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The cactus tree of a metric space

PANOS PAPASOGLU

ERIC SWENSON

We extend the cactus theorem of Dinitz, Karzanov, Lomonosov to metric spaces. In
particular we show that if X is a separable continuum which is not separated by
n� 1 points then the set of all n–tuples of points separating X can be encoded by an
R–tree.

20E08, 54F15; 20F65, 54F05, 05C40

1 Introduction

Finite cuts have been studied in several different contexts. Whyburn [26] in 1928
showed that the set of cut points of a Peano continuum has the structure of a “dendrite”.
This “dendritic” decomposition of continua has been extended and used to prove several
results in continua theory. We recall here that a continuum is a compact, connected
Hausdorff space and a Peano continuum is a locally connected metric continuum. If X

is a continuum, we say that a point c is a cut point of X if X �fcg is not connected.
Whyburn’s work was extended by others and the more abstract framework of pretrees
proposed by Ward [25] has proved adequate for studying cuts; see Bowditch [6],
Adeleke and Neumann [2] and our paper [18].

Cuts of continua became relevant for group theory after Bestvina and Mess [3] showed
that the boundary of a hyperbolic group is locally connected if and only if it has no cut
points. Bowditch [5] shows how to pass from the action of a hyperbolic group G on its
boundary @G to an action on an R–tree, assuming that @G has a cut point. A crucial
ingredient of this is a representation of all cut points of the boundary of the group
(a continuum) by a tree. The general version of this is done by the first author [21;
22]. Further work from Swarup [20] and Levitt [14] implies that @G has no cut points.
Bowditch [4] pursues these ideas further and shows that JSJ–decompositions of 1–
ended hyperbolic groups over 2–ended groups are reflected on the boundary. To do this,
he constructed a tree encoding all cut pairs of a locally connected continuum. In [18] we
extended this to cut pairs of general continua and we applied it to JSJ–decompositions
of CAT(0) groups [19].
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We note that the observation that leads to the construction of a tree encoding cut
pairs is that cut pairs that “cross” each other lie in “circles”. These “circles” are
encoded by vertices of the tree. It is worth noting that in the group theoretic setting, the
stabilizers of these “circles” are the hanging-orbifold vertices of the JSJ–decomposition
of the group. So in [18] the tree encoding the cut pairs of a continuum is termed
the JSJ–decomposition of the continuum. One could remark that the classical JSJ–
decomposition deals with separating annuli and tori “crossing” each other and that the
context of separating cut pairs which cross each other is quite similar. In the manifold
setting, all crossing annuli and tori are contained in a Seifert fibered piece (so they have
a quite simple structure) while in the continua setting all crossing pairs are contained
in a “circle”.

Guralnik [11] studied general finite cuts of locally connected continua using techniques
similar to what we use here. He showed in particular that one can “encode” minimal
cut triples by trees in the case of “cut-rigid” spaces admitting a cusp-uniform action by
an infinite group.

Finite cuts have also been studied by graph theorists, who have obtained results similar
to the continua theory results. It is easy to see that if � is a finite graph, then the cut
vertices of � can be represented by a tree. Tutte [23, Chapter 11; 24, Chapter IV]
proved that in fact one can represent by a tree the set of pairs of vertices that separate �
(assuming that � has no cut vertex). In this case there might be cut pairs of vertices
that “cross” each other, but Tutte shows that such pairs are arranged in circuits, and
this is what allows him to encode cut pairs by a tree.

Networks are represented by finite graphs, and the cardinality of edge cuts give a good
measure of the robustness of the network. So edge cuts have been studied extensively
in network theory. An edge cut with the minimum possible number of edges is called a
mincut. A classic theorem of Dinitz, Karzanov and Lomonosov [8] shows that mincuts
have a rich combinatorial structure; they can be represented by a cactus, a tree-like
structure. A simpler proof of this “cactus theorem” was given recently by Fleiner and
Frank [9] (see also Kammer and Täubig [12, Section 7.5] and Naor and Vazirani [16]
for applications). We now give a brief summary of the cactus theorem as it is relevant
to this paper. For more details we refer to [8; 9]. A cactus is a graph in which any two
simple cycles have at most one vertex in common. We note that if K is a mincut of
a graph � then � �K has exactly two components. We say that two mincuts K;L

of a graph � cross if L intersects both components of � �K . It is quite easy to see
that if no two mincuts of a graph � cross each other, then the set of mincuts of �
is encoded by a tree. The central observation of [8] is that crossing mincuts have a
circular structure. This allows them to show that the set of all mincuts of the graph can
be represented by a cactus. More precisely there is a map from � to C where C is
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a cactus such that the inverse image of any mincut of C is a mincut of � and every
mincut of � arises in this way. To put it differently, even though the cardinality of
mincuts is (in general) greater than 2, crossing mincuts have the same structure as
crossing separating pairs. One could think of the cactus theorem of Dinitz, Karzanov
and Lomonosov as an analogue of the manifold (or group) JSJ–theory for graphs.

In this paper we generalize the cactus theory from graphs to continua. Guralnik [11]
asked whether it is possible to encode all cut triples of a continuum by a tree. We show
here more generally that minimal separators of any cardinality are represented by a tree.
In a forthcoming paper [17] we apply the results of this paper to study convergence
actions on continua.

Before describing our results, we explain the differences from the graph theoretic
setting: Finite cuts of continua may separate in more than two pieces. In the graph
theoretic setting, mincuts that cross have empty intersection. This is not necessarily the
case in metric spaces. Still crossing cuts have a circular structure given by “wheels” (see
below for a definition). Finally there are issues related to the nonlocal connectedness of
continua; the tree we obtain is not finite as it is for graphs and it is not even necessarily
a simplicial tree. In fact it takes some work to show that it is an R–tree. We observe
finally that the cactus theorem for continua is indeed a generalization of the classical
cactus theorem for graphs: If � is a graph, one can thicken the vertices of � to discs and
also thicken the edges so that they have exactly one cut point to obtain a continuum X .
The minimal separators of the continuum X correspond then to the mincuts of � . So
the cactus that we obtain for X is the same as the cactus encoding the mincuts of � .

We now give an outline of our results. A continuum X is called n–thick if it cannot be
separated by n� 1 points and there is some A�X with jAj D n such that X �A is
not connected. We say then that A is a minimal separator of X . If A;B are minimal
separators, then we say that A separates B if B intersects at least two components of
X �A. It turns out that if A separates B then B separates A.

Definition Let X be a continuum and A�X finite. If there are nonsingleton continua
Y1; : : : ;Yr with

�
S

i Yi DX

�
S

i¤j Yi \Yj DA,

then we say that A decomposes X (into Y1; : : : ;Yr ). Note that @Yi D Yi\A for all i .

Definition Let X be an m–thick continuum. A finite set W �X is called a wheel if
W decomposes X into continua M0; : : : ;Mn�1 with n> 3 satisfying the following
(see Figure 1):
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� There is a (possibly empty) I D
T

Mi called the center of the wheel with
jI j<m and Mi \Mj D I for all i � j ¤˙1 mod n.

� For each i , j@Mi j Dm.

More generally if W is an infinite subset of X and every finite subset of W is contained
in some finite wheel contained in W , then we say that W is a wheel.

M0 M1

M2

M3

M4

I

Figure 1

In order to show that all minimal separators of X are encoded by a tree, we use the
notion of a pretree. A pretree is a set with a betweenness relation. The basic example
of a pretree is the set of vertices of a tree where betweenness is defined in the obvious
way. It turns out that given a pretree (satisfying certain conditions) one can construct a
canonical enveloping tree. See Section 5 for a formal definition of pretrees and more
details on the correspondence between pretrees and trees.

We show that every minimal separator of X either is contained in a maximal wheel or
it does not cross any other minimal separator. If a minimal separator K does not cross
any other minimal separator we say that it is isolated.

We define a pretree R with elements the maximal wheels of X and the isolated minimal
separators of X . We define a betweenness relation in R:

Let x;y; z 2R be distinct. For y a minimal separator, we say that y is between x; z

if there are continua A;B such that

x �A; z � B; A[B DX; A\B D y:

If y is a maximal wheel we say that y is between x; z if for some minimal separator
w 2 y , w is between x; z . We can now state the main theorem of this paper:
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Theorem 6.5 Let X be a separable, m–thick continuum, where m > 1. Then the
pretree R embeds into an R–tree T .

If X is locally connected, we show that in fact one obtains a tree rather than an R–tree:

Theorem 6.6 Let X be a locally connected, separable, m–thick continuum, where
m> 1. Then the R–tree corresponding to the minimal separators of X is simplicial.

The authors wish to thank the referee for correcting our mistakes.

2 Preliminaries

Definition A compact connected Hausdorff space is called a continuum.

Definition Let X be a topological space. We say that a set C separates the nonempty
sets A;B �X if there are disjoint open sets U;V of X �C , such that A�U , B �V

and U [ V D X �C . We say C separates the points a; b 2 X if C separates fag
and fbg. We say that C separates D�X if C separates two points of D . If C Dfcg,
then we call c a cut point. If C D fc; dg where c¤ d and neither c nor d is cut point,
then we call fc; dg a (unordered) cut pair.

The proof of the following Lemma is an elementary exercise in Topology and will be
left to the reader.

Lemma 2.1 Let A be a connected subset of the space X and B closed in X . If
A\ Int B ¤∅, then either A� B or A\ @B separates the subspace A.

Lemma 2.2 [18] Let X be a continuum and C �X be minimal with the property
that X�C is not connected. Then C is closed in X , and the set C separates A�X�C

from B � X �C if and only if there exist continua Y;Z such that A � Y , B � Z ,
Y [Z DX and Y \Z D C D @Y D @Z .

We now introduce the Freudenthal compactification, which is a generalization of the
ends compactifications (see Aarts and Nishiura [1] for a general reference). This will
allow us to throw away any finite set that offends us, and proceed as if the world were
a much more friendly place.

Definition A regular Hausdorff space is called rim-compact if there is a base B for
the topology with @U compact for each U 2 B .
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2.1 Definition and properties of the Freudenthal compactification [10]

Let X be a rim-compact space. Let B be the collection of all open sets with compact
boundary. Consider the collection of all nets .Ui/� B satisfying:

� xUj � Ui for all j > i .

�
T

Ui D∅.

� For any V 2 B ,
– either Ui � V for all i � 0 (in which case we say V contains the end e

defined by .Ui/)
– or Ui \V D∅ for all i � 0.

We define two such nets .Ui/ and .Vj / to be equivalent if Ui \Vj ¤ ∅ for all i; j .
The set of equivalence classes of such nets is called the set of ends of X , denoted
End.X /. If .Ui/ is such a net whose equivalence class is e 2 End.X /, then for each i

we say that Ui is a representative of e .

Consider FX DX [End.X /. For U 2 B we define F U to be the union of U with
all ends contained in U . The collection FB D fF U W U 2 Bg is a base for a topology
on FX satisfying:

(1) FX is a Hausdorff compactification of X .

(2) If A;B are disjoint closed subsets of X with compact boundaries, then in FX
xA\ xB D∅ [15].

(3) @F U in FX is equal to @U in X for all U 2 B .

The topological space FX is called the Freudenthal compactification of X .

Definition A subset A of X is zero-dimensionally embedded in X if there is a base B
for the topology of X such that @U \AD∅ for each U 2 B .

Notice that if A is zero-dimensionally embedded in X , then dim AD 0. The converse
is not true [1], but it is easily seen that any finite subset of a Hausdorff space X is
zero-dimensionally embedded in X .

Theorem 2.3 [1] A space X is rim-compact if and only if X has a Hausdorff
compactification Y with Y �X zero-dimensionally embedded in Y .

Notice that by (3) the Freudenthal compactification, FX , of a rim-compact space X

has the property that FX �X is zero-dimensionally embedded in FX .
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Theorem 2.4 [1, VI, 3.7] If X is a rim-compact space and Y is a Hausdorff com-
pactification of X with Y �X zero-dimensionally embedded in Y , then there is a
surjective map �W FX ! Y which is the identity on X .

We now condense out the result we will need here.

Corollary 2.5 If Y is a compact Hausdorff space and A is a finite collection of
nonisolated points of Y , then Y �A is rim-compact and there is a unique surjective
map �W F.Y �A/! Y from the Freudenthal compactification of Y �A onto Y which
is the identity on Y �A. Thus there is a natural bijection between the quasicomponents
of Y �A and the quasicomponents of F.Y �A/.

Proof This follows from property (2) of the Freudenthal compactification.

Now recall a basic result from topology:

Lemma 2.6 [13, Section 47 II, Theorem 2] If X is a compact Hausdorff space, then
the components of X are exactly the quasicomponents of X .

Combining the previous two results we see that for any continuum X and finite subset
A�X , the quasicomponents of X �A are naturally equivalent to the components of
F.X �A/. This together with the following Lemma is what we mean by: This will
allow us to throw away any finite set that offends us, and proceed as if the world were
a much more friendly place.

Lemma 2.7 If X is a connected rim-compact space and B is a compact subset of X ,
then the inclusion i W .X �B/ ,! .FX �B/ induces a bijection on quasicomponents.

Proof Let ˛ �X be a quasicomponent of X �B . Clearly ˛ will be contained in a
single quasicomponent of FX �B . Let ˇ be some other quasicomponent of X �B

and find open sets U , V of X �B with

� ˛ � U

� ˇ � V

� U [V DX �B

� U \V D∅.

In F.X /, consider the closures xU and xV . Since X is dense in FX , it follows that
FX �B D xU [ xV �B .
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Suppose that e 2 Œ xU \ xV ��B . It follows that e 2 FX �X D End.X /. Since B is
compact, we can choose a representative W of e such that W \B D ∅. Working
in X , since @U is compact, we may also assume that (in X ) either xU \ SW D∅ or
SW �U (in X ). Similarly we may assume that (in X ) xV \ SW D∅ or SW � V . Since
U \V D∅, we may assume that xU \ SW D∅ in X which implies by (2) that in FX ,
xU \ SW D∅, however e 2 SW \ xU which is a contradiction.

Thus in FX , xU \ xV �B , and so ˛ and ˇ are in different quasicomponents of FX�B .
Thus the induced function on quasicomponents is 1–to–1.

Now consider a quasicomponent  of FX �B . We must show that  \X ¤∅. Since
X is connected, so is FX and so x \B¤∅. However FX �X is zero dimensionally
embedded in FX , so if  �FX �X , then  is a singleton, contradicting x \B ¤∅.
Thus the induced function on quasicomponents is onto.

The following is now easy.

Lemma 2.8 If X is a continuum and C is a finite subset which is minimal with
respect to the property that X �C is not connected, then for every quasicomponent ˛
of X �C , C � x̨ , the closure of ˛ .

Proof By induction on jC j. When C is a cut point, by [13, Section 47 III, Theorem 2],
C meets the closure of every component of X�C . Since every component is contained
in a quasicomponent, then C is contained in the closure of each quasicomponent
of X �C .

When jC j> 1, let c 2 C and consider yX D F.X � ŒC �fcg�/. Notice that c is a cut
point of the continuum yX , and so c is contained in the closure of each quasicomponent
of yX �fcg; However by Corollary 2.5 and Lemma 2.7, it follows that c is contained
in the closure of each quasicomponent of X �C . Thus every point of C is contained
in the closure of each quasicomponent of X �C as required.

3 Decompositions of continua

Definition Let X be a continuum and A�X finite. If there are nonsingleton continua
Y1; : : : ;Yr with

�
S

i Yi DX

�
S

i¤j Yi \Yj DA.

Then we say that A decomposes X (into Y1; : : : ;Yr ). Note @Yi D Yi \A for all i .
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Definition Let X be a continuum and A a closed subset of X . We say that A is an
irreducible separator if for any B ¨ A the map of quasicomponents induced by the
inclusion .X �A/! .X �B/ is not one to one.

Lemma 3.1 Suppose that A decomposes the continuum X into continua Y1; : : : ;Yr .
If B is a finite separating subset of X , then either B \A separates X or for some i ,
B separates Yi .

Proof Since B is a closed separating set, X �B D U [ V where U and V are
disjoint nonempty open sets.

Assume that for any i , Yi �B is contained in one of U or V . Let JU D f1� i � r W

Yi �B �U g and JV D f1� i � r W Yi �B � V g. Since no nondegenerate continuum
is finite, JU and JV form a partition of f1; 2 : : : ; rg. Let

C D
[

p2JU ;q2JV

ŒYp \Yq �:

Clearly C �B\A ( otherwise U \V ¤∅). Also notice that
S

i2JU
Yi and

S
i2JV

Yi

are closed sets whose union is X and whose intersection is C . Thus C separates X .

Theorem 3.2 Let X be a continuum. Let A be a finite collection of finite irreducible
separators of X . Then

S
A decomposes X . That is:

There are continua Y1; : : : ;Yk with

� X D Y1[ � � � [Yk

�
S

i¤j Yi \Yj D
S

A.

Proof We proceed by induction on j
S

Aj. When j
S

Aj D 1, the result follows from
Lemma 2.2.

Case I
S

A consists entirely of cut points. Let a 2
S

A. Clearly Œ
S

A��fag also
satisfies our hypothesis. Thus Œ

S
A��fag decomposes X into continua Z1; : : : ;Zr .

By Lemma 3.1, a is a cut point of Zi for some i . Thus Zi D S [ T where S

and T are continua and S \ T D fag. It follows that
S

A decomposes X into
Z1; : : : ;Zi�1;S;T;ZiC1 : : : ;Zr as required.

Case II There is a2
S

A where a is not a cut point of X . Thus X �fag is connected
and we consider the Freudenthal compactification yX D F.X �fag/.

Claim yX and
S

A�fag satisfy the hypothesis of our theorem. That is, C �fag is
an irreducible separator of yX for each C 2A.
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Let A2A. We first consider the case where a 62A. Let B ¨ A. We will use Lemma 2.7
to work in the Freudenthal compactifications. By hypothesis, there is a quasicomponent
(also component see Lemma 2.6)  of F.X �B/ which is the image of more than one
(quasi)component by the map �W F.X �A/! F.X �B/ of Theorem 2.4. If a 62 

the claim is trivial, so we may assume that a 2  .

Let ˛ be the component of a in F.X �A/. Since ˛ is a component of a compact
space, it is a continuum. If a is not a cut point of ˛ then we are done. Thus we may
assume that a is a cut point of ˛ . Let ˇ be a component of F.X �A/ such that
�.˛/\ �.ˇ/ ¤ ∅ ( ˇ exists by hypothesis). Let p 2 ˛ with �.p/ 2 �.ˇ/. It follows
that �.p/ 2 A�B . Let y̨ be the (quasi)component of p in F.X � ŒA[ fag�/, and
y̌ the (quasi)component of F.X � ŒA[ fag�/ corresponding to ˇ . Under the map
� W F.X � ŒA[fag�/! F.X � ŒB [fag�/, �.p/ 2 �.y̨/\�. y̌/ as required.

Now consider the case where a 2A. Let yADA�fag, and yB ¨ yA. Let B D yB[fag.
The inclusion X �A!X �B is not one to one on quasicomponents, and this implies
that the inclusion yX � yA! yX � yB is also not one to one by Lemma 2.7. The Claim is
proven.

Thus by induction on j
S

Aj, we are done.

Corollary 3.3 Let X be a continuum, F a finite subset of X , and A a finite collection
of finite irreducible separators of X . Then there is a connected graph � , connected
subgraphs �1; : : : ; �k , and a decomposition Y1; : : : ;Yk of X over

S
A with the

following properties:

� There is an inclusion
S

A [ F ! � such that Yi \ Yj D �i \ �j for all
1� i; j � k .

� For any a; b 2
S

A[F , and B �
S

A, B separates a from b in X if and only
it separates a from b in � .

Proof Redo the proof of the theorem ensuring that a and b are separated by B �A,
then fa; bg 6� Yi for any i . Now construct graphs �i as follows: Let nD j

S
A[F j

and �i be the 1–skeleton of the barycentric subdivision of the n–dimensional simplex.
Embed Œ

S
A[ F �\ Yi into the vertex set of the n–dimensional simplex which is

subset of �i . Now declare �i \�j D Yi \Yj for all i ¤ j . This identification defines
the graph � with the desired properties.

Definition Let A � X with X �A disconnected and jAj <1 minimal. Then we
say X is jAj–thick and A is a minimal separator.
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Lemma 3.4 Let A, B be disjoint minimal separators of the continuum X where A

decomposes X into M0;M1 . If A separates B , then B separates A. Also there are
disjoint B0;B1;A0;A1 with B0[B1 DB , A0[A1 DA and jBi j D jAi j D n=2 for
i D 0; 1 and there are subcontinua P i

j �Mj for i; j D 0; 1 with
S

i;jD0;1 P i
j D X ,

P i
j \P1�i

j D Bj , P i
j \P i

1�j
DAi , and P i

j \P1�i
1�j
D∅. (See Figure 2.)

A

A0

A1

B B0 B1

P 0
0

P 0
1

P 1
1P 1

0

Figure 2

Proof Let nD jAj D jBj. By hypothesis M0 \M1 D AD @Mi , for i D 0; 1, and
M0[M1DX . Let Bj DMj \B for j D 0; 1. By hypothesis, ∅¤Bj � Int Mj for
j D 0; 1. Also there exist subcontinua N0;N1 with N0\N1DB D @Ni , for i D 0; 1

and N1[N2DX . Let Ai DNi\A for i D 0; 1. By Lemma 2.1, Ai separates Ni for
i D 0; 1 (in particular Ai ¤∅). Applying Lemma 2.2 again we see that for i; j D 0; 1

there are subcontinua P i
j such that Ni D P i

0
[P i

1
, and P i

0
\P i

1
D Ai for j D 0; 1.

Using minimality and applying Lemma 2.1, we may assume that P i
j �Mj for j D 0; 1.

Observe that @P i
j �Ai[Bj for i; j D 0; 1. Since j@P i

j j � n for i; j D 0; 1, it follows
that jAi j D jBj j D n=2 for i; j D 0; 1 and @P i

j DAi [Bj . The result follows.

Theorem 3.5 Let A, B be minimal separators of the continuum X where A decom-
poses X into M0;M1 . If A separates B , then B separates A and there are disjoint
subsets A0;A1 �A, B0;B1 � B and subcontinua P i

j �Mj for i; j D 0; 1 such that

� A�A0[A1[B

� B � B0[B1[A

� Bi \AD∅DAi [B for i D 0; 1

� jAi j D jBj j for i; j D 0; 1

�
S

i;jD0;1 P i
j DX
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� P i
j \P1�i

j D Bj [ ŒA\B�

� P i
j \P i

1�j
DAi [ ŒA\B�

� P i
j \P1�i

1�j
DA\B .

This decomposition is unique up to relabeling, that is for each quasicomponent ˛ of
X � .A[B/, @P i

j � x̨ for some i; j . (See Figure 3.)

A

A0

A1

B B0 B1

P 0
0

P 0
1

P 1
1

P 1
0

Figure 3

Proof Since A separates B , then B 6�A, and A\B doesn’t separate X . Consider
the continuum yX , the Freudenthal compactification of X � ŒA\B�. By Corollary 2.5,
the inclusion X � ŒA\B� ,!X induces a canonical projection � W yX !X with

�
�
yX � .X � ŒA\B� /

�
�A\B

By Lemma 2.7, a subset D of X � ŒA\B� separates X � ŒA\B� if and only if D

separates yX .

The sets A�B and B �A are minimal separators of yX and A�B separates B �A.
By Lemma 3.4 we have equal size partitions A0;A1 and B0;B1 of A�B and B�A

respectively, where A�B decomposes yX into �M0[
�M1 where �. �Mj /DMj . We

also have continua yP i
j �

�Mj D ��1.Mj / for i; j D 0; 1 with
S

i;jD0;1
yP i
j D

yX ,
yP i
j \
yP1�i
j D Bj , yP i

j \
yP i

1�j
DAi and yP i

j \
yP1�i

1�j
D∅.

For i; j D 0; 1 let P i
j D �.

yP i
j /. Notice that @P i

j � Ai [Bj [ ŒA \B�, and since
jAi [Bj [ ŒA\B�j D jAj, it follows by minimality that @P i

j DAi [Bj [ ŒA\B�.
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To prove uniqueness, it suffices to show that for any (quasi)component ˛ of the
Freudenthal compactification F.X � ŒA [ B�/, for some i; j , @P i

j � �.˛/ where
�W F.X � ŒA[B�/!X is the map of Corollary 2.5. Clearly �.˛/� P i

j for some i; j ,
say i; j D 0. If @P0

0
6� ˛ , then by Lemma 2.7 there is a open set U of X such that

˛\.X � ŒA[B�/�U with @U �A[B and @U ¨ @P0
0

which violates minimality.

4 Wheels

Definition Let X be an m–thick continuum. A finite set W �X is called a wheel if
W decomposes X into continua M0; : : : ;Mn�1 with n> 3 satisfying the following:

� There is a (possibly empty) I D
T

Mi called the center of the wheel with
jI j<m and Mi \Mj D I for all i � j ¤˙1 mod n.

� For each i , j@Mi j Dm.

Notice the following:

� @Mi is a minimal separator for all i .

� ŒMi\MiC1�[ŒMj\MjC1� (where the addition is mod n) is a minimal separator
for all i ¤ j .

� mD jI jC 2k where j.Mi \MiC1/� I j D k > 0 for 0� i � n� 1.

The collection M0; : : : ;Mn�1 is called the wheel decomposition of X by W . This
decomposition is unique by Lemma 2.8. (See Figure 1.)

Definition For wheels W and V , we say that W is a subwheel of V if W � V .

� Every continuum of the wheel decomposition of V will be contained in one of
the continua in the wheel decomposition of W .

� The center of W is the same as the center of V .

If W is an infinite subset of X and every finite subset of W is contained in some
finite wheel contained in W , then we say that W is a wheel.

Definition Let X be a n–thick continuum. A nondegenerate nonempty set A�X is
called inseparable if no pair of points in A can be separated by a minimal separator.

Every inseparable set is contained in a maximal inseparable set. A maximal inseparable
subset is closed (its complement is the union of open subsets).
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Example 4.1 A maximal inseparable set need not be connected.

For example, take X a finite thin simplicial chamber complex of dimension n. (Recall
that this means that every n�1 simplex is a face of exactly two chambers (n–simplices),
and that we can get from one point to any other point by a sequence of chambers
(n–simplices), where adjacent chambers share a n� 1 face.)

Now cut X along all open simplices of dimension at least one. We obtain a cell
complex yX where n–cells intersect only in vertices. Since X was a chamber complex,
it could only be separated by removing a subset of dimension at least n � 1. It
follows that:

� yX is nC 1 thick.

� Minimal separators coincide with vertex sets of n–cells of yX .

� There are no wheels.

� The maximal inseparable subsets of yX are:
– Each closed n–cell of yX .
– The set of vertices of yX .

For example if X is the icosahedral subdivision of the 2–sphere, then the maximal
inseparable subsets of yX are the triangles and the set of all vertices (which is not
connected).

Theorem 4.2 Let X be an n–thick continuum. Let W be a wheel of X and let K be
a minimal separator which separates two points a; b of W . Then W [K is a wheel.

Proof We assume of course that K 6�W . We may assume that W is finite. Let I be
the center of W and M0; : : : ;Mk�1 be the wheel decomposition of W .

We show first that I �K . If I is not contained in K , then we may assume that K

separates some a 2 I from some b in, say, M1 \M2 . We argue now that this is
impossible. To fix some notation let’s say that

jKj D jI jC 2m

(by Lemma 3.4, jKj � jI j is even) and that

jK\ I j D jI j � s

for some s > 0.

We distinguish 2 cases:

Case 1 There is an i ¤ 1 and some b0 2Mi\MiC1 such that K separates a from b0 .
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It follows that K intersects all M1;M2;Mi ;MiC1 . At least 3 of these are distinct,
let’s say that M1;M2;Mi are distinct.

We set

n1DjK\M1\M2�I j; n2DjK\M2\Mi�I j; n3DjK\Mi\M1�I j

k1DjK\M1�.Mk[M2/j; k2DjK\M2�.M1[Mi/j; k3DjK\Mi�.M2[M1/j

(note that it is possible that MiC1DM1 if kDiD3).

We remark that

(�)
3X

jD1

.njCkj /CjI j�s�jI jC2m:

Since K\M1 separates a; b2M1 , there are two continua M 1
1
;M 2

1
such that a2M 1

1
,

b2M 2
1

and

M 1
1 [M 2

1 DM1; M 1
1 \M 2

1 �K:

We have now

j@M 1
1 jCj@M

2
1 j�2.n1Cn3Ck1CjI j�s/CsC.m�n1/C.m�n3/:

On the other hand,
j@M 1

1 jCj@M
2
1 j�2.jI jC2m/:

We obtain the inequality

(1) n1Cn3C2k1�s�2m:

Similarly using that K\M2 separates a; b2M2 and K\Mi separates a; b02Mi , we
see that

n1Cn2C2k2�s�2m;(2)

n2Cn3C2k3�s�2m:(3)

Adding (1), (2), (3) we have

3X
jD1

.njCkj /�
3s

2
�3m

which contradicts (�).

Case 2 The hypothesis of Case 1 does not hold.
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Since K separates also a from b2M1\M2 , we have that K\M1 and K\M2

separate a from b in M1 , respectively in M2 . We set

n1DjK\M1\M2�I j; k1Dj.K\M1/�M2j; k2Dj.K\M2/�M1j:

We have the inequality

(|) jI j�sCn1Ck1Ck2�2mCjI j:

Since K\M1 separates a; b2M1 , there are two continua M 1
1
;M 2

1
such that

M 1
1 [M 2

1 DM1; M 1
1 \M 2

1 �K

and b2M 1
1
; a2M 2

1
. We have now

j@M 1
1 j�mCk1CjI j�s:

On the other hand,
j@M 1

1 j�jI jC2m

We obtain the inequality

(4) k1�s�m:

Arguing similarly using M2 we obtain the inequality

(5) k2�s�m:

Adding (4), (5) we get
k1Ck2�2s�2m

which contradicts (|) since s>0 and n1<m.

We have shown therefore in both cases that I�K . Replacing X with F.X�I/ and
applying Lemma 2.7, we may assume that ID∅. Thus by hypothesis, jMi\Mj jD2m

if j�iD˙1 mod r and is empty otherwise.

We show now that W [K is a wheel. Since K 6�W , then K\W doesn’t separate and
by Lemma 3.1, for some i , K separates Mi . Renumbering, we may assume that K

separates M1 .

If there is a quasicomponent of ˛ of X�K which is contained in M1 , then by
Lemma 2.8, K�x̨� SM1DM1 . However, X�M1 is connected by Lemma 2.8 applied
to the points of @Mi�M1 for i¤1. This and Lemma 2.8 contradict the fact that K

separates points of W .

Thus every quasicomponent of X�K hits Int.M2[� � �[M0/, and by Lemma 2.8
every quasicomponent of X�K hits Int M1 as well. We know that K decompose X
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into continua N0 , and N1 and it follows that .Int Ni/\M1¤∅ by Lemma 2.1. Thus
K separates the minimal separator @M1�W .

Now we apply Theorem 3.5 to K and @M1 . Since @M1 decomposes X into the
continua M1 and M2[� � �[M0 , we find that K decomposes M1 into continua P

and Q, with P\M0¤∅ and Q\M2¤∅.

Notice that X�M1D ŒM2[� � �[M0��@M1 , so this space has a Freudenthal compact-
ification. Now consider Y DF.X�M1/ and HDK�M1 .

Since no quasicomponent of X�K is contained in M1 , it follows from Lemma 2.7 that
H separates Y . Let JDW �M1 . Clearly J decomposes Y into �M2; : : : ; �M0 where
�. �Mi/DMi , iD2; : : : ; 0 for the canonical map � W Y!X�Int M1 . By Lemma 3.1,
either H\J separates Y or for some i¤1, H separates �Mi .

Case I H\J separates Y .

By Lemma 2.8, H\J doesn’t separate �Mi for any i>1, and it follows that H\J

must separate �Mi from �MiC1 for some i>1. Thus by Lemma 2.8 �Mi\
�MiC1D

Mi\MiC1�H\J . Thus jH j�mDjMi\MiC1j. Since HDK�M1 has order at
least m, then by Theorem 3.5 applied to @M1 and K , K\@M1D∅. Thus Theorem 3.5
implies that jK\Int M1jDmDjK�M1j, and so H\JDH . Since K\@M1D∅,
by Lemma 2.8 Int Mk is contained in a single quasicomponent of X�K , and so
Mk�P . Similarly M2�Q. It follows now that Q\Mk , and P\M2 are empty, and
so P;Q;M2; : : : ;Mk is a wheel decomposition of X , so fK1;K2; : : : ;Kr ;Kg is a
wheel.

Case II H separates �Mi for some i¤0 and H\J doesn’t separate Y .

Since @ �Mi 6�H , this implies that H\Int �Mi¤∅. However Int �MiDInt Mi , therefore
Int Mi\K¤∅. Let K decompose X into continua A;B .

Case II(a) For some j , Mj is contained in one of A;B .

We may assume Mj�B . Reordering if need be, we have A�M1[M2[� � �[Mi

where K\Int M1¤∅ and K\Int Mi¤∅. Consider A1DA\M1 and AiDA\Mi .
Notice @A1�.M1\M2/t.M1\K�M2/ and @Ai�.Mi�1\Mi/t.Mi\K�Mi�1/.
By Theorem 3.5 applied to K and @M1 , A1 is a continuum with j@A1jD2m and
similarly Ai is a continuum with j@Ai jD2m. It now follows jMi\K�Mi�1jD

mDjM1\K�M2j. This implies that K� ŒM1�M2�[ŒMi�Mi�1�. (In particular
K\M1\M2D∅DK\Mi�1\Mi ). Also since @A1D2m, M1\M2�@A1 which
implies that M1\M2�Int A, and similarly Mi�1\Mi�Int A.

Now let B1DB\M1 and BiDB\Mi . Applying Theorem 3.5 to @M1 and K ,
we get that B1 is a continuum with j@B1jD2m and similarly Bi is a continuum
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with j@Bi jD2m. Since M1\M2�Int A, we know @B1� ŒM0\M1�[ŒM1\K�M2�.
But jM0\M1jDmDjM1\K�M2j, hence M0\M1\ŒM1\K�M2�D∅. There-
fore M0\M1\KD∅, and similarly Mi\MiC1\KD∅, so we have K\W D∅.

Notice that A1\Mk , B1\M2 , Ai\MiC1 and Bi\Mi�1 are all empty. So starting
with the wheel decomposition M0;M1; : : : ;Mk�1 of X and replacing M1 with A1

and B1 and replacing Mi with Ai Bi , we have a wheel decomposition for W [K .

Case II(b) For each j , we have Int Mj\A¤∅¤Int Mj\B .

Notice that K separates @Mj for all j . Applying Theorem 3.5 to @Mj and K , we
get that AjDMj\A and BjDMj\B are continua with j@Aj jD2mDj@Bj j. Notice
that Aj\Bj�K for each J .

4mDj@Aj jCj@Bj jDj@Mj�KjC2jK\Mj j

D2m�jK\@Mj jC2jK\Mj j

D2mCjK\Mj jCjK\Int Mj j

D2mC2jK\Int Mj jCjK\@Mj j:

Define kjDjK\Int Mj j and njDjK\@Mj j, so 2mD2kjCnj and

2

k�1X
jD0

kjC

k�1X
jD0

njD2km:

Notice that

2mDjKjD

k�1X
jD0

kjC
1

2

k�1X
jD0

nj :

It follows that kD2 contradicting the fact that k�3.

5 Pretrees and trees

Pretrees are tree-like structures used to construct trees or R–trees (see [6]). Not all
pretrees however embed in R–trees. In this section we give necessary and sufficient
conditions for a pretree to embed to an R–tree. We remark that Chiswell has shown [7]
that any countable pretree embeds to an R–tree.

Definition Let P be a set and let R�P�P�P . We say then that R is a betweenness
relation. If .x;y; z/ 2R, then we write xyz and we say that y is between x; z . P
equipped with this betweenness relation is called a pretree if the following hold:
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(1) There is no y such that xyx for any x 2 P .

(2) xzy, yzx .

(3) For all x;y; z if y is between x; z then z is not between x;y .

(4) If xzy and z ¤ w then either xzw or yzw .

The obvious example of a pretree is a tree (simplicial or R–tree). Note that any subset
of a pretree is a pretree.

Example 5.1 Not all pretrees are subsets of R–trees. Indeed any linearly ordered
set .P; </ can be seen as a pretree: we define betweenness by: xyz if x < y < z

or z < y < x . Consider now the first uncountable ordinal @1 . Clearly @1 cannot be
embedded in an order preserving way to an R–tree.

Definition Let P be a pretree and let x;y 2 P . We define the open interval .x;y/
to be the set of all z 2 P between x;y . Similarly we define the closed interval Œx;y�
and the half open intervals Œx;y/; .x;y�.

Definition A point x of a pretree P is called a terminal point if x 62 .a; b/ for all
a; b 2 P .

Definition A subset I of a pretree P is called linearly ordered, if for each distinct
triple of points in I , one of them is contained in the open interval between the other two.

It is shown in [6] that every linearly ordered subset comes with a linear order (and its
opposite) defined using the betweenness relation. Every interval is a linearly ordered
set, but not every linearly ordered set is an interval. Notice that by Zorn’s Lemma,
every linearly ordered set is contained in a maximal linearly ordered set.

Remark 1 It is useful to note that if P is a pretree, one can recover the betweenness
relation on P from the set of maximal linearly ordered subsets of P . To be precise,
xyz holds in P if and only if x;y; z lie in a maximal linearly ordered subset of P
and xyz holds in this subset. So one way to define betweenness in a pretree P is by
specifying all maximal linearly ordered subsets of P .

Definition If every maximal linearly ordered subset of a pretree P is order isomorphic
to an interval of R, then we say that P is an R tree. Notice that this doesn’t define a
topology on P .
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Definition For I a linearly ordered subset of a pretree P , we say that I is complete
if I has the supremum property, that is if every nonempty subset of I with an upper
bound in I has a supremum in I . If every maximal linearly ordered subset of P is
complete, then we say P is complete.

Definition For P a pretree and A� P , the convex hull of A is defined by

Hull.A/D
[

a;b2A

Œa; b�:

We say that a set A� P is convex if AD Hull.A/. Maximal linearly ordered sets are
of course convex.

Definition A subset A of a pretree X is predense in X if for every distinct a; b 2X ,
Œa; b�\A¤∅.

Let P be a pretree; A maximal linearly ordered I � P is called preseparable if I

has a countable predense subset. A pretree is preseparable if every maximal linearly
ordered subset in it is preseparable.

Definition Let P be a pretree. We say that P is a median pretree if for any three
points x;y; z 2 P the intersection Œx;y�\ Œy; z�\ Œz;x� is nonempty. Note that if this
intersection is nonempty then it consists of a single point called the median of x;y; z .

Example 5.2 Consider the R–tree T given by the union of x;y–axes in the plane.
The subset P of T consisting of the intervals .�1;�1�[.0;1/ of the x–axis together
with the interval .0;1/ of the y –axis is not median. It becomes median if we add 0.

Clearly if a pretree P embeds in an R–tree, then P is preseparable. So being presepa-
rable is a necessary condition for an embedding to an R–tree. However this condition
is not sufficient.

Example 5.3 Consider the upper half plane P D f.x;y/ W y � 0g. We define a
betweenness relation on P by specifying all maximal linearly ordered subsets of P .
The x–axis is one of them. Now if we denote by .a; b/ intervals on the x–axis and by
.a; b/x , the interval f.x; t/ W a< t < bg parallel to the y –axis the rest of the maximal
linearly ordered subsets of P are of the following two types:

.�1;x�[ .0;1/x; .0;1/x [ .x;1/

Clearly this defines a pretree structure on P . With this structure, P is a preseparable
pretree which is not median. It is not very hard to see that P does not embed in an
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R–tree. The reason is that if one tries to complete P to a median pretree, one is forced
to introduce a “gap” at every point on the x–axis. So the resulting median pretree is
not preseparable anymore.

Definition Let .L; </ be a linearly ordered set. If A;B � L, we write A < B if
a< b for all a 2A; b 2 B .

.A;B/ is a Dedekind cut of L if A;B are nonempty, LDA[B and A< B .

Definition Let P be a pretree and let .L; </ be a maximal linearly ordered subset
of P . We say that L has a gap at x 2L if one of the following two holds:

(i) .A;B/ is a Dedekind cut of L, x D sup A lies in A and there is a linearly
ordered subset C of P such that A[C and B[C are maximal linearly ordered
subsets of P .

(ii) .A;B/ is a Dedekind cut of L, x D inf B lies in B and there is a linearly
ordered subset C of P such that A[C and B[C are maximal linearly ordered
subsets of P .

If every maximal linearly ordered subset of P has at most countably many gaps, then
we say that P has few gaps.

We can now state the main result of this section:

Theorem 5.4 Let P be a pretree. Then there is an embedding of P into an R–tree if
and only if P is preseparable and has few gaps.

We recall the following:

Theorem 5.5 [18] Let P be a complete preseparable median pretree, then there is a
canonical embedding of P into an R–tree T , with Hull.P/D T .

So in order to prove Theorem 5.4, it suffices to show that P can be embedded to a
median complete preseparable pretree. Bowditch [6] has described a way to embed
any pretree to a complete median pretree using flows. For the sake of completeness
and also because we need to preserve preseparability, we give here a brief account of a
procedure that embeds a pretree to a median complete pretree. Instead of flows, we
will use Dedekind cuts.
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Lemma 5.6 Let .L; </ be a linearly ordered set. Let D be the set of Dedekind cuts
of L. We extend the order of L to xLDL[D as follows: For a 2L;x D .A;B/ 2D

we define a< x if a 2A. For x1 D .A1;B1/; x2 D .A2;B2/, we define x1 < x2 if
A1 �A2 . With this ordering, xL is a complete linearly ordered set, and L is predense
in xL.

Proof It is easy to see that xL is a linearly ordered set. We show that xL is complete. Let
S be a bounded subset of xL. Consider S1DS\L and S2D

S
fA W .A;B/2D\Sg.

If S1 � S2 then .S2; xL�S2/D sup S . Otherwise there are two cases. If S1\L has
a supremum m in L then mD sup S1 . If not consider

AD fa 2L W a< b for some b 2 S1g:

Then .A;L�A/D sup S . By construction L is predense in xL.

This lemma gives a way to complete any linearly ordered set. However, this completion
is not very economical. For example, if one starts with R, which is already complete,
one still adds infinitely many points to get xR. Clearly one can do better than that. With
the notation of Lemma 5.6 we have:

Lemma 5.7 Let .L; </ be a linearly ordered set. Let L0� xL such that L0 contains all
Dedekind cuts .A;B/ of L for which sup A does not lie in L. Then L0 is complete.

Proof The proof of Lemma 5.6 applies in this case too.

We can turn a pretree complete and median using Dedekind cuts as we did in order to
complete linearly ordered sets.

Definition Let P be a pretree. A set of nonempty linearly ordered subsets of P ,
D D fAi W i 2 Ig is called a Dedekind cut of P if the following hold:

(i) For any i ¤ j , Ai [Aj is a maximal linearly ordered subset of P and Ai <Aj

in one of the two linear orderings on Ai [Aj .

(ii) D is a maximal collection of nonempty linearly ordered sets which satisfies (i).

If D is a Dedekind cut of P and A 2 D then we say that B � P is D–equivalent
to A if .D � fAg/[ fBg is a Dedekind cut. We then write A � B . It is easy to see
that this defines indeed an equivalence relation and we denote the equivalence class
of A by ŒA�. We say that two Dedekind cuts D;D0 are equivalent if every A 2D is
equivalent to some A0 2D0 . We denote by ŒD� the equivalence class of D . We say
that a Dedekind cut is essential if either jDj > 2 or D D fA;Bg with A < B and
sup A … P .
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If P is a pretree we define the median completion C.P/ of P by

C.P/D P [fŒD� WD is an essential Dedekind cut of Pg:

We now turn C.P/ into a pretree. To define betweenness it is enough to specify all
maximal linearly ordered subsets of C.P/. If L is a maximal linearly ordered subset
of P , consider the set DL of all essential Dedekind cuts of P that contain some
Dedekind cut of L (to be precise Dedekind cuts of L were defined as ordered pairs but
here we just see them as 2 element sets). The maximal linearly ordered sets of C.P/
are of the form

zLDL[fŒD� WD 2DLg;

where L is maximal linearly ordered subset of P . Note that if .A;B/ is a Dedekind
cut of L contained in D , then for any D0 2 ŒD� if D0 contains a Dedekind cut of L,
D0 contains in fact .A;B/. So we can associate to each ŒD� 2 zL a unique Dedekind
cut of L and see zL as a subset of xL. By Lemma 5.7 zL is complete. We show now
that C.P/ is a pretree. We will need a lemma:

Lemma 5.8 (1) If x 2P , L a maximal linearly ordered subset of P and .A1;A2/

a Dedekind cut of L. Then either fxg [A1 or fxg [A2 is a linearly ordered
subset of P .

(2) Let L1;L2 be maximal linearly ordered subsets of P and .A1;A2/; .B1;B2/

be Dedekind cuts of L1;L2 respectively. Then for some i; j Ai [ Bj is a
linearly ordered subset of P .

Proof Left to the reader.

Axioms (1), (2) of the definition clearly hold for C.P/.

Lemma 5.9 If xyz holds in C.P/, then xzy does not hold.

Proof We argue by contradiction, that is we assume that xyz and xzy both hold. We
distinguish 2 cases.

Case 1 x is a Dedekind cut.

Case 2 x is an element of P .

Because of the symmetry between y; z , we split Case 1 to three further cases:

Case 1a y; z are Dedekind cuts.

Case 1b z is an element of P and y is a Dedekind cut.

Case 1c Both y; z are elements of P .
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We now treat Case 1a.

Since xyz holds, there is a maximal linearly ordered subset L of P and x;y; z

correspond respectively to Dedekind cuts .A1;B1/; .A2;B2/; .A3;B3/ of L. Without
loss of generality, we may assume that A1 �A2 �A3 where all inclusions are proper.
Since xzy holds, then there is a maximal linearly ordered subset L0 of P so that
x;y; z correspond respectively to Dedekind cuts .A0

1
;B0

1
/; .A0

2
;B0

2
/; .A0

3
;B0

3
/ of L0

and A0
1
� A0

3
� A0

2
(proper inclusions). If A3 [A0

3
is a maximal linearly ordered

subset of P , then A1[A0
1

is a maximal linearly ordered of P and it is a proper subset
of A3[A0

3
, which is impossible. Therefore A3 �A0

3
. Then A3[B0

3
is a maximal

linearly ordered subset of P . But A2[B0
2
�A3[B0

3
(proper inclusion) which leads

to a contradiction.

Case 1b There is a maximal linearly ordered subset L of P and x;y correspond
respectively to Dedekind cuts .A1;B1/; .A2;B2/ of L, while z 2L. Without loss of
generality, we may assume that A1 � A2 and z … A2 . Similarly there is a maximal
linearly ordered subset L0 of P so that x;y correspond respectively to Dedekind
cuts .A0

1
;B0

1
/; .A0

2
;B0

2
/ of L0 , A0

1
� A0

2
(proper inclusions) and z 2 A0

2
. As in the

previous case, we have A2 �A0
2

so .A0
2
;B2/ is a Dedekind cut of a maximal linearly

ordered subset of P . This is a contradiction since z 2A0
2
\B2 .

Case 1c As before, we may assume that x corresponds to Dedekind cuts .A1;B1/,
.A0

1
;B0

1
/ of linearly ordered subsets L;L0 and y; z 2L\L0 with y; z …A1;y; z …A0

1
.

Clearly L00 DA1[B0
1

is a linearly ordered subset of P and A1 < y < z , A1 < z < y

both hold in L00 . This is a contradiction.

We now treat Case 2. As in Case 1, we split it into 3 cases.

Case 2a Assume that y; z correspond to Dedekind cuts. Since xyz holds, there is a
maximal linearly ordered subset L of P , y; z correspond respectively to Dedekind
cuts .A1;B1/; .A2;B2/ of L and x 2A1 �A2 . Since xzy holds, there is a maximal
linearly ordered subset L0 of P so that y; z correspond respectively to Dedekind
cuts .A0

1
;B0

1
/; .A0

2
;B0

2
/ of L0 and x 2A0

3
�A0

2
(proper inclusion). We remark that

.A2;A
0
2
/ is not a Dedekind cut since x 2 A2 \ A0

2
. It follows that .A2;B

0
2
/ is a

Dedekind cut. But A1 � A2; B0
1
� B0

2
(proper inclusions) so A1 [B0

1
is a proper

subset of A2[B0
2

which is impossible since A1[B0
1

is a maximal linearly ordered
subset of P .

Case 2b Assume that z corresponds to a Dedekind cut and y 2 P . Since xyz holds,
there is a maximal linearly ordered subset L of P , z corresponds to a Dedekind
cut .A;B/ of L and x;y 2 A;x < y . Since xzy holds there is a maximal linearly
ordered subset L0 of P , z corresponds to a Dedekind cut .A0;B0/ of L0 and x 2A0 ,
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y 2 B0 . Now we remark that .A;A0/ cannot be a Dedekind cut since x 2A\A0 . It
follows that .A;B0/ is a Dedekind cut. But this is also impossible since y 2A\B0 .

Case 2c All x;y; z 2 P . Clearly then we cannot have xyz and xzy since P is a
pretree.

Lemma 5.10 If xzy and z ¤ w in C.P/, then either xzw or yzw .

Proof We distinguish two cases:

Case 1 w 2 cP .

Case 2 w … P .

We first treat Case 1. Since xzy , there is a maximal linearly ordered subset L of P so
that x; z;y 2L. If z is a Dedekind cut, consider .A;B/ to be the Dedekind cut of L

corresponding to z . Otherwise let AD ft 2L; t � zg and B DL�A. Without loss
of generality, we may assume that if x 2 P x 2 A, if x is represented by .A1;B1/,
A1 � A, and if y 2 P , y 2 B while if y is represented by .A2;B2/, then A � A2 .
By Lemma 5.8 either fwg [A or fwg [B is a linearly ordered subset of L. In the
first case xzw and in the second case yzw .

Case 2 Since xzy there is a maximal linearly ordered subset L of P so that
x; z;y 2L. We define .A;B/ as in Case 1. If x;y are Dedekind cuts, we represent
them as in Case 1 by Dedekind cuts .A1;B1/, .A2;B2/ of L. Let .A0;B0/ be a
Dedekind cut of a maximal linearly ordered set representing w . By Lemma 5.8, one of
A[A0 , A[B0 , B [A0 , B [B0 is a linearly ordered subset of P . In the first case
xzw in the second xzw in the third yzw and in the fourth yzw .

The previous lemmas show that C.P/ is a pretree. As we noted earlier C.P/ is
complete.

Lemma 5.11 C.P/ is median.

Proof Let x;y; z 2 C.P/. Consider w D sup.Œx;y�[ Œx; z�/. Then w 2 Œy; z� so w
is the median of x;y; z .

Lemma 5.12 C.P/ is preseparable, and P is predense in C.P/.

Proof Let L be a maximal linearly ordered subset of C.P/. Then L is obtained from
a maximal linearly ordered subset L0 of P , and by Lemma 5.6 L0 is predense in L.
It follows that P is predense in C.P/. Since C.P/ has few gaps, the set S of points
of L that are not limit points of L0 is countable. Since P is preseparable, there is a
countable dense set of L0 , Q. Then Q[S is a countable dense set of L. So C.P/ is
preseparable.
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6 The cactus of a continuum

Let X be an n–thick continuum. We explain how to associate a pretree to all minimal
separators of the continuum. We also show that when X is separable, this pretree can
be embedded into an R–tree.

If a minimal separator K1 separates two points a; b of a minimal separator K2 , then
we say that K1 crosses K2 . From Theorem 3.5 we have that K2 crosses K1 too.

We have seen in the previous section that every minimal separator of X either is
contained in a maximal wheel or it does not cross any other minimal separator. If a
minimal separator K does not cross any other minimal separator, we say that it is
isolated.

We define now a pretree R with elements all the maximal wheels of X and all the
isolated minimal separators of X . We define a betweenness relation in R:

Let x;y; z 2R. If y is a minimal separator, we say that y is between x; z if there are
continua A;B such that

x �A; z � B; A[B DX; A\B D y:

If y is a maximal wheel, we say that y is between x; z if for some minimal separator
w 2 y , w is between x; z .

X

R

Figure 4

In Figure 4, there are two wheels, a yellow one and a gray one. In the pretree R, the
isolated cuts are the vertices where the colors change. The yellow wheel is the center
of the yellow edge and the gray wheel is the center of the gray tripod.
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Lemma 6.1 R with the betweenness relation defined above, is a pretree.

Proof We show that R satisfies the 4 axioms of the pretree definition.

(1) It is clear that xyx does not hold.

(2) xyz holds if and only if zyx holds.

(3) Assume that a minimal separator y is between x; z . Then there are continua
A1;B1 such that

x �A1; z � B1; A1[B1 DX; A1\B1 D y:

Assume that z is also a minimal separator and xzy holds. Then there are continua
A2;B2 such that

x �A2; y � B2; A2[B2 DX; A2\B2 D z:

We have

A1 D .A1\A2/[ .A1\B2/; .A1\A2/\ .A1\B2/� y \ z:

Note that y is not contained in A1\A2 . We set

B3 D B1[ .A1\B2/; A3 DA1[A2

Then X DA3[B3 and

A3\B3 D .B1\A1\A2/[ .A1\B2/\A1\A2 � y \ z:

We note also that A3 DA1\A2 contains x , while B3 does not contain x . It follows
that y \ z separates two points of X , a contradiction since X is n–thick. This shows
that axiom 3 holds if x; z are minimal separators. However the case where one of y; z

or both y; z are wheels reduces easily to the case where both are minimal separators.
This shows that axiom 3 holds.

(4) Assume that xyz holds and let w ¤ y . We will show that either xyw or zyw

holds. Indeed let A;B be continua such that

x �A; z � B; A[B DX

and A\B D y if y is a minimal separator or A\B D y1 2 y if y is a wheel. Then
w �A or w � B since w ¤ y . If w �A then zyw holds and if w � B , then xyw

holds. This proves axiom 4.

Let X be an n–thick separable continuum. We showed above how to associate a
pretree R to X which “encodes’ all minimal separators of X . We now use the
construction of Section 5 (see also [6]) and we complete R to a median pretree P .

Algebraic & Geometric Topology, Volume 11 (2011)



2574 Panos Papasoglu and Eric Swenson

Lemma 6.2 The set of maximal wheels of R is countable.

Proof Let Q be a countable dense set of X . If W is a maximal wheel, we consider
a wheel decomposition

X DM0[M1[M2[M3

corresponding to a subwheel of W . We pick qi 2Q such that qi 2 Int Mi .iD0; 1; 2; 3/.
We map W to fq0; q1; q2; q3g. This gives a map from the set of maximal wheels to Q4 .

Suppose this map were not injective, then there would be two distinct maximal
wheels W and �W having subwheels decompositions X DM0[M1[M2[M3 and
X D yM0[

�M1[
�M2[

�M3 , respectively with qi 2 Int Mi \ Int �Mi for some qi 2Q

for i D 0; 1; 2; 3. Since W and �W don’t cross, it must be the case that for some
i D 0; 1; 2; 3, W � �Mi , and at most one of M0; : : : ;M3 is not contained in �Mi . This
contradicts the fact that qi 2 Int Mi \ Int yMi for i D 0; 1; 2; 3.

Thus this map from the set of maximal wheels to Q4 is injective so the set of maximal
wheels is countable.

Lemma 6.3 R is preseparable.

Proof Let I be a maximal linearly ordered subset of R. We define a dense subset S

of I . Since the set of maximal wheels of R is countable, we take S to include all
maximal wheels that lie in I . Let Q be a dense set of X . For any q1; q2 in Q, if
q1; q2 are separated by some minimal separator in I , we pick a minimal separator K

in I which separates q1; q2 and we add this to S . Clearly S is a countable dense
subset of I .

Lemma 6.4 The set of added medians P �R is countable.

Proof Any added median m corresponds to a triple of points x0;x1;x2 2R, none
of which is between the other two. If some of x0;x1;x2 are not minimal separators,
then we substitute it by a minimal separator lying in it. Now there are continua
Ai ;Bi ; i D 0; 1; 2 such that Ai\Bi D xi , X DAi[Bi and xiC1;xiC2 2Ai ; i 2Z3 .

Since X is separable, it has a countable dense subset Q. We pick qi 2 Bi ; i D 1; 2; 3

and we map m to the set fq1; q2; q3g. It is clear that this map from the set of medians
to Q�Q�Q is injective so P �R is countable.

Theorem 6.5 Let X be a separable, m–thick continuum, where m > 1. Then the
pretree R embeds into an R–tree T .
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Proof From the previous lemma it follows that R has few gaps. Therefore by
Theorem 5.4 the completion P is preseparable and embeds canonically in an R–
tree T .

The R–tree T is called the cactus tree of the continuum X . Since this construction is
canonical, the homeomorphism group of X acts naturally on the cactus tree of X .

Definition We say that a pretree P is discrete if for any x;y 2 P there are finitely
many z 2 P such that xzy .

Theorem 6.6 Let X be a locally connected, separable, m–thick continuum, where
m> 1. Then the R–tree corresponding to the minimal separators of X is simplicial.

Proof So X is an m–thick metric continuum. We show that either X is not locally
connected or mD 1. Suppose not, then there exists a strictly monotone sequence of
branch points Ai � T such that Ai!A 2 T .

We first consider the case where A is not terminal in T . By construction of T , all
branch points of T are elements of P . Since P is complete and .An/� P , A 2 P .
Since A is not terminal in T , it is not terminal in P , so there is B 2 P such that
A 2 .An;B/ for all An . Since the elements of P �R are Dedekind cuts, we may
assume that B 2R. Since R is predense in P , we can replace .An/ with a monotone
sequence in R (which we will also call .An/) which also has the property that An!A

and A 2 .An;B/ for all n. Notice that An need no longer be a branch point of T .
Notice that the set fAn;A;Bg is a linearly ordered subset of P .

Let n> 1.

Consider the case where An is a minimal separating set. Since An 2 .An�1;AnC1/,
An decomposes X into continua Yn;Zn with An�1 � Yn and AnC1 �Zn . It follows
that Ai � Yn for all i < n, and B;Aj �Zn for all j > n.

Next consider the case where An is a wheel. Since An � .An�1;AnC1/, there is
a minimal separator yAn � An with yAn decomposing X into continua Yn;Zn with
An�1 � Yn and AnC1 �Zn . It follows that Ai � Yn for all i < n, and B;Aj �Zn

for all j > n. In this case, we replace An with the minimal separator yAn .

Thus for each n, we have minimal separators An with jAnjDm and An decomposes X

into Yn;Zn with Ai � Yn for all i < n, and B;Aj �Zn for all j > n. By Lemma 3.1,
AnC1 decomposes Zn into continua Wn;ZnC1 . where @Wn DAn[AnC1 .

For each n, let AnD fa
1
n; : : : ; a

m
n g. Passing to a subsequence, we may assume that for

each i D 1; : : : ;m ai
n! ai . Choose open sets U i 3 ai , i D 1; : : : ;m such that for

aj ¤ ai , U j \U i D∅.
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Case 1 For some choice of U i (i D 1; : : : ;m), for all N 2 N there is n > N with
Wn 6� [U i . Passing to a subsequence, we may assume that for each n there is
xn 2Wn �

S
U i . Passing to a subsequence, we may assume that xn! x 62

S
U i .

Making U i smaller if need be, we can choose open U 3 x with U \U i D∅ for all i .
For n� 0, xn 2 U and ai

n 62 U , and so Wi and Wj are in different quasicomponents
of U . It follows that there is not a basis of connected sets for x , and so X is not
locally connected.

Case 2 For every choice of U i (i D 1; : : : ;m), for n� 0, then Wn�[U i . Since Wn

is a continuum, it follows that ai D aj for all i; j . Notice now that @Œ
S

Yn�D fa
1g,

so a1 is a cut point separating A1 from B . Thus mD 1.

Now consider the case where A is terminal in T . It follows that A 2R. Replacing A

with a minimal cut subset of itself (when A is a maximal wheel), we have that A

decomposes X into continua B;C where Int B\
S
ŒR�fAg�D∅. The proof proceeds

as above with this new B playing the same roll as the old B .
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