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Free degrees of homeomorphisms on compact surfaces

JIANCHUN WU

XUEZHI ZHAO

For a compact surface M , the free degree fr.M / of homeomorphisms on M is the
minimum positive integer n with property that for any self homeomorphism � of M ,
at least one of the iterates �; �2; : : : ; �n has a fixed point. This is to say fr.M / is the
maximum of least periods among all periodic points of self homeomorphisms on M .
We prove that fr.Fg;b/� 24g� 24 for g � 2 and fr.Ng;b/� 12g� 24 for g � 3 .

55M20; 37E30

1 Background

Let M be a compact surface and � be a self homeomorphism on M . The free degree
fr.�/ of � is the maximum positive integer n such that �1; �2; : : : ; �n�1 are all fixed
point free. For a set S which consists of self homeomorphisms on M , we denote
the free degree of S by fr.S/ D maxffr.�/ j � 2 Sg. We denote the free degree
of all homeomorphisms by fr.M / and the free degree of all orientation preserving
homeomorphisms by frC.M /.

We write Fg for an orientable closed surface of genus g and Ng for a nonorientable
closed surface of genus g (ie a connected sum of g projective planes), write respec-
tively Fg;b and Ng;b for an orientable and nonorientable surface with b boundary
components.

J Nielsen [4] studied frC.Fg/ in the 1940s, showing that

frC.Fg/D

(
2 or 3 if g D 2,

2g� 2 if g > 2.

The exact value frC.F2/D 2 was determined by W Dicks and J Llibre [1] in 1996.

In the 1990s, S Wang [7] obtained results on all homeomorphisms and on nonorientable
closed surfaces. One of his results is

fr.Fg/D

(
4 if g D 2,

2g� 2 if g > 2.
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In this paper, we consider fr.M / when M is a connected compact surface with
boundaries. Our main result is:

Theorem 1.1 For Fg;b and Ng;b orientable and nonorientable genus g surfaces with
b boundary components, the free degrees satisfy:

max
b

fr.Fg;b/

(
D1 if g D 0; 1;

� 24g� 24 if g � 2:

max
b

fr.Ng;b/

(
D1 if g D 1; 2;

� 12g� 24 if g � 3:

This means that for given g , the free degree fr.Fg;b/ and fr.Ng;b/ have an uniform
upper bound which is independent of the number of boundary components.

2 Nielsen fixed point theory

In this section, we shall review some facts in Nielsen fixed point theory; see Jiang [2]
for more details.

Given any self map f W X ! X , the fixed point set of f is divided into a disjoint
union of some subsets, each is said to be a fixed point class of f . A fixed point class
is an isolated fixed point set, and hence has well-defined fixed point index. The sum of
all indices is the Lefschetz number L.f /. The number of essential (nonzero indices)
fixed point class is defined to be the Nielsen number N.f /. One of the key result in
Nielsen fixed point theory is:

Proposition 2.1 (Jiang [2, page 19, 4.7 Theorem]) Let X be a compact polyhedron.
Then, any self-map in the homotopy class of f W X !X has at least N.f / fixed points.

This result refines the Lefschetz fixed point theorem: L.f /¤ 0 implies the fixed point
set of f is nonempty.

Apply these basic properties of this two invariants. We have the following.

Proposition 2.2

fr.f /�minf n jN.f n/ > 0g �minf n jL.f n/¤ 0g:

This proposition is one of main tool in our present paper.
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3 Standard forms of surface homeomorphisms

According to Nielsen–Thurston classification theorem of surface homeomorphisms, any
surface homeomorphism is isotopic to either a periodic, pseudo-Anosov or reducible
one (see Thurston [5]). In this section, we recall the “standard” homeomorphisms
introduced by B Jiang and J Guo [3]. Some adjustments are made for our purpose. The
local behavior at periodic points is addressed.

Let p be a positive integer, k an integer, and � a real number with � > 1. We define

(1) rC
.p;k;�/

: a self map on C given by rC
.p;k;�/

.�e� i/D �e.�C2k�=p/i ;

(2) r�
.p;k;�/

: a self map on C given by r�
.p;k;�/

.�e� i/D �e�.�C2k�=p/i ;

(3) �.p;k;�/ : a self map on C which is the time-one map of the vector field v defined
by v.�e� i/D .2 ln�=p/�e.1�p/� i ;

(4) �0
.p;k;�/

: a self map on C � int.D/ which is the time-one map of the vector

field v0 defined by v0.�e� i/D .2 ln�=p/..��1/e.1�p/� iCe.���=2/i sin.p�//,
where D is the unit disk in complex plane C .

Lemma 3.1 [3, 2.1] Let  be a pseudo-Anosov homeomorphism on a compact
surface F , having stable foliation F s and unstable foliation Fu with dilatation �.
Then there is a smooth atlas U of F , consisting of one chart for each interior singularity,
one chart for each boundary component, and some other charts at regular point, such
that

(1) if ux W .Ux;x/ ! .C; 0/ is the chart for an interior singularity x , then the
prongs of F s are fu�1.�e.m�=p/i/ j �� 0; mD 1; 3; 5; : : : ; 2p�1g, the prongs
of Fu are fu�1.�e.m�=p/i/ j � � 0; m D 0; 2; 4; : : : ; 2p � 2g, and there is a
commutative diagram

Ux;x
 

����! U .x/;  .x/

ux

??y ??yu .x/

C; 0
�

����! C; 0

where � D rC
.p;k;�/

ı �.p;k;�/ or � D r�
.p;k;�/

ı �.p;k;�/ for some nonnegative
integer k (the singularity x is said to be of type .p; k/C or of type .p; k/� ),
and u .x/ is the chart in U for the singularity  .x/;
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(2) if uAW .UA;A/! .C � int.D/; @D/ is the chart for a boundary component A,
then there is a commutative diagra

UA;A
'

����! U .A/;  .A/

uA

??y ??yu .A/

C� int.D/; @D
�

����! C� int.D/; @D

where � D rC
.p;k;�/

ı �0
.p;k;�/

or � D r�
.p;k;�/

ı �0
.p;k;�/

for some nonnegative
integer k (the boundary component A is said to be of type .p; k/C or of type
.p; k/� ), and u .A/ is the chart in U for the boundary component  .A/.

The superscript C or � of the type indicates orientation preserving or reversing.

The local behavior and indices of isolated fixed point sets of a pseudo-Anosov homeo-
morphism are given as follow.

Lemma 3.2 [3, Lemma 2.1] Let  be an orientation-preserving pseudo-Anosov
homeomorphism on a compact surface F with �.F / < 0. Then there is a smooth
atlas U of F satisfying the conclusion of Lemma 3.1, and each fixed point of  is
included in one of the following cases:

(1) Isolated fixed point x .

(1.1) x is of type .p; 0/C with ind. ;x/D 1�p , where p � 2;
(1.2) x is of type .p; k/C with p − k with ind. ;x/D 1.

(2) Boundary component C such that  .C /D C .

(2.1) C is of type .p; 0/C , and C � Fix. / with ind. ;C /D�p ;
(2.2) C is of type .p; k/C with p − k , and C\Fix.'/D∅, hence ind. ;C /D 0.

A fixed point in the interior which is not a singularity can be regarded as a “2–prong
singularity”, and hence is also included in this lemma. But the chart on it is not in the
chosen atlas U .

Lemma 3.3 [3, Lemma 3.1] Any orientation-preserving homeomorphism on an
annulus F0;2 Š S1 � I is isotopic to one of the following:

(1) an annular twist  .z; t/D .ze2.aCbt/�i ; t/, where a and b are rational numbers;

(2) a flip-twist  .z; t/D .xzea.1�2t/�i ; 1� t/, where a is a rational number.
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Lemma 3.4 [3, Lemma 3.6] Let M be a connected compact oriented surface M

with �.M / < 0. Then any orientation-preserving homeomorphism on M is isotopic
to a homeomorphism  ( in standard form), having following properties. There is a set
(the cutting system) � D f1; 2; : : : ; kg of simple closed curves on M . Each j has
a neighborhood N.j / homeomorphic to S1 � I such that

(i) the restriction  jN.j / of  on each N.j / is an annular twist or a flip-twist;

(ii) the restriction of  on each component of M�
Sk

jD1 int N.j / is either periodic
or pseudo-Anosov. (These components are said to be pieces, or  –pieces if we
need to emphasis the related homeomorphism  .)

Moreover, each nonempty fixed point class of  is a connected subset of M , being
included in one of the following cases:

(1) Isolated fixed point x .

(1.1)  is conjugate to a rotation in a neighborhood of x in periodic piece,
ind. ;x/D 1;

(1.1) a fixed point of an annular flip-twist, ind. ;x/D 1;
(1.1) a fixed point of type .p; 0/C in a pseudo-Anosov piece, ind. ;x/D 1�p ;
(1.1) a fixed point of .p; k/C with p − k in a pseudo-Anosov piece, ind. ;x/D1.

(2) Fixed point circle C .

(2.2) an isolated fixed point set of an annular twist; ind. ;C /D 0;
(2.2) a boundary component with type .p; 0/C of some pseudo-Anosov piece, on

the other side C is a boundary component of an annular twist; ind. ;C /D
�p ;

(2.2) a boundary component of M , and also a boundary component with type
.p; 0/C of some pseudo-Anosov piece, ind. ;C /D�p ;

(3) Fixed point subsurface.

Corollary 3.5 If  is in standard form, then  n is in standard form for any positive n.
Moreover, the cutting system of  n can be chosen as a subset of a cutting system of  .

Proposition 3.6 Let  W M !M be an orientation-preserving homeomorphism on a
connect compact oriented surface M with �.M / < 0, and be in standard form. Let V

be an invariant set of  n which consists of some  –pieces and some neighborhoods
of cutting curves. If N.. jV /

n/ > 0, then N. n/ > 0.
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4 Periodic homeomorphisms

In this section, we shall discuss the upper bound for the free degree of periodic
homeomorphisms on a compact surface.

Given a compact surface F , we write o.F / for the maximal order of periodic homeo-
morphisms.

Lemma 4.1 (1) o.Fg;b/� o.Fg/ for all b .

(2) o.Ng;b/� o.Ng/ for all b .

Proof Regard the closed surface Fg as the quotient space of Fg;b by collapsing each
boundary component to one point. We write qW Fg;b! Fg for this natural quotient
map. Let  be a periodic homeomorphism on Fg;b . Then it induces a periodic
homeomorphism x on Fg , ie there is a commutative diagram

(4-1)
Fg;b

 
����! Fg;b

q

??y ??yq

Fg

x 
����! Fg :

By definition, o.Fg/ is the maximum of the orders of the periodic map on Fg . The
order of x is not greater than o.Fg/, ie there is a positive integer n with n� o.Fg/

such that x n is the identity on Fg . It follows that  n is the identity on Fg;b . This
proves the conclusion (1). The proof of (2) is the same.

Lemma 4.2 Let � be a self homeomorphism on a connected compact surface M

which is homotopic to a periodic map. If �.M /¤ 0, then there is a positive integer
n � o.M / such that N.�n/ D 1, and hence the free degree fr.�/ of � is no more
than o.M /.

Proof This lemma is trivial if o.M / is infinite.

Assume that o.M / is finite. Let � be a periodic map homotopic to the given map � .
By definition of maximal order, there is natural number n with n� o.M / such that
�n D id. From the homotopy invariance of Nielsen number, we have that N.�n/D

N.�n/DN.id/. Since �.M /¤ 0, we have that N.�n/DN.�n/DN.id/D 1.

Combining our two lemmas with Wang [6, Theorem 1], we have:

Theorem 4.3 (1) Let �W Fg;b! Fg;b be a self-map homotopic to a periodic one.
Then fr.�/� 4gC 3C .�1/g for all g � 2.

(2) Let �W Ng;b!Ng;b be a self-map homotopic to a periodic one. Then fr.�/ �

2g� 1C .�1/gC1 for all g � 3.
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Let us consider the free degree of compact surface with genus 0 or 1. It is known that
fr.F0;0/D 2, and fr.N1;0/D 1.

As for the cases F0;b , F1;b , N1;b and N2;b , we have the following examples.

Example 4.4 Regard F0;2 as

S1
� I D f.z; t/ j jzj D 1; 0� t � 1g:

Given any positive integer k , a periodic homeomorphism �k is defined by �k.z; t/D
.ze2�i=k ; t/.

Pick a small open disk W in F0;2 . Note that G D F0;2�
F1

jD1 �
j

k
.W / is homeomor-

phic to F0;kC2 . The restriction �k jG of �k on G is also a periodic homeomorphism.
Each point is a periodic point of period k . Hence, fr.�k jG/ D k . This implies that
fr.F0;kC2/� k .

Let � W F0;2 ! F0;2 be an involution given by �.z; t/ D .�z; 1� t/. It gives a Z2

action on F0;2 , and the orbit space F0;2=� is homeomorphic to the Möbius band N1;1 .
If k is even, �k induces a periodic homeomorphism x�k W F0;2=�!F0;2=� with period
k=2. Note that each point on x�k has period k=2. We have that fr.x�k jG=� / D k=2.
Since G=� ŠN1;k=2C1 , we also have that fr.N1;k=2C1/� k=2.

Example 4.5 Regard F1;0 as

S1
�S1

D f.z; w/ j jzj D jwj D 1g �C2:

Given any positive integer k , a periodic homeomorphism �k is defined by �k.z; w/D
.ze2�i=k ; w/.

Pick a small open disk W in F1;0 . Note that

G D F1;0�
F1

jD1 �
j

k
.W /D F1;0�

Fk
jD1 �

j

k
.W /

is homeomorphic to F1;k . The restriction �k jG of �k on G is also a periodic home-
omorphism. Each point is a periodic point of period k . Hence, fr.�k jG/D k . This
implies that fr.F1;k/� k .

Let � W F1;0!F1;0 be an involution given by �.z; w/D .�z; xw/. It gives a Z2 action
on F1;0 , and the orbit space F1;0=� is homeomorphic to the Klein bottle N2;0 . If k is
even, �k induces a periodic homeomorphism x�k W F1;0=� ! F1;0=� with period k=2.
Note that each point on x�k has period k=2. We have that fr.x�k jG=� / D k=2. Since
G=� ŠN2;k=2 , we also have that fr.N2;k=2/� k=2.
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Moreover, by using irrational angle rotation, we can show that there is a homeomorphism
on F0;2 (the annulus) without any periodic point, and a homeomorphism on N1;1 (the
Möbius band) without any periodic point. This implies that both fr.F0;2/ and fr.N1;1/

are infinite. But, by classical fixed point theorem, any map on F0;1 (the disk) must
have a fixed point. Hence, fr.F0;1/D 1.

5 Special homeomorphisms on surfaces with small genus

In this section, we consider the free degree of some homeomorphisms on the surfaces
of genus 0 or 1.

Lemma 5.1 Let �W F0;b! F0;b be an orientation preserving homeomorphism on a
sphere with b boundary components. If there are at least three boundary components
on F0;b which are invariant under � , then L.�/¤ 0, hence fr.�/D 1.

Proof See Figure 1.

� � �

c1

cbc4

c3 c2

Figure 1: Bases of H1.F0;b;Q/

The boundary components c1; c2; c3 are invariant under � . Choose the classes Œc2�; Œc3�;

Œc4�; : : : ; Œcb � as a basis of H1.F0;b;Q/. The induced isomorphism ��1 on H1.F0;b;Q/
by � has the form 0BBBB@

1 0 0 0 0

0 1 0 0 0

0 0 B1 0 0

0 0 0
: : : 0

0 0 0 0 Bl

1CCCCA ;
where B1; : : : ;Bl are permutation matrices.

So tr.��1/� 2 and L.�/D 1� tr.��1/¤ 0.
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Lemma 5.2 Let �W F1;b! F1;b be an orientation preserving homeomorphism on a
torus with b � 1 boundary components. If there is at least one boundary component
of F1;b which is invariant under � , then fr.�/� 6.

Proof See Figure 2. The boundary component c1 is invariant under � . Choose
Œx�; Œy�; Œc2�; : : : ; Œcb � as bases of H1.F1;b;Q/. The induced isomorphism ��1 on
H1.F1;b;Q/ by � has the form0BBBB@

a11 a12 � � � � � � � � �

a21 a22 � � � � � � � � �

0 0 B1 0 0

0 0 0
: : : 0

0 0 0 0 Bl

1CCCCA ;
where B1; : : : ;Bl are permutation matrices. This matrix is similar to0BBBB@

� � � � � � � � � � �

0 ��1 � � � � � � � � �

0 0 C1 0 0

0 0 0
: : : 0

0 0 0 0 Cl

1CCCCA :
Here if Cj is of rank n, then

Cj D

0BB@
e2�=ni 0 0 0

0
: : : 0 0

0 0 e2.n�1/�=ni

0 0 0 1

1CCA :
Suppose the number of rank 1,2,3,4,6 Cj ’s is m; t; s; q; r . If L.�1/DL.�2/DL.�3/D

L.�4/DL.�6/D 0, then we have the following identities.

�C��1
CmD 1(5-1)

�2
C��2

CmC 2t D 1(5-2)

�3
C��3

CmC 3s D 1(5-3)

�4
C��4

CmC 2t C 4q D 1(5-4)

�6
C��6

CmC 2t C 3sC 6r D 1(5-5)

So .1�m/2 D .�C��1/2 D �2C��2C 2D 3�m� 2t . We have mD 2; t D 0 or
mD 1; t D 1 or mD 0; t D 1.
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If m D 2; t D 0, then � C ��1 C 1 D 0 induces � D e
2�
3

i or e�
2�
3

i . We have
�3C��3 D 2 which contradicts (5-3).

If mD 1; t D 1, then �C��1D 0 induces �D i or �i . We have �4C��4D 2 which
contradicts (5-4).

If m D 0; t D 1, then �C ��1 � 1 D 0 induces � D e�=3i or e��=3i . We have
�6C��6 D 2 which contradicts (5-5).

The argument above shows that at least one of the L.�1/, L.�2/, L.�3/, L.�4/,
L.�6/ is not equal to 0. Thus fr.�/� 6.

c1

c2 c3 cb

� � �

y y

x

x

Figure 2: Bases of H1.F1;b;Q/

6 Pseudo-Anosov homeomorphisms

We consider the free degrees of pseudo-Anosov homeomorphisms in this section.

Lemma 6.1 Let F be a singular foliation on a compact surface Fg;b . Then

1X
mD1

��
1�

m

2

�
Print

m .F/�
m

2
Prbd

m .F/
�
D �.Fg;b/D 2� 2g� b;

where Print
m .F/ is the number of m–prong singularities in the interior of Fg;b and

Prbd
m .F/ is the number of boundary components of Fg;b with m–prong singularities.
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Proof Consider the closed surface Fg , a singular foliation can be regarded as a path
field on Fg . Both have the same singularity set. An m–prong singularity has index
1�m=2.

Lemma 6.2 Let �W Fg;b ! Fg;b be a self homeomorphism on Fg;b.g � 2/ which
is homotopic to an orientation preserving pseudo-Anosov homeomorphism  . If the
stable (and hence unstable) singular foliation of  has no 1–prong singularity, then
fr.�/� 8g� 8.

Proof Since Nielsen number is a homotopy invariant, we only need to prove that there
exists a positive integer n� 8g� 8 such that N. n/ > 0.

Let F s and Fu be respectively stable and unstable singular foliations of the pseudo-
Anosov homeomorphism  . We denote the number of m–prong singularities of F s

by Prm.F s/. Regard the closed surface Fg as the quotient space of Fg;b by collapsing
each boundary component to one point. Then  induces an orientation preserving
homeomorphism x on Fg , satisfying the commutative diagram

Fg;b

 
����! Fg;b

q

??y ??yq

Fg

x 
����! Fg :

Since F s has no 1–prong singularity, the quotient map q gives a singular foliation
q.F s/ on Fg . Thus, q.F s/ and q.Fu/ are respectively stable and unstable singular
foliations of the pseudo-Anosov homeomorphism x .

By the results of Nielsen [4] with Dicks and Llibre [1] (see Wang [7, Remark (1)]),
we know that fr.x / D 2g � 2. This implies that there must be an integer n0 with
n0 � 2g � 2 such that x n0 has a fixed point xx0 . Since x n0 is a pseudo-Anosov
homeomorphism on the closed surface Fg , the point xx0 consists of a fixed point
class of x n0 with ind.x n0 ; xx0/ ¤ 0. If q�1.xx0/ is a singleton, the point q�1.xx0/

is an isolated fixed point of  n0 with nonzero index. Since  is in standard form,
this isolated fixed point is an essential fixed point class of  n0 . Thus, we have that
N. n0/ > 0.

If it is not a singleton, q�1.xx0/ is a boundary component of Fg;b . Thus, q�1.xx0/

is an invariant circle of type .p0; k0/ for  n0 . Note that q�1.xx0/ is a fixed point
circle for  p0n0 of type .p0;p0k0/, ie of type .p0; 0/. By Lemma 3.2, we have that
ind. p0n0 ; q�1.xx0// D �p0 ¤ 0. It follows that N. p0n0/ > 0. It is sufficient to
show that p0n0 � 8g� 8. There are two cases:
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Case 1 p0 D 2 or 3. We have that p0n0 � 3.2g� 2/D 6g� 6.

Case 2 p0 � 4. Applying Lemma 6.1 to the foliation q.F s/ on Fg , we have

2� 2g D �.Fg/D

1X
pD1

�
1�

p

2

�
Print

p .q.F s//�

�
1�

p0

2

�
Print

p0
.q.F s//;

because q.F s/ has no 1–prong singularity. It follows that

p0 Print
p0
.q.F s//� .4g� 4/

�
1C

2

p0� 2

�
� 8g� 8:

Since  permutes the boundaries of p0 –prong, we have that

n0 � Prbd
p0
.F s/� Prbd

p0
.F s/CPrint

p0
.F s/D Print

p0
.q.F s//;

and hence p0n0 � 8g� 8.

7 Main results

Lemma 7.1 Let Fg;b be a connected compact surface of genus g with b boundary
components, where g � 2. Then for any orientation-preserving homeomorphism
 W Fg;b!Fg;b , there is a positive integer n with n� 12g�12 such that N. n/ > 0.

Proof The procedure of our proof will be fulfilled by using a reduction on the pairs
.g; b/ according to the lexicographic order. That is, we say .g0; b0/ < .g00; b00/ if either
g0 < g00 or g0 D g00 and b0 < b00 .

By the homotopy invariance of Nielsen number, we may assume that  is in standard
form.

Case 1 b D 0. From the proof of Wang [7, Theorem 1], we know that the Lefschetz
number L. n/ is nonzero for some n satisfying n� 4 if gD 2; n� 2g� 2 if g � 3.
This implies that N. n/ > 0 for such an n.

Case 2  is periodic. We have N. n/D 1 for some n� 4gC 3C .�1/g .

Case 3  is a pseudo-Anosov map. Note that the homeomorphism  permutes
the boundary components of type .1; 0/C . Let l0 be the minimal length of orbits
of  –action on the set of all boundary components of type .1; 0/C . We have three
subcases according to the value of l0 .

Subcase 3.1 l0 D 0. This means logically that the number of boundary components
of Fg;b with type .1; 0/ is zero. This is done in Lemma 6.2.
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Subcase 3.2 0< l0 � 12g� 12. Let C0 be a boundary component with type .1; 0/C

such that  l0.C0/DC0 . By Lemma 3.4, C0 is a fixed point class of  l0 , having fixed
point index �1. This implies that N. l0/ > 0.

Subcase 3.3 l0 > 12g� 12. We collapse each boundary component of type .1; 0/C

to one point. The homeomorphism  induces a homeomorphism x on the resulting
surface Fg;b0 . We write qW Fg;b! Fg;b0 for this natural quotient map. Then we have
a commutative diagram

Fg;b

 
����! Fg;b

q

??y ??yq

Fg;b0

x 
����! Fg;b0 :

Of course, x is not in standard form. By definition of l0 , we have that Fix. m/D

Fix.x m/ for any m with 0 < m � 12g � 12. Since q is a homeomorphism near
this fixed point set, any isolated fixed point set have the same fixed point indices.
In other word, ind. m;F / D ind.x m;F / for any fixed point class F of  m with
0 < m � 12g � 12. Since q is a surjective map and since q only collapses .1; 0/C

boundary components, any fixed point class of x m will be an union of some fixed point
classes of  m . Any essential fixed point class of x m contains at least one essential
fixed point class of  m if m� 12g�12. Thus, it is sufficient to prove that N.x m/> 0

for some m with m� 12g� 12. This is just the inductive assumption.

Case 4  is reducible. Let P0 be a reduced piece with the biggest genus among all
pieces. Assume that P0 Š Fg0;b0

.

Thus, either g0 < g or g0 D g and b0 < b . Note that  permutes all pieces.

We consider three subcases according to the value of g0 .

Case 4.1 g0 � 2. We write l0 for the orbit length of P0 under the action of  . That
is  l0.P0/ D P0 , and  j .P0/ ¤ P0 for j D 1; 2; : : : ; l0 � 1. Clearly, . jP0

/l0 is
a homeomorphism on P0 Š Fg0;b0

. By assumption of reduction, there is a positive
number n0 with n0 � 12g0�12 such that N.. jP0

/l0/n0// > 0, ie N. l0n0 jP0
/ > 0.

By Proposition 3.6, we have that N. l0n0/ > 0. Clearly,

l0n0 � l0.12g0� 12/� 12g� 12l0 � 12g� 12:

Case 4.2 g0 D 0 or 1. Consider the quotient map qW Fg;b ! Fg and the induced
homeomorphism satisfying the commutative diagram (4-1). Let � D f1; 2; : : : ; kg

be the cutting system for  . We assume that q.j / is essential in Fg for j D1; 2; : : : k 0 ,
and inessential for j D k 0C 1; : : : ; k . We write � 0 D f1; 2; : : : ; k0g. Then each
component of Fg � q.� 0/ is an union of one component of Fg � q.�/ and other
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components of Fg�q.�/ are disks. This implies that k 0> 0 and the maximal genus of
the components of Fg�q.� 0/ is still g0 . Since each curve q.j / in q.� 0/ is essential
in Fg , the Euler characteristic number of each component of Fg � q.� 0/ is negative.
Consider two sub-subcases.

Case 4.2.1 g0D1. Let Q0 be a component of Fg�q.� 0/ with genus 1. Let l0 be the
orbit length of Q0 under the action of x , and b0 be number of boundary components
of Q0 . Note that each component of Fg � q.� 0/ has nonpositive Euler characteristic
number. We obtain that l0.2� 2� b0/� 2� 2g . Since x l0.Q0/DQ0 , there must be
a positive integer n0 with n0 � b0 such that x l0n0 has at least one invariant boundary
component C0 of Q0 . By commutative diagram (4-1), we have  l0n0.q�1.Q0//D

q�1.Q0/. By definition of q , the closure P D q�1.Q0/ of q�1.Q0/ is homeomorphic
to F1;b for some b� b0 . Apply Lemma 5.2 to the homeomorphism  l0n0 jP , there is a
positive integer n with n�6 such that L.. l0n0 jP /

n/¤0. Hence, N.. l0n0 jP /
n/>0.

It follows from Proposition 3.6 that N. l0n0n/ > 0.

Case 4.2.2 g0 D 0. In this situation, each component of Fg � q.� 0/ has genus zero,
ie a disk with holes. Note that each component of Fg � q.� 0/ has nonpositive Euler
characteristic number. From the additivity of Euler characteristic numbers, there must
be a component Q0 with �.Q0/ < 0, ie Q0 has at least three boundary components.
Let l0 be the orbit length of Q0 under the action of x , and b0 be number of boundary
components of Q0 . Then we have l0.2� b0/� 2� 2g . This implies that

l0b0 �
b0

b0� 2
.2g� 2/� 6g� 6;

because b0 � 3. Since x l0 permutes the boundary components of Q0 , there must
be a positive integer n0 with n0 � b0 such that x l0n0 fixes set-wisely at least three
boundary components. Notice that the closure P D q�1.Q0/ of q�1.Q0/ is also
a disk with holes. The homeomorphism  l0n0 jP also fixes set-wisely at least three
boundary components. Apply Lemma 5.1 to the homeomorphism  l0n0 jP , we have
that L. l0n0 jP /¤ 0. Hence, N. l0n0 jP / > 0. It follows from Proposition 3.6 that
N. l0n0/ > 0.

Theorem 7.2 For Fg;b and Ng;b orientable and nonorientable genus g surfaces with
b boundary components, the free degrees satisfy:

max
b

fr.Fg;b/

(
D1 if g D 0; 1;

� 24g� 24 if g � 2:

max
b

fr.Ng;b/

(
D1 if g D 1; 2;

� 12g� 24 if g � 3:
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Proof The infiniteness has been shown in Example 4.4 and Example 4.5.

Consider a homeomorphism  W Fg;b ! Fg;b , where g � 2. Then  2 must be
orientation preserving. By Lemma 7.1, there is a positive integer n with n� 12g� 12

such that N. 2n/ D N.. 2/n/ > 0. It follows that  2n has a fixed point. Hence,
fr. /� 24g� 24. Since  is an arbitrary homeomorphism on Fg;b . We obtain that
fr.Fg;b/� 24g� 24.

Let �W Fg�1;2b!Ng;b be the classical orientation covering. Write � for the unique
nontrivial covering transformation. Any homeomorphism  W Ng;b!Ng;b has two
liftings � and �� . Without loss of the generality, we may assume that � is orientation
preserving. By Lemma 7.1, there is a positive integer n with n� 12.g� 1/� 12 such
that �n has a fixed point x0 . Clearly,  n.�.x0//D �.�

n.x0//D �.x0/, ie �.x0/ is a
fixed point of  n . This implies that fr.Ng;b/� 12.g� 1/� 12D 12g� 24.

From the proof of this theorem, we obtain:

Corollary 7.3 For Fg;b an orientable genus g surface with b boundary components,
the orientation preserving free degree satisfies:

max
b

frC.Fg;b/

(
D1 if g D 0; 1;

� 12g� 12 if g � 2:
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