi_{r}: E_{r} \rightarrow \widetilde{E}_{r}$ a morphism of spectral sequences such that $E_{2}^{p, q}=E_{2}^{p, 0} \otimes E_{2}^{0, q}, \widetilde{E}^{p, q}=\widetilde{E}^{p, 0} \otimes \widetilde{E}^{0, q}$ and $\phi_{2}^{p, q}=\phi_{2}^{p, 0} \otimes \phi_{2}^{0, q}$. Then any two of the following conditions imply the third:
(1) $\phi_{2}^{p, 0}: E_{2}^{p, 0} \longrightarrow \widetilde{E}_{2}^{p, 0}$ is an isomorphism for all p.
(2) $\phi_{2}^{0, q}: E_{2}^{0, q} \longrightarrow \widetilde{E}_{2}^{0, q}$ is an isomorphism for all q.
(3) $\phi_{\infty}^{p, q}: E_{\infty}^{p, q} \longrightarrow \widetilde{E}_{\infty}^{p, q}$ is an isomorphism for all p, q.

Proof of Theorem 1.1 Since the both spectral sequences E_{r} and \widetilde{E}_{r} are strong convergent, by [16, Theorem 3.9], it is only enough to show that $H\left(\bar{\Theta}_{\mathrm{pt}}\right)^{ \pm}$is an isomorphism to prove the theorem. We consider the following pullback diagram

where $c_{*}: Y \rightarrow Y$ is the constant map to the base point. The space $P\left(Y ; 1_{Y}, c_{*}\right)$ is contractible, we see that $H^{*}\left(P\left(Y ; 1_{Y}, c_{*}\right)\right) \cong \mathbf{k}$. On the other hand, when the $C^{*}(Y)$ bimodule structure on $C^{*}(Y)$ is defined by $\omega^{\prime} \cdot v \cdot \omega=c_{*}^{*}\left(\omega^{\prime}\right) v \omega$, the Hochschild homology $\mathrm{HH}_{*}\left(C^{*}(Y) ; C^{*}(Y)\right)$ is \mathbf{k}. In effect, we now note that any element $v \otimes$ $\omega\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \omega^{\prime}$ in $C_{*}\left(C^{*}(Y) ; C^{*}(Y)\right)$ is zero if $\left|\omega^{\prime}\right|>0$ since $c_{*}^{*}\left(\omega^{\prime}\right)=0$ and so assume that $\left|\omega^{\prime}\right|=0$, that is $c_{*}^{*}\left(\omega^{\prime}\right) \in \mathbf{k}$. Define a map

$$
h: C_{*}\left(C^{*}(Y) ; C^{*}(Y)\right) \rightarrow C_{*}\left(C^{*}(Y) ; C^{*}(Y)\right)
$$

by $h\left(v \otimes \omega\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \omega^{\prime}\right)= \begin{cases}0 & |\nu|=|\omega|=0, \\ 1 \otimes 1\left[c_{*}^{*}\left(\omega^{\prime}\right) v \omega\left|\omega_{1}\right| \omega_{2}|\cdots| \omega_{k}\right] 1 & \text { otherwise. }\end{cases}$
An easy calculation gives us the equation $D h+h D=1$, where D is the differential of $C_{*}\left(C^{*}(Y) ; C^{*}(Y)\right)$. Hence, we have $\mathrm{HH}_{*}\left(C^{*}(Y) ; C^{*}(Y)\right) \cong \mathbf{k}$ and, by Theorem 4.5, the map $H\left(\bar{\Theta}_{\mathrm{pt}}\right)^{ \pm}$is an isomorphism.

5 Main result

Let (A, d) and (M, d) be differential graded algebras and $\xi: A \rightarrow M$ a differential graded algebra map. We here recall the complex of ξ-derivations from A to M, $\operatorname{Der}^{*}(A, M ; \xi)$. An element θ in $\operatorname{Der}^{n}(A, M ; \xi)$ is a \mathbf{k}-linear map of degree n
with $\theta(x y)=\theta(x) \xi(y)+(-1)^{n|x|} \xi(x) \theta(y)$. The differentials δ : $\operatorname{Der}^{*}(A, M ; \xi) \rightarrow$ $\operatorname{Der}^{*+1}(A, M ; \xi)$ send θ to $d \theta-(-1)^{|\theta|} \theta d$. Then we have the natural map

$$
\begin{aligned}
& J_{1}: \operatorname{Der}^{n}(A, M ; \xi) \longrightarrow C^{n+1}(A ; M) \\
& J_{1}(\theta)\left(\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)= \begin{cases}(-1)^{|\theta|} \theta\left(\omega_{1}\right) & k=1, \\
0 & k \geq 2, k=0,\end{cases}
\end{aligned}
$$

and it is readily seen that J_{1} is a cochain map of degree 1 , that is, $J_{1} D=-\delta J_{1}$.
Suppose that X is a \mathbf{k}-Poincaré duality space of formal dimension d; that is, the space X is equipped with a fundamental class $[X] \in H_{d}(X)$ such that the cap product

$$
-\cap[X]: H^{*}(X) \longrightarrow H_{d-*}(X)
$$

is an isomorphism. We also denote by $[X] \in C_{d}(X)$ the representative element of $[X] \in H_{d}(X)$. By dualizing Theorem 1.1, we obtain the isomorphism of \mathbf{k}-vector space

$$
\Phi_{X}: H_{*}\left(L_{f} Y\right) \xrightarrow{\cong} H^{*}\left(L_{f} Y\right)^{\vee} \xrightarrow{H\left(\bar{\Theta}_{X}\right)^{\vee}} \mathrm{HH}_{*}\left(T V ; C^{*}(X)\right)^{\vee}
$$

where $(-)^{\vee}=\operatorname{Hom}_{\mathbf{k}}(-, \mathbf{k})$ is the graded dual space. Let $\varepsilon: C_{*}(X) \longrightarrow C^{*}(X)^{\vee}$ be the evaluation map; $\varepsilon(\sigma)(\omega)=(-1)^{|\sigma|} \omega(\sigma)$ for $\sigma \in C_{*}(X)$ and $\omega \in C^{*}(X)$. We here remark that the evaluation map ε is not a chain map by the definition of the differentials of $C^{*}(X)$. However, ε induces the map $H\left(C_{*}(X)\right) \rightarrow H\left(C^{*}(X)^{\vee}\right)$ in homology and the induced map is an isomorphism.
For simplicity we denote by $\overline{\mathbf{B}}\left(C^{*}(X)\right)$ the two-sided normalized bar construction $\overline{\mathbf{B}}\left(C^{*}(X) ; C^{*}(X) ; C^{*}(X)\right)$. In [9], Félix, Thomas and Vigué-Poirrier proved that the map of $C^{*}(X)$-bimodules with degree $-d$

$$
\theta_{\varepsilon[X]}: \overline{\mathbf{B}}\left(C^{*}(X)\right) \longrightarrow C^{*}(X)^{\vee}
$$

defined by $\theta_{\varepsilon[X]}\left(\omega[] \omega^{\prime}\right)=\varepsilon\left(\omega \omega^{\prime} \cap[X]\right)$ and $\theta_{\varepsilon[X]}\left(\omega\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \omega^{\prime}\right)=0$ for $k>0$ is a quasi-isomorphism [9, Theorem 12]. Here the $C^{*}(X)$-bimodule structure on $C^{*}(X)^{\vee}$ is defined by

$$
\left(\omega_{1} \cdot \varphi \cdot \omega_{2}\right)(\omega)=(-1)^{\left|\omega_{1}\right||\varphi|} \varphi\left(\omega_{1} \omega_{2} \omega\right)
$$

for $\omega, \omega_{i} \in C^{*}(X)$ and $\varphi \in C^{*}(X)^{\vee}$. Therefore, by [5, Proposition 2.4], we have the isomorphism

$$
\begin{aligned}
\Psi_{X}: \mathrm{HH}^{*}\left(T V ; C^{*}(X)\right) & \xrightarrow{\mathrm{HH}\left(T V ; \varepsilon_{C^{*}(X)}\right)^{-1}} \mathrm{HH}^{*}\left(T V ; \overline{\mathbf{B}}\left(C^{*}(X)\right)\right) \\
& \xrightarrow[\iota_{*}]{\mathrm{HH}\left(T V ; \theta_{\varepsilon[X])}\right)} \mathrm{HH}^{*-d}\left(T V ; C^{*}(X)^{\vee}\right) \\
& \mathrm{HH}_{-*+d}\left(T V ; C^{*}(X)\right)^{\vee}
\end{aligned}
$$

where l_{*} the induced map of the isomorphism of complexes

$$
\iota: \operatorname{Hom}_{(T V)^{e}}\left(\overline{\mathbf{B}}(T V), C^{*}(X)^{\vee}\right) \longrightarrow \operatorname{Hom}\left(C^{*}(X) \otimes_{(T V)^{e}} \overline{\mathbf{B}}(T V), \mathbf{k}\right)
$$

defined by $\iota(\varphi)(\omega \otimes \sigma)=(-1)^{|\sigma||\omega|} \varphi(\sigma)(\omega)$ for $\sigma \in \overline{\mathbf{B}}(T V)$ and $\omega \in C^{*}(X)$.
Now we define the map for any $n \geq 2$

$$
\Theta_{1}: \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k} \longrightarrow H^{-n}\left(\operatorname{Der}^{*}\left(T V, C^{*}(X) ; f^{*} \circ \rho\right)\right)
$$

by $\Theta_{1}(\alpha)(x)=(-1)^{n|x|} \int_{\left[S^{n}\right]}\left(C^{*}(\bar{\alpha}) \rho(x)\right)$ for any $\alpha \in \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k}$ and $x \in T V$, where $\bar{\alpha}: S^{n} \times X \rightarrow Y$ is the adjoint of α and $\left[S^{n}\right] \in C_{n}\left(S^{n}\right)$ be the fundamental class defined by

$$
\left[S^{n}\right]: I^{n} \rightarrow I^{n} / \partial I^{n} \cong S^{n}, \quad\left(t_{1}, t_{2}, \ldots, t_{n}\right) \longmapsto\left[1-t_{1}, 1-t_{2}, \ldots, 1-t_{n}\right] .
$$

A straightforward calculation shows that $\Theta_{1}(\alpha)$ is a $\left(f^{*} \circ \rho\right)$-derivation. If two maps $\bar{\alpha}$ and $\bar{\beta}: S^{n} \times X \rightarrow Y$ are homotopic, then we have $\int_{\left[S^{n}\right]} C^{*}(\bar{\alpha}) \rho-\int_{\left[S^{n}\right]} C^{*}(\bar{\beta}) \rho=$ $\delta\left(\int_{\left[S^{n}\right]} \int_{\mathrm{id}_{I}} C^{*}(H) \rho\right)$ where $\operatorname{id}_{I} \in C_{1}(I)$ is the identity map and $H: I \times S^{n} \times X \rightarrow Y$ is a homotopy from $\bar{\alpha}$ to $\bar{\beta}$. Hence, Θ_{1} is a well-defined map. In addition, the map Θ_{1} is a homomorphism. Indeed, for any α and β in $\pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k}$, the adjoint of the sum $\alpha+\beta \in \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k}$ is the composite map

$$
S^{n} \times X \xrightarrow{\mu^{\prime} \times 1}\left(S^{n} \vee S^{n}\right) \times X \xrightarrow{(\bar{\alpha} \mid \bar{\beta})} Y
$$

where $\mu^{\prime}: S^{n} \rightarrow S^{n} \vee S^{n}$ is the pinching map and $(\bar{\alpha} \mid \bar{\beta})$ is a map defined by $(\bar{\alpha} \mid \bar{\beta})((u, *), x)=\bar{\alpha}(u, x)$ and $(\bar{\alpha} \mid \bar{\beta})((*, u), x)=\bar{\beta}(u, x)$ for $u \in S^{n}$ and $x \in X$. Then, we see that the following diagram is commutative:

where i_{1} and $i_{2}: S^{n} \rightarrow S^{n} \vee S^{n}$ are the inclusions on the first and second factors respectively. A commutativity of the diagram shows that $C^{*}(\bar{\alpha} \mid \bar{\beta})=C^{*}(\bar{\alpha})+C^{*}(\bar{\beta})$ and hence the map Θ_{1} is a homomorphism.

Proof of Theorem 1.2 We consider the following diagram:

Given $\alpha \in \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbf{k}$. By the definition of Γ_{1},

$$
\Gamma_{1}(\alpha)=H_{n-1+d}\left(g\left(\alpha^{\prime} \times 1_{X}\right)\right)\left(E Z\left(\left[S^{n-1}\right] \otimes[X]\right)\right)
$$

where $\alpha^{\prime}: S^{n-1} \rightarrow \Omega \operatorname{map}(X, Y ; f)$ is the adjoint map of α, and denote

$$
\gamma_{1}(\alpha)=C_{n-1+d}\left(g\left(\alpha^{\prime} \times 1_{X}\right)\right)\left(E Z\left(\left[S^{n-1}\right] \otimes[X]\right)\right) \in C_{n-1+d}\left(L_{f} Y\right)
$$

by the representative element of $\Gamma_{1}(\alpha)$. For any element $v \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]$ in $C_{n-1+d}\left(T V ; C^{*}(X)\right)$, we have

$$
\begin{aligned}
& \left(\Phi_{X} \Gamma_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right) \\
& \quad= \pm\left(\left(v \otimes \rho \omega_{1} \otimes \rho \omega_{2} \otimes \cdots \otimes \rho \omega_{k}\right) \circ \mathrm{AW} \circ \alpha_{k *}\right)\left(E Z\left(\kappa_{k} \otimes \gamma_{1}(\alpha)\right)\right)
\end{aligned}
$$

We may write

$$
\left(\mathrm{AW} \circ \alpha_{k *}\right)\left(E Z\left(\kappa_{k} \otimes \gamma_{1}(\alpha)\right)\right)=\sum \pm \psi \otimes \psi_{1} \otimes \psi_{2} \otimes \cdots \otimes \psi_{k}
$$

where ψ is a $|\nu|$-cube in X and ψ_{i} is a $\left|\omega_{i}\right|$-cube in Y. If $k \geq 2$, it is readily seen that some ψ_{i} are degenerate, that is $\left(\Phi_{X} \Gamma_{1}\right)(\alpha)\left(\nu \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)=0$. If $k=1$, we see that

$$
\alpha_{1 *}\left(E Z\left(\kappa_{1} \otimes \gamma_{1}(\alpha)\right)\right)=\sum n_{x} \tau_{x}
$$

Here, we may write $[X]=\sum_{[X]} n_{x} x \in C_{d}(X)$ some $n_{x} \in \mathbf{k}$ and $x: I^{d} \rightarrow X$. Then, $(n+d)$-cube, τ_{x} is the compositions

$$
\tau_{x}: I \times I^{n-1} \times I^{d} \xrightarrow{\kappa_{1} \times\left[S^{n-1}\right] \times x} \Delta^{1} \times S^{n-1} \times X \xrightarrow{\alpha_{1}\left(1 \times g\left(\alpha^{\prime} \times 1\right)\right)} X \times Y
$$

Then,

$$
\operatorname{AW}\left(\tau_{x}\right)=\sum_{\substack{J \subset\{1,2, \ldots, n+d\} \\ \# J=|\nu|}}(-1)^{\varepsilon(J)} \tau_{x 1} \lambda_{J^{c}}^{0} \otimes \tau_{x 2} \lambda_{J}^{\varepsilon}
$$

where \#J is the cardinal number of J and $\tau_{x i}$ is the composition of the projection pr_{i} and τ_{x}. If there is $i \in J$ such that $i<n$, then $\tau_{x 1} \lambda_{J^{c}}^{0}$ is degenerate since
$\tau_{x 1}: I \times I^{n-1} \times I^{d} \rightarrow X$ depends only on I^{d}. Hence,

$$
\operatorname{AW}\left(\tau_{x}\right)=\sum_{\substack{J \subset\{1,2, \ldots, n+d\}, \# J=|v|, \min J \geq n}}(-1)^{\varepsilon(J)} \tau_{x 1} \lambda_{J^{c}}^{0} \otimes \tau_{x 2} \lambda_{J}^{\varepsilon}
$$

and so
$\left(\Phi_{X} \Gamma_{1}\right)(\alpha)\left(\nu \otimes\left[\omega_{1}\right]\right)$

$$
\begin{aligned}
& =(-1)^{|v|}\left(v \otimes \rho\left(\omega_{1}\right)\right) \mathrm{AW}\left(\sum_{[X]} n_{x} \tau_{x}\right) \\
& =(-1)^{|v|+|v|\left|\omega_{1}\right|} \sum_{\substack{X]}} \sum_{\substack{J \subset\{1,2, \ldots, n+d\}, \# J=|v|, \min J \geq n}}(-1)^{\varepsilon(J)} n_{x}\left(v\left(\tau_{x 1} \lambda_{J^{c}}^{0}\right)\right)\left(\rho\left(\omega_{1}\right)\left(\tau_{x 2} \lambda_{J}^{\varepsilon}\right)\right)
\end{aligned}
$$

On the other hand, $\left(\Psi_{X} J_{1}^{*} \Theta_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right]\right)=0$ for $k \geq 2$ and $k=0$ by the definition of J_{1}, and
$\left(\Psi_{X} J_{1}^{*} \Theta_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\right]\right)$

$$
\begin{aligned}
&=(-1)^{|v|\left|s \omega_{1}\right|} \varepsilon\left(J_{1}^{*} \Theta_{1}(\alpha)\left(\left[\omega_{1}\right]\right) \cap[X]\right)(v) \\
&=(-1)^{|v|\left|s \omega_{1}\right|+|v|} v\left(J_{1}^{*} \Theta_{1}(\alpha)\left(\left[\omega_{1}\right]\right) \cap[X]\right) \\
&=(-1)^{|v|\left|s \omega_{1}\right|+|v|+n} v\left(\Theta_{1}(\alpha)\left(\omega_{1}\right) \cap[X]\right) \\
&=(-1)^{|v|\left|s \omega_{1}\right|+|v|+n+n\left|\omega_{1}\right|} v\left(\int_{\left[S^{n}\right]} C^{*}(\bar{\alpha}) \rho\left(\omega_{1}\right) \cap[X]\right) \\
&=(-1)^{|v|\left|s \omega_{1}\right|+|v|+n+n\left|\omega_{1}\right|+|v|(d-|v|)} \\
& \times \sum_{[X]} \sum_{\substack{J \subset\{1,2, \ldots, d\}, \# J=|v|}}(-1)^{\varepsilon(J)} n_{x}\left(v\left(x \lambda_{J^{c}}^{0}\right)\right)\left(\int_{\left[S^{n}\right]} C^{*}(\bar{\alpha}) \rho\left(\omega_{1}\right)\left(x \lambda_{J}^{1}\right)\right) \\
&=(-1)^{|v|\left|s \omega_{1}\right|+n d+(n+d)|\nu|} \\
& \quad \times \sum_{[X]} \sum_{\substack{J \subset\{1,2, \ldots, n+d\}, J=|v|, \min J \geq n}}(-1)^{\varepsilon(J)+n|v|} n_{x}\left(v\left(\tau_{x 1} \lambda_{J^{c}}^{0}\right)\right)\left(\rho\left(\omega_{1}\right)\left(\bar{\alpha}\left(\left[S^{n}\right] \times x\right) \lambda_{J}^{1}\right)\right) .
\end{aligned}
$$

Since $\rho\left(\omega_{1}\right)\left(\tau_{x 2} \lambda_{J}^{1}\right)=\rho\left(\omega_{1}\right)\left(\bar{\alpha}\left(\left[S^{n}\right] \times x\right) \lambda_{J}^{1}\right)$, we have

$$
\left(\Phi_{X} \Gamma_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\right]\right)=(-1)^{n d+d|v|}\left(\Psi_{X} J_{1}^{*} \Theta_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\right]\right)
$$

If d is even, then the diagram (5-1) is commutative. We consider the case that $\underset{\sim}{d}$ is odd. When we define Ψ_{X}, we replace $\theta_{\varepsilon[X]}$ with the map of degree $-d$, $\widetilde{\theta}_{\varepsilon[X]}: \overline{\mathbf{B}}\left(C^{*}(X)\right) \longrightarrow C^{*}(X)^{\vee}$ defined by $\widetilde{\theta}_{\varepsilon[X]}\left(\omega[] \omega^{\prime}\right)=(-1)^{\left|\omega \omega^{\prime}\right|} \varepsilon\left(\omega \omega^{\prime} \cap[X]\right)$ and $\widetilde{\theta}_{\varepsilon[X]}\left(\omega\left[\omega_{1}\left|\omega_{2}\right| \cdots \mid \omega_{k}\right] \omega^{\prime}\right)=0$ for $k>0$. Also $\widetilde{\theta}_{\varepsilon[X]}$ is a quasi-isomorphism and
similar calculation described above enable us to get the equation

$$
\left(\Phi_{X} \Gamma_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\right]\right)=(-1)^{n d+d+(d+1)|v|}\left(\Psi_{X} J_{1}^{*} \Theta_{1}\right)(\alpha)\left(v \otimes\left[\omega_{1}\right]\right)
$$

That is, the diagram (5-1) is commutative up to sign, completing the proof.
We here recall a minimal Sullivan model for a simply connected space X with finite type. It is a free commutative differential graded algebra over \mathbb{Q} of the form $(\Lambda V, d)$ with $V=\bigoplus_{i \geq 2} V^{i}$ where each V^{i} is of finite dimension and d is decomposable; that is, $d(V) \subset \Lambda^{\geq 2} V$. Moreover, $(\Lambda V, d)$ is equipped with a quasiisomorphism $(\Lambda V, d) \stackrel{\simeq}{\rightarrow} A_{\mathrm{PL}}(X)$ to the commutative differential graded algebra $A_{\mathrm{PL}}(X)$ of differential polynomial forms on X [6, Section 12]. Observe that, as algebras, $H^{*}(\Lambda V, d) \cong H^{*}\left(A_{\mathrm{PL}}(X)\right) \cong H^{*}(X ; \mathbb{Q})$. Let $f: X \rightarrow Y$ be a map between spaces of finite type. Then there exists a commutative differential graded algebra map \tilde{f} from a minimal Sullivan model $\left(\Lambda V_{Y}, d\right)$ for Y to a minimal Sullivan model $\left(\Lambda V_{X}, d\right)$ for X which makes the diagram

commutative up to homotopy. We call \tilde{f} a Sullivan model for f.
Proposition $5.1 \underset{\sim}{L}$ Let ΛV_{X} and ΛV_{Y} be a minimal Sullivan model for X and Y, respectively, and \tilde{f} a Sullivan model for f. Then, the cochain map

$$
J_{1}: \operatorname{Der}^{*}\left(\Lambda V_{Y}, \Lambda V_{X} ; \tilde{f}\right) \longrightarrow C^{*+1}\left(\Lambda V_{Y} ; \Lambda V_{X}\right)
$$

is injective in homology.
For giving a proof of Proposition 5.1, we introduce a semifree resolution of ΛV_{Y} as a left $\Lambda V_{Y} \otimes \Lambda V_{Y}$-module that is different from the two-sided bar resolution and give some lemmas. We consider the commutative differential graded algebra $\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right)$ with the differential d defined by

$$
\begin{aligned}
d(v \otimes 1 \otimes \overline{1}) & =d v \otimes 1 \otimes \overline{1}, \quad d(1 \otimes v \otimes \overline{1})=1 \otimes d v \otimes \overline{1} \\
d(1 \otimes 1 \otimes s v) & =(v \otimes 1-1 \otimes v) \otimes \overline{1}-\sum_{i=1}^{\infty} \frac{(s d)^{i}}{i!}(v \otimes 1 \otimes \overline{1})
\end{aligned}
$$

Here $\overline{1}$ is the unit of $\Lambda\left(s V_{Y}\right)$, and s is the unique degree -1 derivation of the algebra $\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right)$ defined by

$$
s(v \otimes 1 \otimes \overline{1})=1 \otimes 1 \otimes s v=s(1 \otimes v \otimes \overline{1}), s(1 \otimes 1 \otimes s v)=0 .
$$

By [6, Section 15 Example 1], the map

$$
\mu \cdot \bar{\varepsilon}: \Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right) \longrightarrow \Lambda V_{Y}
$$

is a semifree resolution of ΛV_{Y} as a left $\Lambda V_{Y} \otimes \Lambda V_{Y}$-module, where μ is the product of ΛV_{Y} and $\bar{\varepsilon}$ is the canonical augmentation of $\Lambda\left(s V_{Y}\right)$. Since the map $\varepsilon_{\Lambda V_{Y}}: \overline{\mathbf{B}}\left(\Lambda V_{Y}, \Lambda V_{Y}, \Lambda V_{Y}\right) \rightarrow \Lambda V_{Y}$ is a surjective quasi-isomorphism, by [6, Proposition 14.6], there exists a differential graded algebra map ϕ such that the following diagram is commutative:

A commutativity of the diagram shows that the map ϕ is a quasi-isomorphism. We now recall a construction of ϕ. For any basis element $v \in V_{Y}$, we put $\phi(v \otimes 1 \otimes \overline{1})=v[] 1$ and $\phi(1 \otimes v \otimes \overline{1})=1[] v$. By induction on degree of V_{Y}, we construct $\phi(1 \otimes 1 \otimes s v)$. For any $v^{\prime} \in V$ such that $d v^{\prime}=0$, we defined $\phi\left(1 \otimes 1 \otimes s v^{\prime}\right)=1\left[v^{\prime}\right] 1$. Assume that ϕ is defined in $\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}^{\leq|v|}\right)$ for some basis element $v \in V$, that is, $\phi d(1 \otimes 1 \otimes s v)$ is also defined. Since $\varepsilon_{\Lambda V_{Y}}$ is a quasi-isomorphism, the equation

$$
\varepsilon_{\Lambda V_{Y}} \phi d(1 \otimes 1 \otimes s v)=(\mu \cdot \bar{\varepsilon}) d(1 \otimes 1 \otimes s v)=0=\varepsilon_{\Lambda V_{Y}} d(1[v] 1)
$$

shows that there is $\beta \in \overline{\mathbf{B}}\left(\Lambda V_{Y}, \Lambda V_{Y}, \Lambda V_{Y}\right)$ such that $\phi d(1 \otimes 1 \otimes s v)-d(1[v] 1)=d \beta$. Then, we put $\phi(1 \otimes 1 \otimes s v)=1[v] 1+\beta$. The above construction of ϕ and the differential of $\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right)$ establishes that $d \beta$ has no term of the form $x[] x^{\prime}$, that is, β does not have terms of the form $x[\omega] x^{\prime}$. So we have the following lemma.

Lemma 5.2 There is a quasi-isomorphism

$$
\phi: \Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right) \rightarrow \overline{\mathbf{B}}\left(\Lambda V_{Y}, \Lambda V_{Y}, \Lambda V_{Y}\right)
$$

of $\Lambda V_{Y} \otimes \Lambda V_{Y}$-modules such that the following diagram is commutative

where $\varepsilon: \Lambda V_{Y} \rightarrow \mathbb{Q}$ is the canonical augmentation and $\mathrm{pr}: \Lambda\left(s V_{Y}\right) \rightarrow s V_{Y}$ and $\mathrm{pr}^{\prime}: T\left(s \Lambda V_{Y}\right) \rightarrow s \Lambda V$ are the canonical projections.

Consider the canonical isomorphism
$\zeta: \operatorname{Hom}_{\Lambda V_{Y} \otimes \Lambda V_{Y}}\left(\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right), \Lambda V_{X}\right) \longrightarrow \operatorname{Hom}_{\mathbb{Q}}\left(\Lambda\left(s V_{Y}\right), \Lambda V_{X}\right)$. and define $\bar{D}=\zeta D \zeta^{-1}$, where D is the differential of

$$
\operatorname{Hom}_{\Lambda V_{Y} \otimes \Lambda V_{Y}}\left(\Lambda V_{Y} \otimes \Lambda V_{Y} \otimes \Lambda\left(s V_{Y}\right), \Lambda V_{X}\right)
$$

Then, for $\psi \in \operatorname{Hom}_{\mathbb{Q}}\left(\Lambda\left(s V_{Y}\right), \Lambda V_{X}\right)$ and $s v_{1} s v_{2} \cdots s v_{p} \in \Lambda\left(s V_{Y}\right)$,
$\bar{D}(\psi)\left(s v_{1} s v_{2} \cdots s v_{p}\right)=d \psi\left(s v_{1} s v_{2} \cdots s v_{p}\right)$
$+(-1)^{|\psi|} \sum_{i=1}^{p} \sum_{v_{i}} \sum_{k=1}^{p} \pm \omega_{i_{1}} \cdots \omega_{i_{k-1}} \omega_{i_{k+1}} \cdots \omega_{i_{p}} \psi\left(s v_{1} \cdots s v_{i-1} s \omega_{i_{k}} s v_{i+1} \cdots s v_{p}\right)$,
where $d v_{i}=\sum_{v_{i}} \omega_{i_{1}} \omega_{i_{2}} \cdots \omega_{i_{p}}$ and the sign \pm is the Koszul sign convention. In fact, for example $p=1$ and $v=v_{1} \in V$ with $d v=\sum_{v} \omega_{1} \cdots \omega_{p}$,
$\bar{D}(\psi)(s v)=d \zeta^{-1}(\psi)(1 \otimes 1 \otimes s v)-(-1)^{|\psi|} \zeta^{-1}(\psi) d(1 \otimes 1 \otimes s v)$
$=d \psi(s v)+(-1)^{|\psi|} \zeta^{-1}(\psi)\left(\sum_{i=1}^{\infty} \frac{(s d)^{i}}{i!}(v \otimes 1 \otimes \overline{1})\right)$
$=d \psi(s v)+(-1)^{|\psi|} \sum_{v} \sum_{j=1}^{p} \pm \omega_{1} \cdots \omega_{j-1} \omega_{j+1} \cdots \omega_{p} \psi\left(s \omega_{j}\right)$

$$
+\zeta^{-1}(\psi)\left(\sum_{i=2}^{\infty} \frac{(s d)^{i}}{i!}(v \otimes 1 \otimes \overline{1})\right)
$$

An induction on the degree of v gives that $\zeta^{-1}(\psi)\left((s d)^{2}(v \otimes 1 \otimes \overline{1})\right)=0$. Therefore, we see that $\operatorname{Hom}_{\mathbb{Q}}\left(\Lambda\left(s V_{Y}\right), \Lambda V_{X}\right)$ decomposes into a direct sum of complexes

$$
\begin{equation*}
\left(\operatorname{Hom}_{\mathbb{Q}}\left(\Lambda\left(s V_{Y}\right), \Lambda V_{X}\right), \bar{D}\right)=\bigoplus_{p \geq 0}\left(\operatorname{Hom}_{\mathbb{Q}}\left(\Lambda^{p}\left(s V_{Y}\right), \Lambda V_{X}\right), \bar{D}\right) \tag{5-2}
\end{equation*}
$$

Note that the decomposition is a Hochschild cohomology version of Vigué's work [20].
Proof of Proposition 5.1 By Lemma 5.2, the following diagram of complexes is commutative:

$$
\begin{array}{r}
C^{*}\left(\Lambda V_{Y}, \Lambda V_{X}\right) \xrightarrow{\zeta \phi^{*}} \operatorname{Hom}_{\mathbb{Q}}^{*}\left(\Lambda\left(s V_{Y}\right), \Lambda V_{X}\right) \\
\operatorname{Der}^{*-1}\left(\Lambda V_{Y}, \Lambda V_{X} ; \tilde{f}\right) \xrightarrow{\zeta_{1}} \operatorname{Hom}_{\mathbb{Q}}^{*}\left(s V_{Y}, \Lambda V_{X}\right),
\end{array}
$$

where ζ_{1} is the canonical degree 1 isomorphism of complexes defined by $\zeta_{1}(\theta)(s v)=$ $(-1)^{|\theta|} \theta(v)$ for $\theta \in \operatorname{Der}^{*-1}\left(\Lambda V_{Y}, \Lambda V_{X} ; \widetilde{f}\right)$ and $v \in V_{Y}$. Therefore, the decomposition (5-2) shows that J_{1} is injective in homology.

Before proving Corollary 1.3, we recall the definition of the isomorphism

$$
\Phi: \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q} \rightarrow H^{-n}\left(\operatorname{Der}^{*}\left(\Lambda V_{Y}, \Lambda V_{X} ; \tilde{f}\right)\right)
$$

defined by $[1 ; 14]$. Let $\alpha \in \pi_{n}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q}$ and $g: S^{n} \times X \rightarrow Y$ be the adjoint of α. Denote by $\tilde{g}: \Lambda V_{X} \rightarrow \Lambda V_{S^{n}} \otimes \Lambda V_{Y}$ a Sullivan model for g. Since S^{n} is formal, there is a quasi-isomorphism $\phi: \Lambda V_{S^{n}} \rightarrow\left(H^{*}\left(S^{n} ; \mathbb{Q}\right), 0\right)$ and, for any $v \in \Lambda V$, we may write

$$
(\phi \otimes 1) \widetilde{g}(v)=1 \otimes \tilde{f}(v)+e_{n} \otimes v^{\prime}
$$

Then we put $\Phi(\alpha)(v)=v^{\prime}$.
Proof of Corollary 1.3 By the definition of Θ_{1} and Φ, we have the following commutative diagram:

where the isomorphism at the top of the above diagram is the map induced by chains of natural quasi-isomorphisms [6, Corollary 10.10]

$$
\begin{gathered}
T V \stackrel{\simeq}{\simeq} C^{*}(Y) \stackrel{\simeq}{\simeq} \cdots \stackrel{\simeq}{\rightleftarrows} A_{\mathrm{PL}}(Y) \stackrel{\simeq}{\longleftarrow} V_{Y}, \\
C^{*}(X) \stackrel{\simeq}{\simeq} \cdots A_{\mathrm{PL}}(X) \stackrel{\simeq}{\longleftarrow} \Lambda V_{X} .
\end{gathered}
$$

Since Φ is an isomorphism, the commutativity of (5-1) and Proposition 5.1 show the assertion.

6 Noncommutativity for $H_{*}\left(L_{f} \boldsymbol{Y} ; \mathbb{Q}\right)$

We retain the notation described in the section above. Let X be a simply connected d-dimensional closed oriented manifold, Y a simply connected space with finite type and $f: X \rightarrow Y$ a based space. We see that the shifted homology $\mathbf{H}_{*}\left(L_{f} Y\right)$ has a graded algebra structure by Gruher and Salvatore [10]. As an application for the main result, we have the following proposition.

Proposition 6.1 If the rational homotopy group $\pi_{\geq 2}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q}$ has a nontrivial Whitehead product, then $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ is a noncommutative graded algebra.

Proof By [21, Chapter X , Theorem (7.10)], $\pi_{\geq 2}(\operatorname{map}(X, Y ; f)) \otimes \mathbb{Q}$ has a nontrivial Whitehead product if and only if there is a nontrivial Samelson product on $\pi_{\geq 1}(\Omega \operatorname{map}(X, Y ; f)) \otimes \mathbb{Q}$. We denote $\left\langle\beta_{1}, \beta_{2}\right\rangle$ by the nontrivial Samelson product for some β_{1} and β_{2}. Then, by [21, Chapter X, Theorem (6.3)], we have the equality $h\left(\left\langle\beta_{1}, \beta_{2}\right\rangle\right)=h\left(\beta_{1}\right) h\left(\beta_{2}\right)-(-1)^{\left|\beta_{1}\right|\left|\beta_{2}\right|} h\left(\beta_{2}\right) h\left(\beta_{1}\right)$, where h is the Hurewicz map. We note that a graded algebra structure on $H_{*}(\Omega \operatorname{map}(X, Y ; f) ; \mathbb{Q})$ is determined by the H space structure on $\Omega \operatorname{map}(X, Y ; f)$. Since the map $g: \Omega \operatorname{map}(X, Y ; f) \times X \rightarrow L_{f} Y$ is a morphism of fiberwise monoids from the projection $\Omega \operatorname{map}(X, Y ; f) \times X \rightarrow X$ to the map $\chi: L_{f} Y \rightarrow X$, by [10, Theorem 4.1 (ii)], the map $\Gamma: H_{*}(\Omega \operatorname{map}(X, Y ; f) ; \mathbb{Q}) \rightarrow$ $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ stated in Section 1 is an algebra map. Therefore, we see that

$$
\Gamma_{1}\left(\left\langle\beta_{1}, \beta_{2}\right\rangle\right)=\Gamma_{1}\left(\beta_{1}\right) \Gamma_{1}\left(\beta_{2}\right)-(-1)^{\left|\beta_{1}\right|\left|\beta_{2}\right|} \Gamma_{1}\left(\beta_{2}\right) \Gamma_{1}\left(\beta_{1}\right)
$$

and Corollary 1.3 shows that $\Gamma_{1}\left(\beta_{1}\right) \Gamma_{1}\left(\beta_{2}\right) \neq(-1)^{\left|\beta_{1}\right|\left|\beta_{2}\right|} \Gamma_{1}\left(\beta_{2}\right) \Gamma_{1}\left(\beta_{1}\right)$.

In the rest of this section, we give a example of $\mathbf{H}_{*}\left(L_{f} Y ; \mathbb{Q}\right)$ which is noncommutative.
Example 6.2 Let $\mathbb{C} P^{n}$ be the complex projective space and $i: \mathbb{C} P^{n-1} \hookrightarrow \mathbb{C} P^{n}$ the inclusion for $n \geq 2$. Recall that the commutative differential graded algebra $M\left(\mathbb{C} P^{n}\right):=$ $\left(\Lambda\left(x_{2}, x_{2 n+1}\right), d x_{2 n+1}=x_{2}^{n+1}\right)$ is a minimal Sullivan model for $\mathbb{C} P^{n}$ and a map

$$
\tilde{\imath}: M\left(\mathbb{C} P^{n}\right) \longrightarrow M\left(\mathbb{C} P^{n-1}\right), \quad \tilde{l}\left(x_{2}\right)=x_{2}, \tilde{\imath}\left(x_{2 n+1}\right)=x_{2} x_{2 n-1}
$$

is a Sullivan model for i, where the degree of x_{j} is j. By [2, Theorem 2], a \tilde{l}-derivation of degree $-3,[\theta, \theta]$, defined by

$$
[\theta, \theta]: M\left(\mathbb{C} P^{n}\right) \longrightarrow M\left(\mathbb{C} P^{n-1}\right), \quad[\theta, \theta]\left(x_{2}\right)=0,[\theta, \theta]\left(x_{2 n+1}\right)=x_{2}^{n-1}
$$

is a nontrivial Whitehead product of

$$
H^{-3}\left(\operatorname{Der}^{*}\left(M\left(\mathbb{C} P^{n}\right), M\left(\mathbb{C} P^{n-1}\right) ; \widetilde{\imath}\right)\right) \cong \pi_{3}\left(\operatorname{map}\left(\mathbb{C} P^{n-1}, \mathbb{C} P^{n} ; i\right)\right) \otimes \mathbb{Q}
$$

where θ is a $\tilde{\imath}$-derivation of degree -2 defined by $\theta\left(x_{2}\right)=1$ and $\theta\left(x_{2 n+1}\right)=0$. The existence of a nonzero Whitehead product in $\pi_{*}\left(\operatorname{map}\left(\mathbb{C} P^{n-1}, \mathbb{C} P^{n} ; i\right)\right) \otimes \mathbb{Q}$ is also showed by the results of Møller and Raussen [17, Example 3.4]. They proved that $\operatorname{map}\left(\mathbb{C} P^{n-1}, \mathbb{C} P^{n} ; i\right)$ is of the rational homotopy type of $S^{2} \times S^{5} \times S^{7} \times \cdots \times S^{2 n+1}$ and the nonzero Whitehead product comes from the S^{2} factor. Therefore, by Proposition 6.1, $\mathbf{H}_{*}\left(L_{i} \mathbb{C} P^{n} ; \mathbb{Q}\right)$ is a noncommutative algebra.

Acknowledgements The author sincerely thank my adviser, Katsuhiko Kuribayashi, for his encouragement and support. The author is also grateful to Keiichi Sakai for his precious suggestions, and to the referees for their careful reading and valuable comments.

References

[1] J Block, A Lazarev, André-Quillen cohomology and rational homotopy of function spaces, Adv. Math. 193 (2005) 18-39 MR2132759
[2] U Buijs, A Murillo, The rational homotopy Lie algebra of function spaces, Comment. Math. Helv. 83 (2008) 723-739 MR2442961
[3] M Chas, D Sullivan, String topology, to appear in Ann. of Math. (2) arXiv: math.GT/9911159
[4] K-T Chen, Pullback de Rham cohomology of the free path fibration, Trans. Amer. Math. Soc. 242 (1978) 307-318 MR0478190
[5] Y Félix, S Halperin, J-C Thomas, Differential graded algebras in topology, from: "Handbook of algebraic topology", (IM James, editor), North-Holland, Amsterdam (1995) 829-865 MR1361901
[6] Y Félix, S Halperin, J-C Thomas, Rational homotopy theory, Graduate Texts in Math. 205, Springer, New York (2001) MR1802847
[7] Y Félix, J Oprea, D Tanré, Algebraic models in geometry, Oxford Graduate Texts in Math. 17, Oxford Univ. Press (2008) MR2403898
[8] Y Félix, J-C Thomas, Monoid of self-equivalences and free loop spaces, Proc. Amer. Math. Soc. 132 (2004) 305-312 MR2021275
[9] Y Felix, J-C Thomas, M Vigué-Poirrier, The Hochschild cohomology of a closed manifold, Publ. Math. Inst. Hautes Études Sci. (2004) 235-252 MR2075886
[10] K Gruher, P Salvatore, Generalized string topology operations, Proc. Lond. Math. Soc. (3) 96 (2008) 78-106 MR2392316
[11] S Halperin, J-M Lemaire, Notions of category in differential algebra, from: "Algebraic topology—rational homotopy (Louvain-la-Neuve, 1986)", (Y Felix, editor), Lecture Notes in Math. 1318, Springer, Berlin (1988) 138-154 MR952577
[12] K Hess, P-E Parent, J Scott, CoHochschild homology of chain coalgebras, J. Pure Appl. Algebra 213 (2009) 536-556 MR2483836
[13] J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403-423 MR870737
[14] G Lupton, S B Smith, Rationalized evaluation subgroups of a map. I: Sullivan models, derivations and G-sequences, J. Pure Appl. Algebra 209 (2007) 159-171 MR2292124
[15] W S Massey, Singular homology theory, Graduate Texts in Math. 70, Springer, New York (1980) MR569059
[16] J McCleary, A user's guide to spectral sequences, second edition, Cambridge Studies in Advanced Math. 58, Cambridge Univ. Press (2001) MR1793722
[17] J M Møller, M Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc. 292 (1985) 721-732 MR808750
[18] P Selick, Introduction to homotopy theory, Fields Institute Monogr. 9, Amer. Math. Soc. (1997) MR1450595
[19] J-P Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951) 425-505 MR0045386
[20] M Vigué-Poirrier, Décompositions de l'homologie cyclique des algèbres différentielles graduées commutatives, K-Theory 4 (1991) 399-410 MR1116926
[21] G W Whitehead, Elements of homotopy theory, Graduate Texts in Math. 61, Springer, New York (1978) MR516508

Interdisciplinary Graduate School of Science and Technology, Shinshu University 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
naito@math.shinshu-u.ac.jp
Received: 26 January 2011 Revised: 10 May 2011

