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Splittings of non-finitely generated groups

ROBIN M LASSONDE

In geometric group theory one uses group actions on spaces to gain information
about groups. One natural space to use is the Cayley graph of a group. The Cayley
graph arguments that one encounters tend to require local finiteness, and hence finite
generation of the group. In this paper, I take the theory of intersection numbers of
splittings of finitely generated groups (as developed by Scott, Swarup, Niblo and
Sageev), and rework it to remove finite generation assumptions. I show that when
working with splittings, instead of using the Cayley graph, one can use Bass–Serre
trees.

20E08, 20F65

1 Introduction and Contents

1.1 Introduction

In this paper, we investigate the intersection number of splittings of a group. Splittings
are analogues of codimension–1 embedded submanifolds. More precisely, a splitting
of a group G is a one-edged graph of groups structure for G . In this paper, I describe
splittings in terms of G–trees and prefer not to use graphs of groups. For example,
from the perspective of graphs of groups, it is not completely obvious how to define an
isomorphism of splittings. On the other hand, from the perspective of G –trees, clearly
we should define two splittings to be isomorphic precisely when their G–trees are
isomorphic.

Almost invariant sets are analogues of codimension–1 immersed submanifolds. In [23],
Scott defined the intersection number of two almost invariant subsets of a finitely
generated group, and proved that the definition is symmetric. Shortly after, Scott and
Swarup showed that if two splittings have intersection number zero, then one can find a
common refinement of their Bass–Serre trees [24]. The same authors further developed
these concepts in [25] to construct algebraic regular neighborhoods of finite collections
of almost invariant sets. In [19], Niblo, Sageev, Scott and Swarup showed how, given
finitely many almost invariant sets, to produce a CAT.0/ cubical complex, in which
meeting of hyperplanes corresponds to crossing of almost invariant sets. The above
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results applied only to finitely generated groups, and often required further that the
stabilizer of each almost invariant set (and, in particular, the subgroups associated to
the splittings in question) be finitely generated. Here, we use the properties of splittings
to remove the finite generation assumptions in the case where the almost invariant sets
come from splittings. Instead of using the Cayley graph, which is only useful when
G is finitely generated, we turn to the Bass–Serre trees for the splittings. We also
show how to use the aforementioned CAT.0/ cubical complex to make a more direct
construction of algebraic regular neighborhoods.

1.2 Contents

Section 2 provides a history of splittings. Section 3 gives an explanation of the main
concepts used in this paper. It is recommended that the reader review Section 3 before
proceeding.

For the next two paragraphs, let G be a group, X be a nontrivial H –almost invariant
subset of G , and Y a nontrivial K–almost invariant subset of G . In [23], Scott
defined “X crosses Y ” and proved that if G is finitely generated, then this definition is
symmetric. By counting the number of group elements g 2G such that gX crosses Y ,
Scott gave a well-defined, symmetric intersection number of X and Y . To define
the intersection number of two splittings of G , pick associated almost invariant sets
and take their intersection number. In this paper, I prove that if Y arises from a
splitting of G , and if X crosses Y , then Y crosses X , without any assumption of
finite generation.

Proposition 4.2 Let G be any group with subgroups H and K . Suppose X is any
nontrivial H –almost invariant set, and Y is a K–almost invariant set arising from a
splitting of G over K . If X crosses Y , then Y crosses X .

Hence if both X and Y arise from splittings, then crossing is symmetric. In particular,
for any group (not necessarily finitely generated), the intersection number of two
splittings is well-defined. The key argument used to prove this is laid out in Lemma 4.1.

Also in [23], Scott proved that if G , H and K are all finitely generated, then the
intersection number of X and Y is finite. I give two examples showing that the
assumption that G be finitely generated is crucial: when G is the free group on
countably many generators, it is possible for two splittings over the trivial group to
have an infinite intersection number (Example 5.1), and also possible for a f1g–almost
invariant set to have infinite self-intersection number (Example 5.2). I also explain an
example, due to Guirardel, of infinite intersection when G is finitely generated but H

and K are not (Example 5.3).
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For this paragraph, let G be a group, and let �j be a splitting of G over Hj , for
j D 1; : : : ; n. In [24], Scott and Swarup proved that if G and all the Hj ’s are finitely
generated, and the �j ’s have pairwise intersection number zero, then the �j ’s are
compatible. In this paper, I generalize Scott and Swarup’s result, replacing the finite
generation assumptions by a sandwiching assumption.

Theorem 7.5 Let �j be a splitting of G over Hj and assume f�1; : : : ; �ng satisfies
sandwiching. If i.�j ; �k/ D 0, for all j and k , then the splittings f�1; : : : ; �ng are
compatible.

Sandwiching is automatic if none of the splittings is a trivially ascending HNN extension
(see Corollary 7.3), and if the �j ’s do not satisfy sandwiching, then the �j ’s cannot
be compatible (see Section 3.9). My proof of the theorem mirrors the proof in [24],
replacing the coboundary arguments by new arguments using G –trees for splittings. In
particular:

� Scott and Swarup used Cayley graph arguments to show that “almost inclusion”
defines a partial order on the set of all translates of all the almost invariant sets
(arising from the splittings with intersection number zero) and their complements.
I show that the fact that almost inclusion defines a partial order can be deduced
directly once one has symmetry of crossing (see Corollary 6.5).

� Scott and Swarup used Cayley graph arguments to prove interval finiteness for
finite collections of almost invariant sets. Their arguments require both G and
the associated subgroups to be finitely generated. In the case where the almost
invariant sets arise from splittings, I show how to deduce interval finiteness from
sandwiching (see Proposition 7.4).

For the remainder of this section, let fXj j j D1 : : : ng be a finite collection of nontrivial
Hj –almost invariant subsets of a group G , let † denote the set of all translates of
the Xj ’s and their complements, and let � denote almost inclusion on †.

In [21], Sageev constructed a CAT.0/ cubical complex from the partially ordered set
.†;�/. In [19], Niblo, Sageev, Scott and Swarup generalized Sageev’s construction,
using the partial order of almost inclusion on †, instead of inclusion, to get a “minimal”
cubing. Their results assumed the ambient group G , as well as the Hj ’s, to be finitely
generated. In this paper, I remove the finite generation assumptions and instead assume
that all the Xj ’s come from splittings that collectively satisfy sandwiching.
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Theorem 8.7 Let G be any group with a finite collection f�j j j D 1; : : : ; ng of pair-
wise nonisomorphic splittings. Suppose f�j j j D 1; : : : ; ng satisfies sandwiching. For
each j , let Xj be an Hj –almost invariant set arising from �j . Let † WD

Sn
jD1†.Xj /.

Then there exists a CAT.0/ cubical complex L, with a bijective correspondence be-
tween † and the set of oriented hyperplanes of L, such that two elements of † cross
if, and only if, their corresponding hyperplanes cross in some square. Moreover, the
hyperplane corresponding to any A 2 † determines a Stab.A/–almost invariant set
that is Stab.A/–almost equal to A.

The main challenge in adapting the Cayley graph arguments from [19] to the non–finitely
generated case is to show that the cubing is nonempty. In particular,
� constructing an ultrafilter on .†;�/ (see the first half of proof of Theorem 8.11),
� proving that this ultrafilter satisfies the descending chain condition (see the

second half of proof of Theorem 8.11).

One application of minimal cubings is putting the Xj ’s in “very good position,” ie
perturbing each Xj such that inclusion and almost inclusion give the same partial order
on †.

In [25], Scott and Swarup defined the algebraic regular neighborhood of a collection
of almost invariant subsets of G , assuming G is finitely generated. They proved the
existence of an algebraic regular neighborhood for a finite family of almost invariant sets
having finitely generated stabilizers, and uniqueness of algebraic regular neighborhoods
for arbitrary collections of almost invariant sets. Scott and Swarup presumed that the
minimal cubing from [19] could be turned into an algebraic regular neighborhood of
the Xj ’s. However, they were unable to prove that the object they constructed satisfied
the definition of an algebraic regular neighborhood, because edge stabilizers might not
be finitely generated. I include the missing arguments in Section 11. This result will
be used in a forthcoming paper by Guirardel, Scott and Swarup on relative versions of
the algebraic torus theorem and other results. These results concern splittings “adapted”
to a family of subgroups, a concept that was introduced by Müller in [17].

In Theorem 9.1, I show how to turn a minimal cubing into an algebraic regular neighbor-
hood under my hypotheses (ie that the Xj ’s come from splittings satisfying sandwiching,
and neither G nor any of the Hj ’s need to be finitely generated). In Theorem 10.1,
I prove that algebraic regular neighborhoods are unique, even for a possibly infinite
collection of splittings, and without any finite generation assumptions.
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2 History

2.1 Ends

In 1931, Freudenthal defined the number of ends of a topological space [6]. Roughly
speaking, the ends of a space are the space’s “connected components at infinity.” To
count the number of ends of a locally finite CW complex, simply remove a finite number
of open cells, and count the number of infinite components remaining. The number of
ends is the supremum over all such removals. In 1944, Hopf realized that the number
of ends of the Cayley graph of a finitely generated group does not depend on the choice
of generating set; hence one can define the number of ends of a finitely generated group
to be the number of ends of its Cayley graph [12]. In fact, if a finitely generated group
acts freely and cocompactly on a locally finite space, the number of ends of the space
is the same as the number of ends of a group. Several years later, Specker introduced a
purely algebraic definition for the number of ends of any group [31]. Usually when we
think of the number of ends of a group, we are thinking of the geometric interpretation
(which only works for finitely generated groups). However, it is good to know that the
definition can be extended to non–finitely generated groups.

2.2 Splittings

Group splittings were defined around the same time as ends. Schreier introduced
amalgamated free products in 1927 [22], and two decades later, Higman, Neumann
and Neumann introduced HNN extensions [11]. Both amalgamated free products and
HNN extensions were initially described in terms of normal forms for words. In 1977,
Serre discovered that splittings can be described as group actions on trees. This topic
is known as “Bass–Serre theory”; see Serre [29; 30]. Immediately after, Scott and
Wall noted that one can use the Seifert–van Kampen Theorem to realize any graph
of groups as a graph of spaces [27]. From Scott’s point of view, there is no reason to
distinguish between amalgamated free products and HNN extensions, so he called both
“splittings.”

2.3 Stallings’ Theorem

A decade before Serre’s discovery that group actions on trees correspond to splittings,
Stallings made a connection between splittings and ends of groups. Stallings’ theorem
states that a finitely generated group G has at least two ends if, and only if, G splits over
a finite subgroup [33; 32]. He also showed that groups of cohomological dimension
one are free. Swan extended Stallings’ results to non–finitely generated groups [34].
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2.4 Almost invariant sets

Also in the 1970’s, Cohen coined the term “almost invariant set” over the trivial
subgroup, as a way of keeping track of the ends of a group [2]. A group G has at
least two ends if, and only if, G has a nontrivial f1g–almost invariant subset. Twenty
years earlier had Specker used almost invariant sets in his paper [31]; however, this
fact has been entirely overlooked in the history of almost invariant sets, in part because
Specker was interested in something more general. Cohen also observed that a subset
of a finitely generated group is almost invariant if, and only if, the subset has finite
coboundary in the Cayley graph of the group. Houghton formally defined the number
of ends of a pair .G;H / of groups [13], and one can make a similar observation that
a subset of a finitely generated group G is H –almost invariant if, and only if, the
subset is stabilized under left multiplication by elements of H and its image has finite
coboundary in the Cayley graph of G quotiented out by H .

Dunwoody used Bass–Serre theory and Cohen’s almost invariant sets to produce a
beautiful geometric proof of Stallings’ theorem, in which one takes a suitable “end” of
a finitely generated group G and uses it to directly construct a Bass–Serre tree [3] (see
Section 3.4 and [27, Section 6]). Sageev showed how to construct a CAT.0/ cubical
complex from an almost invariant set [21], and Niblo used Sageev’s construction to
produce another geometric proof of Stallings’ theorem [18].

2.5 JSJ decompositions

Classical JSJ theory for 3–manifolds was initiated by Waldhausen [35] in 1969, and
was developed in 1979 by Jaco and Shalen [14], and Johannson [15]. The basic idea is
to describe all annuli and tori in a compact, irreducible, orientable 3–manifold. If one
restricts to closed 3–manifolds, then only tori are needed. Since 1990, geometric group
theorists have been developing group theoretic analogues of classical JSJ theory, includ-
ing Kropholler [16], Sela [28], Rips–Sela [20], Bowditch [1], Dunwoody–Sageev [4],
Dunwoody–Swenson [5], Fujiwara–Papasoglu [7], Scott–Swarup [25] and Guirardel–
Levitt [9; 10]. The classical JSJ decomposition for 3–manifolds is unique. Ideally one
would like group theoretic JSJ decompositions that are unique, and can simultaneously
handle splittings over multiple types of edge groups (for example, virtually polycyclic
groups of arbitrary lengths). However, previous attempts have had limited success
developing decompositions addressing both of these issues. The JSJ decompositions
constructed by Scott and Swarup in [25] are built from algebraic regular neighborhoods
and are unique, and I am hopeful that the results on algebraic regular neighborhoods
that I prove in this paper will lead to more generalized JSJ decompositions.
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3 Preliminaries and main ideas

The purpose of this section is to

(1) give enough background information to enable to reader to understand the
statements of all the results in this paper,

(2) provide an idea of how everything fits together.

3.1 Splittings

A G–tree is a simplicial tree equipped with a (simplicial) G–action, such that the
action does not invert any edges. A splitting of a group G is a G–tree T with no
global fixed points, such that the quotient graph G nT has exactly one edge. There are
two cases:

(1) G nT consists of one edge with distinct endpoints. Pick an edge e of T , let
H denote the stabilizer of e , and let A and B denote the stabilizers of the
endpoints of e . We have inclusions i1W H ,!A and i2W H ,!B . We call � an
amalgamated free product and may write � WGŠA�H B . Note that using Bass–
Serre theory [30], we could reconstruct T using only the inclusions i1W H ,!A

and i2W H ,!B . One presentation for G is hA;B j i1.h/D i2.h/; for all h2H i.

(2) GnT consists of a loop with one edge and one vertex. Pick an edge e of T , let H

denote the stabilizer of e , and let A denote the stabilizer of one of the endpoints
of e . We have an inclusion i1W H ,!A. As there is only one orbit of vertices,
the other endpoint of e is a translate of the first endpoint by some t 2G . The
stabilizer of this vertex is tAt�1 , so we have an inclusion H ,! tAt�1ŠA. We
can view this second inclusion as i2W H ,!A, where i2.h/ WD t�1i1.h/t . We call
� an HNN extension and may write � WG ŠA�H . Note that using Bass–Serre
theory [30], we could recover T using only the two inclusions i1 , i2W H ,!A.
One presentation for G is hA; t j i2.h/ D t�1i1.h/t; for all h 2 H i.

In either case, � is called a splitting of G over H . The subgroup H is well-defined
up to conjugacy in G .

If the G –tree for a splitting is a line on which G acts by translations only, we call the
splitting a trivially ascending HNN extension. Note that each edge in the line has the
same stabilizer, denoted H , so that H acts trivially on the line. Equivalently, H is
normal in G and G=H ŠZ. Equivalently, the splitting has the form A�H where both
inclusions i1W H ,!A and i2W H ,!A are isomorphisms.

Algebraic & Geometric Topology, Volume 12 (2012)



518 Robin M Lassonde

Definition 3.1 Two splittings of a group G are isomorphic if there exists a G–
equivariant isomorphism between the trees for the two splittings.

To describe how two splittings of G cross, for each splitting we will construct a subset
of G , and then look at how the two subsets and their translates cross. We show how
to construct the subsets in Section 3.3. In most of this paper, existence results (in
particular, Theorems 7.5, 8.12 and 9.1) only work for a finite collection of splittings,
while uniqueness results (namely, Corollary 6.6 and Theorem 10.1) do not require such
an assumption.

3.2 Almost invariant sets and crossing

Many concepts used here consider subgroups of G “up to finite index” and subsets
of G “up to finitely many cosets.” Here are a few key definitions capturing this idea.
Note that in this paper, unless otherwise specified, all cosets are right cosets, ie of the
form Hg for some g 2G .

Definition 3.2 Let H and K be subgroups of a group G .

� H and K are commensurable if H \K has finite index in H and in K .

� A subset of G is H –finite if it is contained in only finitely many right cosets
Hgi of H in G .

� Two subsets A and B of G are H –almost equal, written A
H –a
DB , if their

symmetric difference is H –finite.

An almost invariant subset of a group is a subset which does not change by much when
you multiply on the right by an element of the group. Specifically:

Definition 3.3 Let G be any group, H a subgroup of G , and X a subset of G .
We say X is an H –almost invariant subset of G if the following two properties are
satisfied:

(1) H stabilizes X , ie hX DX , for all h 2H .

(2) Xg
H –a
DX , ie the symmetric difference of Xg and X is H –finite, for all g 2G .

Call X trivial if it or its complement is H –almost equal to the empty set.

Let X be H –almost invariant and Y be K–almost invariant. We call the four sets
X \Y , X \Y � , X �\Y , and X �\Y � the corners of the pair .X;Y /.
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Definition 3.4 Let X and Y be subsets of G . Then X and Y are nested if X or X �

is a subset of Y or Y � , ie a corner of the pair .X;Y / is empty. Otherwise, X and Y

are not nested.

We would like a similar notion that works “up to finitely many cosets.”

Definition 3.5 Let X be an H –almost invariant subset of G , and Y a K–almost
invariant subset of G . The pair .X;Y / is almost nested if a corner of the pair .X;Y /
is K–finite.

Otherwise, X crosses Y , ie no corner of the pair .X;Y / is K–finite.

A couple of facts justify this terminology:

(1) If X and Y arise from splittings of G (see Section 3.3), or if X and Y do not
necessarily come from splittings but G is finitely generated, then X crosses Y

if, and only if, Y crosses X . For the proof in the case where X and Y come
from splittings, see Proposition 4.2. For the proof in the case where G is finitely
generated, see [23, Lemma 2.3].

(2) If Y is both K–almost invariant and K0–almost invariant, then K and K0 must
be commensurable (see Lemma 6.1); in particular, K–finiteness is the same as
K0–finiteness. Also note that if Y is K–almost invariant, then K � Stab.Y /,
so that K must be a finite-index subgroup of Stab.Y /.

3.3 Almost invariant sets arising from splittings

Scott and Swarup [25] noted that given a splitting of a group, one can produce an
almost invariant subset as follows. Let � be a splitting of G , and let T be a G–tree
for � . Pick a base vertex v and a (directed) edge e of T . Define a subset X of G by

X WD fg 2G j e points away from gvg:

Let H denote the stabilizer of e . Such X is in fact an H –almost invariant subset of G

(for a proof, see Corollary 8.2). Some almost invariant sets arise from splittings, and
others do not. Note that if X is an almost invariant set arising from � , then so is each
translate of X or its complement.

We will often go back and forth between a splitting � and an almost invariant set X

arising from � . Given a splitting � , we can construct X by picking a base vertex and
edge in the tree for � . Given an almost invariant set X arising from a splitting � , let †
denote the set of all translates of X and its complement, partially ordered by inclusion.
We can apply Dunwoody’s theorem (see Section 3.4) to produce a G–tree. This tree
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will yield a splitting isomorphic to � (see Proposition 6.3 for a proof). The choice of
base edge e and base vertex v is necessary to define X , but it does not particularly
matter which one we choose. A change in e will result in X being replaced by a
translate of X or its complement (and hence does not change the set †). A change
in v will result in an almost invariant set X 0

H –a
DX (see Corollary 8.2), and hence yields

a splitting isomorphic to � (see Proposition 6.3).

We will use the following convention: “X is an H –almost invariant set arising from
the splitting � ” implicitly means that H is equal to the stabilizer of X (as opposed to
a proper subgroup of Stab.X /), and � is a splitting of G over H .

Now we are ready to define the intersection number of two splittings � and � of G .
Let X be an H –almost invariant set arising from � , and Y a K–almost invariant set
arising from � . To compute the intersection number of X and Y , count the number of
g 2G such that gX crosses Y , then eliminate double-counting. If h 2H and k 2K ,
then hX DX and kY D Y , so gX crossing Y is the same as k�1ghX crossing Y .
Define the intersection number of � and � by

i.�; �/ WD number of double cosets KgH such that gX crosses Y:

In this paper, we will mostly only care whether the intersection number of two splittings
is nonzero, ie whether any translates of X and Y cross each other.

3.4 Dunwoody’s Theorem

Dunwoody’s Theorem takes a partially ordered set satisfying tree-like properties,
and produces a tree [3]. Some applications include Dunwoody’s proof of Stallings’
theorem [3; 27], reconstructing the Bass–Serre tree for a splitting by using an almost
invariant set that came from the splitting (see Section 3.3), and constructing a common
refinement for trees representing two splittings that have intersection number zero (see
Section 3.8).

Take any simplicial tree and let † denote its (directed) edge set. Reversing the direction
of an edge gives a free involution � on †, and we can describe an undirected edge as
a pair fe; e�g. The set † satisfies the following tree-like properties:

� If there is an edge path starting with the edge e and ending with f , then there
is an edge path starting with f � and ending with e� .

� For any two undirected edges, there is a simple edge path connecting them.

� † has no loops.
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One can define a partial order on † as follows:

e � f () there exists a simple edge path starting at e and ending at f:

Dunwoody’s theorem states that any partially ordered set .†;�/ satisfying analogous
properties can be turned into the edge set of a tree.

Theorem 3.6 (Dunwoody’s Theorem) Let .†;�/ be a partially ordered set equipped
with a free involution � on †. Suppose the following conditions are satisfied:

(1) For all A;B 2†, if A� B , then B� �A� .

(2) For all A;B 2 † with A � B , there are only finitely many C 2 † with
A� C � B .

(3) For all A;B 2†, at least one of the four relations A.�/ � B.�/ holds.

(4) There are no two elements A;B 2 † such that simultaneously A � B and
A� B� .

Then there exists a tree T with (directed) edge set †, and such that A�B if, and only
if, there exists a simple edge path whose first edge is A and whose last edge is B .

The key idea in the proof of Dunwoody’s theorem is constructing the vertices of T . Let
each element of † be a directed edge, and make a vertex wherever there are two edges
with nothing in between. Specifically, define the vertices of the tree to be equivalence
classes of elements of †:

Œe�D Œf �()
e � f �; AND
if e � a� f �; then aD e or aD f �:

Then one must prove that everything works out.

3.5 Almost inclusion and small corners

Given an H –almost invariant set X , we will often want to refer to the set of all
translates of X and its complement. Denote this set by †.X /. Define

†.X / WD fgX;gX � j g 2Gg:

For the remainder of the paragraph, let J be some indexing set, and for each j 2 J , let
Xj be an Hj –almost invariant subset of G . Let † denote

S
j2J †.Xj /. Assume that

we are in a situation where crossing is symmetric – for example, assume G is finitely
generated or assume that each Xj comes from a splitting. Given A;B 2†, we say a
corner of the pair .A;B/ is small if it is Stab.A/–finite. By the above remarks, this is
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equivalent to the corner being Stab.B/–finite. In this paper, we will only use the term
“small” when we know that crossing is symmetric.

Inclusion partially orders †; however, we would prefer a partial order that is not
affected by changing some Xj by finitely many Hj –cosets. The obvious thing to do
is declare A� B precisely when A\B� is small. However, we run into a potential
difficulty: if two corners of a given pair .A;B/ are small, how do we decide which
inequality to choose? If two corners are small and one of them is empty, then we
choose to only pay attention to the empty corner. For example, if A\B� and A�\B

are small, and A�\B is empty (ie B �A), then we declare B �A.

Definition 3.7 We say † is in good position if for all A;B 2†, whenever two corners
of the pair .A;B/ are small, one is empty.

If † is in good position, then one can define a partial order � on † as follows.

Definition 3.8 (Almost inclusion) Let G be any group, and † any collection of
almost invariant subsets of G . Assume crossing is symmetric (for example, assume
the elements of † arise from splittings of G ). Define a relation � on † by

A� B()A\B� is empty, or is the only small corner of the pair .A;B/:

If † is in good position, then � is a partial order on † (see Corollary 6.5 for a proof).
I show that good position is automatic if the Xj ’s arise from nonisomorphic splittings
(see Corollary 6.4).

3.6 Example: simple closed curves on a surface

To gain more intuition about splittings, we look at a few concrete examples. Let S be
a closed, orientable surface of genus at least two. Let G denote the fundamental group
of S . Let  be a �1 –injective simple closed curve on S . Let � W zS ! S denote the
universal cover of S . The preimage ��1. / is a collection of disjoint lines. Pick one
of these lines, and call it l . Let H denote the stabilizer of l , so that H ŠZ. Construct
a tree T as follows. The vertices of T are the regions of zS ���1. /. Whenever two
regions are adjacent, attach an edge with an endpoint in each region. The tree T is
called the dual graph to ��1. / in zS . Since  does not intersect itself, T is in fact a
tree. After choosing basepoints, G acts on T via deck transformations, with no fixed
points or edge inversions. The stabilizer of an edge is isomorphic to Z, so we have
a splitting � of G over Z. If  separates S into two components S 0 and S 00 , then
� is an amalgamated free product �1.S

0/ �Z �1.S
00/ (see Figure 1). If  does not

separate S , then � is an HNN extension �1.S �  /�Z (see Figure 2).
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S

zS

l1

1

�

Figure 1. Schematic picture: ��1.1/ , the
union of l1 and all its translates, is a col-
lection if disjoint lines. The complement
zS ���1.1/ has two types of components:
those that project to the left of 1 , and
those that project to the right of 1 . Cor-
respondingly, the dual tree to ��1.1/ has
two orbits of vertices. The action of the
fundamental group of S on the tree gives
an amalgamated free product.

S

zS

2

l2

�

Figure 2. Schematic picture: ��1.2/ ,
the union of l2 and all its translates, is a
collection if disjoint lines. S �  has only
one region, so the dual tree to ��1.2/ has
only one orbit of vertices. The action of the
fundamental group of S on the tree gives
an HNN extension.

Next, consider the curves 1 and 2 from Figures 1 and 2 simultaneously, as in Figure 3.
We have associated splittings �1 and �2 of �1.S/. Since 1 and 2 do not cross
each other, the dual graph T to ��1.1 [ 2/ is a tree. Moreover, T is a common
refinement of the dual tree to ��1.1/ and the dual tree to ��1.2/. Hence trees for
�1 and �2 have a common refinement. This is an example of compatible splittings
(see Section 3.8).

What if we “poke a finger” out of 2 , as in Figure 4? This gives the same two splittings
�1 and �2 of �1.S/ as in the previous paragraph. However, from the way 1 and 2

are drawn, the dual graph to ��1.1 [ 2/ is no longer a tree. In order to find a
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S

zS

1
2

l1
l2

�

Figure 3. Schematic picture: ��1.1 [ 2/ , the union of l1 , l2 , and all
their translates, is a collection of distinct lines, each projecting to either 1

or 2 . Correspondingly, the dual tree to ��1.1 [ 2/ has two orbits of
edges. The complement S � ��1.1 [ 2/ has two types of components:
those that project to the left of 1 , and those that project to the right of 1 .
Correspondingly, the dual tree to ��1.1 [ 2/ has two orbits of vertices.
This tree is a compatibility tree for the splittings.

S
1

2

Figure 4. Take the previous example, but deform 2 slightly. The splittings
induced by 1 and 2 still have intersection number zero, but in this example,
the dual graph to ��1.1[ 2/ is not a tree. Since 1 and the new 2 have
“inessential crossing,” they are not the best curves to use for the splittings.

common refinement of the trees for �1 and �2 , it is helpful to first pull 1 and 2

tight to geodesics. When dealing with arbitrary splittings (not just those induced by
simple closed curves on surfaces), we’ll need some sort of algebraic tool to choose
nice representatives for splittings.
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3.7 Sandwiching

At times we will need to assume that either X crosses all translates of Y , or X can be
sandwiched between two translates of Y or Y � .

Definition 3.9 (Modified from [26]) Let fXj j j 2J g denote any collection of almost
invariant subsets of G , where

S
j2J †.Xj / is partially ordered by �.

� Xj is sandwiched by Xk if either there exist A;B2†.Xk/ such that A�Xj�B ,
or Xj crosses every element of †.Xk/.

� fXj j j 2 J g satisfies sandwiching if for all j ; k 2 J , we have Xj is sandwiched
by Xk .

� If Xj is an almost invariant set arising from a splitting �j , then we say f�j jj 2J g

satisfies sandwiching. Note that by Corollary 8.2, it does not matter which Xj

we choose to represent �j .

“Most” collections of splittings satisfy sandwiching. In fact, if none of the Xj ’s
yields a trivially ascending HNN extension, then fXj j j 2 J g automatically satisfies
sandwiching (see Corollary 7.3).

On the other hand, if a collection of pairwise nonisomorphic splittings satisfies sand-
wiching, and one of the splittings is a trivially ascending HNN extension, then that
splitting must “cross everything.” More precisely, suppose Y is a K–almost invariant
set arising from a trivially ascending HNN extension in the collection, and let X be an
H –almost invariant set arising any splitting in the collection. I claim that, unless X

is a translate of Y or Y � , we must have X crosses Y . If X does not cross Y , then
since the collection satisfies sandwiching, we can find translates A and B of Y such
that A � X � B . Since all translates of Y are K–almost equal to Y , this implies
that X is K–almost equal to Y . It now follows from Proposition 6.3 that X and Y

arose from isomorphic splittings of G . As we assumed the collection of splittings to
be pairwise nonisomorphic, X must be a translate of Y or Y � .

3.8 Compatibility

We call two splittings of G “compatible” if their G –trees have a common refinement.
Here is the formal definition, which works for an arbitrary number of splittings.

Definition 3.10 Let f�j j j 2 J g be any collection of splittings of G . A compatibility
tree for f�j j j 2 J g is a G –tree T with a bijective correspondence between the edge
orbits of T and the set J , such that for each j 2 J , collapsing all edges except the
�j –edges yields a tree for �j . We say f�j j j 2 J g is compatible if f�j j j 2 J g has a
compatibility tree.
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I now present two consequences of this definition. First of all, any splitting is compatible
with (any splitting isomorphic to) itself. To see this, take a G–tree for the splitting,
and subdivide each edge in two.

Secondly, if f�j j j 2J g is compatible, then only finitely many of the �j ’s can belong to
any given isomorphism class. To see this, let T be a compatibility tree for f�j j j 2 J g,
and suppose that for some infinite subset J0 of J , the splittings f�j j j 2 J0g are
pairwise isomorphic. Fix a vertex v in T , and for each j 2 J0 , pick an edge ej

whose orbit corresponds to �j . Let Xj WD fg 2 G j ej points away from gvg. By
Corollary 8.2, without loss of generality (after possibly replacing some of the ej ’s by a
different representative from the same edge orbit), each Xj has the same stabilizer H ,
and Xj

H –a
DXj 0 , for all j ; j 0 2 J0 . This implies that

S
j2J0

ej is an infinite path of
valence two edges in T , and hence must be all of T . This forces each edge orbit to
consist of only one edge, a contradiction to the fact that T is a refinement of G –trees
for splittings. Hence a collection of compatible splittings can have only finitely many
splittings in any given isomorphism class.

I prove that if i.�; �/D0 and � and � satisfy sandwiching, then � and � are compatible
(see Theorem 7.5). The main idea of the proof is to note that if i.�; �/D 0, then for all
A;B 2†, we have A and B are almost nested, ie one of A � B;A � B�;A� � B ,
or A� � B� . Then apply Dunwoody’s theorem (see Section 3.4).

Note that if two splittings are compatible, then we can find corresponding almost
invariant sets that are nested (instead of just almost nested) as follows. Suppose that
X is an H –almost invariant set arising from � , that Y is a K–almost invariant set
arising from � , and that T is a compatibility tree for � and � . Since i.�; �/D 0, we
have for all A;B 2†, one of A.�/ � B.�/ . Apply Corollary 8.2 to T to get X 0

H –a
DX

and Y 0
H –a
D Y , such that for all A0;B0 2†.X 0/[†.Y 0/, one of A0

.�/
� B0

.�/ .

3.9 Sandwiching is necessary

If a G–tree has two edge orbits and no fixed points, then for any given edge, we can
find two edges on either side of it belonging to the other edge orbit. This shows that if
two splittings are compatible, then the splittings necessarily satisfy sandwiching.

Guirardel produced an example of two splittings with intersection number zero that
do not satisfy sandwiching (and hence are not compatible). These are splittings of the
free group on two generators, and over non–finitely generated subgroups. One of the
splittings is a trivially ascending HNN extension. See [26] for the construction.

Algebraic & Geometric Topology, Volume 12 (2012)



Splittings of non-finitely generated groups 527

3.10 Turning almost inclusion into inclusion

What happens if we try to apply ideas from the “intersection number zero implies
compatible” theorem to splittings having positive intersection number?

Let �1; �2; : : : ; �n be splittings of G collectively satisfying sandwiching, and such
that no two of the splittings are isomorphic. Let Xj be an almost invariant set arising
from �j . Using Definition 3.8, we have a partial order � on

Sn
jD1†.Xj /, such that

if A is a subset of B , then A � B . It turns out that we can build a CAT.0/ cubical
complex, then use Theorem 8.12 to replace each Xj by another almost invariant set
X 0j

Hj –a
DXj such that

Sn
jD1†.X

0
j / is in “very good position.”

Definition 3.11 Take † as in Definition 3.8. We say † is in very good position if for
all A;B 2†, we have A� B if, and only if, A� B .

Details for this construction are laid out in Section 8. The same CAT.0/ cubical
complex can also be used to construct an algebraic regular neighborhood of the �j ’s
(see Section 9).

3.11 Algebraic regular neighborhoods

The notion of “algebraic regular neighborhood” is a generalization of PL regular
neighborhood, up to homotopy. Let 1; : : : ; n be �1 –injective simple closed curves
on a closed surface S , yielding splittings �1; : : : ; �n of �1.S/. Let N be a reg-
ular neighborhood of the j ’s. Assume each component of the boundary of N is
�1 –injective. We will construct a bipartite graph dual to the boundary of N . For each
component of N , add a V0 –vertex. For each component of S �N , add a V1 –vertex.
For each component of the boundary of N , add an edge connecting the corresponding
V0 – and V1 –vertices. The preimage of � in zS is a tree. Call this tree an algebraic
regular neighborhood of f�1; : : : ; �ng. Each V0 –vertex orbit encloses (to be defined
below) some of the �j ’s. Each simple closed curve disjoint from all the j ’s can be
homotoped to be disjoint from N , and hence is enclosed in a V1 –vertex. See Figure 5
for a concrete example.

In [25], the authors defined an algebraic regular neighborhood of a family of almost
invariant sets as a graph of groups, and they defined what it means for a vertex to
enclose an almost invariant set. Here, to avoid confusion about base points, we define
algebraic regular neighborhood as a G–tree. Also, since this paper concerns almost
invariant sets that arise from splittings, we define what it means for the orbit of a vertex
of a G –tree to enclose a splitting.
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1
2

3

4

5

Figure 5. Let �1 , �2 , �3 , �4 , and �5 denote the induced splittings of the
fundamental group of S . Shown in bold is a PL regular neighborhood of
f1; 2; 3 4; 5g; call it N . Construct the dual graph to the boundary of N ,
making a V0 –vertex for each component of N and a V1 –vertex for each
component of S �N . The resulting graph, call it � , is bipartite. � has
two V0 –vertices. One V0 –vertex encloses �1 , �2 , �3 , and �4 . The other
V0 –vertex encloses �5 . The preimage of � in zS is an algebraic regular
neighborhood of f�1; �2; �3; �4; �5g .

Definition 3.12 Let T be a G–tree, V a vertex of T , and � a splitting of G . The
orbit of V encloses � if T can be refined by inserting an edge at each vertex in the
orbit of V , such that the new edges form a tree for � . More precisely, there exists a
G –tree T 0 and a G –orbit of edges in T 0 (call these edges � edges) such that both of
the following hold:

(1) There exists a G –equivariant isomorphism

T 0=all non–� edges collapsedŠ tree for �:

(2) There exists a G –equivariant isomorphism

T 0=all � edges collapsedŠ T:
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Given a collection f�j j j 2 J g of splittings, call �j an isolated splitting if it has
intersection number zero with each other splitting �k . Given a G–tree, call a vertex
isolated if the vertex has valence two in both the G –tree and the tree’s quotient under the
G –action. In an algebraic regular neighborhood, each isolated splitting in f�j j j 2 J g

should be enclosed by the orbit of an isolated V0 –vertex. Now we are ready to formally
define an algebraic regular neighborhood.

Definition 3.13 (Reformulated from [25]) Let G be any group with any collection
f�j j j 2 J g of pairwise nonisomorphic splittings. Suppose f�j j j 2 J g satisfies
sandwiching. An algebraic regular neighborhood of f�j jj 2J g is a bipartite G –tree T

(denote the two vertex colors by V0 and V1 ) satisfying the following five conditions:

(1) Each �j is enclosed by some V0 –vertex orbit in T , and each V0 –vertex orbit
encloses some �j .

(2) If � is a splitting of G over H , where � is sandwiched by �j and i.�; �j /D 0,
for all j 2 J , then � is enclosed by some V1 –vertex orbit in T .

(3) T is a minimal G –tree.

(4) There exists a bijection

f W fj 2 J j �j is isolatedg !G–orbits of isolated V0–vertices of T

such that f .j / encloses �j .

(5) Every nonisolated V0 –vertex orbit in T encloses some nonisolated �j .

In Section 9, I prove the existence of algebraic regular neighborhoods for any finite
collection of splittings satisfying sandwiching. In Section 10, I prove uniqueness of
algebraic regular neighborhoods for possibly infinite collections of splittings satisfying
sandwiching.

4 Symmetry of crossing

Let G be any group with subgroups H and K . Let X and Y be H – and K–almost
invariant subsets of G , respectively. Recall Definition 3.5:

X crosses Y () all four corners of the pair .X;Y / are K–infinite.

If G is finitely generated and neither X nor Y is trivial, an argument using coboundary
in the Cayley graph for G shows that the relation “X crosses Y ” is symmetric [23,
Lemma 2.3]. For non–finitely generated G , this argument utterly fails, and so it seems
plausible that crossing of almost invariant sets is not symmetric. However, below I
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prove that if X and Y come from splittings of G , then crossing is symmetric. Here is
the key lemma.

Lemma 4.1 Let G be any group with subgroups H and K . Suppose Y is a K–almost
invariant set arising from a splitting of G over K . Further, suppose Y contains some
nonempty subset X 0 that is stabilized by H (equivalently, Y contains at least one
H –coset). Take any g0 2 Y � . Then

Hg0\Y � D .H \K/g0\Y �

(so that Hg0\Y � is both H – and K–finite).

Proof Clearly .H \K/g0\Y � is a subset of Hg0\Y � . In the remaining part of
the proof, we show that Hg0\Y � is a subset of .H \K/g0\Y � .

Since Y comes from a splitting, there exists a G –tree T with an edge e and a vertex w ,
such that K D Stab.e/ and

Y D fg 2G j e points away from gwg:

Measure the distance between two vertices in T by counting the number of edges in
a simple path connecting them. Since Hg0 \ Y � is contained in a single H –coset,
and since X is stabilized by H , we can choose x 2X 0 such that the path Œxw;g0w�

realizes the minimum distance from X 0w to .Hg0\Y �/w . Let D denote this distance.
See Figure 6 for the basic picture.

xw

hxw

Yw Y �w

g0w

hg0w

d1

d2

e

e.0/ e.1/

Figure 6. Proof of Lemma 4.1

Take any h 2H such that hg0 2 Y � . We will show that h 2K . Since h stabilizes X 0 ,
multiplying the path Œxw;g0w� on the left by h gives another path from X 0w to
.Hg0 \ Y �/w of length D . As X 0 � Y , both paths must pass through e . Let d1

denote the distance from xw to e.0/. Let d2 denote the distance from hxw to e.0/.
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I claim that d1 D d2 . If d1 < d2 , then Œxw; hg0w� would be a path from X 0w to
.Hg0\Y �/w with length strictly less than D . Similarly, if d2 < d1 , then Œhxw;g0w�

would be a path from X 0w to .Hg0\Y �/w with length strictly less than D . Hence
d1 D d2 . It follows that e D he . As K is the stabilizer of e , this implies h 2K , as
desired. This concludes the proof that Hg0\Y � is equal to .H \K/g0\Y � .

We can use the lemma to prove symmetry of crossings for almost invariant sets that
come from splittings.

Proposition 4.2 Let G be any group with subgroups H and K . Suppose X is any
nontrivial H –almost invariant set, and Y is a K–almost invariant set arising from a
splitting of G over K . If X crosses Y , then Y crosses X .

Proof If Y does not cross X , then one of the corners of .X;Y / is H –finite. Without
loss of generality (after possibly replacing X by X � or Y by Y � ), X \ Y � is
H –finite. This means that we can choose finitely many gi 2 X \ Y � such that
X � Y [Hg1[ : : :[Hgr . Let X 0 WDX �

`r
iD1 Hgi , so that X 0 � Y . Since X is

nontrivial, X 0 is nonempty. X 0 is also stabilized by H . As Y comes from a splitting,
Lemma 4.1 proves that Hgi \ Y � D .H \K/gi \ Y � , for all i . Hence X \ Y � is
K–finite, so that X does not cross Y .

Corollary 4.3 Intersection number of a pair of splittings (see Section 3.3) is well-
defined, even if the ambient group is not finitely generated.

5 Examples of infinite intersection number

Scott and Swarup have shown that the intersection number of the two splittings of a
finite group over finitely generated subgroups is finite [23, Lemma 2.7]. In the spirit of
this paper, one might ask if we can eliminate one of the finite generation requirements.
The answer is, definitively, “no.”

Example 5.1 This is an example of two splittings of a non–finitely generated group
over the trivial group, where the intersection of the splittings is infinite. Let S be an
infinite strip with countably many punctures:

S WD Œ�1
2
; 1

2
��R�f0g �Z:

Take l1 and l2 as shown in Figure 7. Let lC
1

be a regular neighborhood of the part
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l1

l2

Figure 7. Two curves yielding a pair of splittings with infinite intersection number

of S lying above l1 , and define l�
1

, lC
2

, and l�
2

similarly. By Van Kampen’s theorem,
we have the following two splittings of G WD �1.S/ over the trivial group:

� WG Š �1.l
C

1
/�f1g �1.l

�
1 /D FZ

�FZ;

� WG Š �1.l
C

2
/�f1g �1.l

�
2 /D FZ

�FZ:

Here, the intersection number of � and � is visibly infinite.

Example 5.2 We have a similar example exhibiting infinite self-intersection number
for a f1g–almost invariant set not that is not associated to a splitting. Take S and G

as in the previous example. The curve in Figure 8 yields a f1g–almost invariant subset
of G with infinite self-intersection number.

Figure 8. A curve yielding a f1g–almost invariant set with infinite self-
intersection number

Example 5.3 (Guirardel) In [8, Lemma 8.4] Guirardel gave an example of two
splittings of F3 with infinite intersection number. For completeness, we include the
example here. Let G D ha; b; ci. Let � be the HNN extension

� WG Š hb; ci�f1g;

where the loop represents conjugation by a. Let K denote the non–finitely generated
subgroup hbiab�i j i 2 Zi, and let � be the splitting

� WG Š ha; bi �K hK; ci:
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Use Theorem 8.7 to construct the CAT.0/ cubical complex for � and � . Let K be
a hyperplane associated to � , such that K D Stab.K/. Each edge e in K belongs
to a unique square in the cubical complex, and hence meets transversally a unique
hyperplane He associated to � . Let T0 denote the dual tree to the hyperplanes
fHe j e 2Kg. Since � is a splitting over the trivial group, H acts freely on T0 . As H

is not finitely generated, it follows that this action is not cocompact. The intersection
number of � and � is equal to the number of edges in the quotient of T0 by H . Hence
this intersection number is infinite.

6 Almost inclusion

Let fXj j j 2 J g be a collection of Hj –almost invariant subsets of a group G ,
arising from pairwise nonisomorphic splittings �j over Hj . Let † WD fgXj ;gX �j j

g 2G; j 2 J g. Recall Definitions 3.7 and 3.8. In this section, we prove that † is in
good position (Corollary 6.4), and hence � defines a partial order on † (Corollary 6.5).

The following lemma, proved in a preprint by Scott and Swarup, shows that if an
H –almost invariant set is H –almost equal to a K–almost invariant set, then H and K

are commensurable.

Lemma 6.1 Let G be any group with a nontrivial H –almost invariant set X and a
nontrivial K–almost invariant set Y . If X

H –a
D Y , then H and K are commensurable

subgroups of G .

Proof X
H –a
D Y immediately implies that Xg

H –a
D Yg , for all g 2G . As X is H –almost

invariant, we have Xg
H –a
DX , and hence Yg

H –a
D Y; for all g 2 G . As Y is K–almost

invariant, K stabilizes Y , so each of Y and Y � is a union of cosets Kg of K in G .

Since Y is nontrivial, we can choose u; v 2 G such that Ku � Y (equivalently,
K � Y u�1 ) and Kv � Y � . Recall that by the preceding paragraph, Y .u�1v/

H –a
D Y .

Note that Kv lies in the symmetric difference of Y .u�1v/ and Y , so Kv must be H –
finite. Hence K is also H –finite. We can write K �

`r
iD1 Hgi , where r is minimal.

We have K D
`r

iD1.K\H /gi . As K is the union of finitely many .K\H /–cosets,
it follows that ŒK WK\H � <1.

A similar argument shows that K \H is finite index in H . Hence H and K are
commensurable subgroups of G .

Next we show that if X and Y arise from splittings, then their stabilizers are actually
equal.
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Lemma 6.2 (Modified from [24, Lemma 2.2]) Let X be an H –almost invariant
subset arising from a splitting of G over H , and let Y be a K–almost invariant set
arising from a splitting of G over K .

(1) If two corners of the pair .X;Y / are H –finite, then H DK .

(2) If two corners of the pair .X;gX / are H –finite, then g normalizes H .

Proof To prove the first part of the lemma, suppose two corners of the pair .X;Y /
are H –finite. Without loss of generality, X \Y � and X � \Y are H –finite (if not,
replace X by X � ), so that X and Y are H –almost equal.

As Y comes from a splitting, it follows that hY and Y are nested, for all h 2G . We
will now show that H �K . Let h 2H . If hY � Y � (or hY � � Y ), then X

H –a
DX � , a

contradiction to G being H –infinite. If hY � Y but hY 6D Y , then we get an infinite
chain of inclusions

� � � � hnY � � � � � hY � Y:

As H and K are commensurable, some power of h lies in K , so that hnY D Y for
some n. This implies hY D Y , so that h 2K . Similarly, if Y � hY , we must also
have Y D hY and h 2K .

A similar argument shows that K �H . Hence H DK .

To prove the second part of the lemma, apply the first part using Y WD gX . The first
part of the lemma gives H DK D gHg�1 , so that g normalizes H .

Now we show that if X and Y are H – and K–almost invariant sets arising from
nonisomorphic splittings of G , then it is impossible to have X

H –a
D Y .

Proposition 6.3 (Modified from [24, Lemma 2.3]) Let X and Y be H – and K–
almost invariant sets arising from splittings � and � of G over subgroups H and K ,
respectively. If two corners of the pair .X;Y / are small, then � and � are isomorphic
splittings.

Further, at least one of the following holds (after possibly replacing X by X � ):

(1) X 7!Y induces a G –equivariant, order-preserving isomorphism from .†.X /;�/

to .†.Y /;�/; or

(2) The two splittings are of the form GDA�H B , where H has index 2 in A, and
there exists a2A such that X 7! aY induces a G –equivariant, order–preserving
isomorphism from †.X / to †.Y /.
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Proof By replacing X by X � if necessary, without loss of generality, X \Y � and
X �\Y are H –finite, ie X

H –a
D Y . By Lemma 6.2, we have H DK .

A corner of .X;gX / is small if, and only if, the corresponding corner of .Y;gY / is
small. If, for all g 2G �H , only one corner of .X;gX / is small (and hence empty),
then the corresponding corner of .Y;gY / must also be empty. Then X 7! Y induces
a G –equivariant, order-preserving isomorphism from †.X / to †.Y /, and hence the
splittings are isomorphic by Dunwoody’s theorem (see Section 3.4 and [3]).

If there exists g 2G �H such that two corners of .X;gX / are small, then the trees
for � and � must each have some vertices of valence two. There are two cases:

(1) � is a trivially ascending HNN extension, G ŠH�H . Then T� and T� are lines,
H and K are normal in G , and G D hH; ti for some t 2G . Thus X 7! Y induces a
G –equivariant, order-preserving isomorphism from †.X / to †.Y /.

(2) � is an amalgamated free product of the form GŠA�H B , where H has index 2

in A. We can write AD hH; ai. Then X
H –a
D aX � and Y

H –a
D aY � . If the corresponding

corners of .X; aX �/ and .Y; aY �/ are empty, then X 7! Y induces a G –equivariant,
order-preserving isomorphism from †.X / to †.Y /. Otherwise, the isomorphism
comes from assigning X 7! aY .

Corollary 6.4 Let G be any group with any collection f�j j j 2 J g of pairwise
nonisomorphic splittings. For each j , let Xj be an Hj –almost invariant set arising
from �j . Then † WD

S
j2J †.Xj / is in good position.

Proof If there exists g 2 G and distinct j ; k 2 J such that two corners of the pair
.Xj ;gXk/ are small, then �j and �k are isomorphic splittings (by Proposition 6.3), a
contradiction to the hypotheses.

Since † is in good position, we can define a partial order on † as follows.

Corollary 6.5 Let G be any group with any collection f�j j j 2 J g of pairwise
nonisomorphic splittings. For each j , let Xj be an Hj –almost invariant set arising
from �j . Let † WD

S
�2J †.Xj /. Define a binary relation � on † by

A� B()A\B� is empty or the only small corner of the pair .A;B/:

Then � is a partial order on †.

Note that “small” means“Stab.A/–finite” or equivalently “Stab.B/–finite” (refer to
Proposition 4.2).
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Proof Reflexivity is obvious. We need to show antisymmetry and transitivity.

To show antisymmetry, suppose A� B and B �A. Then both A\B� and B \A�

are small corners of the pair .A;B/. Since two corners are small, the first inequality
now implies A\B� is empty, while the second implies B \A� is empty. Hence
AD B . Thus � satisfies antisymmetry.

To show transitivity, suppose A� B and B � C , where A, B , and C are all distinct.
We need to show that A� C . Since B � C , we can subtract finitely many Stab.B/–
cosets from B to obtain B0 �C . Since A�B and B is Stab.B/–almost equal to B0 ,
we have A\B0

� is Stab.B/–finite. By Lemma 4.1, since A arises from a splitting,
A\B0

� is also Stab.A/–finite. Hence we can subtract finitely many Stab.A/–cosets
from A to obtain A0 � B0 . It follows that A0 � C . Since A is Stab.A/–almost equal
to A0 and since A0 � C , we have A\C � is a small corner of the pair .A;C /.

Thus the only way we could possibly fail to have A � C is if another corner were
small. If two corners of the pair .A;C / are small, then Proposition 6.3 proves that A,
B and C all must have come from isomorphic splittings of G . Since we assumed no
two distinct j ’s have isomorphic �j ’s, it follows that A, B and C are all translates
of Xj or X �j , for the same j . So we must have A�B �C . This completes the proof
that � satisfies transitivity.

Now that we’ve put a partial order � on †, we show that the partial order is unique.

Corollary 6.6 (Uniqueness of the partial order) Let G be any group with any collec-
tion f�j j j 2 J g of pairwise nonisomorphic splittings. Suppose that f� 0j j j 2 J g is
another collection of splittings of G , where �j Š �

0
j for all j 2 J . For each j , let Xj

be an Hj –almost invariant set arising from �j , and let X 0j be an H 0j –almost invariant
set arising from � 0j . Let † WD

S
j2J †.Xj /, and let †0 WD

S
j2J †.X

0
j /. Then there

exists a G –equivariant, order-preserving isomorphism from .†;�/ to .†0;�/.

Proof By Proposition 6.3, for all j , there exist gj 2 G such that Xj 7! gj X 0j or
X �j 7! gj X 0j induces a G–equivariant, order-preserving isomorphism from †.Xj /

to †.X 0j /. Together, these induce a G–equivariant isomorphism from † to †0 . We
need to show that this isomorphism is order-preserving. As no two of the �j ’s are
isomorphic, whenever A 2 †.Xj / and B 2 †.Xk/ (k ¤ j ), at most one corner of
.A;B/ is small. If no corner of .A;B/ is small, then no corner of .A0;B0/ is small.
If exactly one corner of .A;B/ is small, then the same corner of .A0;B0/ must be the
only small corner of .A0;B0/. Hence †!†0 is order-preserving.

Next we spell out this uniqueness result in the case when the splittings happen to be
compatible. In this case, we allow some of the �j ’s to be isomorphic to each other.
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Corollary 6.7 (Uniqueness of compatibility trees) Let G be any group with a finite
collection f�j j j 2 J g of splittings. Suppose f�j j j 2 J g is compatible, and let T

and T 0 be compatibility trees. Then there exists a G –equivariant isomorphism from T

to T 0 .

Proof First, we prove the result in the case where no two distinct j ’s have isomorphic
splittings. Fix a vertex v in T . For each j , pick a �j –edge ej in T , and define a
subset Xj of G by

Xj WD fg 2G j e points away from gvg:

Fix a vertex v0 in T 0 . For each j , pick a �j –edge e0j in T 0 whose stabilizer is the
same as Stab.ej /, such that

Xj

Hj –a
D fg 2G j e0j points away from gv0g

(we can do this by Corollary 8.2). Let X 0j be the set fg 2G j e0j points away from gv0g.
Apply Corollary 6.6 to get a G–equivariant, order preserving isomorphism fromS

j2J †.Xj / to
S

j2J †.X
0

j /. Dunwoody’s theorem (see Section 3.4) now gives a
G –equivariant isomorphism from T to T 0 .

Second, we prove the result in the case where f�j j j 2 J g possibly has duplicate
splittings. For each isomorphism class f�j j j 2 Ig of splittings, discard all but one
representative; call it �I . Note that the edge in T (or T 0 ) corresponding to XI must be
contained in an interval of jI j edges, one for each �j in the isomorphism class, where
the interior vertices of the interval each have valence two. Collapse the edge orbits of T

and T 0 corresponding to the discarded splittings. To recover an isomorphism from T

to T 0 , for each isomorphism class I , subdivide each �I edge in the collapsed T and
the collapsed T 0 into an interval of jI j edges.

7 Compatibility and intersection number zero

Take any finite collection of nonisomorphic splittings of G satisfying sandwiching (see
Definition 3.9). Here we show that if the splittings have pairwise intersection number
zero, then the splittings are compatible (this is Theorem 7.5). This is a special case of
very good position, when the intersection number of each pair of splittings is zero.

The sandwiching assumption is necessary; see Section 3.9. For more intuition about
sandwiching, we begin by proving that sandwiching is automatic if none of the splittings
is a trivially ascending HNN extension (see Section 3.1). The key fact used is that if
X arises from a splitting that is not trivially ascending HNN, then all four types of
nesting occur between X and its translates:
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Lemma 7.1 Let � be a splitting of G over H , where � is not a trivially ascending
HNN extension. Let X be an H –almost invariant set arising from � . Then, by
varying g , all four of gX .�/ �X .�/ occur.

This result is a strengthening of [25, Lemma 5.5], which assumes that � is not any
ascending HNN extension.

Proof Since X arises from a splitting, there is a G–tree T with an edge e and a
vertex w , and exactly one orbit of edges, such that

X D fg 2G j e points away from gwg:

It suffices to show that there exist translates of e such that g1e < g2e and g3e < g4xe .
There are two cases:

(1) T is a line, so since � is not trivially ascending HNN, � must have the form
G Š A �H B , where jA WH j D jB WH j D 2. To get g1e < g2e , take two translates
of e separated by 1 edge. To get g3e < g4xe , take two adjacent translates of e .

(2) T has branching, hence there exist three distinct translates of e such that the
geodesics between any two pair of them all meet at exactly one vertex, and that either
two of the translates point toward the vertex and one points away, or vice-versa. See
Figure 9. To get g1e � g2e , take two of these translates of e where one is pointing

Figure 9. If a G –tree T has branching and exactly one edge orbit, then for
any edge, we can find three of its translates such that either two point toward
each other and the other one points away, or vice-versa.

toward the vertex and the other away. To get g3e � g4xe , take two translates pointing
toward (or two pointing away from) the vertex.

If X and Y are almost invariant sets arising from splittings of G , where neither
splitting is a trivially ascending HNN extension, then either X crosses all translates
of Y , or all four types of almost nesting occur between X and translates of Y :

Lemma 7.2 Let � and � be splittings of G over H and K , respectively, where
neither � nor � is a trivially ascending HNN extension. Let X and Y be almost
invariant sets arising from � and � , respectively. Suppose that there exists g0 2 G

such that X and g0Y do not cross. Then, by varying g 2G , all four of X .�/ � gY .�/

occur.
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Proof Without loss of generality (after possibly replacing X by X � or Y by Y � ),
X � g0Y . Obtain each of the four cases as follows:

(1) X � g0Y is already given.

(2) To show there exists g with X � gY � , apply Lemma 7.1 to get g0Y � g1Y � , so
that X � g0Y � g1Y � .

(3) To show there exists g with X � � gY � , apply Lemma 7.1 to get g2X � � X .
Now g2X � �X � g0Y � g1Y � , so that X � � g2

�1g1Y � .

(4) To show there exists g with X � � gY , apply Lemma 7.1 to get g0Y � g3Y .
Now g2X � �X � g0Y � g3Y , so that X � � g2

�1g3Y .

Note that if we assume that X and g0Y are nested (instead of almost nested), then the
same proof shows that all four inclusions X .�/ � gY .�/ occur.

Corollary 7.3 Let G be any group with any collection f�j j j 2J g of splittings, where
no �j is a trivially ascending HNN extension. Then f�j j j 2 J g satisfies sandwiching.

Most of the results in the rest of the paper will require the sandwiching assumption.
The key reason we need sandwiching is to get interval finiteness:

Proposition 7.4 Let �j be a splitting of G over Hj , and assume f�1; : : : ; �ng satisfies
sandwiching. Let Xj be an Hj –almost invariant set arising from �j . Let † D
fgXj ;gX �j j g 2G; j D 1; : : : ; ng. Then for all A;B 2†, there are only finitely many
C 2† such that A� C � B .

Proof Fix A;B 2†. If A—B , then there is no C such that A� C �B ; so assume
A � B . Since

S
j2J †.Xj / satisfies sandwiching, for each j 2 J we can choose

Aj ;Bj 2†.Xj / such that
Aj �A� B � Bj :

If C 2 †.Xj / and A � C � B , then Aj � C � Bj . But since the Xj ’s arise from
splittings, for each j there are only finitely many such C . As we are only considering
finitely many splittings, there are only finitely many C 2† satisfying A� C �B .

Theorem 7.5 Let �j be a splitting of G over Hj and assume f�1; : : : ; �ng satisfies
sandwiching. If i.�j ; �k/ D 0, for all j and k , then the splittings f�1; : : : ; �ng are
compatible.
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Proof First we prove the theorem for the case when no �j is isomorphic to any other.

Let Xj be an Hj –almost invariant set arising from �j . By Corollary 6.4, � is a partial
order on †D fgXj ;gX �j j g 2G; j D 1; : : : ; ng. We can see that the four conditions
of Dunwoody’s theorem (see Section 3.4) are satisfied:

(1) For all A;B 2†, if A� B , then B� �A� .

(2) For all A;B2† with A�B , there are only finitely many C 2† with A�C �B

(see Proposition 7.4).

(3) For all A;B 2 †, at least one of A.�/ � B.�/ (because i.�j ; �k/ D 0, for
all j and k ).

(4) We cannot have simultaneously A� B and A� B� .

Construct Dunwoody’s tree T† with edge set †. Each edge is a �j –edge for unique j .
We have a G–equivariant isomorphism T†=.all but j –edges collapsed/ ! T�j

for
all j . Hence T† is a compatibility tree for f�1; : : : ; �ng.

Second, we prove the theorem in the case when we possibly have duplicate splittings.
Discard all but one splitting from each isomorphism class. Apply the above procedure.
Then subdivide the resulting tree, as in the proof of Corollary 6.7.

8 CAT.0/cubical complexes and positive intersection number

A cubical complex C is a CW–complex whose cells are standard Euclidean cubes
of varying dimensions, such that the intersection of any two cells is either empty or
a common face of both. C is called a CAT.0/ cubical complex if, in addition, C is
simply connected, and the link of any vertex (ie 0–cube) is a flag complex. Another
word for “CAT.0/ cubical complex” is cubing.

In this section, we start with any finite collection of pairwise nonisomorphic splittings
of any group G , and construct a CAT.0/ cubical complex. G acts naturally on the
complex, and each hyperplane orbit will correspond to one of the splittings. Furthermore,
hyperplanes cross precisely when their associated splittings cross. Essentially, we are
showing how to make Niblo–Sageev–Scott–Swarup’s “minimal cubing” construction
from [19] work without requiring G or the subgroups over which G splits to be
finitely generated. Their “minimal cubing” construction, in turn, was a generalization
of Sageev’s cubing construction in [21]. For applications of the cubing construction,
see Theorem 8.12 and Section 9.
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If the splittings are induced by simple closed curves on a surface as in Figure 10, then
the dual graph to the preimage of the curves in the universal cover of the surface is
part of the 1–skeleton of the cubing. However, in general the 1–skeleton of the cubing
contains vertices that are not in this dual graph. See Figure 10.

S

zS

1 2

3

�

Figure 10. Since the curves 1 , 2 , and 3 cross pairwise, we can find three
lines in ��1.1 [ 2 [ 3/ that cross pairwise. Shown in zS is a part of the
dual graph to ��1.1[ 2[ 3/ . We see the 1–skeleton of half of a 3–cube,
with an attached 2–cube. The 1–skeleton of the other half of the 3–cube
(and, in fact, the 3–cube itself) is present in the cubing, but not in this dual
graph.

We will briefly review all the basic constructions. For more details, see [19; 21,
Sections 2 and 3].

8.1 Producing almost invariant sets from a CAT.0/ cubical complex

In [25], Scott and Swarup showed how to produce an almost invariant set from a
G –tree. Then in [19], Niblo, Sageev, Scott and Swarup generalized this construction
by producing an almost invariant set from any CAT.0/ cubical complex on which G

acts. We include the formal statement and proof of this result below. Note that a tree
is precisely a 1–dimensional CAT.0/ cubical complex, and hyperplanes in a tree are
midpoints of edges.
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Lemma 8.1 [19, Lemma 1.17] Let G be any group acting on a cubing C . Let H
be a hyperplane in C with stabilizer H , and suppose that H preserves each of HC
and H� . Then for any vertex v , the set Xv WD fg 2 G j gv 2 HCg is H –almost
invariant. Moreover, for any vertices v and w , the set Xv is H –almost equal to Xw .

In [19], the authors assume G is finitely generated, but their proof does not actually
use that assumption.

Proof First, we show that X is H –almost invariant. Clearly hXv D Xv , for all
h 2H . We also need Xva is H –almost equal to Xv , for all a 2G . We have

Xv D fg 2G j gv 2HCg;

XvaD fga 2G j gv 2HCgso that

D fg 2G j ga�1v 2HCg:

To show the symmetric difference of Xva and Xv is H –finite, first we consider one
half of the symmetric difference:

Xv �XvaD fg 2G j gv 2HC and ga�1v …HCg

D fg 2G jH separates gv from ga�1vg

D fg 2G j g�1H separates v from a�1vg

There are only finitely many (say, m) hyperplanes separating v from a�1v . If g;g0 2G

with g�1HDg0�1H , then g0g�1 2Stab.H/DH , and so Hg0 and Hg�1 are actually
the same coset. We conclude that Xv �Xva is contained in at most m cosets Hg .
Similarly, Xva�Xv is H –finite. Hence Xv is H –almost invariant.

Second, let v and w be vertices of C . We need to show that Xv is H –almost equal
to Xw . We have

g 2Xv �Xw() gv 2HC and gw …HC

() g�1H separates v from w:

As in the argument above, the set of all such g is H –finite. Similarly, Xw �Xv is
H –finite. Hence Xv is H –almost equal to Xw .

Corollary 8.2 Let G be any group and T a G–tree. Let e be an edge in T with
stabilizer H . Then for any vertex v , the set Xv WD fg 2 G j e points away from gvg

is H –almost invariant. Moreover, for any vertices v and w , the set Xv is H –almost
equal to Xw .
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8.2 Ultrafilters

A partially ordered set with complementation, or pocset, is a partially ordered set
.†;�/, equipped with a free involution � on † behaving like complementation, ie
A� B implies B� �A� . This terminology was introduced by Sageev and Roller.

Definition 8.3 Let .†;�/ be a pocset. An ultrafilter on .†;�/ is a subset V of the
power set of † such that both of the following conditions are satisfied:

(1) For all A 2†, either A 2 V or A� 2 V (but not both).

(2) If A 2 V and A� B , then B 2†.

We say an ultrafilter V satisfies the descending chain condition (DCC) if every chain
A1 �A2 � � � � stabilizes after finitely many steps.

Note that if V is an ultrafilter on †, then for any g 2 G , the translate gV WD fgA j

A 2 V g is also an ultrafilter on †. Also note that V �fAg[ fA�g is an ultrafilter if,
and only if, A is a minimal element of .V;�/.

8.3 Sageev’s cubing

In [21], Sageev constructed a cubing C from a finite collection fXj j j D 1; : : : ; ng of
Hj –almost invariant subsets of a group G , using the partial order of inclusion. We will
now briefly review this construction. Let † WD

Sn
jD1†.Xj /. The vertices of Sageev’s

cubing are a subset of all ultrafilters on .†;�/. Let C 0 be the complex with a vertex
for each ultrafilter on .†;�/, and an edge connecting each pair of ultrafilters that differ
by exactly one complementary pair .A;A�/. If V is a vertex and V [ fA�g � fAg

is also a vertex, we say the (directed) edge from V to V [fA�g� fAg exits A. See
below for the definition of “basic vertex.” Define the one-skeleton of C to be the
connected component of C 0 containing all the basic vertices. We define higher skeleta
of C inductively: whenever you see the boundary of an n–cube, attach an n–cube.
Sageev showed that C is a CAT.0/ cubical complex [21]. This is Sageev’s cubing.

Definition 8.4 (Basic vertex) Let G be a group with a finite collection fXj j

j D 1; : : : ; ng of Hj –almost invariant subsets. Let † WD
Sn

jD1†.Xj /. Let g be
any element of G . Define Vg as follows:

Vg WD fA 2† j g 2Ag:

We call Vg a basic vertex. Some authors may refer to basic vertices as basic ultrafilters,
principal vertices, or principal ultrafilters.
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The following two lemmas prove that the vertices of Sageev’s cubing can be character-
ized as ultrafilters on .†;�/ satisfying DCC.

Lemma 8.5 Let G be a group with any finite collection fXj j j D 1; : : : ; ng of
Hj –almost invariant subsets. Let † WD

Sn
jD1†.Xj /. For each g 2 G , the basic

vertex Vg is an ultrafilter on .†;�/ and satisfies DCC.

Proof Fix g2G . We first show that Vg satisfies conditions (1) and (2) of Definition 8.3.

(1) Let A;B 2† be arbitrary. Either g 2A or g 2A� , so either A2Vg or A� 2Vg

(but not both).

(2) If A 2 Vg and A� B , then g 2 B , so B 2 Vg .

Hence Vg is an ultrafilter on .†;�/.

To show Vg satisfies DCC, take a descending chain B1 � B2 � � � � in Vg . If the Bk

are not all equal to begin with, then without loss of generality (after passing to a subse-
quence), B1�B2 is nonempty, and there exists some fixed j such that Bk 2†.Xj /

for all k . Fix g0 2 B1�B2 . We claim (as proved in [21, Lemma 3.4]) that

B WD fB 2†.Xj / j g 2 B and g0 … B; or g … B and g0 2 Bg

is finite. Assuming the claim, the chain must stabilize, as each element of the chain
(except for B1 ) is an element of B .

To prove the claim, first note that since Xj is Hj –almost invariant, we have

Xj g�1 Hj –a
D Xj g�1

0 :

Pick g
j
1
; : : : ;g

j
rj

such that the symmetric difference of Xj g�1 and Xj g�1
0

is contained
in

`rj

kD1
Hj .g

j

k
/�1 . We have

g0X
.�/

j 2 B() g0X
.�/

j separates g and g0

()X
.�/

j separates .g0/�1g and .g0/�1g0

() .g0/�1 is in the symmetric difference of Xj g�1 and Xj g�1
0

() .g0/�1
2

rja
kD1

Hj .g
j

k
/�1

() g0 2

rja
kD1

g
j

k
Hj :

As Hj stabilizes Xj , and as there are only finitely many j , it follows that B is finite.
This completes the proof that Vg satisfies DCC.
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Lemma 8.6 Let .†;�/ be any pocset.

(1) Any two vertices (ie ultrafilters on .†;�/) satisfying DCC can be connected via
a finite edge path.

(2) If a vertex is connected to some vertex satisfying DCC, then the vertex satisfies
DCC.

Proof (1) Assume, for contradiction, that V and W satisfy DCC but differ on
infinitely many (distinct) elements, say A1;A2; : : : 2 V and A�

1
;A�

2
; : : : 2 W . As

every element of † comes from one of finitely many splittings, after passing to a
subsequence, all the Ak ’s come from a single splitting, and hence are nested. Note
that as both V and W are ultrafilters, we cannot have Ak �A�

l
or A�

k
�Al . Since

the Ak ’s are nested, this shows that given k; l 2N , either Ak �Al or Al �Ak . Thus,
after reordering, we either get an ascending chain in the Ak ’s and descending chain in
the A�

k
’s, or vice-versa. Hence the chain stabilizes, a contradiction to the Ak ’s being

distinct.

(2) Let V be any vertex satisfying DCC, and W any vertex connected to V . Then V

and W differ by only finitely many complementary pairs .A;A�/. Any descending
chain in W must have all but finitely many of its elements in V , so must stabilize
(since V satisfies DCC).

8.4 Minimal cubings

In [19], Niblo, Sageev, Scott and Swarup constructed another cubing L from a finite
collection fXj j j D 1; : : : ; ng of Hj –almost invariant subsets of a group G , where, G

and all the Hj ’s are finitely generated. As before, let † WD
Sn

jD1†.Xj /. The authors
assumed that the subsets are already in good position, and use the partial order of almost
inclusion. The vertices of L are characterized as ultrafilters on .†;�/ satisfying DCC.
As in Sageev’s cubing, define higher skeleta of L inductively: whenever you see
the boundary of an n–cube, attach an n–cube. To check that L is a CAT.0/ cubical
complex, use the same arguments from [21] that prove that Sageev’s cubing is a CAT.0/
cubical complex. To prove that L is nonempty, the authors constructed basic vertex
analogues.

The goal of this section is to prove that one can construct the same cubing L from [19],
under a new set of assumptions. Namely, here we assume that the Xj ’s come from
splittings and that the splittings satisfying sandwiching, and do not assume that G

or the Hj ’s are finitely generated. The key fact needed is that the cubing is always
nonempty (see Theorem 8.11).
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Theorem 8.7 Let G be any group with a finite collection f�j j j D 1; : : : ; ng of pair-
wise nonisomorphic splittings. Suppose f�j j j D 1; : : : ; ng satisfies sandwiching. For
each j , let Xj be an Hj –almost invariant set arising from �j . Let † WD

Sn
jD1†.Xj /.

Then there exists a CAT.0/ cubical complex L, with a bijective correspondence be-
tween † and the set of oriented hyperplanes of L, such that two elements of † cross
if, and only if, their corresponding hyperplanes cross in some square. Moreover, the
hyperplane corresponding to any A 2 † determines a Stab.A/–almost invariant set
that is Stab.A/–almost equal to A.

As noted in [19], every ultrafilter on .†;�/ is also an ultrafilter on .†;�/, and any
ultrafilter satisfying DCC with respect to � also satisfies DCC with respect to �, so
that every vertex in L is canonically a vertex in C . We will see that the embedding
L0 ,!C 0 naturally extends to an embedding L ,!C . However, in general, C contains
many vertices that are not in L. For example, either all basic vertices are in L, or L

contains no basic vertices:

Lemma 8.8 Let G be any group with a finite collection fXj j j D 1; : : : ; ng of Hj –
almost invariant subsets. Let † WD

Sn
jD1†.Xj /. Suppose almost inclusion � defines

a partial order on †. Then Vg is an ultrafilter on .†;�/ for all g 2G if, and only if,
Vg is an ultrafilter on .†;�/ for some g 2G .

Proof We will use the arguments from the proof of Lemma 8.5 show that Vg satisfies
DCC with respect to the partial order �, as follows (regardless of whether or not Vg

actually is an ultrafilter on .†;�/). Suppose we have a descending chain A1�A2�� � �

in a basic vertex Vg . Since the Ai come from only finitely many splittings, after
passing to a subchain, we have in fact A1 �A2 � � � � , which must stabilize, since it is
a descending chain in .Vg;�/ and .Vg;�/ satisfies DCC.

Now, suppose there exists g 2G such that Vg is not an ultrafilter on .†;�/. Clearly
for all A2†, either A or A� is in Vg . Hence there must exist A;B 2† with A2Vg ,
A� B , and B … Vg . The pair .A;B/ prevents Vg from being an ultrafilter. Now, for
any g0 2G , the pair .g0A;g0B/ prevents Vg0g from being an ultrafilter.

Note that if the Xj ’s are in very good position, then the minimal cubing will be the
same as Sageev’s cubing. Otherwise, Sageev’s cubing will contain many more vertices
than the minimal cubing.

In what follows, we prove that L is nonempty (assuming sandwiching, but not assuming
any finite generation). To create an ultrafilter on .†;�/, we will start with a basic
ultrafilter on †.X1/ � †, then extend. In general, suppose †0 � † and V0 is an
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ultrafilter on †0 . If we hope to extend V0 to an ultrafilter on all of †, we must add
to V0 all elements B of † for which A� B for some A 2 V0 . We call this process
taking the closure of V0 . More formally:

Definition 8.9 Let .†;�/ be any partially ordered set with complementation, and let
V0 be an ultrafilter on some subset †0 of †. The closure of V0 is

V0 WD V0[fB 2†�†0 j there exists A 2 V0 such that A� Bg:

Lemma 8.10 Let .†;�/ be any partially ordered set with complementation, and
let V0 be an ultrafilter on some subset †0 of †. Let †0 denote the set fA 2 † j
A 2 V0 or A� 2 V0g. Then V0 , the closure of V0 in †, is an ultrafilter on .†0;�/.

Proof To prove that V0 is an ultrafilter on .†0;�/, we must show that conditions (1)
and (2) of Definition 8.3 are satisfied.

(1) Clearly for all B 2 †0 , at least one of B;B� is in V0 . We must show that if
B 2 V0 , then B� … V0 . Suppose, for contradiction, that B 2 V0 and B� 2 V0 . By
construction, either B;B� 2 †0 or B;B� 2 x†�†0 , so that either B;B� 2 V0 or
B;B� 2 V0 � V0 . As V0 is an ultrafilter, it is impossible to have both B and B�

in V0 . Hence we must have B;B� 2 V0 � V0 . By the definition of “closure,” there
exist A;A0 2 V0 such that A� B and A0 � B� (ie B �A0

� ). Transitivity of � now
implies A � A0

� . Since A 2 V0 , this implies A0
�
2 V0 , a contradiction to V0 being

an ultrafilter. This completes the proof that we cannot have simultaneously B 2 V0

and B� 2 V0 .

(2) Assume B;C 2 †0 with B 2 V0 and B � C . We must show that C 2 V0 . By
the construction of V0 , there exists A 2 V0 with A�B . By transitivity of �, we have
A � C (equivalently, C � � A� ). We break up the rest of the proof into two cases,
depending on whether C 2†0 .

� If C 2†0 , since V0 is an ultrafilter on †0 , either C or C � must be in V0 . If
C � 2 V0 , then C � � A� implies A� 2 V0 , which is impossible since A 2 V0 .
Hence we must have C 2 V0 . Since V0 is a subset of V0 , this implies C 2 V0 .

� If C 2†0�†0 , then A� C implies C 2 V0 .

Hence we must have C 2 V0 .

This completes the proof that the closure of an ultrafilter is an ultrafilter.

The following theorem (whose proof is lengthy) proves that the cubing L is nonempty.
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Theorem 8.11 Let G be any group with a finite collection f�j j j D 1; : : : ; ng of pair-
wise nonisomorphic splittings. Suppose f�j j j D 1; : : : ; ng satisfies sandwiching. For
each j , let Xj be an Hj –almost invariant set arising from �j . Let † WD

Sn
jD1†.Xj /.

Then there exists an ultrafilter on .†;�/ satisfying DCC.

Proof Fix g 2G . We will start with a basic ultrafilter V1 on †.X1/, take its closure
in †, and inductively add in part of a basic ultrafilter on each †.Xj / until we have
defined an ultrafilter on all of †. The ultrafilters produced in all steps are, in order,
V1 � V1 � V2 � V2 � : : : � Vn DW V . In Step ja, we add to the ultrafilter Vj�1 all
elements A of †.Xj / such that g 2 A and neither A nor A� was already in the
ultrafilter, to get the ultrafilter Vj . In Step jb, we take the closure of the ultrafilter from
Step ja, to get Vj . In the end, we get an ultrafilter V on †.

� Step 1a: Define V1 as a basic ultrafilter on †.X1/:

V1 WD fA 2†.X1/ j g 2Ag:

Let †1 WD †.X1/: On †.X1/, the inclusion relation is the same as �, so
Lemma 8.5 proves that V1 is an ultrafilter on .†1;�/.

� Step 1b: Define V1 to be the closure of V1 in †:

V1 WD V1[fB 2†.X2;X3; : : : ;Xn/ j there exists A 2 V1 with A� Bg:

Let †1 WD fA 2† jA 2 V1 or A� 2 V1g. By Lemma 8.10, V1 is an ultrafilter
on .†1;�/.

Perform the following two steps for 1< j < n.

� Step ja: Define Vj to be the union of Vj�1 and part of a basic ultrafilter on
†.Xj /:

Vj WD Vj�1[fA 2†.Xj / j g 2A and A …†j�1g:

Let †j WD fA 2 † j A 2 Vj or A� 2 Vj g. To prove that Vj is an ultrafilter on
.†j ;�/, we must show that conditions (1) and (2) of Definition 8.3 are satisfied.
(1) †j is defined to be the union of the elements of Vj and their complements.

We must show that if A 2 Vj , then A� … Vj . Suppose, for contradiction,
that both A and A� are elements of Vj . By construction, either A;A� 2

†j �†j�1 , or A;A� 2†j�1 , so that either A;A� 2Vj �Vj�1 , or A;A� 2

Vj�1 . If A;A� 2 Vj�1 , this would contradict Vj�1 being an ultrafilter;
hence it must be the case that A;A� 2 Vj �Vj�1 . This implies g 2A and
g 2A� , also a contradiction. Hence it is impossible to have simultaneously
A 2 Vj and A� 2 Vj .
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(2) Assume B;C 2†j with B 2 Vj and B � C . We must show that C 2 Vj .
We break up the proof that C 2 Vj into two cases, depending on whether B

was added to the ultrafilter in Step ja or a previous step.

(a) Suppose B was added in Step ja, ie B2Vj�Vj�1 . Note that B2†.Xj /.
Either C 2 †j�1 or C 2 †j �†j�1 . We want to show that C 2 Vj .
If C 2†j�1 and C … Vj , then we must have C � 2 Vj . Then C � �B�

would imply B� was added to the ultrafilter by Step .j�1/b, so it would
be impossible to have B 2 Vj �Vj�1 . If instead C 2†j �†j�1 , then
C 2†.Xj /. As B and C are both elements of †.Xj /, having B � C

implies B � C . Hence g 2 B implies g 2 C , so that C 2 Vj .
(b) Suppose B was added in a previous step, ie B 2 Vj�1 . Then by

construction of Vj�1 , there exists A2Vj�1 with A�B . By transitivity
of �, we have A � C . It follows that C 2 Vj�1 . As Vj�1 � Vj , we
have C 2 Vj .

In any case, we conclude C 2 Vj .

Hence Vj is an ultrafilter on †j .

� Step jb: Define Vj to be the closure of Vj in †:

Vj WD Vj [fB 2†.XjC1;XjC2; : : : ;Xn/ j there exists A 2 Vj with A� Bg:

Let †j WD fA 2† j A 2 Vj or A� 2 Vj g. By Lemma 8.10, Vj is an ultrafilter
on .†j ;�/.

Perform one last step to define an ultrafilter on all of †.

� Step na (this is just Step ja with j D n)

Note that †n D†, so there is no need for Step nb Let V WD Vn .

We have successfully defined an ultrafilter V on .†;�/. Next we prove V satis-
fies DCC.

Suppose we have an (infinite) descending chain B1 � B2 � � � � in V . We will obtain
Ak � Bk , show that the Ak ’s stabilize, and then show that the Bk ’s stabilize.

(1) Since each element of † comes from one of only finitely many splittings, without
loss of generality (after passing to a subchain of .Bk/1�k ) there exists a fixed
j 2 f1; 2; : : : ; ng such that Bk 2†.Xj /.
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(2) If there exists an infinite subchain of the Bk ’s that were added to V in Step ja,
then since g is in each element of the subchain, the proof of Lemma 8.5 shows
that the subchain must stabilize, so that the original chain stabilizes, completing
the proof of the theorem. Otherwise, without loss of generality (after passing to
a subchain of .Bk/1�k ), each of the Bk ’s was added to V in a type “b” Step
(before Step ja). Recall that j was fixed in the previous step, and Bk 2†.Xj /,
for all k .

(3) For each Bk , since Bk was added in a type “b” Step before Step ja, there exists
Ak 2 Vj�1 such that Ak � Bk .

(4) Without loss of generality (after possibly replacing Ak by something less
than Ak ), each Ak was added in a type “a” Step, so that g 2Ak .

(5) Without loss of generality (after passing to a subchain of .Ak �Bk/1�k ), there
exists a fixed j 0 (for some 1 � j 0 � j � 1) such that Ak 2 †.Xj 0/, for all k .
In particular, since X 0j arises from a splitting, all the Ak ’s are nested.

(6) We cannot have Ak �A�
l

or A�
k
�Al (since all the A’s belong to the ultrafil-

ter V ), hence for all k ¤ l , we must have Ak �Al or Ak �Al .

(7) In this step, we show that the Ak ’s stabilize. If there is an infinite ascending
subchain of the Ak ’s such that each is contained in the next, then without loss of
generality (after replacing each Ak in the subchain by the first one) all the Ak ’s
in that subchain are equal, so move on to the next step of the proof. Otherwise,
without loss of generality (after passing to a subchain of .Ak � Bk/1�k ) we
have Ak �Al , for all k < l . Since g 2Ak for all k , and since all of the Ak ’s
are in †.Xj 0/, the Ak ’s must stabilize after finitely many steps (by Lemma 8.5).
So without loss of generality (after passing to a subchain of .Ak �Bk/1�k ), all
the Ak ’s are identical.

(8) Recall that Bk �A1 , for all k . We now have B1 � B2 � � � � �A1 . But since
f�j j 1� j � ng satisfies sandwiching, this contradicts interval finiteness (see
Proposition 7.4), unless the Bk ’s stabilize. Hence the Bk ’s stabilize.

This completes the proof that V satisfies DCC. In particular, we have shown there
exists an ultrafilter on .†;�/ satisfying DCC.

We are now ready to prove Theorem 8.7. As before, define the vertices of L to be
the ultrafilters on .†;�/ satisfying DCC, and define higher skeleta of L inductively:
whenever you see the boundary of an n–cube, attach an n–cube. To check that L is a
CAT.0/ cubical complex, apply the arguments from [21] that prove that Sageev’s cubing
is a CAT.0/ cubical complex. Theorem 8.11 shows that L is nonempty. Furthermore,
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the proof of Theorem 8.11 shows that each A 2† is in some vertex of L: pick any
g2A, reorder the splittings (and their associated Xj ) such that A2X1 , and construct V

as in the proof of Theorem 8.11. For each A 2†, since A is in some vertex of L and
A� is in some vertex of L, there exists a (nonempty) oriented hyperplane corresponding
to the set of all edges that exit A. By Lemma 8.1, the hyperplane corresponding to A

determines a Stab.A/–almost invariant subset of G that is Stab.A/–almost equal to
A. This completes the proof of Theorem 8.7.

8.5 Putting the Xj ’s in very good position

Let G be any group. Take any finite collection f�1; : : : ; �ng of pairwise nonisomorphic
splittings of G satisfying sandwiching. Let Xj be an Hj –almost invariant set arising
from �j , and let †D fgXj ;gX �j j g 2 G; j D 1; : : : ; ng. We have shown that † is
in good position, ie if two corners of .A;B/ are small, then (at least) one is empty.
This allowed us to define the partial order � on †. Now we show how to find
X 0j

Hj –a
DXj such that X 0j arises from the same splitting of G from which Xj arises,

and †0 D fgX 0j ;gX 0
�
j j g 2G; j D 1; : : : ; ng is in very good position. This result was

previously proved by Niblo, Sageev, Scott and Swarup [19] for a finite collection of
almost invariant sets over finitely generated subgroups of a finitely generated group.

Theorem 8.12 Let G be any group with a finite collection f�j j j D 1; : : : ; ng of
pairwise nonisomorphic splittings. Suppose f�j j j D 1; : : : ; ng satisfies sandwiching.
For each j , let Xj be an Hj –almost invariant set arising from �j . Then there exist
X 0j

Hj –a
DXj , such that †0 WD

Sn
jD1†.X

0
j / is in very good position.

In preparation for proving the theorem, we take a look at how hyperplanes in the
cubings C and L compare to each other. For each j , let Hj be the hyperplane in C

determined by the equivalence class of edges in C exiting Xj . (Or, equivalently, the
class of edges equivalent to any given edge exiting Xj , with the equivalence relation
generated by square-equivalence.) Define the halfspace HCj of C by

HCj D fV 2 C .0/
jXj 2 V g:

For any vertex v 2 C , define .Xj /v by

.Xj /v WD fg 2G j gv 2HCj g:

Note that .Xj /Ve
D Xj , where Ve is the basic ultrafilter on .†;�/ consisting of all

elements of † containing the identity. Let K be the hyperplane in L determined by
the equivalence class of edges exiting Xj . Define the halfspace KCj of L by

KCj WD fW 2L.0/ jXj 2W g:
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Recall the canonical embedding L0 ,! C0 , in which we view any vertex in L, ie an
ultrafilter W �† on .†;�/ satisfying DCC, as an ultrafilter on .†;�/. Now we will
see how this extends to an embedding L ,! C . If two edges in L are opposite sides
of a square in C then all four vertices of the square in C are in L, so that the other
two edges of the square in C are also in L. Hence two edges in L are on the opposite
sides of a square in L if, and only if, they are on opposite sides of a square in C . It
follows that Hj \LDKj and HCj \LDKCj .

Now we can use the cubing L to put the Xj ’s in very good position.

Lemma 8.13 Fix a vertex w 2L� C , and define X 0j WD fg 2G j gw 2KCj g. Then
each X 0j is Hj –almost invariant, the collection †0 WD

Sn
jD1†.X

0
j / is in very good

position, and Xj 7!X 0j induces a G –equivariant isomorphism from .†;�/ to .†0;�/.

Proof Viewing w as a vertex in C , we have .Xj /w D fg 2 G j gw 2 HCj g. As
L ,! C is G –equivariant, it follows that X 0j D .Xj /w . Now, applying Lemma 8.1,
X 0j D .Xj /w is Hj –almost invariant and Hj –almost equal to .Xj /Ve

DXj .

Next we show, as proved in [19, Lemma 4.1], that Xj 7!X 0j induces a G –equivariant
isomorphism from .†;�/ to .†0;�/. We are assuming that none of the Xj come
from isomorphic splittings. Since w is an ultrafilter on .†;�/, it follows that for all
g 2G , the translate gw is also an ultrafilter on .†;�/. If A;B 2†, let A0;B0 denote
the images in †0 of A and B by the map that sends Xj 7!X 0j .

Suppose A�B , ie A\B� is empty or the only small corner of the pair .A;B/. Note
that since Xj

Hj –a
DX 0j , we have

A
Stab.A/–a
D A0 and B

Stab.B/–a
D B0:

Hence a corner of the pair .A;B/ is small if, and only if, the corresponding corner
of the pair .A0;B0/ is small. If A\B� is the only small corner of the pair .A;B/,
then since A0 and B0 are nested, we must have A0 � B0 , as desired. If the pair
.A;B/ has two small corners, then A�B . To see that A0�B0 , simply note that since
X 0j Dfg2G jgw 2HCj g, we have A0Dfg2G jA2gwg, and B0Dfg2G jB 2gwg.
In either case, we conclude that A0 � B0 .

Conversely, suppose that A0 � B0 . We need to show that A� B . Since † is in good
position, it follows that A � B or B � A. The above paragraph shows that A � B .
Hence A� B if, and only if, A0 � B0 .

It follows that †0 is in very good position.

This completes the proof of Theorem 8.12.
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9 Existence of algebraic regular neighborhoods

We start with a finite collection of splittings f�1; : : : ; �ng over subgroups Hj of a
group G . Let Xj be an Hj –almost invariant set arising �j . Suppose fX1; : : : ;Xng

satisfies sandwiching (see Definition 3.9). We also assume no two of the �j ’s are
isomorphic to each other. We will construct a bipartite G–tree T .X1; : : : ;Xn/, and
show T is an algebraic regular neighborhood of f�1; : : : ; �ng (see Definition 3.13).

Let † denote the set of all translates of all the Xj and their complements. Since no
two �j ’s are isomorphic to each other, � defines a partial order on † (see Corollary 6.5).
Construct the cubing L from Theorem 8.7. We will construct a bipartite tree from L.

Define a “cross connected” relation on †, generated by relations of the form “A

crosses B .” More precisely, A is cross connected to B if one of the following holds.

(1) A is equal to B or B� .

(2) There exists some m � 0 and a sequence .A;B1; : : : ;Bm;B/ such that A

crosses B1 , B1 crosses B2; : : :, Bm�1 crosses Bm , and Bm crosses B .

This defines an equivalence relation. Call each equivalence class a cross connected
component (ccc).

One can easily see ccc’s of † from looking at the cubing L. Each oriented hyperplane
in the cubing corresponds to a unique element of †. Call a vertex of L a cut vertex if
it separates L into more than one component. If we remove all cut vertices from the
cubing, we are left with a disjoint collection of components, where each component is
a subcubing with some vertices missing. Each ccc has all its hyperplanes contained
in a single component. Moreover, since the components have no cut vertices, each
component’s hyperplanes come from only one ccc. This gives a bijective correspondence
between the components of (L minus its cut vertices) and the ccc’s of †.

We introduce some basic notation. View the cubing as a disjoint union of subcubings
which are glued together at cut vertices. Let CUT denote the set of cut vertices. Let SUB
denote the set of (disjoint) subcubings. Note that we have a bijective correspondence
between SUB and the ccc’s of †. For a given subcubing ˛ 2 SUB, define the corner
vertices of ˛ to be the vertices of ˛ that are glued to cut vertices. Let CRN.˛/ denote
the set of corner vertices of ˛ .

For each subcubing ˛ 2 SUB, create a tree whose vertices are CRN.˛/ plus a central
vertex, and an edge connecting each element of CRN.˛/ to the central vertex. Call
this tree F˛ .
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Glue the F˛ ’s together by, for each element of CUT, identifying all corner vertices of
all the F˛ ’s which came from that element of CUT. Color the equivalence classes of
corner vertices as V1 –vertices, and color all the central vertices as V0 –vertices.

The result is a bipartite G –tree. Let T .X1; : : : ;Xn/ denote this tree.

Theorem 9.1 (Existence of algebraic regular neighborhoods) Let G be any group
with a finite collection f�j j j D 1; : : : ; ng of pairwise nonisomorphic splittings. Sup-
pose f�j j j D 1; : : : ; ng satisfies sandwiching. For each j , let Xj be an Hj –almost
invariant set arising from �j . Then T WD T .X1; : : : ;Xn/ is algebraic regular neighbor-
hood of f�j j j D 1; : : : ; ng.

To prove the theorem, we need to show T satisfies the five conditions of Definition 3.13.

Lemma 9.2 (First condition) Each �j is enclosed by some V0 –vertex orbit in T ,
and each V0 –vertex orbit encloses some �j .

Proof Fix j . We will use the original cubing L to construct a particular refinement
of T . Recall that CUT denotes the cut vertex set of the original cubing, SUB denotes
the set of subcubings, and CRN.˛/ denotes the set of corner vertices of ˛ 2 SUB. For
each subcubing ˛ 2 SUB not containing any Xj –hyperplanes, define F˛ as above.

For each subcubing ˛ 2 SUB that contains †.Xj /–hyperplanes. Let #˛ denote the
dual tree to the †.Xj /–hyperplanes in ˛ . For each element of CRN.˛/, make a vertex
and attach it to #˛ with an edge. Specifically, attach the edge to the vertex of #˛ that
corresponds to the component of ˛ � .†.Xj /–hyperplanes/ containing the corner
vertex. Call this tree F0˛ .

Glue the F0˛ ’s (for ccc’s containing †.Xj /–hyperplanes) and F˛ ’s (for ccc’s not
containing †.Xj /–hyperplanes) together by, for each element of CUT, identifying all
corner vertices which came from that element of CUT. Color the equivalence classes
of corner vertices as V1 –vertices, and color all the other vertices as V0 –vertices.

This new tree maps naturally to T by collapsing the new edge orbit. On the other
hand, the new tree maps to a tree for � by collapsing all edges except for the new edge
orbit.

Lemma 9.3 (Second condition) If � is a splitting of G over H , where � is sand-
wiched by �j and i.�; �j /D 0, for all j 2 J , and i.�; �j /D 0, then � is enclosed by
some V1 –vertex orbit in T .
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Proof Let X be an H –almost-invariant set arising from � , where X is sandwiched
by Xj and i.�; �j /D 0, for all 1� j � n.

Construct a new cubing from †.X1; : : : ;Xn;X / (using the partial order �). Since X

does not cross any element of
Sn

jD1†.Xj /, each new subcubing ˛ in SUB is simply
an edge, and F˛ consists of two V1 –vertices connected to a V0 –vertex. Construct
the new tree T .X1; : : : ;Xn;X /. The new tree projects naturally to a tree for � , by
collapsing each old F˛ to a point, and forgetting the new V0 –vertices. On the other
hand, the new tree naturally projects to the old tree, with each new F˛ being collapsed
to a single V1 –vertex. Hence � is enclosed by a V1 –vertex orbit.

Lemma 9.4 (Third condition) T is a minimal G –tree.

Proof Let T0 be the minimal sub–G–tree of T (or any fixed vertex, if G fixes a
vertex of T ).

If T0 has no V0 –vertices, then since T is bipartite, T0 must consist of a single V1 –
vertex which is fixed by G . Let V denote a V0 –vertex adjacent to the fixed V1 –vertex.
Since the orbit of V encloses �j for some j , and since †.Xj / has infinite chains,
V satisfying DCC implies that there exists a translate of V not adjacent to the fixed
V1 –vertex. This is impossible. Hence T0 must contain a V0 –vertex.

Take any V0 –vertex V 0 in T0 , and pick j 2 J such that �j is enclosed by the orbit
of V 0 . If T0 ¤ T , then we can find a V0 –vertex V 00 in T �T0 . Pick k 2 J such that
�k is enclosed by the orbit of V 00 . As �j is sandwiched by �k , there exists a translate
of V 0 that is not in T0 . This is impossible, as T0 is G –invariant. Hence we must have
T0 D T . This completes the proof that T is a minimal G –tree.

Lemma 9.5 (Fourth condition) There exists a bijection

f W fj 2 J j �j is isolatedg !G–orbits of isolated V0–vertices of T

such that f .j / encloses �j .

Proof Each isolated V0 –vertex corresponds to a subcubing ˛ 2 SUB consisting of
exactly one edge, or equivalently, exactly one hyperplane. This hyperplane corresponds
to a unique pair fA;A�g �†.

Lemma 9.6 (Fifth condition) Every nonisolated V0 –vertex orbit in T encloses some
nonisolated �j .

Proof Any nonisolated V0 –vertex corresponds to a subcubing ˛ 2 SUB containing
at least two hyperplanes that cross each other.

This completes the proof of Theorem 9.1.
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10 Uniqueness of algebraic regular neighborhoods

We prove uniqueness of algebraic regular neighborhoods for an arbitrary collection of
splittings of G satisfying sandwiching.

Theorem 10.1 (Uniqueness of algebraic regular neighborhoods) Let G be any group
with any collection f�j j j 2 J g of pairwise nonisomorphic splittings. Suppose
f�j j j 2 J g satisfies sandwiching, and that T1 and T2 are algebraic regular neighbor-
hoods of f�j j j 2J g. Then there exists a G –equivariant, color preserving isomorphism
from T1 to T2 .

The proof of Theorem 10.1 is laid out in this section. We will use the same strategy
that Scott and Swarup used to prove [25, Theorem 6.7]. Namely, insert an edge orbit
in T1 for each edge splitting of T2 that is not already an edge splitting of T , and
vice-versa. Then we will show a contradiction if we actually had to insert any edge
orbits. To “insert edge orbits” in T1 or T2 , we need to know that the edge splittings in
T1 and T2 are compatible with the edge splittings to be inserted.

Lemma 10.2 Suppose f�k j k 2Kg and f�l j l 2Lg are collections of splittings of G ,
such that their union satisfies sandwiching. Assume f�k j k 2Kg and f�l j l 2Lg are
each compatible, and that i.�k ; �l/D 0 for all k 2K and l 2L. Then f�k jk 2K[Lg

is compatible.

Proof For each k 2K[L, let Xk be an almost invariant set arising from �k . Without
loss of generality, choose the Xk ’s so that if �k is isomorphic to �l , then Xk D Xl

(as subsets of G ). Let † denote the collection of all translates of the almost invariant
sets and their complements:

† WD
[

k2K[L

†.Xk/:

The proof of Theorem 7.5 directly carries through, provided we can prove interval
finiteness. We need to show that for all A;B 2†, there are only finitely many C 2†

with A� C � B .

Fix A;B 2†, and recall that f�k j k 2Kg [ f�l jl 2 Lg satisfies sandwiching. Pick
A1;B1 2 f�k j k 2 Kg such that A1 � A and B � B1 . Similarly, pick A2;B2 2

f�l j l 2 Lg such that A2 � A and B � B2 . There are only finitely many C 2S
k2K †.Xk/ with A1 � C � B1 , and only finitely many C 2

S
l2L†.Xl/ with

A2 � C � B2 . Hence there are only finitely many C 2† with A� C � B .
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Apply Dunwoody’s theorem to get a G –tree (see Section 3.4). For each edge orbit Ge ,
let ne denote the number of splittings in f�k j k 2K[Lg that are isomorphic to the
edge splitting for e , and subdivide each edge in Ge into an interval of ne edges. The
result is a compatibility tree for f�k j k 2K[Lg.

To apply Lemma 10.2 to the proof of Theorem 10.1, we need to know that each edge
splitting of an algebraic regular neighborhood is sandwiched by each �j .

Lemma 10.3 Let G be any group with any collection f�j j j 2 J g of pairwise
nonisomorphic splittings. Suppose f�j j j 2 J g satisfies sandwiching, and let T be
an algebraic regular neighborhood of f�j j j 2 J g. Then each edge splitting of T is
sandwiched by f�j j j 2 J g.

Proof Assume there exists some edge e of T and some j 2 J such that splitting
from e is not sandwiched by �j . Let � denote the splitting from e .

Let V be some V0 –vertex of T whose orbit encloses �j . The convex hull of all
translates of V is a G –invariant subtree of T . The assumption that � is not sandwiched
by �j implies that all translates of V lie on one side of e , so that e is not in the convex
hull of all translates of V . This implies that T is not a minimal G –tree, a contradiction
to T being an algebraic regular neighborhood.

Proof of Theorem 10.1 First we prove the theorem in the case that no �j is an
isolated splitting, ie no �j has intersection number zero with every other splitting in the
collection. We will show that the edge splittings of T1 and T2 are isomorphic. Then
by a uniqueness result (see Corollary 6.7), T1 and T2 are G–isomorphic. Assume
(for contradiction) that T1 and T2 have different edge splittings. By “different edge
splittings,” we mean that T1 (or T2 ) has an edge splitting not isomorphic to any edge
splitting in T2 (or T1 ), or that T1 (or T2 ) has strictly more edge orbits than T2 (or
T1 ) yielding splittings in a given isomorphism class.

Let � be some edge splitting of T1 , call it � , that is not in T2 (in the sense described
above). As each �j is enclosed by some V0 –vertex of T1 , each �j has intersection
number zero with � . Moreover, by Lemma 10.3, � is sandwiched by each †.Xj /. By
condition number 2 of the definition of algebraic regular neighborhood, � is enclosed
by some V1 –vertex of T2 , so that we can refine T2 by adding one edge orbit which
represents � .

By Lemma 10.2, we can apply the above procedure simultaneously for all edge splittings
of T1 that are not in T2 . Let the tree T21 denote a tree obtained from T2 by splitting
at V1 –vertices for each edge splitting of T1 that was not already in T2 . When splitting
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at a V1 –vertex, color both endpoints of the new edge as V1 –vertices. Define T12

similarly. T12 and T21 may have infinitely many edge orbits, but by Corollary 6.7,
T12 and T21 are isomorphic G –trees.

If T21 has an edge e not in T2 , then when adding in e , we would have split T2 at
a V1 –vertex. Under the isomorphism from T21 to T12 , the edge e must map to an
original edge of T1 , so the isomorphism must identify a V1 –vertex of T21 with an
original V0 –vertex of T1 . Pick some splitting �k enclosed by that V0 –vertex. By
the isomorphism, �k is enclosed by a V1 –vertex of T2 , and hence has intersection
number zero with every splitting in f�j j j 2 J g, so that �k is an isolated splitting.
This contradicts the assumption that none of the splittings in f�j j j 2 J g are isolated.
Hence no edges were added to T2 , ie T21 D T2 .

A similar argument shows that T12D T1 . Hence the isomorphism between T21 to T12

is actually an isomorphism between T2 and T1 . If the isomorphism did not preserve
color, then as in the above paragraph, the isomorphism would identify a V0 –vertex
of one tree with a V1 vertex of another, and hence one of the �j ’s would be isolated.
This completes the proof of uniqueness of algebraic regular neighborhoods, in the case
where no �j is isolated.

Second, we prove the theorem in the case where f�j jj 2J g has some isolated splittings.
For each V0 –vertex in an orbit corresponding to an isolated �j in the definition of
algebraic regular neighborhood, forget the vertex. This leaves an edge bounded by two
V1 –vertices and yielding a splitting isomorphic to �j . Let T 0

1
denote the resulting tree.

Define T 0
2

similarly.

If all the �j ’s are isolated, then no V0 –vertices remain, so T 0
1

and T 0
2

are compatibility
trees for f�j j j 2 J g. Then Corollary 6.7 proves that T 0

1
and T 0

2
are G –equivariantly

isomorphic.

If not all of the �j ’s are isolated, consider each edge splitting in T 0
1

that is not in T 0
2

.
Without loss of generality, we can take each such edge orbit to consist of edges where
one endpoint is V0 and the other is V1 (as opposed to edges bounded by two V1 –
vertices, resulting from a forgotten V0 –vertex). Now apply the above procedure to T 0

2

and T 0
1

to obtain T 0
21

and T 0
12

, and an isomorphism from T 0
21

to T 0
12

. If T 0
21
¤ T 0

2
or

T 0
12
¤ T 0

1
, then the isomorphism from T 0

21
to T 0

12
must identify a V0 and a V1 –vertex.

This is impossible, as the non-forgotten V0 –vertices are not isolated. Similarly, the
isomorphism from T 0

21
to T 0

12
must preserve color. Hence we get a G–equivariant,

color preserving isomorphism from T 0
2

to T 0
1

.

To get an isomorphism from T2 to T1 , add a V0 –vertex in the middle of every edge
bounded by two V1 –vertices. This completes the proof of uniqueness of algebraic
regular neighborhoods.
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11 Mixed almost invariant sets when G is finitely generated

We can also construct minimal cubings for finite collections of “mixed” almost invariant
sets, where some of the almost invariant sets have finitely generated stabilizers, and the
rest arise from splittings.

Theorem 11.1 Let G be a finitely generated group with any finite collection fXi j

i D 1; : : : ;mg of Hi –almost invariant subsets, where each Hi is finitely generated,
each Xi is nontrivial, and

Sm
iD1†.Xi/ is in very good position. Let f�j j j D1; : : : ; ng

be any finite collection of pairwise nonisomorphic splittings of G . For each j , let
Yj be a Kj –almost invariant set arising from �j , where each Kj is not finitely
generated. Assume that fX1; : : : ;Xm;Y1; : : : ;Yng satisfies sandwiching. Let † WDSm

iD1†.Xi/[
Sn

jD1†.Yj /. Then there exists a CAT.0/ cubical complex L, with a
bijective correspondence between † and the set of oriented hyperplanes of L, such
that two elements of † cross if, and only if, their corresponding hyperplanes cross.

To prove Theorem 11.1, we will apply the proof of Theorem 8.7, with a few minor
modifications.

Lemma 11.2 Let † be as in Theorem 11.1. The relation � on † given by

A� B()A� B or A\B� is the only small corner of the pair .A;B/

is well-defined, and partially orders †.

Proof Since G is finitely generated, a corner of the pair .A;B/ is Stab.A/–finite if,
and only if, the corner is Stab.B/–finite of [23, Lemma 2.3]. Hence “smallness” of a
corner is well-defined.

Next we claim that if a pair .A;B/ has two small corners, then one is empty. Suppose
two corners of .A;B/ are small. By Lemma 6.1, Stab.A/ and Stab.B/ are commensu-
rable. Since finite index subgroups of finitely generated groups are finite generated, and
since we are assuming that the Hi ’s are finitely generated and the Kj ’s are not finitely
generated, this implies either A;B 2

Sm
iD1†.Xi/ or A;B 2

Sn
iD1†.Yj /. In the first

case, since
Sm

iD1†.Xi/ is in very good position, we must have an empty corner of
the pair .A;B/. In the second case, since no two Yj ’s yield isomorphic splittings, we
must have A;B 2†.Yj / for the same j , and hence one corner of .A;B/ is empty.

Finally we show that � defines a partial order on †. Since
Sm

iD1†.Xi/ is in very
good position, The relation �, when restricted to

Sm
iD1†.Xi/, is identical to inclusion.

Now the proof of Corollary 6.5 shows that � defines a partial order on all of †.
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Lemma 11.3 Let † be as in Theorem 11.1. For all A;B 2†, there are only finitely
many C 2† such that A� C � B .

Proof Since G and all the Hi are finitely generated, for all A;B 2†.Xi/, there are
only finitely many C 2 †.Xi/ such that A � C � B by [24, Lemma 1.15]. Since
each Yj comes from a splitting, it follows that for all A;B 2 †.Yj /, there are only
finitely many C 2†.Xi/ such that A� C � B .

By the proof of Proposition 7.4, for all A;B 2†, only finitely many C 2† satisfy
A� C � B .

To prove Theorem 11.1, apply the construction laid out in Section 8.4. The only
other modification needed is to note that since

Sm
iD1†.Xi/ is in very good position,

each †.Xi/ is nested. This guarantees that the Ak ’s – from part (5) of the proof that
V in Theorem 8.11 satisfies DCC – are nested.

Corollary 11.4 Let G be a finitely generated group with any finite collection fXi j

i D 1; : : : ;mg of Hi –almost invariant subsets, where each Hi is finitely generated,
each Xi is nontrivial, and

Sm
iD1†.Xi/ is in very good position. Let f�j j j D1; : : : ; ng

be any finite collection of pairwise nonisomorphic splittings of G . For each j , let
Yj be a Kj –almost invariant set arising from �j , where each Kj is not finitely
generated. Assume that fX1; : : : ;Xm;Y1; : : : ;Yng satisfies sandwiching. Let † WDSm

iD1†.Xi/[
Sn

jD1†.Yj /. Then we can put fX1; : : : ;Xm;Y1; : : : ;Yng in very good
position.

I now briefly describe how to use Theorem 11.1 to construct an algebraic regular
neighborhood of any finite collection fXi j iD1; : : : ;mg of Hi –almost invariant subsets
in good position, where G and all the Hi ’s are finitely generated. For the definition of
an algebraic regular neighborhood, see [25, Definition 6.1]. First apply [19, Section 3] to
construct a minimal cubing for the Xi ’s, and to put them in very good position. Note that
the existence of a minimal cubing for the Xi ’s implies that the Xi ’s satisfy sandwiching.
Next, apply Theorem 11.1 to produce a minimal cubing for fXi j i D 1; : : : ;mg, and
construct T from Section 9. To prove that T is an algebraic regular neighborhood of
the Xi ’s, note that, with the exception of the proof of Lemma 9.3, all the arguments
from the proof of Theorem 9.1 still work. To prove the appropriate analogue of
Lemma 9.3, let � be any splitting of G having intersection number zero with each Xi ,
and let X be an H –almost invariant set arising from � . Then apply Theorem 11.1 to
fXi j i D 1; : : : ;mg[ fX g.
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