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On piecewise linear cell decompositions

ALEXANDER KIRILLOV, JR

We introduce a class of cell decompositions of PL manifolds and polyhedra which
are more general than triangulations yet not as general as CW complexes; we propose
calling them PLCW complexes. The main result is an analog of Alexander’s theorem:
any two PLCW decompositions of the same polyhedron can be obtained from each
other by a sequence of certain “elementary” moves.

This definition is motivated by the needs of Topological Quantum Field Theory,
especially extended theories as defined by Lurie.

57Q15

1 Introduction

One of the main tools for studying piecewise-linear manifolds is the notion of trian-
gulation, or more generally, cell complexes formed by convex cells. However, for
many purposes this is too restrictive. For example, for any explicit computation of
state-sum invariants of 3–manifolds, triangulations turn out to be a very inefficient
tool: the number of simplices is necessarily quite large, a cylinder over a triangulated
manifold (or, more generally, a product of two triangulated manifolds) does not have a
canonical triangulation, etc. Allowing arbitrary convex cells helps but does not solve
all the problems: for example, a cell decomposition shown below (which is quite useful
for extended topological field theories and 2–categories, as it illustrates a 2–morphism
between two 1–morphisms) can not be realized using only convex cells.

In addition, for many constructions it would be desirable to allow “singular triangula-
tions”, where the different faces of the same cell are allowed to be glued to each other
(for example, this would allow a cell decomposition of the torus T 2 obtained by gluing
opposite sides of a rectangle). On the other hand, CW complexes are too general and
using them creates other problems: for example, there is no analog of Alexander’s
theorem describing simple moves necessary to obtain one CW cell decomposition from
another.
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In this note, motivated by the author’s earlier work with Balsam [1], we introduce
a new notion of a cell decomposition of a compact polyhedron (in particular, a PL
manifold) which will address many of the problems mentioned above. We propose
calling such cell decompositions PLCW cell decompositions. We also prove an analog
of Alexander’s theorem: any two PLCW decompositions of the same polyhedron can
be obtained from each other by a sequence of certain “elementary” moves; these moves
are special cases of cell moves introduced by Oeckl [2].
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2 Basic definitions

In this section we recall some basic definitions and facts of PL topology, following
notation and terminology of Rourke and Sanderson [4], where one can also find the
proofs of all results mentioned here.

Throughout this paper, the word “map” will mean “piecewise linear map”. We will
write X ' Y if there exists a PL homeomorphism X ! Y .

For a subset X �RN , we denote Int.X / the interior of X , by cl.X / the closure of X

and by @X the boundary of X . We will also use the following standard notation:

� Bn D Œ�1; 1�n �Rn is the n–dimensional ball.

� Sn D @BnC1 is the n–sphere.

� �n �RnC1 is the n–dimensional simplex (note that �n ' Bn ).

For any polyhedra X � RN and a point a 2 RN , we denote aX the cone over X .
More generally, given two polyhedra X;Y �RN , we denote by XY the join of X;Y .
When using this notation, we will always assume that X;Y are independent, ie that
every p 2XY can be uniquely written as pD axCby , a; b 2R, aCbD 1. For two
polyhedra X 2Rn , Y 2Rm , we denote by X �Y �RnCmC1 their external join.

We define a convex n–cell C �RN as a convex compact polyhedron generating an
affine subspace of dimension n; in such a situation, we will also write dim C D n. In
Rourke and Sanderson [4], these are called just cells; we prefer a more specific name
to avoid confusion with other types of cells to be introduced later.
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For any such cell we can define the set F.C / of faces of C (of arbitrary codimension);
each face F is itself a convex cell. We will write F < C if F;C are convex cells and
F is a face of C .

Recall that each convex cell C is homeomorphic to a ball: C D '.Bn/ for some
homeomorphism ' . As usual, we denote

C̊ D Int.C /D '.Int.Bn//;
�

C D @C D '.@Bn/

if dim C > 0. If dim C D 0, ie C is a point, then we let C̊ D C ,
�

C D¿.

Following [4], we define a cell complex K as a finite collection of convex cells in RN

such that the following conditions are satisfied:

(1) If A 2K and B <A, then B 2K .

(2) If A;B 2K , and F DA\B ¤¿, then F <A, F < B .

We define the support jKj D
S

C2K C ; it is a compact polyhedron in RN . Conversely,
given a compact polyhedron X , a cell decomposition of X is a complex K such that
jKj D X ; it is known that such a decomposition always exists. We will denote by
dim K the dimension of K and by Kn the n–skeleton of K . Given a complex K and
a cell C , we will denote KC C the complex obtained by adding to K the cell C

assuming that it does form a complex.

In particular, given a convex cell C , the set F.C / of faces of C is a cell complex,
with jF.C /j D

�

C ; by adding to it C itself, we get a cell decomposition of C .

3 Generalized cells

Let C be a convex cell in RN .

Definition 3.1 A map f W C !Rm is called regular if the restriction f jC̊ is injective.

Lemma 3.2 If C is a convex cell and f W C ! Rm is regular, then C admits a cell
decomposition K such that for any cell Ki 2K , the restriction f jKi

is injective.

Proof By standard results of PL topology, C admits a cell decomposition such that
f jKi

is linear, and a linear map which is injective on an open set is injective.

We can now define the generalization of the notion of a convex cell.
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Definition 3.3 A generalized n–cell is a subset C �RN together with decomposition
C D C̊ t

�

C such that C̊ D '.Int Bn/,
�

C D '.@Bn/ (and thus C D '.Bn/) for some
regular map 'W Bn!RN .

In such a situation, the map ' is called a characteristic map.

Note that the definition implies that C D cl.C̊ /, so C is completely determined by C̊ .
It is also clear from Lemma 3.2 that any generalized cell is a compact polyhedron.

Clearly any convex cell is automatically a generalized cell. Other examples of general-
ized cells are shown in Figure 1 below.

Note that characteristic map ' in the definition of generalized cell is not unique.
However, as the following theorem shows, it is unique up to a PL homeomorphism of
the ball.

Theorem 3.4 Let C � RN be a generalized cell and '1; '2W B
n! C be two char-

acteristic maps. Then there exists a unique homeomorphism  W Bn! Bn such that
'1 D '2 ı .

Proof Since restriction of 'i to Int.Bn/ is injective, the composition  ̊ D '�1
2
'1

is well defined as a map Int.Bn/! Int.Bn/. To show that it can be extended to the
boundary, note that it follows from Lemma 3.2 that one can find a cell decomposition K

of Bn such that  ̊ jKi
is linear for every n–cell Ki 2K . This immediately implies

that  ̊ can be extended to a homeomorphism  W Bn! Bn .

It is easy to show that cone and join of generalized cells is again a generalized cell.
Namely, if C D '.Bn/ is a generalized cell, and aC is the cone of C , then the
map ' can be in an obvious way lifted to a map fptg �Bn ' BnC1! aC , which is
easily seen to be regular. Thus, aC is a generalized cell. In the similar way, using
homeomorphism Bm �Bn 'BmCnC1 , one shows that if C1;C2 are generalized cells
that are independent, then the join C1C2 is also a generalized cell.

4 Generalized cell complexes

From now on, unless noted otherwise, the word “cell” stands for a generalized cell.

Definition 4.1 A generalized cell complex (g.c.c.) is a finite collection K of general-
ized cells in RN such that

(1) for any distinct A;B in K , we have

Å\ B̊ D¿:

(2) for any cell C 2K ,
�

C is a union of cells.
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Support jKj �RN of a generalized cell complex K is defined by

jKj D
[

C2K

C:

A generalized cell decomposition of a compact polyhedron P �RN is a generalized
complex K such that jKj D P .

We define the dimension dim K of a generalized cell complex and the n–skeleton Kn

in the usual way. Also, if A;B 2K are cells such that A�
�

B , we will say that A is a
face of B and write A< B ; clearly this is only possible if dim A< dim B .

If K;L are g.c.c., we denote by KCL the complex obtained by taking all cells of K

and all cells of L, assuming that the result is again a g.c.c.

Example 4.2 (1) Any cell complex is automatically a g.c.c.

(2) A 0–dimensional g.c.c. is the same as finite collection of points. A 1–dimensional
g.c.c. is the same as a finite collection of points (vertices) and nonintersecting
arcs (1–cells) with endpoints at these vertices. Note that loops are allowed.

(3) Figure 1 shows some examples of 2–dimensional g.c.c.

(a) (b) (c) (d)

Figure 1. Examples of 2–dimensional generalized cell complexes. The last
one can be visualized as a sheet of paper with a fold, with the lower edge
glued back to itself. Note that it only has four 1–cells: the lines showing
where the paper was folded are not 1–cells.

(4) Figure 2 shows a generalized cell decomposition of S1 � I � I consisting of a
single 3–cell, five 2–cells, eight 1–cells and 4 vertices.

Definition 4.3 Let K;L be g.c.c. A regular cellular map f W L ! K is a map
f W jLj ! jKj such that for every cell C 2L, C D '.Bn/, there exists a cell C 0 2K

such that C 0 D f .C / and moreover, f ı'W Bn! C 0 is a characteristic map for C 0 .

In other words, such a map is allowed to identify different cells of L but is injective
on the interior of each cell.

An example of a regular cellular map is shown in Figure 3.
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Figure 2. A generalized cell decomposition of S1 � I � I

a1 a2

b1 b2

! b

a

Figure 3. An example of a regular cellular map. It identifies edges a1b1 and
a2b2 , sending each of them to edge ab .

5 PLCW complexes

In this section, we give the central definition of the paper.

Definition 5.1 A generalized cell complex (respectively, a generalized cell decom-
position) K will be called a PLCW complex (respectively, PLCW decomposition) if
dim K D 0, or dim K D n> 0 and the following conditions hold:

(1) Kn�1 is a PLCW complex.

(2) For any n–cell A 2K , AD '.Bn/, there exists a PLCW decomposition L of
@Bn such that the restriction 'j@Bn W L!Kn�1 is a regular cellular map. (It
follows from Theorem 3.4 that this condition is independent of the choice of
characteristic map ' .)

In other words, a PLCW is obtained by successively attaching balls, and the attaching
map should be a regular cellular map for some PLCW decomposition of the boundary
sphere.

Note that this definition is inductive: definition of an n–dimensional PLCW complex
uses definition of an .n�1/–dimensional PLCW complex.

Example 5.2 Among examples in Example 4.2, example 2(d) is not a PLCW complex.
All other are PLCW.
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It is easy to show that for an n–cell A 2 K and fixed choice of characteristic map
'W Bn! A, the generalized cell decomposition L of @Bn used in Definition 5.1 is
unique. Indeed, the cells of L are closures of connected components of '�1.K̊i/,
Ki 2Kn�1 . We will call such an L the pullback of K under the map ' and denote
it by

(5-1) LD '�1.K/:

The following properties of PLCW complexes are immediate from the definition.

(1) jKj D
F

C2K C̊ .

(2) If A;B 2K are two cells, then A\B is a union of cells of K .

(3) For any n–cell C 2K ,
�

C is a union of .n�1/–cells of K .

(4) Every PLCW complex is automatically a CW complex.

Note that not every CW complex is a PLCW complex, even if its cells are polyhedra.
For example, property (3) could fail for more general CW complexes.

The following two lemmas, proof of which is straightforward and left to the reader,
show that product and join of PLCW complexes is a PLCW complex.

Lemma 5.3 Let K;L be PLCW complexes in RM , RN respectively. Define the
complex

K �LD
X

Ki �Lj �RM
�RN :

Then K �L is a PLCW complex with support jKj � jLj.

Lemma 5.4 Let K;L be PLCW complexes in RN such that jKj, jLj are independent:
every point p 2 jKjjLj can be uniquely written in the form p D axC by , x 2 jKj,
y 2 jLj, a; b � 0, aC b D 1. Define the join of them by

KLDKCLC
X

KiLj ; Ki 2K; Lj 2L:

Then KL is a PLCW complex with support jKjjLj.

The proof is straightforward and left to the reader.

Note that in the case K D fag is a point, we see that the cone

aLD aCLC
X

aLi ; Li 2L

of a PLCW complex is a PLCW complex.
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6 Subdivisions

Definition 6.1 Let K;L be PLCW complexes. We say that L is a subdivision of K

(notation: L C K ) if jKj D jLj and for any cell C 2K , we have C̊ D
S

L̊i for some
collection of cells Li 2L.

Note that this implies that any cell Li 2L is a subset of one of the cells of K (which
is the usual definition of subdivision of cell complexes). Moreover, it is easy to see
that if K;L are cell complexes, then this definition is actually equivalent to the usual
definition of subdivision.

There is a special kind of subdivisions we will be interested in.

Definition 6.2 Let K be a PLCW complex, C D '.Bn/ an n–cell, n > 0 and
LD '�1.K/ the pullback cell decomposition on @Bn (see (5-1)). We define the radial
subdivision of K to be the subdivision obtained by replacing the cell C by the cone
PLCW complex '.O/C '.OL1/C � � � C '.OLk/, where L D fL1; : : : ;Lkg and
O 2 Int.Bn/ is the origin. (Recall that a cone of a PLCW complex is PLCW complex;
see Lemma 5.4.)

Figure 4 shows examples of radial subdivisions.

B

B

B

Figure 4. Examples of radial subdivisions. Note that in the last example, we
are subdividing a 1–cell.

Note that this is very closely related to the usual notion of stellar subdivision for
simplicial complexes but it is not identical to it. Namely, for radial subdivision we are
subdividing just one cell C without changing the higher dimensional cells adjacent
to C (see the last example in Figure 4). Comparing it with the definition of the stellar
subdivision, we see that if K is a simplicial complex, C 2K an n–cell and L is the
stellar subdivision of K obtained by starring at a 2 C̊ , then L can also be obtained by
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(1) replacing C by the radial subdivision R.

(2) replacing every cell AD CB in the star of C by the complex RiB , Ri 2R.

Theorem 6.3 Any PLCW complex K has a subdivision T C K which is a triangula-
tion; moreover, T can be obtained from K by a sequence of radial subdivisions.

Proof Let K0 be obtained from K by radially subdividing of each cell of K of
positive dimension in order of increasing dimension. Then it is easy to see that K0 has
the following property:

(6-1) For any C 2K0 , the characteristic map 'W Bn
! C is injective.

Now, let T be obtained by again doing the radial subdivision of each cell of K0 in
order of increasing dimension. It is easy to see that T is a triangulation: this follows by
induction from the fact that given a triangulation

�

T of Sn�1 , the radial subdivision a
�

T

of Bn is a triangulation (which in turn follows from the fact that the cone over a simplex
is a simplex).

7 Elementary subdivisions

The other type of subdivision will be called elementary subdivision. Informally, these
are obtained by dividing an n–cell into two n–cells separated by an .n�1/–cell. To
give a more formal definition, we need some notation.

Let H0 � Rn be hyperplane defined by equation xn D 0. It divides Rn into two
subspaces:

(7-1)
HC D f.x1; : : : ;xn/ 2Rn

j xn � 0g;

H� D f.x1; : : : ;xn/ 2Rn
j xn � 0g:

For the n–ball Bn �Rn , define upper and lower halfballs

(7-2) Bn
C D Bn

\HC; Bn
� D Bn

\H�:

We also define the middle disk and the equator by

(7-3) Bn
0 D Bn

\H0 ' Bn�1; E D Sn�1
\H0 ' Sn�2:

Lemma 7.1 Let K be a PLCW and C D '.Bn/ an n–cell. Assume that the pullback
decomposition LD '�1.K/ of @Bn is such that the equator E � @Bn is a union of
cells of L. Let K0 be the g.c.c. obtained by replacing C by the collection of cells
CC D '.B

n
C/, C� D '.B

n
�/, C0 D '.B

n
0
/.

Then K0 is a PLCW complex; moreover, K0 is a subdivision of K .
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Definition 7.2 Let K;K0 be as in Lemma 7.1. Then we say that K0 is obtained
from K by an elementary subdivision of cell C ; we will also say that K is obtained
from K0 by erasing cell C0 .

We will write K�e L if K can be obtained from L by a finite sequence of elementary
subdivisions and their inverses.

Note that elementary subdivisions are essentially the same as .n; n/ moves in introduced
by Oeckl in [2] and further studied Oeckl’s book [3]; in Oeckl’s work, these moves are
special case of a more general moves called .n; k/ moves.

An example of elementary subdivision is shown in Figure 5.

C

Figure 5. An elementary subdivision

Remark 7.3 Not every subdivision can be obtained by a sequence of elementary
subdivisions. For example, the subdivision shown in Figure 6 can not be obtained by a
sequence of elementary subdivisions. However, it can be obtained by a sequence of

C

Figure 6. A nonelementary subdivision

elementary subdivisions and their inverses as shown in Figure 7.

B B B C C

Figure 7. Obtaining a nonelementary subdivision by a sequence of elementary
subdivisions and their inverses

Theorem 7.4 If M D KL is a join of two PLCW complexes and K0 C K an
elementary subdivision of K , then M 0 DK0L be obtained from M by a sequence of
elementary subdivisions.
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Proof If C 2K is an n–cell and C DCCCC�CC0 its elementary subdivision as in
Lemma 7.1, and D is a cell in L, then CD D CCDCC�DCC0D is an elementary
subdivision of CD , which follows from existence of a homeomorphism  W Bn�Bm �

!

BmCnC1 such that  .Bn
0
�Bm/D BmCnC1

0
,  .Bn

˙
�Bm/D BmCnC1

˙
. Repeating

it for every cell D 2 L in order of increasing dimension, we see that K0L can be
obtained from KL by a sequence of elementary subdivisions.

Corollary 7.5 If K �e K0 , then KL�e K0L.

8 Main theorem

In this section, we formulate and prove the main theorem of this paper. Recall the
notation K �e L from Definition 7.2.

Theorem 8.1 Let K;K0 be two PLCW decompositions of a compact polyhedron X .
Then K �e K0 .

Proof This proves (for PLCW decompositions) the conjecture of Oeckl [3]: that any
cell decompositions can be obtained form each other by a sequence of .n; k/ moves;
in fact, it proves a stronger result, that .n; n/ moves are already enough.

We proceed by induction in nD dim X . If nD 0, there is nothing to prove. So from
now on, we assume that n> 0 and that the theorem is already proved for all polyhedra
of dimension less than n.

Step 1 Let X D Bn be an n–ball,
�

K a PLCW decomposition of Sn�1 D @Bn

and RD a
�

K the corresponding radial cell decomposition of X , a 2 Int.Bn/. Then
R�e BnC

�

K .

Indeed, let L be a PLCW decomposition of Sn�1 consisting of the upper and lower
hemispheres Sn�1

˙
'Bn�1 and some PLCW decomposition L0 of the equator E . By

induction assumption,
�

K �e L; by Corollary 7.5, this implies

a
�

K �e aLD Bn
CCBn

�CSn�1
C CSn�1

� C aL0:

By using the induction assumption again, aL0 �e Bn
0
CL0 , so

a
�

K�e Bn
CCBn

�CBn
0CSn�1

C CSn�1
� CL0�e Bn

CSn�1
C CSn�1

� CL0�e Bn
C

�

K:

Step 2 If K0 is obtained from K by a sequence of radial subdivisions, then K0 �e K .

This follows from the previous step and definition.
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Step 3 For any PLCW decomposition K , there is a triangulation T such that K�e T .

Indeed, it follows from the previous step and Theorem 6.3.

Step 4 If T;T 0 are triangulations of X , then T �e T 0 .

By Alexander’s theorem, T can be obtained from T 0 by a sequence of stellar moves,
so it suffices to prove the theorem in the case when T 0 is obtained from T by starring
at point a 2 Int.C / for some simplex C 2 T . By the discussion in Section 6, we can
also describe T 0 by replacing C by the radial subdivision C 0 of C and replacing every
simplex AD CB in the star of C by C 0B . By Step 2 and Corollary 7.5, this implies
that T 0 �e K .

Combining Steps 3 and 4 above, we arrive at the statement of the theorem.

9 Orientations

Recall that the group of homeomorphisms of Bn has a homomorphism to Z2 , called
orientation. Using this, we can define the notion of orientation of a cell.

Definition 9.1 Let C � RN be a generalized n–cell. An orientation of C is an
equivalence class of characteristic maps Bn ! C , where two characteristic maps
'1; '2W B

n! C are equivalent if  D '2'
�1
1
W Bn! Bn is orientation-preserving.

An oriented cell CD .C; Œ'�/ is a pair consisting of a cell C and an orientation Œ'�.

Note that any convex n–cell C �Rn has a canonical orientation. Moreover, if C �Rn

is a convex n–cell, and D � @C is a generalized .n�1/–cell, then D has a canonical
orientation defined by the usual condition:

(9-1) ".C;D/D 1;

where ".C;D/ is the incidence number, defined in the same way as for CW cells (see,
eg, [4, Appendix A.7]).

Thus, if C is a convex n–cell in Rn , and L is a PLCW decomposition of @C , then
each of .n�1/–cells Li 2L has a canonical orientation.

The following definition generalizes this to an arbitrary oriented cell.
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Definition 9.2 Let K be a PLCW complex, and CD .C; Œ'�/ an oriented cell. Let
LD '�1.K/ be the pullback decomposition of @Bn . We define the boundary @C as a
multiset (set with multiplicities) of oriented .n�1/–cells

@CD
[
.'.Li/; Œ' ı'i �/;

where the union is over all .n�1/–cells Li 2L, each taken with the natural orienta-
tion Œ'i � defined by (9-1).

It is easy to see, using Theorem 3.4, that this definition does not depend on the choice
of characteristic map ' in the equivalence class.

Note that by definition of a PLCW, for each Li 2 L, '.Li/ is an .n�1/–cell of K ;
however, the same .n�1/–cell D 2K can appear in @C more than once, and possibly
with different orientations. Note also that passing from the multisets to the abelian
group generated by oriented cells, we get the usual definition of the boundary operator
in the chain complex of a CW complex. However, for applications to topological field
theory, the definition of the boundary as a multiset is much more useful.

Example 9.3 Let C be the 2–cell shown below. Then @C D fa; xa; bg, where xa
denotes a with opposite orientation.

a

b

The proof of the following lemma is left to the reader as an exercise.

Lemma 9.4 Let X be an oriented PL manifold with boundary and K a PLCW
decomposition of X . Then[

C

@CD
�[

D

D
�
[

�[
F

F[ xF
�
;

where

� C runs over all n–cells of K , each taken with orientation induced by orientation
of X ,

� D runs over all .n�1/ cells such that D � @X , each taken with orientation
induced by orientation of @X ,

� F runs over all (unoriented) .n�1/–cells such that F̊ � Int.X /; F and xF are
the two possible orientations of F .
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