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A lower bound for the number of group actions
on a compact Riemann surface

JAMES W ANDERSON

AARON WOOTTON

We prove that the number of distinct group actions on compact Riemann surfaces of
a fixed genus � � 2 is at least quadratic in � . We do this through the introduction
of a coarse signature space, the space K� of skeletal signatures of group actions on
compact Riemann surfaces of genus � . We discuss the basic properties of K� and
present a full conjectural description.

14H37; 57M60, 30F20

1 Introduction

The purpose of this note is to prove that there exist at least 1
4
.k� C 1/.k� C 3/ distinct

actions of groups of conformal automorphisms on compact Riemann surfaces of a fixed
genus � � 2, where k� D b�=3c (Theorem 4.3). We start by putting this result in
context.

Let X be a compact Riemann surface of genus � � 2 and let G be a group of conformal
automorphisms acting on X . The signature of the action is the tuple .hI n1; : : : ; nr /,
where the quotient space X=G has genus h and the quotient map � W X ! X=G is
branched over r points with orders n1; : : : ; nr . We work here with the definition that
the actions of groups G1 and G2 on compact Riemann surfaces X1 and X2 (of the
same genus � ) are equivalent if G1 is isomorphic to G2 and if the signatures of the
actions of G1 on X1 and of G2 on X2 are equal.

The counting problem we are interested in is to count the number of equivalence classes
of such actions. Though an interesting question in its own right, one of the primary
motivations for our work comes from the closely related problem of counting conjugacy
classes of finite subgroups of the mapping class group MCG.S/ for a closed orientable
surface S of genus � . Specifically, a consequence of the solution to the Nielsen
Realization Problem (see Kerckhoff [8]) is that there is a one-to-one correspondence
between the conjugacy classes of finite subgroups of MCG.S/ and the number of
distinct group actions on S (up to isotopy). Though the equivalence of group actions
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we are considering is coarser, it still provides a lower bound for the number of such
actions and hence for the number of distinct conjugacy classes of finite subgroups
of MCG.S/.

If G acts on X with a given signature .hI n1; : : : ; nr /, then the Riemann–Hurwitz
formula (see Section 2) is satisfied. For a fixed � and a fixed order jGj of G , there are
then only finitely many solutions to the Riemann–Hurwitz formula. This gives the very
crude estimate that the number of groups that can act on some such X is finite, being
the number of groups of order at most the Hurwitz bound of 84.� � 1/ multiplied by
the number of possible signatures satisfying the Riemann–Hurwitz formula. However,
this estimate is unreasonably crude.

The main tool we use is the space K� of skeletal signatures for actions of groups
on Riemann surfaces of genus � . A skeletal signature of an action of a group G

on a Riemann surface X is the ordered pair .h0; r0/ where h0 is the genus of the
quotient X=G and r0 is the number of branch points for the covering X !X=G . We
provide a detailed discussion of the basic properties of K� in Section 3, and provide a
complete conjectural picture. The proof of Theorem 4.3 proceeds by showing that there
are quadratically many (in � ) different skeletal signatures corresponding to actions of
the cyclic group C4 of order 4 on closed Riemann surfaces of genus � .

Actions of finite groups on Riemann surfaces have been extensively studied, and we do
not provide here a full survey of what is known. There are a number of previous and
current results closely related to this project. One approach to the counting problem
is to fix a genus and attempt to classify all groups which can act on a surface of that
genus. For example, the numbers of distinct topological group actions on surfaces of
genus 2 and 3 were determined in Broughton [3], and there are many other results for
other small genera; see for example Bogopol’skiı̆ [1] and Kuribayashi and Kimura [9].

More recently, dramatically extending these results, Breuer [2] determined the number
of distinct group actions for each surface of genus � for 2 � � � 48. Though these
results are extremely impressive, the difficulty of enumerating the total number of
distinct group actions on a surface of a fixed genus increases quickly as the genus
increases. In particular, there seems little hope that one would be able to give an exact
answer to the counting question.

A different approach to classification of group actions is to instead consider the problem
of classifying special families of groups. For example, the number of distinct cyclic
group actions of prime order up to topological equivalence on a surface of genus �
was determined in Harvey [7], and methods to derive similar results for elementary
abelian groups were given in Broughton and Wootton [4]. Many other results exist for
other families of groups, for example, by Tyszkowska [11].
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2 Preliminaries

In this Section, we introduce the necessary preliminaries.

We begin with some notation. Let .x/ be the result of rounding the real number x > 0

to the nearest integer. For a natural number n, let Cn be the cyclic group of order n.
For an arbitrary group G , let eG be its identity element and let jGj denote the order
of G .

Definition 2.1 Let G be a finite group and let X be a compact Riemann surface of
genus � � 2. We say that G acts on X with signature .hI n1; : : : ; nr / if the elements
of G are conformal automorphisms of X , the quotient space X=G has genus h and
the quotient map � W X !X=G is branched over r points with orders n1; : : : ; nr .

There is an alternative notation for signature that we will have occasion to use, in which
we organize the branch points by grouping them together by order. In this case, we
say that G acts on X with signature .hI Œn1; t1�; : : : ; Œns; ts �/ if the quotient X=G has
genus h and the quotient map � W X !X=G is branched over tj points with order nj

for each 1� j � s .

It is standard that if G acts on X with signature .hI n1; : : : ; nr /, then the Riemann–
Hurwitz formula is satisfied:

� � 1D jGj.h� 1/C
jGj

2

rX
jD1

�
1�

1

nj

�
:

The natural question that arises is then to ask, if a signature satisfies the Riemann–
Hurwitz formula for a given � � 2, what additional information is needed to conclude
that the signature arises from the action of a group G on some compact Riemann
surface of genus � . For this, we need the following definition.

Definition 2.2 Let G be a finite group. A vector .a1;b1;a2;b2; : : : ;an;bn; c1; : : : ; cr /

of elements of G is an .hI n1; : : : ; nr /–generating vector for G if the following hold:

(1) G D ha1; b1; a2; b2; : : : ; an; bn; c1; : : : ; cr i.

(2) The order of cj is nj for 1� j � r .

(3)
Qn

iD1Œai ; bi �
Qr

jD1 cj D eG .
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We note that this definition of a generating vector mimics the properties of a standard
generating set for the fundamental group of a closed orientable surface. For a discussion
of the following Theorem, see for instance Broughton [3].

Theorem 2.3 A finite group G acts on a compact Riemann surface X of genus � � 2

with signature .hI n1; : : : ; nr / if and only the Riemann–Hurwitz formula holds and
there exists an .hI n1; : : : ; nr /–generating vector for G .

As one would expect, for an arbitrary signature .hI n1; : : : ; nr / and an arbitrary fi-
nite group G , the general problem of determining whether or not there exists an
.hI n1; : : : ; nr /–generating vector for G is very difficult. Therefore, instead of attempt-
ing to enumerate group actions using generating vectors, we attack the potentially easier
question of counting the number of skeletal signatures for a given genus � , defined as
follows.

Definition 2.4 An ordered pair .h; r/ of nonnegative integers is a skeletal signature
for genus � � 2 if there exists a compact Riemann surface X of genus � and a finite
group G acting on X with signature .hI n1; : : : ; nr / for some n1; : : : ; nr � 2. We
denote the set of all skeletal signatures for genus � by K� .

We note that the actual orders of the branch points are not important for the definition of
a skeletal signature. As such, the collection of possible skeletal signatures corresponding
to a given genus � provides a crude signature space, containing a part of the information
carried by the space of all signatures, in a way that is more directly amenable to
analysis. We introduce skeletal signatures as an intermediate step in our counting
problem, because directly attacking the question of counting all of the nonequivalent
group actions on Riemann surfaces of a fixed genus � , or even directly counting all
of the possible signatures arising from such group actions, is at present an intractable
problem.

3 Properties of K�

In this Section, we consider some basic properties of K� for closed Riemann surfaces
of genus � � 2.

We first note that the line with equation r D�4hC2�C2 is naturally associated to the
hyperelliptic involution. We refer to this line as the hyperelliptic line. Geometrically,
the hyperelliptic involution can be viewed as taking the surface X in R3 and arranging
it so that there is an axis L passing through all of the handles of the surface. This

Algebraic & Geometric Topology, Volume 12 (2012)



A lower bound for the number of group actions on a compact Riemann surface 23

axis intersects the surface in 2� C 2 points, with 2� of the points coming from the
passage of the axis through the � handles and the remaining 2 points being the extreme
points of the intersection of L with X . Rotation by � around L yields a surface with
genus 0 and 2� C 2 branch points of order 2 as a quotient. By moving 2h handles
off the axis in a way that is symmetric with respect to the involution, we obtain the
action on X for which the genus of the quotient is h and the number of branch points
is 2� C 2� 4h.

Define the triangular region T� to be the region bounded by the axes fhD0g andfrD0g

and the hyperelliptic line f2� C 2� 4hD rg.

Lemma 3.1 The skeletal signature space K� is contained in T� .

Proof We proceed naively. Let .h0; r0/ be a point in K� arising from the signature
.h0I n1; : : : ; nr0

/. We recall the Riemann–Hurwitz formula:

� � 1D jGj.h0� 1/C
jGj

2

r0X
jD1

�
1�

1

nj

�
D jGj

�
h0� 1C

1

2

r0X
jD1

�
1�

1

nj

��
:

Note that the left hand side is fixed. For a given h0 , we maximize r0 ; this will give
the highest potential skeletal signature on the vertical line fhD h0g. We can see that
in order to maximize r0 , we need to maximize the number of terms in the sum, and
hence minimize each term 1� 1=nj in the sum, and this minimum occurs when each
nj D 2. This gives that the maximum value of r0 satisfies

� � 1D jGj

�
h0� 1C

1

2

r0X
jD1

�
1�

1

2

��
D jGj

�
h0� 1C

r0

4

�
:

Since the product jGj.h0� 1C r0=4/ is constant, we see that r0 is maximized when
jGj is minimized, and the smallest possible value of jGj is 2. Hence, for a given value
of h0 , the maximum value of r0 satisfies � � 1 D 2.h0 � 1C r0=4/, which exactly
yields the line r D�4hC 2� C 2, as desired.

This immediately gives the following upper bound on the number of points in K� .

Corollary 3.2 The number of points in K� for � � 2 is at most quadratic in � .

Proof We count the number of integer lattice points contained in T� . By maximizing
the genus of a possible quotient surface, we see that the rightmost skeletal signature R

in K� occurs either at .1
2
�; 2/ for � even or at .1

2
.� C 1/; 0/ for � odd. Taking the
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appropriate upper limit for the outer sum (depending on the parity of �/, we see that
the number of skeletal signatures in T� is

RX
hD0

2�C2�4hX
rD0

1D
1

2
.� C 2/.� C 3/:

The primary question of interest, given a point .h0; r0/ 2 T� , is whether .h0; r0/ lies
in K� ; that is, whether or not .h0; r0/ is the skeletal signature of the action of some
finite group G on some Riemann surface X of genus � . We note that this question
is equivalent to asking whether there exists any group action on a compact Riemann
surface of genus � with quotient of genus h0 and where the natural branched cover
is branched over r0 points. Hence, any reasonable analysis that allows us to exclude
points from K� will thus allow us to exclude a large number of theoretically possible
signatures and quotients.

There are a number of finer questions that follow from this primary question, such as
whether a given point .h0; r0/ satisfies .h0; r0/ 2K� for finitely or infinitely many � ,
or even for all � . Before moving onto the proof of the lower bound on the size of K�
in Section 4, we discuss these finer questions.

To start, we observe that the order of the group G giving rise to a skeletal signature
.h0; r0/ 2K� is very roughly inversely proportional to the distance from .h0; r0/ to
the origin .0; 0/. Given N � 2, let L�;N be the triangular region bounded by the axes
fhD 0g and fr D 0g, and the line fr D 4.� �1CN /=N �4hg. Note that L�;N � T�
and in fact L�;2 D T� .

Proposition 3.3 Fix a positive integer N and a genus � � 2. Then all skeletal
signatures in K� for any group G with jGj �N lie in L�;N .

Proof Suppose that .h0; r0/ is a skeletal signature corresponding to a group G

with jGj � N acting on a compact Riemann surface X of genus � with signature
.h0I n1; : : : ; nr0

/. Applying the Riemann–Hurwitz formula and using the fact that
1� 1=ni � 1=2 (as ni � 2), we see that

� � 1D jGj.h0� 1/C
jGj

2

r0X
iD1

�
1�

1

ni

�

�N.h0� 1/C
N

2

r0X
iD1

�
1�

1

ni

�
�N.h0� 1/C

r0N

4
:
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Solving for r0 gives

4

�
� � 1CN

N

�
� 4h0 � r0

and hence .h0; r0/ lies on or below the line r D 4.� � 1CN /=N � 4h.

As a direct consequence of Proposition 3.3, we get the following further refinement of
where the majority of skeletal signatures lie.

Corollary 3.4 For a fixed genus � � 2, all points in K� lie on or below the line r D

�C2�3h, with the exception of the point .0; �C3/ and the points .h0; 2�C2�4h0/

(for h0 � 0) lying on the hyperelliptic line.

Proof Let .h0; r0/ be a point of K� . As in the proof of Lemma 3.1, if jGj D 2,
then all branch points have order 2, and by the Riemann–Hurwitz formula, h0 and r0

satisfy the equation r D 2� C 2� 4h, which is the equation of the hyperelliptic line.
If jGj D 3, then all branch points have order 3, and again by the Riemann–Hurwitz
formula, h0 and r0 satisfy the equation r D � C 2� 3h.

Suppose now that jGj � 4. By Proposition 3.3, any skeletal signature .h0; r0/ for a
group G with jGj � 4 lies on or below the line r D � C 3� 4h. The only point on
this line when h0 � 0 which lies above the line r D �C2�3h is the point .0; �C3/.
The result follows.

We can be a bit more ambitious. Recall the Hurwitz bound, that the order of the
automorphism group of a closed Riemann surface of genus � � 2 is at most 84.� �1/.

Fix a number 0 < c < 1 and consider the asymptotic question of determining the
location in K� of the skeletal signatures corresponding to groups of order at most
c � 84.� � 1/ as � !1. Applying Proposition 3.3 infinitely many times with the
values N D c �84.� �1/ as �!1, we see that such skeletal signatures lie in the part
of K� below the line r D 4C 1

21c
� 4h.

The interesting observation is that this line is independent of the genus � . For instance,
if we take c D 1

7
, then the skeletal signatures corresponding to groups of order at least

1
7
� 84.� � 1/ D 12.� � 1/ lie in the triangular region bounded by the axes fh D 0g

and fr D 0g, and the line fr D 13
3
� 4hg. The only skeletal signatures that lie in this

region and that can occur (see Section 3.2 below) are .0; 3/ and .0; 4/. It follows that
any group of order at least 12.� � 1/ yields a quotient with genus 0 and either 3 or 4

branch points.

Another interesting value of c in this discussion is c D 1
21

. By a similar argument, this
is the smallest value of c for which the resulting triangular region contains a skeletal
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signature .h0; r0/ with h0� 1. Namely, for cD 1
21

, we see that the triangular region is
bounded by the axes fhD 0g and fr D 0g, and the line fr D 5�4hg, and this triangular
region contains the point .1; 1/. (See Theorem 3.8 below.) Hence, the smallest order
of the automorphism group of a surface of genus � for which the resulting quotient
surface has genus at least 1 is 1

21
� 84.� � 1/D 4.� � 1/.

These observations provide a geometric counterpoint to the standard algebraic deriva-
tions of similar results; see for instance Lemma 3.18 of Breuer [2]. We feel that
this geometric counterpoint, making use of skeletal signatures, provides a new and
interesting way of visualizing what had been previously largely algebraic derivations.

In the following subsections, we consider different flavors of points that do and do
not lie in K� . Our discussion of these points contains a fair bit of conjecture, which
we gather together in Section 3.4. Our investigations, and the conjectural picture we
develop for K� , make extensive use of the GENUS package develop by Breuer for
the computer algebra system GAP [5]; see also Breuer [2]. This package contains the
details of all group actions on all closed Riemann surfaces of genus 2� � � 48.

3.1 Persistent points

The point .h0; r0/ 2 T� is persistent if there is �0 � 2 so that .h0; r0/ 2 K� for
all � � �0 , so that .h0; r0/ is a skeletal signature for all � � �0 . (Such points can
be defined either with the coordinates h0 and r0 given as functions of � or with
coordinates being constants independent of � .) If we wish to keep track of the specific
value of �0 beyond which a persistent point .h0; r0/ is always in K� , we say that
.h0; r0/ is persistent for all � � �0 .

One class of persistent points for all � � 2 are those skeletal signatures lying on the
hyperelliptic line, introduced in Section 3. One specific example is the point .0; 2�C2/

arising from the signature .0I Œ2; 2� C 2�/, which is the signature resulting from the
complex structure on X admitting the hyperelliptic involution; similarly, we have
the skeletal signatures .h0; 2� C 2� 4h0/ (for h0 � 0) arising from the signatures
.h0I Œ2; 2� C 2� 4h0�/ of the other points lying on the hyperelliptic line.

A second class of persistent points for all � � 2 are those skeletal signatures lying on
the line fr D � C 2� 3hg corresponding to the actions of C3 on compact Riemann
surfaces of genus � . Specifically, for a fixed genus � , the group C3 acts with skeletal
signature .h0; � C 2 � 3h0/ for h0 � 0. (We do note here that for � of the form
� D 3k�1 for k 2N, the point .1

3
.�C1/; 1/ does not lie in K� ; this is an immediate

consequence of the fact that a necessary condition for the existence of an abelian group
action (such as C3 ) is that r0 ¤ 1, since in this case commutators will be trivial.)
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A third example of a persistent point for all � � 2 is .0; � C 3/, corresponding to
the signature .0I Œ2; � C 3�/, which comes from the C2 �C2 action on X generated
by the hyperelliptic involution and rotation by � in an axis through the middle of X

orthogonal to the axis corresponding to the hyperelliptic involution.

An example of a persistent point whose coordinates are independent of genus is the
point .0; 3/, which arises from any branched cover of the Riemann sphere by X that is
branched over 3 points. It is well known that for every � � 2, we can find a compact
Riemann surface X of genus � for which such a covering exists; see for instance
Example 9.7 of Breuer [2] in which an explicit example of such a surface is given for
each � . Such surfaces are commonly known as quasiplatonic surfaces and arise in the
study of dessins d’enfants.

Some persistent points arise from straightforward geometric realizations of cyclic
automorphisms.

Lemma 3.5 The point .2; 0/ 2K� for all � � 3.

Proof View the torus T as the union of � �1 parallel essential annuli A1; : : : ;A��1 ,
and note that this description of T naturally gives rise to a fixed point free action
of C��1 on T by a rotation taking Aj to AjC1 (where A� DA1 ). Attach a handle to
each Aj in such a way that respects this rotation. This yields a surface X of genus �
on which C��1 acts without fixed points with a quotient of genus 2.

Lemma 3.6 The point .1; 2/ 2K� for all � � 2.

Proof View the 2–sphere S as the union of � parallel bigons B1; : : : ;B� , where the
vertices of each Bj are the north and south poles of S , and note that this description
of S naturally gives rise to an action of C� on S by a rotation fixing the north and
south poles and taking Bj to BjC1 (where B�C1 D B1 ). Attach a handle to each Bj

in such a way that respects this rotation. This yields a surface X of genus � on which
C� acts with quotient a surface with signature .1I Œ�; 2�/, and hence a skeletal signature
of .1; 2/.

3.2 Persistently missing points

The point .h0; r0/2T� is persistently missing if there exists �0�2 so that .h0; r0/ 62K�
for all � � �0 , so that .h0; r0/ is a skeletal signature for no � � �0 . (As with
persistent points, such points can be defined either with the coordinates h0 and r0

given as functions of � or with coordinates being constants independent of � .) As with
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persistent points, if we wish to keep track of the specific value of �0 beyond which a
persistently missing point .h0; r0/ is never in K� , we say that .h0; r0/ is persistently
missing for all � � �0 .

For examples of persistently missing points, we see that the points .0; 0/, .0; 1/, .0; 2/,
and .1; 0/ are all persistently missing points for all � � 2, for the obvious reason that
the surfaces with these signatures are not hyperbolic surfaces and so cannot be covered
by a compact Riemann surface of genus � � 2, even as a branched cover.

We note that Corollary 3.4 can be interpreted as saying that every point .h0; r0/ lying
strictly between the lines fr D 2� C 2� 4hg and fr D � C 2� 3hg is persistently
missing for all � � 2, except for the point .0; � C 3/ which is persistent for all � � 2.

3.3 Sporadic points

The point .h0; r0/ 2 T� is sporadic if there are infinitely many genera � for which
.h0; r0/ 2 K� and infinitely many genera � for which .h0; r0/ 62 K� . (For sporadic
points, we make the same distinction between those sporadic points whose coordinates
are functions of � , and those whose coordinates are independent of � .)

We have a complete picture of what occurs on the h–axis. Specifically, we know from
the discussion in Section 3.2 that .1; 0/ never occurs, for geometric considerations,
while we know from Lemma 3.5 that .2; 0/ 2K� for all � � 2.

Proposition 3.7 For each h0 � 3, the point .h0; 0/ 2K� if and only if

� � 1

h0� 1
2 N:

In particular, the point .h0; 0/ is sporadic.

Proof For r0 D 0, the Riemann–Hurwitz formula reduces to the equation � � 1D

jGj.h0 � 1/. In particular, the quantity .� � 1/=.h0 � 1/ must be an integer. Since
h0 � 3, there are infinitely many � for which .h0; 0/ does not lie in K� .

Suppose now that � D k.h0 � 1/C 1. Consider the surface of genus � formed as
follows. (This is very similar to the construction given in the proof of Lemma 3.5.) View
the torus T as the union of k D .� �1/=.h0�1/ parallel essential annuli A1; : : : ;Ak ,
and note that this description of T naturally gives rise to a fixed point free action of Ck

on T by a rotation taking Aj to AjC1 (where AkC1DA1 ). Attach a surface of genus
h0 � 1 to each Aj in such a way that respects this rotation. This yields a surface S

of genus 1C k.h0� 1/D � on which Ck acts without fixed points with a quotient of
genus h0 .

Hence, we see that .h0; 0/ 2K� if and only if .� � 1/=.h0� 1/ 2 N.
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Theorem 3.8 The point .1; 1/ is a sporadic point.

Proof First we shall show that .1; 1/ is not a skeletal signature for any genus �DpC1

where p � 5 is prime. Suppose to the contrary that � D pC 1 for some prime p � 5,
and suppose that a group G acts on a compact Riemann surface X of genus � with
signature .1I n/; that is, suppose that .1; 1/ is a skeletal signature for � D p C 1.
Applying the Riemann–Hurwitz formula, we see that

p D
jGj.n� 1/

2n
or 2np D jGj.n� 1/:

Since n and n�1 are relatively prime, it follows that n�1 divides 2p and thus we are
in one of the four cases nD 2 and jGj D 4p ; or nD 3 and jGj D 3p ; or nDpC1 and
jGj D 2.pC1/; or nD 2pC1 and jGj D 2pC1. We consider these cases separately.

First suppose that nD2 and jGjD4p , so G acts with signature .1I 2/. Since p�5, the
Sylow Theorems imply that G has a unique normal subgroup H of index 4 and order p .
Applying a technical result due to Sah [10] which allows us to determine the signature
for H given its index in G , the signature of G and the orders of the elements of G in the
quotient group G=H , we see that no such H can exist and thus .1I 2/ is not a skeletal
signature. We can apply a very similar argument for the case when nD 3 and jGjD 3p .

For the remaining two cases, we first note that if G acts with signature .1I n/ for
some n, then there exists a .1I n/–generating vector for G , or equivalently, three
elements a1 , b1 and c1 that generate G where c1 is a commutator of G of order n

(since a1b1a�1
1

b�1
1

c1 D eG ). Since n� 2, it follows that G cannot be abelian. Note
that this implies the case when nD 2.pC 1/ and jGj D 2.pC 1/ cannot occur since
G would be cyclic.

The remaining case to consider is when n D pC 1 and jGj D 2.pC 1/, so G acts
with signature .1IpC1/. Since pC1 appears in the signature for G , we know that G

must contain an element of order pC1, and so it follows that G has an index 2 cyclic
subgroup H . Since H is cyclic, every subgroup of H is characteristic and hence
normal in G . Since p � 5, pC 1 is even, so H contains a subgroup K of index 2.
Since G=K has order 4, it is abelian, so it follows that the commutator subgroup of
G must be contained in K . However, jKj D .p C 1/=2, so there do not exist any
commutators of order pC 1, and hence .1IpC 1/ is not a skeletal signature for G .

To finish the proof, we shall construct an infinite sequence of � for which .1; 1/ is
a skeletal signature. Let Gn D hx;yjx

n D y2;y�1xy D x�1i, n � 2, denote the
generalized quaternion group. Then the vector .x;y;yx�2y�1/ is a .1I n/–generating
vector for Gn . Applying the Riemann–Hurwitz formula, it follows that Gn acts on a
surface of genus � D 2n� 1. In particular, .1; 1/ is skeletal signature for � D 2n� 1

for any integer n� 2.
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Unfortunately, we do not yet have a characterization of the specific values of � for
which .1; 1/ is and is not a skeletal signature. We note here that the latter part of the
proof can easily be adapted to show that all skeletal signatures of the form .h0; 1/

occur for infinitely many � .

Lemma 3.9 For any h0 � 2, the point .h0; 1/ 2K� for infinitely many � � 2.

Proof Following the argument given at the end of Theorem 3.8, and using that notation,
we shall construct an infinite sequence of � for which .h0; 1/ is skeletal signature. The
vector .x;y; eGn

; : : : ; eGn
;yx�2y�1/ is a .1I n/–generating vector for Gn , where

there are 2.h0 � 1/ instances of eGn
. Applying the Riemann–Hurwitz formula, it

follows that Gn acts on a surface of genus � D 4n.h0 � 1/C 2n� 1. In particular,
.h0; 1/ is skeletal signature for � D 4n.h0� 1/C 2n� 1 for any integer n� 2.

3.4 Conjectural picture

In this Section, we augment the results above with a fairly complete conjectural picture
of K� . We start by considering the lines fh0 D ag for small values of a 2 N[f0g.

Conjecture 3.10 The points .0; r0/ for 4 � r0 � � C 2 are persistent points for all
� � 2.

We have seen in Section 3.1 that .0; 2�C2/, .0; �C3/, and .0; 3/ are persistent points
for all � � 2, while Corollary 3.4 yields that no point strictly between .0; 2� C 2/

and .0; � C 3/ can be a skeletal signature. Hence, combined with these results,
Conjecture 3.10 completes the description of all skeletal signatures of the form .0; r0/.

A similar phenomenon occurs on the line fh0 D 1g.

Conjecture 3.11 The points .1; r0/ for 3 � r0 � � � 1 are persistent points for all
� � 2.

Theorem 3.8 largely describes the behavior of the point .1; 1/, while Lemma 3.6 yields
that .1; 2/ is persistent for all � � 2. The discussion above and Corollary 3.4 show
that no point strictly between .1; 2� � 2/ and .1; � � 1/ can be a skeletal signature.
Hence, combined with these results, Conjecture 3.11 completes the description of all
skeletal signatures of the form .1; r0/.

On the line fh0 D 2g, and indeed on fh0 D ag for a� 3, the situation becomes more
complicated. Namely, we see experimentally that there are some persistent gaps, whose
coordinates are dependent on � , that occur in these lines. Also, the behavior of a point
.h0; r0/ for small r0 becomes ragged. We begin with the following conjecture.
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Conjecture 3.12 For � � 9, let E� be the line with slope �3 passing through
.1; � � 1/ and let D� be the line with slope �4 passing through .1; � � 1/. Then no
point strictly between E� and D� lies in K� .

Note that for ��8, the set of points strictly between E� and D� is empty. Corollary 3.4
and Conjecture 3.12 describe an interesting phenomenon, namely that there are large
parts of the triangular region T� of potential skeletal signatures that in fact do not occur
as skeletal signatures for any genus. As skeletal signatures contain only the information
about the number of branch points but not their specific orders, these gaps eliminate
many potential signatures.

We now turn our attention to the lines fh0 D 2g and fh0 D 3g. For larger values of a,
we get similar conjectural pictures, but unfortunately, we do not have enough evidence
to formulate specific conjectures.

Conjecture 3.13 The point .2; 1/ is sporadic. The point .2; .2
3
� � 4// is persistently

missing for all � � 7. All points .2; r0/ for 2� r0<.
2
3
��4/ and .2

3
��4/< r0���4

are persistent for all ��7, with the single exception that .2; 2/ is not a skeletal signature
for � D 17.

Together with the discussion above, Lemma 3.5, Corollary 3.4 and Conjecture 3.12,
Conjecture 3.13 completes the description of all skeletal signatures of the form .2; r0/.

Conjecture 3.14 The point .3;1/ is sporadic. The points .3;.2
3
��7// and .3;.2

3
��8//

are persistently missing for all � � 18. For � � 2 .mod 3/, the point .3; .2
3
� � 6// is

persistently missing for all � � 18. All remaining points .3; r0/ with 2� r0 � � � 9

are persistent for all � � �0 for some �0 .

Together with the discussion above, Proposition 3.7, Corollary 3.4 and Conjecture 3.12,
Conjecture 3.14 completes the description of all skeletal signatures of the form .3; r0/.
However, while we have a high level of confidence in this conjecture for the points
.3; r0/ for r0 � 4, the cases of .3; 2/ and .3; 3/ are more problematic. While we feel
that the evidence is suggestive for the behavior of these two skeletal signatures as
� !1, we must recognize the possibility that one or the other, or both, are in fact
sporadic.

Based on our analysis of the evidence to hand, including what we have been able
to prove in previous Sections, we feel confident in making the following two strong
conjectures, which when combined with the results from previous Sections provide a
complete description of the behavior of any specific point .h0; r0/.
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Conjecture 3.15 For any h0 � 2, the point .h0; 1/ is sporadic.

However, we do not feel able to make a conjecture about the pattern of the values of �
for which .h0; 1/ is or is not a skeletal signature. This characterization is a subtle and
difficult problem.

Conjecture 3.16 Any point .h0; r0/ with h0 � 2 and r0 � 2 is persistent for all
� � �0 for some �0 .

4 A quadratic lower bound

To determine a lower bound for the number of distinct group actions on closed Riemann
surfaces of genus � , we shall determine the size of a subset of K� which corresponds
to skeletal signatures for the action of the cyclic group C4 of order 4 on X .

Fix � � 2. The procedure we follow in this Section is to first find all possible signatures
for C4 actions on X . From the signatures, we find all skeletal signatures coming from
C4 actions. We will then use transformations of signatures and the corresponding
transformations of skeletal signatures to find the desired subset.

We begin by stating the following special case of a theorem of Harvey [6] that we make
extensive use of.

Theorem 4.1 A signature .hI Œ2; t1�; Œ4; t2�/ satisfying the Riemann–Hurwitz formula
for genus � arises from a cyclic group G of order 4 acting on a closed orientable
surface X of genus � if and only if

� for h¤ 0, t2 is even; and

� for hD 0, t2 > 0 and t2 is even.

We define two operations on signatures. The first operation H1 trades genus in the
quotient for ramification points of order 2. Define H1 by

H1.hI Œ2; t1�; Œ4; t2�/D .hC 1I Œ2; t1� 4�; Œ4; t2�/;

assuming t1� 4. To see that H1 does indeed take signatures to signatures when t1� 4,
we note that a straightforward calculation shows that the Riemann–Hurwitz formula
holds for .hI Œ2; t1�; Œ4; t2�/ if and only if it holds for .hC 1I Œ2; t1� 4; 4; t2�/, and we
then use Theorem 4.1 to see that the image signature .hC1I Œ2; t1�4�; Œ4; t2�/ is indeed
a valid signature for a C4 action on X .
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The second transformations trades ramification points of order 2 for ramification points
of order 4. Define E1;2 by

E1;2.hI Œ2; t1�; Œ4; t2�/D .hI Œ2; t1� 3�; Œ4; t2C 2�/;

assuming t1 � 3. As above, to see that E1;2 does indeed take signatures to signatures
when t1�3, we note that a straightforward calculation shows that the Riemann–Hurwitz
formula holds for .hI Œ2; t1�; Œ4; t2�/ if and only if it holds for .hI Œ2; t1� 3�; Œ4; t2C 2�/,
and we then use Theorem 4.1 to see that the image signature .hI Œ2; t1� 3�; Œ4; t2C 2�/

is indeed a valid signature for a C4 action on X .

Note that these two operations on signatures descend to operations on skeletal signa-
tures. Specifically, we have that H1..h0; r0//D .h0C 1; r0� 4/ and E1;2..h0; r0//D

.h0; r0�1/. We will use these two operations to construct a region in K� corresponding
to C4 actions on X .

We pause here to note that this discussion goes through for the action of any cyclic
group Cp2 for a prime p , and in fact for Cn for any n, though the details become
significantly more complicated in these cases. However, we have only carried through
the details for C4 , as this is sufficient for the purposes at hand.

Consider the following triangular subset of T� . For a given genus � � 2, we set

k� D b�=3c:

Denote by S� the triangle bounded by the lines fr D �4h C � C 2g and fr D
�2hC � C 2� k�g, and the r –axis fhD 0g.

Lemma 4.2 For any � � 12, we have that S� �K� .

Proof We first note that the signature .0I Œ2; � �; Œ4; 2�/ satisfies the criteria to be the
signature of a C4 action on some Riemann surface X of genus � , and this signature
yields the skeletal signature .0; �C2/2K� . Applying E1;2 k�0 times to the signature
.0I Œ2; � �; Œ4; 2�/ results in the signature .0I Œ2; � � 3k�; Œ4; 2C 2k�/. By Theorem 4.1,
this latter signature is a valid signature for a C4 action on X as long as ��3k � 0, and
so k � �=3, whence the definition of k� D b�=3c. Projecting the k� C 1 signatures
.0I Œ2; � � 3k�; Œ4; 2 C 2k�/ for 0 � k � k� yields the k� C 1 skeletal signatures
.0; � C 2� k/ 2K� for 0� k � k� .

If we apply H1 h times to the signature .0I Œ2; � �; Œ4; 2�/, this gives the signature
.hI Œ2; � � 4h�; Œ4; 2�/. This is a valid signature for a C4 action on X as long as
� � 4h � 0, and when valid yields the skeletal signature .h; � C 2 � 4h/ 2 K� .
We now apply E1;2 to .hI Œ2; � � 4h�; Œ4; 2�/ p � 0 times, yielding the signature
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.hI Œ2; � � 4h� 3p�; Œ4; 2C 2p�/. Again by Theorem 4.1, this is a valid signature for a
C4 action on some Riemann surface X of genus � provided ��4h�3p � 0. Assume
that p is chosen so that .hI Œ2; � � 4h� 3p�; Œ4; 2C 2p�/ is a valid signature.

Note that the skeletal signature corresponding to .hI Œ2; � � 4h� 3p�; Œ4; 2C 2p�/ is
.h; �C2�4h�p/. This signature lies in S� if and only if �C2�4h�p��C2�2h�k� ,
which can be rewritten as p ��2hCk� . The condition that .h; �C2�4h�p/ arises
from a valid signature is that p � 1

3
.� � 4h/ � k� �

4
3
h. Since we can apply E1;2

to the valid signature .hI Œ2; � � 4h�; Œ4; 2�/ p times, where p � k� �
4
3
h, and still

have a valid signature, we can certainly apply E1;2 p times where p � k� � 2h, since
k� � 2h < k� �

4
3
h. Hence, every integer lattice point on the vertical line segment

between .h;�4hC � C 2/ and .h;�2hC � C 2� k� / arises from a valid signature
and therefore is a skeletal signature for � , and so S� �K� .

We are now ready to prove our main result.

Theorem 4.3 For � � 6, there are at least 1
4
.k� C 1/.k� C 3/ distinct group actions

on a closed Riemann surface of genus � .

Proof Since S� � K� , we need only count the number of points in S� , as each
skeletal signature in S� arises from the signature of the action of C4 on a closed
Riemann surface of genus � and different points in S� necessarily correspond to
distinct actions.

For k� even, the number of integer lattice points in S� is

jS� j D

.1=2/k�X
hD0

.�2hC 1C k� /D
1

4
.k� C 2/2;

while for k� odd, the number of integer lattice points in S� is

jS� j D

.1=2/.k��1/X
hD0

.�2hC 1C k� /D
1

4
.k� C 1/.k� C 3/ <

1

4
.k� C 2/2:
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