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On the mapping space homotopy groups
and the free loop space homology groups

TAKAHITO NAITO

Let X be a Poincaré duality space, Y a space and f W X ! Y a based map. We
show that the rational homotopy group of the connected component of the space of
maps from X to Y containing f is contained in the rational homology group of a
space Lf Y which is the pullback of f and the evaluation map from the free loop
space LY to the space Y . As an application of the result, when X is a closed oriented
manifold, we give a condition of a noncommutativity for the rational loop homology
algebra H�.Lf Y IQ/ defined by Gruher and Salvatore which is the extension of the
Chas–Sullivan loop homology algebra.

55P35, 55P50; 55P62

1 Introduction

We assume that all topological spaces in this paper have a base point. Let M be a
simply connected d –dimensional closed oriented manifold and LM the free loop space
of M . We denote by aut1 M the path component of the monoid of the self-homotopy
equivalences of M containing the identity map.

In [8], Félix and Thomas constructed the injective map from the rational homotopy
group of aut1 M to the rational homology group of LM :

(1-1) ��.aut1 M /˝Q �!H��1Cd .LM IQ/:

Now recall that Jones [13] proved that H�.LM Ik/ is isomorphic as a vector space
to the Hochschild homology of the singular cochain algebra S�.M Ik/ of M over a
field k:

H�.LM Ik/Š HH�.S�.M Ik/IS�.M Ik//:

and the dual of the above isomorphism and the Poincaré duality of M yield an
isomorphism of graded vector spaces H�Cd .LM Ik/ŠHH��.S�.M Ik/IS�.M Ik//.
We now note that the cochain algebra S�.M IQ/ over Q is weakly equivalent to a
free commutative differential graded algebra over Q, .ƒV; d/, called a Sullivan model
for M ; see the end of Section 5, and so H�Cd .LM IQ/Š HH��.ƒV IƒV /.
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On the other hand, Block and Lazarev [1] and Lupton and Smith [14] constructed
an isomorphism from the n–th rational homotopy groups of aut1 M to the .�n/–th
homology of the differential graded module of derivations of ƒV :

�n.aut1 M /˝Q
Š
�!H�n.Der�.ƒV; ƒV //:

Also, we see that there is a map J�
1
W H�.Der�.ƒV; ƒV //! HH�C1.ƒV IƒV /; see

Section 5 for a proper definition. The result of Félix and Thomas [8] also shows that
a topological meaning of the map J�

1
is the map (1-1). That is, we get the following

commutative square:

(1-2)

Hn�1Cd .LM IQ/ HH�nC1.ƒV IƒV /

�n.aut1 M /˝Q H�n.Der�.ƒV; ƒV //:

Š //

.1-1/

OO

J �
1

OO

Š
//

The objective of this paper is to give a generalization of their works such as that
mentioned below.

Let X and Y be simply connected spaces with homologies over k of finite type and
f1; f2W X ! Y based maps. Here, the complex S�.X Ik/ is regarded as a S�.Y Ik/–
bimodule; that is a right and left S�.Y Ik/–structure is via f �

1
and f �

2
, respectively.

Denote by P .Y If1; f2/ a pullback of the diagram

P .Y If1; f2/ //

�

��

map.Œ0; 1�;Y /

.p0;p1/

��
X

.f1;f2/

// Y �Y;

where .p0;p1/ is the map defined by .p0;p1/.'/D .'.0/; '.1//. Our first result is
described as follows.

Theorem 1.1 There is an isomorphism of k–vector spaces

‚X W HH�.S�.Y Ik/IS�.X Ik//
Š
�!H�.P .Y If1; f2/Ik/:

In the proof, we use a cubical singular cochain complex instead of singular cochain
algebra. In [4], Chen proved Theorem 1.1 in the case in which kDR. Our proof of
the theorem is using ideas of Chen. As the relevant result of Theorem 1.1, we refer
to the paper of Hess, Parent and Scott [12, Theorem 3.1]. They proved an integral
version of the theorem, which also takes into account comultiplicative structure, that is,
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Theorem 1.1 is a weaker assertion than their results. However, the important thing is
that the isomorphism of Theorem 1.1 is given by the map ‚X described in Section 4.

Assume that X is a k–Poincaré duality space of formal dimension d ; see Section 5.
Let map.X;Y If / be the path component of the space of free maps from X to Y

containing the based map f W X ! Y and denote by Lf Y the space P .Y If; f /,
especially. We consider the natural map

gW �map.X;Y If /�X �!Lf Y; g.;x/.t/D  .t/.x/

and the composite map for n� 2

�1W �n.map.X;Y If //˝k Š // �n�1.�map.X;Y If //˝k

h // Hn�1.�map.X;Y If /Ik/ � // HnCd�1.Lf Y Ik/:

Here �Z is the based loop space of Z , h is the Hurewicz map, � is the map defined
by �.a/DH.g/.a˝ ŒX �/ and ŒX � 2 Sd .X Ik/ the fundamental class of X .

Let �W .T V; d/! S�.Y Ik/ be a minimal free associative model for S�.Y Ik/ (see
Halperin and Lemaire [11]) and Der�.T V;S�.X Ik/If �ı�/ the complex of .f �ı�/–
derivations; see Section 5 for a proper definition. The next theorem is our main result
of this paper.

Theorem 1.2 If X is a k–Poincaré duality space of formal dimension d , then, for any
n � 2, there exists an isomorphism of k–vector spaces ‚�

X
from H�Cd .Lf Y Ik/

to HH�.T V IS�.X Ik// and a k–linear map ‚1 from �n.map.X;Y If // ˝ k to
H�n.Der�.T V;S�.X Ik/If � ı �// such that the following square is commutative:

Hn�1Cd .Lf Y Ik/ HH�nC1.T V IS�.X Ik//

�n.map.X;Y If //˝k H�n.Der�.T V;S�.X Ik/If � ı �//:

‚�
X

Š
//

�1

OO

J �
1

OO

‚1

//

If kDQ, X DY and f is the identity map, then the diagram in Theorem 1.2 coincides
with the diagram (1-2); see the proof of Corollary 1.3. Thus Theorem 1.2 is regarded
as a generalization of [8]. We here note that, in general, the map ‚1 in Theorem 1.2 is
not isomorphism. In the last paragraph, we use Theorem 1.2 to deduce the following
corollary.

Corollary 1.3 If k is Q, then the map �1 is injective.

Algebraic & Geometric Topology, Volume 11 (2011)



2372 Takahito Naito

In [3], Chas and Sullivan constructed a product on H�.LM / WDH�Cd .LM / called
the loop product and H�.LM / is a commutative graded algebra. By Gruher and
Salvatore [10], when X is a simply connected d –dimensional closed oriented manifold,
we see that H�.Lf Y / also has a graded algebra structure similar to the construction
of loop products. As an application of the main result, we give a condition of a
noncommutativity for H�.Lf Y IQ/ in rational cases. For details see Section 6.

The organization of this paper is as follows. In Section 2, we recall the Hochschild
homology and cohomology. Section 3 gives a fundamental definition and facts on
cubical singular chain complexes. Section 4 concentrates on the proof of Theorem 1.1.
In Section 5, we prove the main result. Moreover, fundamental facts on rational
homotopy theory and a proof of Corollary 1.3 are presented. Noncommutativity for
H�.Lf Y IQ/ is described in Section 6.

2 Hochschild homology and cohomology

We begin with the definition of the Hochschild chain complex. Let .A; d/ be a
differential graded algebra over a field k with augmentation "W A! k and xAD Ker "
an augmentation ideal of A. Denote by s xA the suspension of xA, that is .s xA/nD xAnC1

and T .s xA/ the tensor algebra on s xA. The two-sided normalized bar construction is
the complex

xB.AIAIA/DA˝T .s xA/˝A

with the differential dxB D d1C d2 defined by

d1.aŒa1ja2j � � � jak �b/D d.a/Œa1ja2j � � � jak �b�

kX
iD1

.�1/"i aŒa1ja2j � � � jd.ai/j � � � jak �b

C .�1/"kC1aŒa1ja2j � � � jak �d.b/;

d2.aŒa1ja2j � � � jak �b/D.�1/jajaa1Œa2j � � � jak �bC

kX
iD2

.�1/"i aŒa1j � � � jai�1ai j � � � jak �b

� .�1/"k aŒa1ja2j � � � jak�1�akb:

Here "iDjajC
P

j<i jsaj j and an element a˝.sa1˝sa2˝� � �˝sak/˝b in xB.AIAIA/
is denoted by aŒa1ja2j � � � jak �b . We denote xBn.AIAIA/ by A˝ .s xA/˝n˝A for
n� 0.

Let Aop be the opposite graded algebra of A and Ae D A˝Aop . Recall that any
A–bimodule can be considered as a left (or right) Ae –module.
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Lemma 2.1 [5, Lemma 4.3] The left Ae –module map

"AW xB.AIAIA/!A

defined by "A.Œ �/D 1 and "A.Œa1ja2j � � � jak �/D 0 for k > 0 is a semifree resolution
of A as a left Ae –module.

Let .M; dM / be a differential graded A–bimodule, that is also a right Ae –module.
The Hochschild chain complex of A with coefficient in M is the complex

C�.AIM /D .M ˝Ae xB.AIAIA/;D D dM ˝ 1C 1˝ dxB/:

The homology of C�.AIM / is denoted by HH�.AIM / called the Hochschild homol-
ogy. Similarly, the Hochschild cochain complex of A with coefficient in M is the
complex

C �.AIM /D .HomAe .xB.AIAIA/;M /;D0/;

where D0.'/ D dM ı ' � .�1/j'j' ı dxB for ' 2 HomAe .xB.AIAIA/;M / and the
Hochschild cohomology is the homology of C �.AIM /, written by HH�.AIM /.

3 Cubical singular chain complex

Let In D Œ0; 1�n be the n times product of the closed unit interval, Œ0; 1�. An n–cube
in a topological space Z is a continuous map In! Z . An n–cube � W In! Z is
degenerate if there exist a integer i , 1 � i � n, and an .n�1/–cube � 0W In�1! Z

such that �.t1; t2; : : : ; tn/D � 0.t1; : : : ; ti�1; tiC1; : : : ; tn/ for any .t1; t2; : : : ; tn/ 2 In .
Note that all 0–cube are nondegenerate. We denote by Cn.ZIk/ the free k–module
generated by the set of all nondegenerate n–cubes in Z . We define the map

�"i W I
n�1
�! In

I .t1; t2; : : : ; tn�1/ 7�! .t1; : : : ; ti�1; "; ti ; : : : ; tn�1/

for " D 0; 1 and 1 � i � n. Let @ D
Pn

iD1.�
0�
i � �

1�
i /W Cn.ZIk/! Cn�1.ZIk/.

Then @ is a well-defined differential of C�.ZIk/ (see Massey [15, page 13]) and
the chain complex .C�.ZIk/; @/ is called the cubical singular chain complex of Z .
The cubical singular cochain complex of Z over k is the complex C n.ZIk/ D
Hom�n

k .C�.Z/;k/: The differential d W C n�1.ZIk/!C n.ZIk/ is defined by d.'/D

'@ for ' 2 C n�1.ZIk/.

Remark 3.1 We see that the cubical singular chain complex C�.ZIk/ is quasi-
isomorphic to the singular chain complex S�.ZIk/ by the method of acyclic models
of Selick [18, Theorem 5.2.3’].
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The Alexander–Whitney map and the Eilenberg–Zilber map are also defined in cubical
singular chain complexes [15, pages 133, 137]. The Eilenberg–Zilber map

EZW Cn.Z1Ik/˝Cm.Z2Ik/ �! CnCm.Z1 �Z2Ik/

is defined by EZ.'˝ / D ' � where ' (resp.  ) is an n (resp. m)–cube. The
Alexander–Whitney map is defined as follows. Let J be any subset of f1; 2; : : : ; nCmg

and J c be the complementary subset of J . If J D fj1; j2; : : : ; jlg, then denote
�"

J
D �"j1

�"j2
� � ��"jl

. For any .nCm/–cube � W InCm ! Z1 �Z2 , we define a map
AWW CnCm.Z1 �Z2Ik/! .C�.Z1Ik/˝C�.Z2Ik//nCm by

AW.�/D
X

J

.�1/".J /.pr1 ��
0
J c /˝ .pr2 ��

1
J / 2 .C�.Z1Ik/˝C�.Z2Ik//nCm

where pri W Z1 � Z2 ! Zi is the projection and ".J / is the cardinal number of
the set f.i; j / 2 J � J c j j < ig. We can see that EZ and AW are chain maps;
see [15, pages 133, 138].

In the rest of this section, we recall the map called the integration map or the slant
product. Let � 2 Cq.Z1Ik/, then define a map

R
� W C

nCq.Z1 �Z2Ik/! C n.Z2Ik/
by .

R
� .x//.'/D x.� �'/ for any ' 2 Cn.Z2Ik/. The equality

(3-1) d
�Z
�

x
�
D .�1/q

�Z
�

dx�

Z
@�

x
�

is easily seen as follows:�Z
�

dx
�
.'/D dx.� �'/D x.@� �'/C .�1/qx.� � @'/

D

�Z
@�

x
�
.'/C .�1/qd

�Z
�

x
�
.'/:

We note that the Equation (3-1) is a particular version of Stokes’ theorem.

4 Proof of Theorem 1.1

In this section, we denote C �.�Ik/ by C �.�/ for convenience. We begin recalling the
C �.Y /–bimodule structure on C �.X / defined for � 2C �.X / and ! , !0 2C �.Y / by

!0 � � �! D f �2 .!
0/�f �1 .!/:

Let �nD f.t1; t2; : : : ; tn/ 2Rn j 0� t1 � t2 � � � � � tn � 1g be the standard n–simplex
and �nW I

n!�n be a nondegenerate cubical chain defined by

�n.t1; t2; : : : ; tn/D .x1;x2; : : : ;xn/; xi D 1� t1t2 � � � ti :
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We now consider a map ˛k W �
k �P .Y If1; f2/ �!X �Y �k defined by

˛k..t1; t2; : : : ; tk/;  /D .�. /;  .t1/;  .t2/; : : : ;  .tk//:

Then we obtain the following composition map ‚n
X

‚n
X
W C �.X /˝C�.Y /e

xBn.C
�.Y /IC �.Y /IC �.Y //

sn // C �.X /˝C �.Y /˝n

AW // C �.X �Y �n/

R
�n
˛�n // C �.P .Y If1; f2//;

where sn.�˝!Œ!1j!2j � � � j!n�!
0/D .�1/%!0�!˝!1˝!2˝ � � �˝!n;

%D j!0j.j�jC j!jC

nX
jD0

js!j j/C

n�1X
jD0

jX
iD1

.j�jC js!i j/;

and put ‚X D
P

n�0‚
n
X
W C�.C

�.Y /IC �.X //!C �.P .Y If1; f2//. Essentially, the
map ‚X is the map in Félix, Oprea and Tanré [7, Theorem 9.64] which is defined
using iterated integrals.

Lemma 4.1 The map ‚X is a chain map.

Proof The Equation (3-1) enables us to give

d‚n
X D .�1/n

Z
�n

d˛�n AW sn� .�1/n
Z
@�n

˛�n AW sn

D .�1/n
Z
�n

˛�n AW dsnC .�1/nC1

Z
�n�1

˛�n�1 AW ısn;

where the map ıW C �.X /˝C �.Y /˝n! C �.X /˝C �.Y /˝.n�1/ is defined by

ı.�˝!1˝ � � �˝!n/D �f
�

1 .!1/˝!2˝ � � �˝!n

C

nX
iD2

.�1/i�1�˝!1˝ � � �˝!i�1!i ˝ � � �˝!n

C .�1/j!nj.j�jC
Pn�1

iD1 j!i j/Cnf �2 .!n/�˝!1˝ � � �˝!n�1:

A straightforward calculation shows .�1/ndsnD sn.d˝1C1˝d1/ and .�1/n�1ısnD

sn�1.1˝ d2/. We hence have d‚X D‚X D .

Let �W .T V; d/!C �.Y / be a minimal free associative model for C �.Y / [11], that is,
T V is a tensor algebra over k, � is a quasi-isomorphism of differential graded algebras,
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V DfV pgp�2 , each V p is finite dimensional and d is decomposable; d.V /�T �2V .
Since the map

C�.�IC
�.X //W C�.T V IC �.X //! C�.C

�.Y /IC �.X //

is a quasi-isomorphism by [5, Proposition 2.4], it is only necessary to show that the
composition map ‚X ıC�.�IC

�.X // is a quasi-isomorphism to prove Theorem 1.1.
We put x‚X D‚X ıC�.�IC

�.X //:

We begin with the Hochschild chain complex C�.T V IC �.X // and filter it by

Fp
D C�p.X /˝.T V /e

xB.T V IT V IT V /:

Lemma 4.2 The spectral sequence associated the above filtration, denote by .Er ; dr /,
satisfy E

p;q
2
ŠH p.X /˝HHq.T V Ik/ as k–vector spaces.

Proof Recall that there is an isomorphism as follows:

E
p;q
0
D

.Fp/pCq

.FpC1/pCq
Š C p.X /˝ .k˝.T V /e

xB.T V;T V;T V /q/

D C p.X /˝Cq.T V Ik/;

�˝!Œ!1j � � � j!n�!
0
7�!.�1/j!

0j.j�jCj!jC
P

i js!i j/!0�!˝ .1˝ Œ!1j � � � j!n�/:

If the degrees of ! or !0 are not zero, then �˝!Œ!1j � � � j!n�!
0 is zero in E

p;q
0

. It fol-
lows that the above correspondence is one-to-one. The differential d0W E

p;q
0
!E

p;qC1
0

is the induced map of the differential of the Hochschild chain complex C�.T V IC �.X //.
Since T V 0 D 0, we have d0 D 1˝D where D is the differential of C�.T V Ik/ and
so E

p;q
1
Š C p.X /˝HHq.T V Ik/. The differential d1 is defined by

d1W E
p;q
1
DH pCq.Fp=FpC1/

@�

�!H pCqC1.FpC1/

��
�!H pCqC1.FpC1=FpC2/DE

pC1;q
1

where @� is the connecting homomorphism and � W FpC1 ! FpC1=FpC2 is the
quotient map. For any

P
� ˝ Œ!1j!2j � � � j!k � 2H pCq.Fp=FpC1/, we have

d1

�X
� ˝ Œ!1j!2j � � � j!k �

�
D

X
d.�/˝ Œ!1j!2j � � � j!k �

since T V 0 D 0 and T V 1 D 0. Therefore, we conclude that d1 D @˝ 1 and it means
that E

p;q
2
ŠH p.X /˝HHq.T V Ik/.
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We next recall the Serre spectral sequence associated to the fibration �W P.Y If1;f2/!X .
For any nondegenerate p–cube � W Ip!X , a .qCp/–cube x� W Iq�Ip!P .Y If1; f2/

is a fibered q–cube over � if the diagram

Iq � Ip x� //

pr2

��

P .Y If1; f2/

�

��
Ip

�
// X

is commutative. Denote by zFp the subcomplex of C�.P .Y If1; f2// generated by
nondegenerate cubes fibered by some � 2 C�p.X / and put

(4-1) zFp
D f' 2 C �.P .Y If1; f2// j 'j zFp�1

D 0g:

Then, we get a spectral sequence, written by . zEr ; zdr /, associated to the filtration which
is called the Serre spectral sequence.

Proposition 4.3 [19, Chapter II 8, Proposition 6] There is an isomorphism of k–
vector space

zE
p;q
2
ŠH p.X /˝H q.�Y /:

Lemma 4.4 The map x‚X is filtration preserving. Moreover, the morphism of spectral
sequences induced by x‚X is of the form

1˝H.x‚pt/
˙
W E

p;n�p
2

�! zE
p;n�p
2

at the 2–terms. Here, pt is the one point space and the map H.x‚pt/
˙ from HH�.T V Ik/

to H�.�Y / is defined by

H.x‚pt/
˙.Œ!1j!2j � � � j!k �/D .�1/p.kCn�p/H.x‚pt/.Œ!1j!2j � � � j!k �/:

Proof Given �˝ Œ!1j!2j � � � j!k � 2 Fp and n–cube x� W In! P .Y If1; f2/ in zFp�1

where nD j�jC
P

i j!i j � k . By the definition of zFp�1 , there exists a nondegenerate
m–cube � .m< n/ such that the following square commutes:

In�m � Im x� //

pr2

��

P .Y If1; f2/

�

��
Im

�
// X:

Then, we have

x‚X .�˝ Œ!1j!2j � � � j!k �/.x�/D .�˝�.!1/˝�.!2/˝� � �˝�.!k//AW.˛k.�k � x�//:
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It is only necessary to show AW.˛k.�k �x�//D 0 in Cj�j.X /˝
N

i Cj!i j
.Y /. We may

write
AW.˛k.�k � x�//D

X
˙ ˝ 1˝ 2˝ � � �˝ k

where  is a j�j–cube in X and  i is a j!i j–cube in Y . By the definition of the
Alexander–Whitney map, there is a subset J Dfj1<j2< � � �<jj�jg of f1; 2; : : : ; nCkg

such that the diagram is commutative:

Ik � In
�k�x� // �k �P .Y If1; f2/

˛k // X �Y �k

pr1

��
I j�j

�0
Jc

OO

 

// X:

We put �0
J c .t/D ..u1;u2; : : : ;uk/; .ukC1;ukC2;ukCn// 2 Ik � In for any t 2 I j�j .

If .u1;u2; : : : ;uk/¤ 0 for some t , we see that  is a degenerate cube by the commu-
tativity of the above diagram. Hence,  D 0 in Cj�j.X /. If .u1;u2; : : : ;uk/D 0 for
any t , that is the composition map

j W I j�j Ik � In In
�0

Jc //
pr2 //

is the inclusion, then we see the commutativity of the diagram

(4-2)
I j�j In�m � Im Im X:

 

))

j
//

pr2

//
�

//

Since m � p � 1 < p � j�j,  is a degenerate cube. Therefore, we conclude that
AW.˛k.�k � x�//D 0. This finishes a proof of the first assertion.

Recall that E
p;q
0
Š C p.X /˝Cq.T V;k/ and zEp;n�p

0
Š Homk.. zFp/

n=. zFp�1/
n;k/.

We consider the case j�j D p and x� 2 . zFp/
n=. zFp�1/

n , that means the � is a p–cube.
Then, the diagram (4-2) shows that  D � . Therefore we have

AW.˛k.�k � x�//D � ˝ .�1/p.kCn�p/ AW.˛k.�k � x� jI n�p //:

in Cj�j.X /˝
N

i Cj!i j
.Y / where the sign .�1/p.kCn�p/ is appeared by the Alexander–

Whitney map and so

x‚X .�˝ Œ!1j!2j � � � j!k �/.x�/D �.�/˝ .�1/p.kCn�p/ x‚pt.Œ!1j!2j � � � j!k �/.x� jI n�p /:

The equality shows the second assertion.

Before proving Theorem 1.1, we recall the following theorem.
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Theorem 4.5 (McCleary [16, Theorem 3.26]) Let Er and zEr be first quadrant
spectral sequences of cohomological type over a field k and �r W Er !

zEr a morphism
of spectral sequences such that E

p;q
2
D E

p;0
2
˝ E

0;q
2

, zEp;q D zEp;0 ˝ zE0;q and
�

p;q
2
D �

p;0
2
˝�

0;q
2

. Then any two of the following conditions imply the third:

(1) �
p;0
2
W E

p;0
2
�! zE

p;0
2

is an isomorphism for all p .

(2) �
0;q
2
W E

0;q
2
�! zE

0;q
2

is an isomorphism for all q .

(3) �
p;q
1 W E

p;q
1 �! zE

p;q
1 is an isomorphism for all p , q .

Proof of Theorem 1.1 Since the both spectral sequences Er and zEr are strong
convergent, by [16, Theorem 3.9], it is only enough to show that H.x‚pt/

˙ is an
isomorphism to prove the theorem. We consider the following pullback diagram

P .Y I 1Y ; c�/ map.I;Y /

Y Y �Y;

//

�
��

.1Y ;c�/

//

.p0;p1/��

where c�W Y ! Y is the constant map to the base point. The space P .Y I 1Y ; c�/ is
contractible, we see that H�.P .Y I 1Y ; c�//Š k. On the other hand, when the C �.Y /–
bimodule structure on C �.Y / is defined by !0 � � � ! D c��.!

0/�! , the Hochschild
homology HH�.C �.Y /IC �.Y // is k. In effect, we now note that any element �˝
!Œ!1j!2j � � � j!k �!

0 in C�.C
�.Y /IC �.Y // is zero if j!0j > 0 since c��.!

0/D 0 and
so assume that j!0j D 0, that is c��.!

0/ 2 k. Define a map

hW C�.C
�.Y /IC �.Y //! C�.C

�.Y /IC �.Y //

h.�˝!Œ!1j!2j � � � j!k �!
0/D

(
0 j�j D j!j D 0;

1˝1Œc��.!
0/�!j!1j!2j���j!k �1 otherwise:

by

An easy calculation gives us the equation DhChDD 1, where D is the differential of
C�.C

�.Y /IC �.Y //. Hence, we have HH�.C �.Y /IC �.Y //Š k and, by Theorem 4.5,
the map H.x‚pt/

˙ is an isomorphism.

5 Main result

Let .A; d/ and .M; d/ be differential graded algebras and �W A!M a differential
graded algebra map. We here recall the complex of �–derivations from A to M ,
Der�.A;M I �/. An element � in Dern.A;M I �/ is a k–linear map of degree n
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with �.xy/D �.x/�.y/C .�1/njxj�.x/�.y/. The differentials ıW Der�.A;M I �/!
Der�C1.A;M I �/ send � to d� � .�1/j� j�d . Then we have the natural map

J1W Dern.A;M I �/ �! C nC1.AIM /

J1.�/.Œ!1j!2j � � � j!k �/D

(
.�1/j� j�.!1/ k D 1;

0 k � 2; k D 0;

and it is readily seen that J1 is a cochain map of degree 1, that is, J1D D�ıJ1 .

Suppose that X is a k-Poincaré duality space of formal dimension d ; that is, the
space X is equipped with a fundamental class ŒX � 2Hd .X / such that the cap product

�\ ŒX �W H�.X / �!Hd��.X /

is an isomorphism. We also denote by ŒX � 2 Cd .X / the representative element of
ŒX � 2 Hd .X /. By dualizing Theorem 1.1, we obtain the isomorphism of k–vector
space

ˆX W H�.Lf Y / H�.Lf Y /_ HH�.T V IC �.X //_;
Š // H .x‚X /

_

//

where .�/_ D Homk.�;k/ is the graded dual space. Let "W C�.X / �! C �.X /_ be
the evaluation map; ".�/.!/D .�1/j� j!.�/ for � 2C�.X / and ! 2C �.X /. We here
remark that the evaluation map " is not a chain map by the definition of the differentials
of C �.X /. However, " induces the map H.C�.X //!H.C �.X /_/ in homology and
the induced map is an isomorphism.

For simplicity we denote by xB.C �.X // the two-sided normalized bar construction
xB.C �.X /IC �.X /IC �.X //. In [9], Félix, Thomas and Vigué-Poirrier proved that the
map of C �.X /–bimodules with degree �d

�"ŒX �W xB.C �.X // �! C �.X /_

defined by �"ŒX �.!Œ �!0/D ".!!0\ ŒX �/ and �"ŒX �.!Œ!1j!2j � � � j!k �!
0/D 0 for k > 0

is a quasi-isomorphism [9, Theorem 12]. Here the C �.X /–bimodule structure on
C �.X /_ is defined by

.!1 �' �!2/.!/D .�1/j!1jj'j'.!1!2!/

for !;!i 2 C �.X / and ' 2 C �.X /_ . Therefore, by [5, Proposition 2.4], we have the
isomorphism

‰X W HH�.T V IC �.X // HH�.T V I xB.C �.X ///

HH��d .T V IC �.X /_/

HH��Cd .T V IC �.X //_

HH.T V I"C�.X//
�1

//

HH.T V I�"ŒX �/ //

�� //
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where �� the induced map of the isomorphism of complexes

�W Hom.T V /e .xB.T V /;C �.X /_/ �! Hom.C �.X /˝.T V /e
xB.T V /;k/

defined by �.'/.!˝ �/D .�1/j� jj!j'.�/.!/ for � 2 xB.T V / and ! 2 C �.X /.

Now we define the map for any n� 2

‚1W �n.map.X;Y If //˝k �!H�n.Der�.T V;C �.X /If � ı �//

by ‚1.˛/.x/ D .�1/njxj
R
ŒSn�.C

�.x̨/�.x// for any ˛ 2 �n.map.X;Y If //˝ k and
x 2 T V , where x̨W Sn � X ! Y is the adjoint of ˛ and ŒSn� 2 Cn.S

n/ be the
fundamental class defined by

ŒSn�W In
! In=@In

Š Sn; .t1; t2; : : : ; tn/ 7�! Œ1� t1; 1� t2; : : : ; 1� tn�:

A straightforward calculation shows that ‚1.˛/ is a .f � ı �/–derivation. If two maps
x̨ and x̌W Sn�X ! Y are homotopic, then we have

R
ŒSn� C

�.x̨/��
R
ŒSn� C

�. x̌/�D

ı.
R
ŒSn�

R
idI

C �.H /�/ where idI 2C1.I/ is the identity map and H W I �Sn�X ! Y

is a homotopy from x̨ to x̌. Hence, ‚1 is a well-defined map. In addition, the map ‚1

is a homomorphism. Indeed, for any ˛ and ˇ in �n.map.X;Y If //˝ k, the adjoint
of the sum ˛Cˇ 2 �n.map.X;Y If //˝k is the composite map

Sn �X .Sn _Sn/�X Y
�0�1 // .x̨j x̌/ //

where �0W Sn ! Sn _ Sn is the pinching map and .x̨j x̌/ is a map defined by
.x̨j x̌/..u;�/;x/ D x̨.u;x/ and .x̨j x̌/..�;u/;x/ D x̌.u;x/ for u 2 Sn and x 2 X .
Then, we see that the following diagram is commutative:

.C�.S
n/˝C�.X // C�.S

n _Sn/˝C�.X /

C�..S
n _Sn/�X /;C�.Y /

.C�.i1/CC�.i2//˝1//

EZ
��

C�.x̨j x̌/

oo

C�.x̨/CC�. x̌/

��

where i1 and i2W S
n ! Sn _ Sn are the inclusions on the first and second factors

respectively. A commutativity of the diagram shows that C �.x̨j x̌/D C �.x̨/CC �. x̌/

and hence the map ‚1 is a homomorphism.
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Proof of Theorem 1.2 We consider the following diagram:

(5-1)

Hn�1Cd .Lf Y Ik/ HHn�1Cd .T V IC �.X //_ HH�nC1.T V IC �.X //

�n.map.X;Y If //˝k H�n.Der�.T V;C �.X /If �ı�//.

ˆX// ‰Xoo

�1

OO

J �
1

OO

‚1

//

Given ˛ 2 �n.map.X;Y If //˝k. By the definition of �1 ,

�1.˛/DHn�1Cd .g.˛
0
� 1X //.EZ.ŒSn�1�˝ ŒX �//

where ˛0W Sn�1!�map.X;Y If / is the adjoint map of ˛ , and denote

1.˛/D Cn�1Cd .g.˛
0
� 1X //.EZ.ŒSn�1�˝ ŒX �// 2 Cn�1Cd .Lf Y /

by the representative element of �1.˛/. For any element � ˝ Œ!1j!2j � � � j!k � in
Cn�1Cd .T V IC �.X //, we have

.ˆX�1/.˛/.�˝ Œ!1j!2j � � � j!k �/

D˙..�˝ �!1˝ �!2˝ � � �˝ �!k/ ıAW ı˛k�/.EZ.�k ˝ 1.˛///:

We may write

.AW ı˛k�/.EZ.�k ˝ 1.˛///D
X
˙ ˝ 1˝ 2˝ � � �˝ k

where  is a j�j–cube in X and  i is a j!i j–cube in Y . If k � 2, it is readily seen
that some  i are degenerate, that is .ˆX�1/.˛/.�˝ Œ!1j!2j � � � j!k �/D 0: If k D 1,
we see that

˛1�.EZ.�1˝ 1.˛///D
X

nx�x :

Here, we may write ŒX �D
P
ŒX � nxx 2 Cd .X / some nx 2 k and xW Id !X . Then,

.nCd/–cube, �x is the compositions

�x W I � In�1 � Id �1 �Sn�1 �X X �Y:
�1�ŒS

n�1��x // ˛1.1�g.˛0�1// //

Then, AW.�x/D
X

J�f1;2;:::;nCdg;
#JDj�j

.�1/".J /�x1�
0
J c ˝ �x2�

"
J

where #J is the cardinal number of J and �xi is the composition of the projec-
tion pri and �x . If there is i 2 J such that i < n, then �x1�

0
J c is degenerate since
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�x1W I � In�1 � Id !X depends only on Id . Hence,

AW.�x/D
X

J�f1;2;:::;nCdg;
#JDj�j; min J�n

.�1/".J /�x1�
0
J c ˝ �x2�

"
J

and so

.ˆX�1/.˛/.�˝ Œ!1�/

D .�1/j�j.�˝ �.!1//AW
�X
ŒX �

nx�x

�
D .�1/j�jCj�jj!1j

X
ŒX �

X
J�f1;2;:::;nCdg;
#JDj�j; min J�n

.�1/".J /nx

�
�.�x1�

0
J c /

��
�.!1/.�x2�

"
J /
�
:

On the other hand, .‰X J�
1
‚1/.˛/.�˝ Œ!1j!2j � � � j!k �/D 0 for k � 2 and k D 0 by

the definition of J1 , and

.‰X J�1‚1/.˛/.�˝ Œ!1�/

D .�1/j�jjs!1j".J�1‚1.˛/.Œ!1�/\ ŒX �/.�/

D .�1/j�jjs!1jCj�j�.J�1‚1.˛/.Œ!1�/\ ŒX �/

D .�1/j�jjs!1jCj�jCn�
�
‚1.˛/.!1/\ ŒX �

�
D .�1/j�jjs!1jCj�jCnCnj!1j�

�Z
ŒSn�

C �.x̨/�.!1/\ ŒX �

�
D .�1/j�jjs!1jCj�jCnCnj!1jCj�j.d�j�j/

�

X
ŒX �

X
J�f1;2;:::;dg;

#JDj�j

.�1/".J /nx

�
�.x�0

J c /
��Z

ŒSn�

C �.x̨/�.!1/.x�
1
J /

�

D .�1/j�jjs!1jCndC.nCd/j�j

�

X
ŒX �

X
J�f1;2;:::;nCdg;
JDj�j; min J�n

.�1/".J /Cnj�jnx

�
�.�x1�

0
J c /

��
�.!1/.x̨.ŒS

n��x/�1
J /
�
:

Since �.!1/.�x2�
1
J
/D �.!1/.x̨.ŒS

n��x/�1
J
/, we have

.ˆX�1/.˛/.�˝ Œ!1�/D .�1/ndCd j�j.‰X J�1‚1/.˛/.�˝ Œ!1�/:

If d is even, then the diagram (5-1) is commutative. We consider the case that
d is odd. When we define ‰X , we replace �"ŒX � with the map of degree �d ,
z�"ŒX �W xB.C �.X // �! C �.X /_ defined by z�"ŒX �.!Œ �!0/ D .�1/j!!

0j".!!0 \ ŒX �/

and z�"ŒX �.!Œ!1j!2j � � � j!k �!
0/D 0 for k> 0. Also z�"ŒX � is a quasi-isomorphism and
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similar calculation described above enable us to get the equation

.ˆX�1/.˛/.�˝ Œ!1�/D .�1/ndCdC.dC1/j�j.‰X J�1‚1/.˛/.�˝ Œ!1�/:

That is, the diagram (5-1) is commutative up to sign, completing the proof.

We here recall a minimal Sullivan model for a simply connected space X with fi-
nite type. It is a free commutative differential graded algebra over Q of the form
.ƒV; d/ with V D

L
i�2 V i where each V i is of finite dimension and d is de-

composable; that is, d.V / � ƒ�2V . Moreover, .ƒV; d/ is equipped with a quasi-
isomorphism .ƒV; d/

'
! APL.X / to the commutative differential graded algebra

APL.X / of differential polynomial forms on X [6, Section 12]. Observe that, as
algebras, H�.ƒV; d/ŠH�.APL.X //ŠH�.X IQ/. Let f W X!Y be a map between
spaces of finite type. Then there exists a commutative differential graded algebra map zf
from a minimal Sullivan model .ƒVY ; d/ for Y to a minimal Sullivan model .ƒVX ; d/

for X which makes the diagram

APL.Y /
APL.f / // APL.X /

ƒVY

'

OO

zf // ƒVX

'

OO

commutative up to homotopy. We call zf a Sullivan model for f .

Proposition 5.1 Let ƒVX and ƒVY be a minimal Sullivan model for X and Y ,
respectively, and zf a Sullivan model for f . Then, the cochain map

J1W Der�.ƒVY ; ƒVX I
zf / �! C �C1.ƒVY IƒVX /

is injective in homology.

For giving a proof of Proposition 5.1, we introduce a semifree resolution of ƒVY

as a left ƒVY ˝ ƒVY –module that is different from the two-sided bar resolution
and give some lemmas. We consider the commutative differential graded algebra
ƒVY ˝ƒVY ˝ƒ.sVY / with the differential d defined by

d.v˝ 1˝x1/D dv˝ 1˝x1; d.1˝ v˝x1/D 1˝ dv˝x1;

d.1˝ 1˝ sv/D .v˝ 1� 1˝ v/˝x1�

1X
iD1

.sd/i

i !
.v˝ 1˝x1/:

Here x1 is the unit of ƒ.sVY /, and s is the unique degree �1 derivation of the algebra
ƒVY ˝ƒVY ˝ƒ.sVY / defined by

s.v˝ 1˝x1/D 1˝ 1˝ sv D s.1˝ v˝x1/; s.1˝ 1˝ sv/D 0:
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By [6, Section 15 Example 1], the map

� � x"W ƒVY ˝ƒVY ˝ƒ.sVY / �!ƒVY

is a semifree resolution of ƒVY as a left ƒVY ˝ ƒVY –module, where � is the
product of ƒVY and x" is the canonical augmentation of ƒ.sVY /. Since the map
"ƒVY

W xB.ƒVY ; ƒVY ; ƒVY /!ƒVY is a surjective quasi-isomorphism, by [6, Propo-
sition 14.6], there exists a differential graded algebra map � such that the following
diagram is commutative:

ƒVY ˝ƒVY xB.ƒVY ; ƒVY ; ƒVY /

ƒVY ˝ƒVY ˝ƒ.sVY / ƒVY :

� � //
� _

��
"ƒVY

����x" //

�
22

A commutativity of the diagram shows that the map � is a quasi-isomorphism. We now
recall a construction of � . For any basis element v 2 VY , we put �.v˝1˝x1/D v Œ � 1

and �.1˝v˝x1/D 1 Œ � v . By induction on degree of VY , we construct �.1˝1˝ sv/.
For any v0 2 V such that dv0 D 0, we defined �.1˝ 1˝ sv0/ D 1 Œv0� 1. Assume
that � is defined in ƒVY ˝ƒVY ˝ƒ.sV

�jvj
Y

/ for some basis element v 2 V , that is,
�d.1˝ 1˝ sv/ is also defined. Since "ƒVY

is a quasi-isomorphism, the equation

"ƒVY
�d.1˝ 1˝ sv/D .� � x"/d.1˝ 1˝ sv/D 0D "ƒVY

d.1 Œv� 1/

shows that there is ˇ2 xB.ƒVY ; ƒVY ; ƒVY / such that �d.1˝1˝sv/�d.1 Œv� 1/Ddˇ .
Then, we put �.1˝ 1˝ sv/D 1 Œv� 1Cˇ . The above construction of � and the differ-
ential of ƒVY ˝ƒVY ˝ƒ.sVY / establishes that dˇ has no term of the form x Œ �x0 ,
that is, ˇ does not have terms of the form x Œ!�x0 . So we have the following lemma.

Lemma 5.2 There is a quasi-isomorphism

�W ƒVY ˝ƒVY ˝ƒ.sVY /! xB.ƒVY ; ƒVY ; ƒVY /

of ƒVY ˝ƒVY –modules such that the following diagram is commutative

ƒVY ˝ƒVY ˝ƒ.sVY / xB.ƒVY ; ƒVY ; ƒVY /

sVY sƒVY ;

� //

"�"�pr
��

"�pr0 �"
��

� � //

where "W ƒVY ! Q is the canonical augmentation and prW ƒ.sVY / ! sVY and
pr0W T .sƒVY /! sƒV are the canonical projections.
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Consider the canonical isomorphism

�W HomƒVY˝ƒVY
.ƒVY ˝ƒVY ˝ƒ.sVY /;ƒVX / �! HomQ.ƒ.sVY /;ƒVX /:

and define xD D �D��1 , where D is the differential of

HomƒVY˝ƒVY
.ƒVY ˝ƒVY ˝ƒ.sVY /;ƒVX /:

Then, for  2 HomQ.ƒ.sVY /;ƒVX / and sv1sv2 � � � svp 2ƒ.sVY /,

xD. /.sv1sv2 � � � svp/D d .sv1sv2 � � � svp/

C .�1/j j
pX

iD1

X
vi

pX
kD1

˙!i1
� � �!ik�1

!ikC1
� � �!ip .sv1 � � � svi�1s!ik

sviC1 � � � svp/;

where dvi D
P
vi
!i1
!i2
� � �!ip and the sign ˙ is the Koszul sign convention. In fact,

for example p D 1 and v D v1 2 V with dv D
P
v !1 � � �!p ,

xD. /.sv/D d��1. /.1˝ 1˝ sv/� .�1/j j��1. /d.1˝ 1˝ sv/

D d .sv/C .�1/j j��1. /

� 1X
iD1

.sd/i

i !
.v˝ 1˝x1/

�
D d .sv/C .�1/j j

X
v

pX
jD1

˙!1 � � �!j�1!jC1 � � �!p .s!j /

C ��1. /

� 1X
iD2

.sd/i

i !
.v˝ 1˝x1/

�
:

An induction on the degree of v gives that ��1. /..sd/2.v˝ 1˝x1//D 0. Therefore,
we see that HomQ.ƒ.sVY /;ƒVX / decomposes into a direct sum of complexes

(5-2) .HomQ.ƒ.sVY /;ƒVX /; xD/D
M
p�0

.HomQ.ƒ
p.sVY /;ƒVX /; xD/:

Note that the decomposition is a Hochschild cohomology version of Vigué’s work [20].

Proof of Proposition 5.1 By Lemma 5.2, the following diagram of complexes is
commutative:

C �.ƒVY ; ƒVX /
��� // Hom�Q.ƒ.sVY /;ƒVX /

Der��1.ƒVY ; ƒVX I
zf /

�1 //

J1

OO

Hom�Q.sVY ; ƒVX /;
?�

OO

where �1 is the canonical degree 1 isomorphism of complexes defined by �1.�/.sv/D
.�1/j� j�.v/ for � 2Der��1.ƒVY ; ƒVX I

zf / and v2VY . Therefore, the decomposition
(5-2) shows that J1 is injective in homology.
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Before proving Corollary 1.3, we recall the definition of the isomorphism

ˆW �n.map.X;Y If //˝Q!H�n.Der�.ƒVY ; ƒVX I
zf //

defined by [1; 14]. Let ˛ 2�n.map.X;Y If //˝Q and gW Sn�X ! Y be the adjoint
of ˛ . Denote by zgW ƒVX !ƒVSn˝ƒVY a Sullivan model for g . Since Sn is formal,
there is a quasi-isomorphism �W ƒVSn ! .H�.SnIQ/; 0/ and, for any v 2ƒV , we
may write

.�˝ 1/zg.v/D 1˝ zf .v/C en˝ v
0:

Then we put ˆ.˛/.v/D v0 .

Proof of Corollary 1.3 By the definition of ‚1 and ˆ, we have the following
commutative diagram:

HH�nC1.T V IC �.X // HH�nC1.ƒVY IƒVX /

H�n Der�.T V;C �.X /If � ı �/ H�n.Der�.ƒVY ; ƒVX I
zf //

�n.map.X;Y If //˝Q;

Š //

J �
1

OO

J �
1

OO

‚1

ii

ˆ

55

where the isomorphism at the top of the above diagram is the map induced by chains
of natural quasi-isomorphisms [6, Corollary 10.10]

T V
'
�! C �.Y /

'
�! � � �

'
 �APL.Y /

'
 �ƒVY ;

C �.X /
'
�! � � �

'
 �APL.X /

'
 �ƒVX :

Since ˆ is an isomorphism, the commutativity of (5-1) and Proposition 5.1 show the
assertion.

6 Noncommutativity for H�.Lf Y IQ/

We retain the notation described in the section above. Let X be a simply connected
d –dimensional closed oriented manifold, Y a simply connected space with finite type
and f W X ! Y a based space. We see that the shifted homology H�.Lf Y / has a
graded algebra structure by Gruher and Salvatore [10]. As an application for the main
result, we have the following proposition.

Proposition 6.1 If the rational homotopy group ��2.map.X;Y If //˝Q has a non-
trivial Whitehead product, then H�.Lf Y IQ/ is a noncommutative graded algebra.
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Proof By [21, Chapter X, Theorem (7.10)], ��2.map.X;Y If //˝Q has a non-
trivial Whitehead product if and only if there is a nontrivial Samelson product on
��1.�map.X;Y If //˝Q. We denote hˇ1; ˇ2i by the nontrivial Samelson product
for some ˇ1 and ˇ2 . Then, by [21, Chapter X, Theorem (6.3)], we have the equality
h.hˇ1; ˇ2i/Dh.ˇ1/h.ˇ2/�.�1/jˇ1jjˇ2jh.ˇ2/h.ˇ1/, where h is the Hurewicz map. We
note that a graded algebra structure on H�.�map.X;Y If /IQ/ is determined by the H-
space structure on �map.X;Y If /. Since the map gW �map.X;Y If /�X!Lf Y is
a morphism of fiberwise monoids from the projection �map.X;Y If /�X!X to the
map �W Lf Y !X , by [10, Theorem 4.1 (ii)], the map �W H�.�map.X;Y If /IQ/!
H�.Lf Y IQ/ stated in Section 1 is an algebra map. Therefore, we see that

�1.hˇ1; ˇ2i/D �1.ˇ1/�1.ˇ2/� .�1/jˇ1jjˇ2j�1.ˇ2/�1.ˇ1/

and Corollary 1.3 shows that �1.ˇ1/�1.ˇ2/¤ .�1/jˇ1jjˇ2j�1.ˇ2/�1.ˇ1/.

In the rest of this section, we give a example of H�.Lf Y IQ/ which is noncommutative.

Example 6.2 Let CPn be the complex projective space and i W CPn�1 ,!CPn the
inclusion for n�2. Recall that the commutative differential graded algebra M.CPn/ WD

.ƒ.x2;x2nC1/; dx2nC1 D xnC1
2

/ is a minimal Sullivan model for CPn and a map

z{W M.CPn/ �!M.CPn�1/; z{.x2/D x2; z{.x2nC1/D x2x2n�1

is a Sullivan model for i , where the degree of xj is j . By [2, Theorem 2], a z{ –derivation
of degree �3, Œ�; � �, defined by

Œ�; � �W M.CPn/ �!M.CPn�1/; Œ�; � �.x2/D 0; Œ�; � �.x2nC1/D xn�1
2

is a nontrivial Whitehead product of

H�3.Der�.M.CPn/;M.CPn�1/Iz{//Š �3.map.CPn�1;CPn
I i//˝Q;

where � is a z{ –derivation of degree �2 defined by �.x2/D 1 and �.x2nC1/D 0. The
existence of a nonzero Whitehead product in ��.map.CPn�1;CPnI i//˝Q is also
showed by the results of Møller and Raussen [17, Example 3.4]. They proved that
map.CPn�1;CPnI i/ is of the rational homotopy type of S2�S5�S7�� � ��S2nC1 and
the nonzero Whitehead product comes from the S2 factor. Therefore, by Proposition 6.1,
H�.LiCPnIQ/ is a noncommutative algebra.
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