Lusternik-Schnirelmann category and the connectivity of X

Nicholas A Scoville

Abstract

We define and study a homotopy invariant called the connectivity weight to compute the weighted length between spaces X and Y. This is an invariant based on the connectivity of A_{i}, where A_{i} is a space attached in a mapping cone sequence from X to Y. We use the Lusternik-Schnirelmann category to prove a theorem concerning the connectivity of all spaces attached in any decomposition from X to Y. This theorem is used to prove that for any positive rational number q, there is a space X such that $q=\mathrm{cl}^{\omega}(X)$, the connectivity weighted cone-length of X. We compute $\mathrm{cl}^{\omega}(X)$ and $\mathrm{kl}^{\omega}(X)$ for many spaces and give several examples.

55M30, 55P05

1 Introduction

In [9], we introduced a weighted length between spaces which generalized the notion of the cone-length. Let X and Y be well-pointed CW complexes and \mathcal{A} a collection of spaces. Then we may consider the smallest integer n such that

$$
X \equiv X_{0} \xrightarrow{j_{0}} X_{1} \xrightarrow{j_{2}} \cdots \xrightarrow{j_{n-1}} X_{n} \equiv Y
$$

where each j_{i} is part of a mapping cone sequence

$$
A_{i} \longrightarrow X_{i} \xrightarrow{j_{i}} X_{i+1}
$$

with $A_{i} \in \mathcal{A}$. Furthermore, we assign a weight $\omega(A)$ to each $A \in \mathcal{A}$ to obtain a weighted length between X and Y (see Section 2.1). The idea of a weight is to measure the complexity of a space so that $\omega(A)$ should be larger for "more complicated" spaces and smaller for "less complicated" spaces.

What ω should be chosen? Recall that a CW complex A is contractible if and only if $\pi_{i}(A)=0$ for all i. Hence A is "further from being contractible" when A has smaller connectivity and A is "closer to being contractible" when it has larger connectivity. Thus we choose $\omega(A)=\omega_{C}(A)=1 /(1+\operatorname{conn}(A))$ where $\operatorname{conn}(A)$ denotes the connectivity of A. An important invariant that we use to study ω_{C} is the LusternikSchnirelmann (LS) category. There is a wide variety of research in this area; see Cornea,

Lupton, Oprea and Tanré [3], Oprea and Strom [6] and Stanley and Rodríguez Ordóñez [11]. Let X^{n} be a space with the homotopy type of the n-skeleton of X and define $\operatorname{cat}\left(X^{n}\right)$ to be the category of X^{n} in X (see Definition 2 and Proposition 3.) The categorical sequence of a CW complex X is the sequence $\sigma_{X}: \mathbb{N} \rightarrow \mathbb{N} \cup\{\infty\}$ defined by $\sigma_{X}(k)=\inf \left\{n \mid \operatorname{cat}_{X}\left(X^{n}\right) \geq k\right\}$. For $\omega_{C}(A)=1 /(1+\operatorname{conn}(A))$, we are able to utilize categorical sequences to compute the weighted cone length (see Definition 1) for many spaces. This is seen in the following Corollary.

Corollary 12 Let X be a space with $\operatorname{cat}(X)=n$ and let $\sigma_{X}=\left(m_{1}, m_{2}, m_{3}, \ldots, m_{n}\right)$. If $m_{1}>1$, then

If $m_{1}=1$, then

$$
\sum_{k=1}^{n} \frac{1}{m_{k}-1} \leq \mathrm{cl}^{\omega}(X)
$$

$$
2+\sum_{k=2}^{n} \frac{1}{m_{k}-1} \leq \mathrm{cl}^{\omega}(X)
$$

We use this Corollary to compute the weighted cone length of a finite product of spheres in Example 13. Finally we use Egyptian fractions in Lemma 14 to show that given a positive rational number q, one can choose a finite product of spheres whose ω_{C}-weighted cone length sums to q. This yields our main result.

Theorem 15 Let $a \geq 1$ be an integer and $q \in \mathbb{Q}^{\geq 0}$ a rational number such that $q \geq \frac{1}{a}$. Then there exists a space $X(q)$ with $\operatorname{conn}(X(q))=a$ and $\mathrm{cl}^{\omega}(X(q))=q$.

In addition, we devote Section 4 to computing $\mathrm{kl}^{\omega}(X)$, the weighted killing length of X (see Definition 1), for all X with abelian fundamental group, and we give several examples and computations throughout Section 5. In particular, we compute the weighted cone length of a sphere, real and complex projective spaces and $\operatorname{Sp}(3)$.

Acknowledgements The author wishes to thank Martin Arkowitz and Jeff Strom for all of their help and guidance as well as Paul Pollack for his help with the proof of Lemma 14. The author also wishes to thank an anonymous referee for very helpful comments, open problems and suggestions including one which significantly shortened the proof of Theorem 11.

2 Preliminaries

In this section we establish the basic notation and concepts that will be used in the paper. We use $*$ to denote a contractible space.

2.1 Weighted length

We recall the definitions introduced in [9]. Let \mathcal{A} be any collection of spaces. A weight function $\omega: \mathcal{A} \rightarrow \mathbb{R}^{\geq 0}$ is any function such that
(a) $\omega(*)=0$.
(b) $\omega\left(A_{1} \vee A_{2}\right) \leq \omega\left(A_{1}\right)+\omega\left(A_{2}\right)$ for all spaces A_{1}, A_{2}.
(c) $\omega\left(A_{1}\right)=\omega\left(A_{2}\right)$ whenever $A_{1} \equiv A_{2}$.

In addition, if ω satisfies $\omega(\Sigma A) \leq \omega(A)$ for all spaces A, we say that ω is a Σ-weight function. If $\omega(A) \leq C$ for some constant C, then we say that ω is a bounded weight function. Let $f: X \rightarrow Y$. If f is a homotopy equivalence, set $\ell^{\omega}(f)=0$. Otherwise, an \mathcal{A}-decomposition of f of stepsize $m<\infty$ is a homotopy commutative diagram D

where each $A_{i} \longrightarrow X_{i} \longrightarrow X_{i+1}$ is a mapping cone sequence with $A_{i} \in \mathcal{A}$. Set $\ell^{\omega}(f)=\sum_{i=0}^{m-1} \omega\left(A_{i}\right)$. The ω-length of f is the number $\tilde{\ell}^{\omega}(f)=\inf _{D}\left\{\ell_{D}^{\omega}(f)\right\}$ where the inf is taken over all such decompositions D of finite stepsize. If no such diagram D exists, we say that $\tilde{\ell}^{\omega}(f)=\infty$. The weighted length is then defined as follows:

Definition 1 Let X and Y be spaces and ω a weight function. Define $\ell^{\omega}(X, Y)=$ $\inf _{f}\left\{\tilde{\ell}^{\omega}(f)\right\}$. We define the ω-weighted killing length by $\mathrm{kl}^{\omega}(X)=\ell^{\omega}(X, *)$ and ω-weighted cone length by $\mathrm{cl}^{\omega}(X)=\ell^{\omega}(*, X)$.

When ω is a bounded weight function, there is an alternative characterization of $\tilde{\ell}^{\omega}(f)$. We say that (i, j) is a homotopy equivalence from f to f^{\prime} (and (r, s) is a homotopy equivalence from f^{\prime} to f) if there is a homotopy commutative diagram

where $r i \simeq \mathrm{id}, s j \simeq \mathrm{id}, i r \simeq \mathrm{id}$ and $j s \simeq \mathrm{id}$ and write $f \equiv f^{\prime}$.

Now let L^{ω} be a function such that for every $f: X \rightarrow Y, L^{\omega}(f) \in[0, \infty]$ satisfies
(a) $L^{\omega}(f)=0$ whenever f is a homotopy equivalence.
(b) If $A \longrightarrow X \xrightarrow{f} Y$ is a mapping cone sequence, then $L^{\omega}(f) \leq \omega(A)$.
(c) $L^{\omega}(f g) \leq L^{\omega}(f)+L^{\omega}(g)$.
(d) If $f \equiv g$, then $L^{\omega}(f)=L^{\omega}(g)$.

Define $\mathcal{L}^{\omega}(f)=\sup \left\{L^{\omega}(f) \mid L^{\omega}\right.$ satisfies the above properties $\}$. It was shown in [9] that if ω is a bounded weight function, then $\tilde{\ell}^{\omega}(f)=\mathcal{L}^{\omega}(f)$.

2.2 Lusternik-Schnirelmann category

Definition 2 The Lusternik-Schnirelmann category of a map $f: X \rightarrow Y$ is the least integer k for which X has a cover by open sets

$$
X=X_{0} \cup X_{1} \cup \cdots \cup X_{k}
$$

such that $\left.f\right|_{X_{i}} \simeq *$ for each i. When $f=\operatorname{id}_{X}$, we write $\operatorname{cat}(X)=\operatorname{cat}\left(\mathrm{id}_{X}\right)$ and when $i: A \hookrightarrow X$ is the inclusion, we write $\operatorname{cat}_{X}(A)=\operatorname{cat}(i)$. In light of Proposition 3, when A has the homotopy type of the $n-$ skeleton $X^{n} \subseteq X$, we write cat ${ }_{X}\left(X^{n}\right)=\operatorname{cat}\left(X^{n}\right)$ since X is clear from the context.

Proposition 3 (Nendorf-Scoville-Strom [5]) Let $n>\operatorname{conn}(X)$ (see Definition 5) be a fixed integer. Then $\operatorname{cat}\left(X^{n}\right)$ depends only on the homotopy type of X, and not on the choice of n-skeleton.

We recall the notion of categorical sequences, first introduced and studied in [5].

Definition 4 The categorical sequence of a CW complex X is the sequence $\sigma_{X}: \mathbb{N} \rightarrow$ $\mathbb{N} \cup\{\infty\}$ defined by

$$
\sigma_{X}(k)=\inf \left\{n \mid \operatorname{cat}_{X}\left(X^{n}\right) \geq k\right\}
$$

This is well-defined by Proposition 3.

The idea behind a categorical sequence of a space X is simply to keep track of the dimensions in which the category increases by 1 . For example, let $X=\mathbb{C} P^{n}$. Then $\sigma_{X}=(0,2,4,6, \ldots, 2 n-2,2 n, \infty, \infty, \ldots)$. For notational simplicity, we will suppress the infinities unless it is of relevance.

2.3 Connectivity

It is well known that a CW complex A is contractible if and only if $\pi_{i}(A)=0$ for all i. This leads to the idea that we can measure the complexity of A by considering the dimension of its first nontrivial homotopy group.

Definition 5 For a CW complex A, we define the connectivity of A, denoted conn (A), to be the largest integer n (or ∞) such that $\pi_{i}(A)=0$ for $i<n+1$. If A is not path-connected, we say that $\operatorname{conn}(A)=-1$.

We will view conn (A) as one less than the dimension of the first reduced homology group. This follows from the Hurewicz Theorem; see Arkowitz [2, page 219].

We now define the connectivity weight, the main focus of this paper.

Definition 6 Let X, Y be path-connected CW complexes, and \mathcal{A} the collection of all CW complexes with abelian fundamental group. Define

$$
\omega_{C}(A)= \begin{cases}0 & \text { if } A \equiv * \\ 2 & \text { if } A \text { is not path-connected } \\ 1 /(\operatorname{conn}(A)+1) & \text { otherwise }\end{cases}
$$

We say that ω_{C} is the connectivity weight and that $\ell^{\omega_{C}}(X, Y)$ is the connectivity weighted length between X and Y. Throughout the rest of this paper, let $\omega=\omega_{C}$.

Remark 7 A remark concerning our choice to define $\omega_{C}(A)=2$ for A non-pathconnected is in order. Let A_{i} be a space with $\operatorname{conn}\left(A_{i}\right)=i$, and write $\omega_{C}\left(A_{-1}\right)=\frac{1}{x}$. Since $\omega_{C}\left(A_{i}\right)>\omega\left(A_{j}\right)$ whenever $i<j$, it should be the case that $\omega_{C}\left(A_{-1}\right)>\omega_{C}\left(A_{j}\right)$ for all $j \neq-1$. Now $\ldots, \omega_{C}\left(A_{2}\right), \omega_{C}\left(A_{1}\right), \omega_{C}\left(A_{0}\right), \omega_{C}\left(A_{-1}\right)=\ldots, \frac{1}{3}, \frac{1}{2}, \frac{1}{1}, \frac{1}{x}$, and a choice of $x=\frac{1}{2}$ provides a nice symmetry in the sequence. Since $1 /(1 / 2)=2$, we choose $\omega_{C}(A)=2$ for X non-path-connected. Furthermore, while we will allow attachments of spaces which are not necessarily path-connected, we will not consider the lengths between non-path-connected spaces. Hence, it is always assumed that when we consider $\ell^{\omega}(X, Y)$, both X and Y are path-connected, but the A_{i} which we attach are not necessarily path-connected. Again, each A_{i} has abelian fundamental group.

The following Proposition is easily verified.

Proposition 8 The function ω_{C} is a bounded Σ-weight function.

3 Connectivity weight

This section is devoted to proving our main results. We first state a technical lemma which is needed to ensure that given a mapping cone sequence of CW complexes, we may pass to a mapping cone sequence on the skeleta. Let $A \rightarrow B$ be a map of CW complexes and replace it with a cellular map. Then the cofiber C inherits a natural CW structure.

Lemma 9 With the above setup, $A^{n-1} \rightarrow B^{n} \rightarrow C^{n}$ is a cofiber sequence.
Proof See Stanley [10, Lemma 7.3].
The decompositions below will be helpful in following the proofs of Lemma 10 and Theorem 11. Let

be any ω-decomposition of Z into X. We keep track of the m-skeleta in the above diagram by considering the following diagram:

By Lemma 9, each sequence $\left(A_{i}\right)^{m-1} \rightarrow\left(X_{i}\right)^{m} \rightarrow\left(X_{i+1}\right)^{m}$ is also a mapping cone sequence, $0 \leq i \leq n-1$.

Lemma 10 Let X and Z be spaces and let m be the first dimension such that $\operatorname{cat}\left(X^{m}\right)-\operatorname{cat}\left(Z^{m}\right)=1$. Then there exists an attachment of a space with connectivity at most $m-2$ in any ω-decomposition of Z into X.

Proof Suppose that $\operatorname{cat}\left(X^{m}\right)-\operatorname{cat}\left(Z^{m}\right)=1$ for the first time in dimension m. If $\left(A_{i}\right)^{m-1}=*$ for all i in (1), then $X^{m} \equiv Z^{m}$, which is impossible since X and Z have different categories in dimension m. Hence, there must be at least one $\left(A_{i}\right)^{m-1} \neq *$ which implies that conn $\left(A_{i}\right)$ is at most $m-2$ for some space A_{i}.

We translate the preceding Lemma into the language of the connectivity weight to obtain the following Theorem.

Theorem 11 Let X and Z be spaces with $m_{1} \leq m_{2} \leq \cdots \leq m_{N}<\infty$ the first dimension of X such that $\operatorname{cat}\left(X^{m_{i}}\right)-\operatorname{cat}\left(Z^{m_{i}}\right)=i>0$ for $1 \leq i \leq N$. If $\operatorname{cat}\left(X^{1}\right)-\operatorname{cat}\left(Z^{1}\right)=1$, then

$$
2+\sum_{i=2}^{N} \frac{1}{m_{i}-1} \leq \ell^{\omega}(Z, X)
$$

Otherwise,

$$
\sum_{i=1}^{N} \frac{1}{m_{i}-1} \leq \ell^{\omega}(Z, X)
$$

Proof Let D be any ω-decomposition of Z into X. We will apply Lemma 10 for each value of $i, 1 \leq i \leq N$, to obtain a lower bound.

Consider the first case where $\operatorname{cat}\left(X^{1}\right)-\operatorname{cat}\left(Z^{1}\right)=1=m_{1}$. For $i=1$, by Lemma 10 there is 1 attachment in D with connectivity at most $1-2=-1$ ie there is an attachment of a non-path-connected space, say $A_{j_{0}}$. By definition of ω_{C}, this attachment contributes a value of $\omega\left(A_{j_{0}}\right)=2$ to the lower bound estimate for $\ell^{\omega}(Z, X)$. If m_{2} does not exist (and since category can increase by at most 1 per attachment, consequently m_{3}, m_{4}, \ldots also do not exist), we finish with an estimate of $2 \leq \ell^{\omega}(Z, X)$.

We proceed by induction on the i of m_{i}. If m_{2} exists, it is defined as the first dimension such that $\operatorname{cat}\left(X^{m_{2}}\right)-\operatorname{cat}\left(Z^{m_{2}}\right)=2$. Now $\operatorname{cat}\left(X^{m_{2}}\right)-\operatorname{cat}\left(X^{m_{1}}\right)=1$, so by Lemma 10 , there is an attachment in D, say $A_{j_{1}}$, with connectivity at most $m_{2}-2$. Clearly $A_{j_{1}}$ must be a different attachment than $A_{j_{0}}$ since otherwise this would imply that a single attachment can increase the category by 2 which is impossible. This yields the estimate $2+1 /\left(m_{2}-1\right) \leq 2+1 /\left(\operatorname{conn}\left(A_{j_{1}}\right)+1\right)=\omega\left(A_{j_{0}}\right)+\omega\left(A_{j_{1}}\right) \leq \ell^{\omega}(Z, X)$. If m_{3} does not exist, we are done.

Assume the inductive hypothesis that we have found $A_{j_{0}}, A_{j_{1}}, \ldots, A_{j_{k}}$ satisfying $1 /\left(m_{i}-1\right) \leq \omega\left(A_{j_{i-1}}\right)$ for $1 \leq i \leq k$ so that $2+\sum_{i=2}^{k} 1 /\left(m_{i}-1\right) \leq \ell^{\omega}(Z, X)$. If m_{k+1} exists, m_{k+1} is by definition the first dimension such that $\operatorname{cat}\left(X^{m_{k+1}}\right)-\operatorname{cat}\left(Z^{m_{k+1}}\right)=$ $k+1$. Now $\operatorname{cat}\left(X^{m_{k+1}}\right)-\operatorname{cat}\left(X^{m_{k}}\right)=1$ and so by Lemma 10, there are is an attachment in D, say $A_{j_{k+1}}$, such that conn $\left(A_{j_{k+1}}\right) \leq m_{k+1}-2$. For the same reason as above, $A_{j_{k+1}}$ must be a different attachment than the other $A_{j_{0}}, A_{j_{1}}, \ldots, A_{j_{k}}$. Therefore, $2+\sum_{i=2}^{k+1} 1 /\left(m_{i}-1\right) \leq \ell^{\omega}(Z, X)$.

We thus obtain the estimate $2+\sum_{i=2}^{N} 1 /\left(m_{i}-1\right) \leq \ell^{\omega}(Z, X)$. The case where $\operatorname{cat}\left(X^{1}\right)-\operatorname{cat}\left(Z^{1}\right) \neq 1$ is almost identical.

By taking $Z=*$ in Theorem 11, we obtain the following useful lower bound for the weighted cone length of any space.

Corollary 12 Let X be a space with $\operatorname{cat}(X)=n$ and let $\sigma_{X}=\left(m_{1}, m_{2}, m_{3}, \ldots, m_{n}\right)$. If $m_{1}>1$, then

$$
\sum_{k=1}^{n} \frac{1}{m_{k}-1} \leq \mathrm{cl}^{\omega}(X)
$$

If $m_{1}=1$, then

$$
2+\sum_{k=2}^{n} \frac{1}{m_{k}-1} \leq \mathrm{cl}^{\omega}(X)
$$

We will use this to compute the weighted cone length of a product of spheres.
Example 13 Let $X=S^{n_{1}} \times S^{n_{2}} \times \cdots \times S^{n_{k}}$ with $1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{k}$. The standard cone decomposition of X is given by

where $X(i)=\left\{\left(x_{1}, x_{2}, \ldots\right) \mid\right.$ at most i entries are not $\left.*\right\} \subseteq X$, and each A_{i} is attached via a higher order Whitehead product [7] with $\operatorname{conn}\left(A_{i}\right)=n_{1}+n_{2}+\cdots+n_{i+1}-2$. We thus obtain the upper bound of

$$
\operatorname{cl}^{\omega}\left(S^{n_{1}} \times S^{n_{2}} \times \cdots \times S^{n_{k}}\right) \leq \frac{1}{n_{1}-1}+\frac{1}{n_{1}+n_{2}-1}+\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}-1}
$$

for $n_{1} \neq 1$ and

$$
\operatorname{cl}^{\omega}\left(S^{n_{1}} \times S^{n_{2}} \times \cdots \times S^{n_{k}}\right) \leq 2+\frac{1}{n_{1}+n_{2}-1}+\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}-1}
$$

for $n_{1}=1$.
We now show the lower bound. By [5, Corollary 17], $\sigma_{X}(r)=n_{1}+n_{2}+\cdots+n_{r}$ for $r \leq k$ and ∞ otherwise. By Corollary 12 and the upper bound, we conclude that

$$
\begin{aligned}
& \operatorname{cl}^{\omega}\left(S^{n_{1}} \times S^{n_{2}} \times \cdots \times S^{n_{k}}\right) \\
& \quad= \begin{cases}\frac{1}{n_{1}-1}+\frac{1}{n_{1}+n_{2}-1}+\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}-1} & \text { if } n_{1} \neq 1, \\
2+\frac{1}{n_{1}+n_{2}-1}+\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}-1} & \text { if } n_{1}=1\end{cases}
\end{aligned}
$$

The last step in proving Theorem 15 is to show that any rational number can be realized as a finite sum of the above form.

Lemma 14 Let $a \geq 1$ be an integer and r a rational number such that $r \geq \frac{1}{a}$. Then there exists a finite sequence of positive integers $a<a_{2} \leq a_{3} \leq \cdots \leq a_{n}$ such that

$$
\frac{1}{a}+\frac{1}{a+a_{2}}+\frac{1}{a+a_{2}+a_{3}}+\cdots+\frac{1}{a+a_{2}+\cdots+a_{n}}=r .
$$

Proof It suffices to show that any positive rational r can be written as $r=1 / A_{1}+$ $1 / A_{2}+\cdots+1 / A_{n}$ where the difference $D_{i}=A_{i+1}-A_{i}$ satisfies $A_{1}<D_{1} \leq D_{2} \leq$ $D_{3} \leq \cdots \leq D_{n-1}$. Let k be a positive integer such that $r \geq 1 / k$. Find the value j that satisfies

$$
\begin{aligned}
S_{0} & :=\frac{1}{k}+\frac{1}{k+(k+1)}+\frac{1}{k+2(k+1)}+\cdots+\frac{1}{(k+1) j-1} \leq r \\
r & <\frac{1}{k}+\frac{1}{k+(k+1)}+\frac{1}{k+2(k+1)}+\cdots+\frac{1}{(k+1) j-1}+\frac{1}{(k+1)(j+1)-1} .
\end{aligned}
$$

Consider $r-S_{0}=r^{\prime}$. Clearly $r^{\prime}<1 /((k+1)(j+1)-1)$ and in particular, $r^{\prime}<1$. If $r^{\prime}=0$, then we are done. Otherwise, write $r^{\prime}=1 / m_{1}+1 / m_{2}+\cdots+1 / m_{t}$ where each $m_{i+1}=m_{i}^{2}-m_{i}+\epsilon_{i}, \epsilon_{i}$ a positive integer [8, Theorems 1 and 2]. Then
$r=\frac{1}{k}+\frac{1}{k+(k+1)}+\frac{1}{k+2(k+1)}+\cdots+\frac{1}{(k+1) j-1}+\frac{1}{m_{1}}+\frac{1}{m_{2}}+\cdots+\frac{1}{m_{t}}$ and $k<k+1=D_{1}=D_{2}=\cdots=D_{j-1}$. It remains to show that $D_{i} \leq D_{i+1}$, for $j-1 \leq i \leq t-1$. We first show that $D_{j-1} \leq D_{j}$. Observe that $1 / m_{1} \leq r^{\prime}<$ $1 /((k+1)(j+1)-1)$ so that $D_{j}-D_{j-1}=m_{1}-(k+1)(j+1)+1>0$. We now show that $D_{i} \leq D_{i+1}$ for $j \leq i \leq t-1$. We have

$$
\begin{aligned}
D_{i+1} & =m_{i+1}-m_{i} \\
& =\left(m_{i}^{2}-m_{i}+\epsilon_{i}\right)-m_{i} \\
& =m_{i}^{2}-2 m_{i}+\epsilon \\
& \geq m_{i}^{2}-2 m_{i} \\
& \geq m_{i}-2 \\
& \geq m_{i}-m_{i-1} \\
& =D_{i},
\end{aligned}
$$

which completes the proof.
Our main result follows.
Theorem 15 Let $a \geq 1$ be an integer and $q \in \mathbb{Q}^{\geq 0}$ such that $q \geq \frac{1}{a}$. Then there exists a space $X(q)$ with $\operatorname{conn}(X(q))=a$ and $\mathrm{cl}^{\omega}(X(q))=q$.

Proof Let q and a be as above. By Lemma 14, there exists positive integers $a=$ $n_{1}<n_{2} \leq \cdots \leq n_{k}$ such that

$$
\frac{1}{n_{1}}+\frac{1}{n_{1}+n_{2}}+\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}}=q
$$

Write $X=S^{n_{1}+1} \times S^{n_{2}} \times S^{n_{3}} \times \cdots \times S^{n_{k}}$. By Example 13,

$$
\begin{aligned}
\operatorname{cl}^{\omega}(X)=\frac{1}{n_{1}+1-1}+\frac{1}{n_{1}+1+n_{2}-1} & +\frac{1}{n_{1}+1+n_{2}+n_{3}-1} \\
& +\cdots+\frac{1}{n_{1}+n_{2}+\cdots+n_{k}-1}=q
\end{aligned}
$$

It is clear that $\operatorname{conn}(X(q))=a$.

4 Killing and cone length

Lemma 16 If $X \xrightarrow{f} Y \longrightarrow *$ is a mapping cone sequence and X and Y are simply connected $C W$ complexes, then $X \equiv Y$.

Proof This follows from Whitehead's first and second Theorems [2, pages 53, 220].
We show that $\mathrm{kl}^{\omega}(X)$ can easily be computed for all spaces X by first showing a lower bound.

Proposition 17 Let X and Y be spaces with different homology groups in at least one dimension and $m \geq 1$ the first dimension with $H_{m}(X) \nsupseteq H_{m}(Y)$. If $\omega=\omega_{C}$, then $\frac{1}{m} \leq \ell^{\omega}(X, Y)$.

Proof Take any ω-decomposition

of X into Y. Assume by way of contradiction that conn $\left(A_{i}\right)>m-1$ for all $0 \leq i \leq n-1$. Consider any of the mapping cone sequences $A_{j} \rightarrow X_{j} \rightarrow X_{j+1}$ and the long exact homology sequence which it induces:

$$
\cdots \longrightarrow H_{m}\left(A_{j}\right) \longrightarrow H_{m}\left(X_{j}\right) \longrightarrow H_{m}\left(X_{j+1}\right) \longrightarrow H_{m-1}\left(A_{j}\right) \longrightarrow \cdots
$$

Since $\operatorname{conn}\left(A_{j}\right)>m-1$, we see that $H_{m}\left(X_{j}\right) \cong H_{m}\left(X_{j+1}\right)$ for all j so that $H_{m}(X) \cong$ $H_{m}(Y)$. Thus there is at least one A_{i} with $\operatorname{conn}\left(A_{i}\right) \leq m-1$ so that $\frac{1}{m} \leq \ell^{\omega}(X, Y)$.

Corollary 18 Let X and Y be spaces and $\omega=\omega_{C}$. If $\operatorname{conn}(X)<\operatorname{conn}(Y)$, then $\omega(X) \leq \ell^{\omega}(X, Y)$.

Proof Let $m-1=\operatorname{conn}(X)$. Since $\operatorname{conn}(X)<\operatorname{conn}(Y), m$ is the first dimension in which $H_{m}(X) \not \not H_{m}(Y)$. By Proposition $17, \frac{1}{m}=\omega(X) \leq \ell^{\omega}(X, Y)$.

We now compute $\mathrm{kl}^{\omega}(X)$ for all spaces X.
Corollary 19 Let X be a space and $\omega_{C}=\omega$. Then $\mathrm{kl}^{\omega}(X)=\omega(X)$. If X is simply connected, the decomposition is $X \longrightarrow X \longrightarrow *$. Furthermore, $\mathrm{kl}^{\omega}(X) \leq \ell^{\omega}(X, Y)$ for all spaces Y.

Proof Clearly $\mathrm{kl}^{\omega}(X) \leq \omega(X)$. Let $Y=*$ and apply Corollary 18 for the reverse direction. For X simply connected, the only way to obtain this is with the decomposition $X \longrightarrow X \longrightarrow *$ by Lemma 16. The last inequality follows from Corollary 18.

Though we are not able to compute $\mathrm{cl}^{\omega}(X)$ for all spaces, we can compute it for many spaces. We first compute $\mathrm{cl}^{\omega}(X)$ whenever X is a suspension. We then give examples of classes of spaces whose weighted cone length may be computed.

Corollary 20 Let $\omega=\omega_{C}$ and A a noncontractible space. If $X=\Sigma A \not \equiv *$, then $\mathrm{cl}^{\omega}(X)=\omega(A)$.

Proof Observe that the diagram

shows that $\ell^{\omega}(*, X) \leq \omega(A)$.
We apply Corollary 12. Since by definition m_{1} is the first dimension in which $\operatorname{cat}\left(X^{m_{1}}\right)-\operatorname{cat}(*)=\operatorname{cat}\left(X^{m_{1}}\right)=1$, it follows that $m_{1}=\operatorname{conn}(X)+1$. We have $\omega(A)=1 /(1+\operatorname{conn}(A))=1 /\left(m_{1}-1\right) \leq \mathrm{cl}^{\omega}(X)$ by Corollary 12 which completes the proof.

5 Computations and examples

Example 21 By Corollary 19 and Corollary $20, \ell^{\omega}\left(*, S^{n}\right)=\frac{1}{n-1}$ and $\ell^{\omega}\left(S^{n}, *\right)=\frac{1}{n}$ for $n \geq 2$.

Example 22 The converse of Corollary 20 is not true. That is, if $\mathrm{cl}^{\omega}(X)=\omega(A)$ for some A, X is not necessarily a suspension. Indeed, Theorem 15 allows us to construct many such examples. We will restrict our attention to products of only two spheres. To do this, we seek positive integers a, b, c such that $\frac{1}{a}+\frac{1}{b}=\frac{1}{c}$ if and only if $(a+b) \mid a b$. For example, if $a=5$ and $b=20$, we choose $n_{1}=6$ and $n_{2}=15$ so that $\operatorname{cl}^{\omega}\left(S^{6} \times S^{15}\right)=\frac{1}{6-1}+\frac{1}{6+15-1}=\frac{1}{4}=\omega(A)$ for all 3-connected spaces A but $S^{6} \times S^{15} \not \equiv \Sigma A$ for any A.

Example 23 Let $X=\mathbb{C} \mathrm{P}^{n}$. As noted above, $\sigma_{\mathbb{C} \mathrm{P}^{n}}=(0,2,4,6, \ldots, 2 n-2,2 n)$. By Corollary 12, $\sum_{i=1}^{n}(1 /(2 i-1)) \leq \mathrm{cl}^{\omega}(X)$. The standard CW decomposition of $\mathbb{C} \mathrm{P}^{n}$

yields the estimate $\mathrm{cl}^{\omega}\left(\mathbb{C} \mathrm{P}^{n}\right) \leq \sum_{i=1}^{n}(1 /(2 i-1)){\text { so } \mathrm{cl}^{\omega}}^{\omega}\left(\mathbb{C} \mathrm{P}^{n}\right)=\sum_{i=1}^{n}(1 /(2 i-1))$. The exact value of the sum can be computed using the digamma function [1, 6.3.4].

Example 24 Using the same technique as in Example 23, we can compute cl ${ }^{\omega}\left(\mathbb{R} \mathrm{P}^{n}\right)=$ $2+\sum_{i=1}^{n}(1 / i), 2$ plus the i-th partial sum of the harmonic series. In particular, this shows that cl^{ω} can take on arbitrarily large values.

Example 25 Let $X=\mathrm{Sp}(3)$. The following cone decomposition was explicitly shown in [4]:

where $C_{n}=S^{n} \cup_{v_{n}} D^{n+4}$ (here v_{n} is the generator of the 2-primary component of $\pi_{n+3}\left(S^{n}\right)$ [12]). This yields an upper bound. On the other hand, $\mathrm{Sp}(3)$ has categorical sequence $(3,7,10,18,21)$. By Corollary 12 , we then obtain the same value as the lower bound. Thus $\mathrm{cl}^{\omega}(\mathrm{Sp}(3))=\frac{1}{2}+\frac{1}{6}+\frac{1}{9}+\frac{1}{17}+\frac{1}{20} \approx .8866$.

Example 26 We find spheres whose product has ω-cone length 3.141, the first few digits of π. The following decomposition can be found using an elementary number theory computer program such as PARI:

$$
3.141=2+1+\frac{1}{8}+\frac{1}{63}+\frac{1}{7875}
$$

This yields the sequence $1,1,7,56,7813$ so we choose $X=S^{1} \times S^{1} \times S^{7} \times S^{56} \times S^{7875}$, hence $\mathrm{cl}^{\omega}(X)=3.141$.

6 Open questions

Question 27 In the examples we have seen, $\mathrm{cl}^{\omega}(X)$ is realized using the "standard" decomposition of X. In particular, if $\operatorname{cl}(X)=n$, the classical cone-length of X, we have found the connectivity weighted cone length of X in exactly n attachments. Is there a space X such that $\operatorname{cl}(X)=n$ but $\mathrm{cl}^{\omega}(X)$ is realized in more than n attachments?

Question 28 Theorem 11 provides a good lower bound for $\ell^{\omega}(X, Y)$ whenever $\operatorname{cat}\left(X^{n}\right) \leq \operatorname{cat}\left(Y^{n}\right)$ for all n. However, this lower bound is clearly less helpful if there are integers i such that $\operatorname{cat}\left(X^{i}\right)>\operatorname{cat}\left(Y^{i}\right)$, and the theorem tells us nothing when $\operatorname{cat}\left(X^{n}\right) \geq \operatorname{cat}\left(Y^{n}\right)$ for all n. In particular, let $A \rightarrow B \rightarrow C$ be a mapping cone sequence such that $\operatorname{cat}(B)+1=\operatorname{cat}(C)$. Is there a good lower bound for $\ell^{\omega}(C, B)$? What about the special case of $S^{n} \rightarrow \mathbb{R} \mathrm{P}^{n} \rightarrow \mathbb{R} \mathrm{P}^{n+1}$?

Question 29 Suppose that $\operatorname{cat}(X)=n, \operatorname{dim}(X)=d$, and $\operatorname{conn}(X)=c$; what can be said about $\mathrm{cl}^{\omega}(X)$?

Question 30 Is it possible to define ω so that for finite complexes, $\mathrm{cl}^{\omega}(X)=\mathrm{cl}^{\omega}(Y)$ if and only if $X \equiv Y$?

References

[1] M Abramowitz, I A Stegun (editors), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York (1992) MR1225604
[2] M Arkowitz, Introduction to homotopy theory, Universitext, Springer, New York (2011) MR2814476
[3] O Cornea, G Lupton, J Oprea, D Tanré, Lusternik-Schnirelmann category, Math. Surveys and Monogr. 103, Amer. Math. Soc. (2003) MR1990857
[4] L Fernández-Suárez, A Gómez-Tato, J Strom, D Tanré, The LusternikSchnirelmann category of $\mathrm{Sp}(3)$, Proc. Amer. Math. Soc. 132 (2004) 587-595 MR2022385
[5] R Nendorf, N Scoville, J Strom, Categorical sequences, Algebr. Geom. Topol. 6 (2006) 809-838 MR2240916
[6] J Oprea, J Strom, Mixing categories, Proc. Amer. Math. Soc. 139 (2011) 3383-3392 MR2811292
[7] G J Porter, Higher-order Whitehead products, Topology 3 (1965) 123-135 MR0174054
[8] HE Salzer, The approximation of numbers as sums of reciprocals, Amer. Math. Monthly 54 (1947) 135-142 MR0020339
[9] NA Scoville, Mapping cone sequences and a generalized notion of cone length, JP J. Geom. Topol. 11 (2011) 209-233
[10] D Stanley, Spaces and Lusternik-Schnirelmann category n and cone length $n+1$, Topology 39 (2000) 985-1019 MR1763960
[11] D Stanley, H Rodríguez Ordóñez, A minimum dimensional counterexample to Ganea's conjecture, Topology Appl. 157 (2010) 2304-2315 MR2670507
[12] H Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies 49, Princeton Univ. Press (1962) MR0143217

Mathematics and Computer Science, Ursinus College
610 E Main Street, Collegeville PA 19426, USA
nscoville@ursinus.edu
http://webpages.ursinus.edu/nscoville/
Received: 25 August 2011 Revised: 8 December 2011

