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More on the anti-automorphism of the Steenrod algebra

VINCE GIAMBALVO

HAYNES R MILLER

The relations of Barratt and Miller are shown to include all relations among the
elements P i�P n�i in the mod p Steenrod algebra, and a minimal set of relations is
given.

55S10

1 Introduction

Milnor [4] observed that the mod 2 Steenrod algebra A forms a Hopf algebra with
commutative diagonal determined by

(1) �Sqn
D

X
i

Sqi
˝Sqn�i :

This allowed him to interpret the Cartan formula as the assertion that the cohomology
of a space forms a module-algebra over A. The anti-automorphism � in the Hopf
algebra structure, defined inductively by

(2) �Sq0
D Sq0 ;

X
i

Sqi �Sqn�i
D 0 for n> 0 ;

has a topological interpretation too: If K is a finite complex then the homology of the
Spanier–Whitehead dual DKC of KC is canonically isomorphic to the cohomology
of K . Under this isomorphism the left action by � 2A on H�.K/ corresponds to the
right action of �� 2A on H�.DKC/.

In 1974 Davis [3] proved that sometimes much more efficient ways exist to compute
�Sqn ; for example

�Sq2r�1
D Sq2r �1

�Sq2r �1�1 ;(3)

�Sq2r�r�1
D Sq2r �1�1 �Sq2r �1�r

CSq2r �1

�Sq2r �1�r�1 :(4)

Similarly, Straffin [6] proved that if r � 0 and b � 2 then

(5)
X

i

Sq2r i �Sq2r .b�i/
D 0 :
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Both authors give analogous identities among reduced powers and their images under �
at an odd prime as well. Further relations among the Steenrod squares and their
conjugates appear in these articles and elsewhere (eg Silverman [5]).

Barratt and Miller [1] found a general family of identities which includes (3), (4)
and (5), and their odd-prime analogues, as special cases. We state it for the general
prime. When p D 2, Pn denotes Sqn . Let ˛.n/ denote the sum of the p–adic digits
of n.

Theorem 1.1 [1; 2] For any integer k and any integer l � 0 such that pl �˛.l/ <

.p� 1/n,

(6)
X

i

�
k � i

l

�
P i�Pn�i

D 0 :

The relations defining � occur with l D 0. Davis’ formulas (for pD 2) are the cases in
which .n; l; k/D .2r �1; 2r�1�1; 2r �1/ or .n; l; k/D .2r �r �1; 2r�1�2; 2r �2/.
Straffin’s identities (for p D 2) occur as .n; l; k/D .2r b; 2r � 1;�1/.

Since
�.kC1/�i

l

�
�
�
k�i

l

�
D
�
k�i
l�1

�
, the cases .l; k C 1/ and .l; k/ of (6) imply it for

.l � 1; k/. Thus the relations for l D �.n/� 1, where

(7) �.n/D 1Cmaxfj W pj �˛.j / < .p� 1/ng ;

imply all the rest. Here we have adopted the notation �.n/ used in [2]; we note that it
is not the Euler function '.n/.

When p D 2, �.2r � 1/D 2r�1 and �.2r � r � 1/D 2r�1 � 1, so Davis’s relations
are among these basic relations.

Two questions now arise. To express them uniformly in the prime, let P denote the
algebra of Steenrod reduced powers (which is the full Steenrod algebra when p D 2),
but assign Pn degree n. Write

Vn D SpanfP i�Pn�i
W 0� i � ng � Pn :

It is natural to ask:

� Are there yet other linear relations among the nC 1 elements P i�Pn�i in Pn ?

� What is a basis for Vn ?

We answer these questions in Theorem 1.4 below.

Write ei ; 0� i � n, for the i –th standard basis vector in FnC1
p .
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Proposition 1.2 For any integers l;m; n, with 0� l � n,

(8)
�X

i

�
k � i

l

�
ei Wm� k �mC l

�
is linear independent in FnC1

p .

Proposition 1.3 The set

(9)
˚
P i�Pn�i

W �.n/� i � n
	

is linearly independent in Pn .

Define a linear map

(10) �W FnC1
p ! Pn ; �ei D P i�Pn�i :

Theorem 1.1 implies that if l D �.n/� 1 the elements in (8) lie in ker�, so Proposi-
tions 1.2 and 1.3 imply that (8) with l D �.n/� 1 is a basis for ker� and that (9) is a
basis for Vn � Pn . Thus:

Theorem 1.4 Any �.n/ consecutive relations from the set (6) with l D �.n/ � 1

form a basis of relations among the elements of fP i�Pn�i W 0 � i � ng. The set
fP i�Pn�i W �.n/� i � ng is a basis for Vn .

Acknowledgements We thank Richard Stanley for the slick proof of Proposition 1.2.
This material is based upon work supported by the National Science Foundation under
grant number 0905950.

2 Independence of the relations

We wish to show that (8) is a linearly independent set. Regard elements of FnC1
p as

column vectors, and arrange the l C 1 vectors in (8) as columns in a matrix, which
we claim is of rank l C 1. The top square portion is the mod p reduction of the
.l C 1/� .l C 1/ integral Toeplitz matrix Al.m/ with .i; j /–th entry�

mC j � i

l

�
; 0� i; j � l :

Lemma 2.1 det Al.m/D 1.
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Proof By induction on m. Since
�
�1
l

�
D .�1/l and

�
�1Cj

l

�
D0 for 0< j � l , Al.�1/

is lower triangular with determinant ..�1/l/lC1 D 1. Now we note the identity

BAl.m/DAl.mC 1/

where

B D

2666664

�
lC1

1

�
�
�
lC1

2

�
� � � .�1/l�1

�
lC1

l

�
.�1/l

�
lC1
lC1

�
1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
:::

:::

0 0 � � � 1 0

3777775 :

The matrix identity is an expression of the binomial identity

(11)
X

k

.�1/k
�

l C 1

k

��
n� k

l

�
D 0

(taking n D mC 1� j and k D j C 1). Since det B D 1, the result follows for all
m 2 Z.

For completeness, we note that (11) is the case mD l C 1 of the equation

(12)
X

k

.�1/k
�

m

k

��
n� k

l

�
D

�
n�m

l �m

�
:

To prove this formula, note that the defining identity for binomial coefficients implies the
case mD 1, and also that both sides satisfy the recursion C.l;m; n/�C.l;m; n�1/D

C.l;mC 1; n/.

3 Independence of the operations

We will prove Proposition 1.3 by studying how P i�Pn�i pairs against elements in P� ,
the dual of the Hopf algebra of Steenrod reduced powers. According to Milnor [4],
with our grading conventions

(13)

P� D Fp Œ�1; �2; : : :� ; j�j j D
pj � 1

p� 1
;

��k D
X

iCjDk

�
pj

i ˝ �j :
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For a finitely nonzero sequence of nonnegative integers RD .r1; r2; : : :/ write �R D

�
r1

1
�

r2

2
� � � and let kRk D r1Cpr2Cp2r3C � � � and

jRj D j�R
j D r1C

�
p2� 1

p� 1

�
r2C

�
p3� 1

p� 1

�
r3C � � � :

The following clearly implies Proposition 1.3.

Proposition 3.1 For any integer n> 0 there exist sequences Rn;j , 0� j � n��.n/,
such that jRn;j j D n and

hP i�Pn�i ; �Rn;j i D

(
˙1 for i D n� j ;

0 for i > n� j :

The starting point in proving this is the following result of Milnor.

Lemma 3.2 [4, Corollary 6] h�Pn; �Ri D ˙1 for all sequences R with jRj D n.

In the basis of P dual to the monomial basis of P� , the element corresponding to �i
1

is P i . Since the diagonal in P� is dual to the product in P , it follows from (13) and
Lemma 3.2 that

hP i�Pn�i ; �R
i D

(
˙1 for i D kRk ;

0 for i > kRk :

So we wish to construct sequences Rn;j , for �.n/� j � n, such that jRn;j j D n and
kRn;jk D j . We deal first with the case j D �.n/.

Proposition 3.3 For any n� 0 there is a sequence M D .m1;m2; : : :/ such that

(1) jM j D n,

(2) 0�mi � p for all i ,

(3) if mj D p then mi D 0 for all i < j .

For any such sequence, kM k D �.n/.

Proof Give the set of sequences of dimension n the right-lexicographic order. We
claim that the maximal sequence satisfies the hypotheses.

Suppose that R D .r1; r2; : : :/ does not satisfy the hypotheses. If r1 > p then the
sequence .r1 � .p C 1/; r2 C 1; r3; : : :/ is larger. If rj > p , with j > 1, then the
sequence .r1; : : : ; rj�2; rj�1 C p; rj � .p C 1/; rjC1 C 1; rkC2; : : :/ is larger. This
proves (2). To prove (3), suppose that rj D p with j > 1, and suppose that some
earlier entry is nonzero. Let i D minfk W rk > 0g. If i D 1, then the sequence
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.r1�1; r2; : : : ; rj�1; 0; rjC1C1; rjC2; : : :/ is larger. If i > 1, then S with sk D 0 for
k< i�1 and i �k�j , si�1Dp , sjC1D rjC1C1, and skD rk for k>jC1, is larger.

Let M be a sequence satisfying (1)–(3), and write lDkM k�1. To see that lD�.n/�1

we must show that

p.l C 1/�˛.l C 1/� .p� 1/n;(14)

pl �˛.l/ < .p� 1/n :(15)

The excess e.R/ is the sum of the entries in R, so that pkRk� e.R/D .p� 1/jRj.
The p–adic representation of a number minimizes excess, so for any sequence R we
have e.R/� ˛.kRk/ and hence pkRk�˛.kRk/� .p� 1/jRj: so (14) holds for any
sequence.

To see that (15) holds for M , let j Dminfi Wmi > 0g, so that .p�1/nD .pj�1/mjC

.pjC1�1/mjC1C� � � and lC1D pj�1mj Cpj mjC1C� � � . The hypotheses imply
that l has p–adic expansion

.1C � � �Cpj�2/.p� 1/Cpj�1.mj � 1/Cpj mjC1C � � � ;

˛.l/D .j � 1/.p� 1/C .mj � 1/CmjC1C � � �so

from which we deduce

pl �˛.l/D .p� 1/.n� j / < .p� 1/n :

This completes the proof of Proposition 3.3.

Corollary 3.4 The function �.n/ is weakly increasing.

Proof Let M be a sequence satisfying the conditions of Proposition 3.3, and note that
the sequence RD .1; 0; 0; : : :/CM has jRj D nC1 and kRkD kM kC1D �.n/C1.
If p does not occur in M , then R satisfies the hypotheses of the proposition (in
degree nC 1) and hence �.n/ � �.nC 1/. If p does occur in M , then the moves
described above will lead to a sequence M 0 satisfying the hypotheses. None of the
moves decrease k�k, so �.n/� �.nC 1/.

Remark 3.5 Properties (1)–(3) of Proposition 3.3 in fact determine M uniquely.

Proof of Proposition 3.1 Define Rn;�.n/ to be a sequence M as in Proposition 3.3.
Then inductively define

Rn;j D .1; 0; 0; : : :/CRn�1;j�1 for �.n/ < j � n :

This makes sense by monotonicity of �.n/, and the elements clearly satisfy jRn;j j D n

and kRn;jk D j . This completes the proof.
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