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Motivic twisted K –theory

MARKUS SPITZWECK

PAUL ARNE ØSTVÆR

This paper sets out basic properties of motivic twisted K–theory with respect to
degree three motivic cohomology classes of weight one. Motivic twisted K–theory
is defined in terms of such motivic cohomology classes by taking pullbacks along
the universal principal BGm–bundle for the classifying space of the multiplicative
group scheme Gm . We show a Künneth isomorphism for homological motivic
twisted K–groups computing the latter as a tensor product of K–groups over the
K–theory of BGm . The proof employs an Adams Hopf algebroid and a trigraded
Tor-spectral sequence for motivic twisted K–theory. By adapting the notion of an
E1–ring spectrum to the motivic homotopy theoretic setting, we construct spectral
sequences relating motivic (co)homology groups to twisted K–groups. It generalizes
various spectral sequences computing the algebraic K–groups of schemes over
fields. Moreover, we construct a Chern character between motivic twisted K–theory
and twisted periodized rational motivic cohomology, and show that it is a rational
isomorphism. The paper includes a discussion of some open problems.

14F42, 55P43, 19L50; 14F99, 19D99

1 Motivation

Topological K–theory has many variants which have all been developed and exploited
for geometric purposes. Twisted K–theory or “K–theory with coefficients” was
introduced by Donovan and Karoubi in [11] using Wall’s graded Brauer group. More
general twistings of K–theory arise from automorphisms of its classifying space of
Fredholm operators on an infinite dimensional separable complex Hilbert space. Of
particular geometric interest are twistings given by integral 3–dimensional cohomology
classes. The subject was further developed in the direction of analysis by Rosenberg
in [41].

Twisted K–theory resurfaced in the late 1990’s with Witten’s work on classification of
D-brane charges in type II string theory [54]. Fruitful interactions between algebraic
topology and physics afforded by twisted K–theory continues today; see eg Ober-
wolfach Rep. 3, no. 4 [9], Atiyah and Segal [4; 5], Bouwknegt et al [8] and Tu, Xu
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and Laurent-Gengoux [47]. The work of Freed, Hopkins and Teleman [15] relates the
twisted equivariant K–theory of a compact Lie group G to the “Verlinde ring” of its
loop group. For a recent survey of twisted K–theory, refer to Karoubi [26].

We are interested in twistings of the motivic K–theory spectrum KGL in the algebro-
geometric context of motivic homotopy theory; see Dundas et al [13] and Voevod-
sky [48]. It is not evident precisely how our homotopical approach relates to the more
algebraic work of Walker [53] of twisted K–theory with respect to central simple
algebras over fields. Twisting K–theory with respect to Gm–gerbes in the étale topology
along the lines of this paper seems to produce a theory – twisted étale K–theory –
which compares more transparently with [53]. It would be interesting to have a precise
comparison result between these versions of twisted K–theory. Over the complex
numbers C, or more generally any field with a complex embedding, our motivic twisted
K–theory specializes to twisted K–theory under realization of complex points. The
idea of twisting (co)homology theories has been used to great effect in topology. A
classical example is cohomology with local coefficients, which can be used to formulate
Poincaré duality and the Thom isomorphism for nonorientable manifolds. An analogous
motivic version of twisted Poincaré duality is subject to future work.

Ando, Blumberg and Gepner [3] use the formalism of 1–categories in order to
construct twisted forms of multiplicative generalized (co)homology theories, and May
and Sigurdsson [30] employ parametrized spectra to the same end. Their setups suggest
the existence of a deep theory of “motivic twisted cohomology theories” which goes
beyond the scope of this paper. Twisted K–theory is the first natural example of such
a twisted cohomology theory and we set out its basic properties in this paper.

2 Main results

The isomorphism classes of principal BS1 –bundles over a topological space X identi-
fies canonically with the homotopy classes of maps from X to the Eilenberg–Mac Lane
space K.Z; 3/. The second delooping BBS1 of the circle gives a concrete model for
K.Z; 3/. We begin the paper by considering the analogous setup in motivic homotopy
theory.

Let X be a motivic space and Gm the multiplicative group scheme over a noetherian
base scheme S of finite dimension (usually implicit in the notation).
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For any map � W X! BBGm define X� as the homotopy pullback along �! BBGm

(which can be thought of as a universal principal BGm–bundle):

X� //

��

�

��

X
�

// BBGm

With this definition there is a naturally induced action

P1 �X� ! X� :

Here we use implicitly the motivic weak equivalence between BGm and the infinite
projective space P1 . By passing to motivic suspension spectra we get a naturally
induced map

†1P1C ^†
1X�C!†1X�C

displaying †1X�C as a module over the motivic ring spectrum †1P1C . (We defer the
somewhat technical definition of this module structure to Section 3.)

When S is a smooth scheme over a field we can identify the homotopy classes of
maps from X to BBGm with the third integral motivic cohomology group MZ3;1.X/

of weight one. This group is in fact trivial for smooth schemes of finite type over S

by Suslin and Voevodsky [46, Corollary 3.2.1]. On the other hand, it is nontrivial for
motivic spheres, eg S3;1 .

Denote by BGL the classifying space of the infinite Grassmannian over S . Suppose
f� W X ! P1 and f� W X ! Z � BGL represent � 2 MZ2;1.X/ and � 2 KGL�.X/,
respectively. Then the composite map

X
�
! X�X

f��f�
����! P1 � .Z�BGL/! Z�BGL

represents an element � ˝ � 2 KGL�.X/. The above defines the action of the Picard
group on the K–theory ring of X. On the level of motivic spectra there exists a
corresponding composite map

†1P1C ^KGL! KGL^KGL! KGL;

where the second map is the ring multiplication on KGL. The first map is obtained via
adjointness from the multiplicative map BGm! f1g �BGL that sends a line bundle
represented by a map into P1 to its class in the Grothendieck group of all vector
bundles by Spitzweck and Østvær [44, (3)]. Thus the motivic K–theory spectrum KGL

is a module over †1P1C .
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We are now ready to define our main objects of study in this paper. The distinction
between homological and cohomological versions of motivic twisted K–theory is
rooted in standard nomenclature for twisted K–theory.

Definition 2.1 For � W X! BBGm define the motivic twisted

� homological K–theory of � by KGL� �†1X�C ^†1P1
C

KGL.

� cohomological K–theory of � by KGL� � Hom†1P1
C
.†1X�C;KGL/.

The smash product in the definition of KGL� is derived in the sense that it is formed in
the homotopy category of highly structured modules over †1P1C . In order to make
sense of the derived smash product, we implicitly use a closed symmetric monoidal
model for the motivic stable homotopy category; see Jardine’s work [25] on motivic
symmetric spectra, for example. The internal hom in the definition of KGL� is also
formed in the derived sense. Later in the paper we prove that homotopy equivalent maps
from X to BBGm give rise to isomorphic motivic twisted K-theories. In addition, the
derived style definition of KGL� requires a strict ring model for KGL as a †1P1C –ring
spectrum. Such a model was only recently constructed by Röndigs, Spitzweck and
Østvær [40] using the Bott tower

(1) †1P1C
ˇ
!†�2;�1†1P1C

†�2;�1ˇ
������! � � � :

Similarly, in the cohomological setup, the hom-object appearing in the definition of
KGL� is formed in the homotopy category of †1P1C –modules.

An alternate definition of KGL� can be made precise by simply inverting the .2; 1/
self-map of †1X�C obtained from the Bott map realizing K–theory KGL as the Bott
inverted infinite projective space. (The Bott map ˇ is indeed a †1P1C –module map
by construction.) Independent proofs of the latter result have appeared in Gepner and
Snaith [17] and Spitzweck and Østvær [44]. For other discussions of the Bott inverted
model for K–theory we refer to Naumann, Spitzweck and Østvær [32; 33] and Röndigs,
Spitzweck and Østvær [40]. Making use of the Bott map provides also an alternate
definition of KGL� . We shall be using this viewpoint on a number of occasions in this
paper.

Now suppose the twisting class � for X is null and the base scheme S is regular. In
Section 3 we show that the homotopy fiber X� identifies with the product P1 �X

and KGL� identifies with the smash product †1XC ^ KGL. Accordingly, we may
view motivic twisted K–theory as a generalization of K–theory. In the course of
the paper we shall work out some of the differences and similarities arising from this
generalization, and suggest some open problems.
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For a general twist � it turns out that the motivic twisted K–theory spectra KGL�

and KGL� do not acquire ring structures in the motivic stable homotopy category. In
particular, the motivic twisted K–groups KGL�� do not form a ring in general. (Here
we use the standard motivic grading with a topological degree and a weight.) The lack
of a product structure tends to complicate computations. On the other hand we establish
two far more powerful tools for performing computations. First we prove a Künneth
isomorphism for homological motivic twisted K–groups and second we construct
spectral sequences relating motivic (co)homology to motivic twisted K–groups.

By applying the Tor-spectral sequence in Dugger and Isaksen [12, Proposition 7.7]
to the commutative motivic ring spectrum †1P1C ^KGL and its modules KGL and
†1X�C ^KGL we arrive at the strongly convergent trigraded spectral sequence

(2) Tor
KGL�.P1/
a;.b;c/

.KGL�.X
� /;KGL�/) KGL�aCb;c.X/:

Here we should infer that †1P1C ^ KGL and KGL are stably cellular motivic ring
spectra, also known as “Tate spectra” [32]. To begin with, the motivic K–theory
spectrum KGL is stably cellular [12, Theorem 6.2]. The suspension spectrum of the
pointed infinite projective space is also stably cellular by [12, Propositions 2.13, 2.17,
Lemma 3.1] since any filtered colimit of stably cellular motivic spaces is stably cellular
[12, Definition 2.1(3)]. Hence the smash product †1P1C ^KGL is cellular. (Although
the case of fields is emphasized in [12] the results we employ from loc. cit. hold over
arbitrary noetherian base schemes of finite dimension.)

Theorem 2.2 The edge homomorphism in the Tor-spectral sequence (2) induces a
natural isomorphism

KGL��.X/Š KGL�.X
� /˝KGL�.P1/ KGL�:

This theorem is the motivic analogue of the corresponding topological result shown
by Khorami [27]. Theorem 2.2 follows from Equation (2) by proving the Tor-group
Tor

KGL�.P1/
a;.b;c/

.KGL�;KGL�.X
� // is trivial for a > 0. It is worthwhile to point out

that KGL� is not a flat KGL�.P1/–module, that is, the vanishing result for the
Tor-groups does not hold for an “obvious” reason. Our proof of the vanishing em-
ploys flatness of the ring map KGL�.P1/! KGL�KGL and the homotopy theory of
Hopf algebroids. More precisely, it is shown that the composite map KGL�.P1/!
KGL�KGL! KGL� satisfies the Landweber exactness criterion relative to the Hopf
algebroid .KGL�.P1/;KGL�KGL˝KGL� KGL�.P1//. Furthermore, KGL�.X

� / is a
comodule over the same Hopf algebroid, and the Tor-groups are computed by a cofibrant
replacement in the projective model structure on the category of unbounded chain
complexes of such comodules. The Hopf algebroid in question is an “Adams Hopf

Algebraic & Geometric Topology, Volume 12 (2012)



570 Markus Spitzweck and Paul Arne Østvær

algebroid.” This notion is recalled in Section 7 together with some background from
stable homotopy theory. By combining these facts we show the desired vanishing of
the Tor-groups in positive degrees. The model structure allows us to circumvent an
explicit construction employed in the topological situation [27].

Algebraic K–theory is closely related to motivic cohomology and more classically to
higher Chow groups via Chern characters; see Bloch [6]. We shall briefly examine a
Chern character for motivic twisted K–theory with target twisted periodized rational
motivic cohomology

Ch� W KGL� ! PM�Q:

The construction of Ch� follows the setup for the Chern character for KGL in [33]. As
it turns out, the rationalization of Ch� is an isomorphism under a mild assumption on
the base scheme originating in the work of Cisinski and Déglise [10]. (We leave the
formulation of the corresponding result for KGL� to the main body of the paper.)

Theorem 2.3 For geometrically unibranched excellent base schemes the rational
Chern character

Ch�QW KGL
�
Q! PM�Q:

is an isomorphism in the homotopy category of modules over †1P1C .

Section 4 provides streamlined proofs of the results reviewed in the above. In the same
section we work out explicit computations of the motivic twisted K–groups of the
motivic .3; 1/–sphere. Over finite fields the motivic twisted K–groups in positive
degrees 2k � 1 and 2k turn out to be finite cyclic groups of the same order. This
amusing computation is closely related to Quillen’s computation of the K–groups of
finite fields. Some of the basic facts concerning flat Adams Hopf algebroids required
in Section 4 are deferred to Section 7.

In Section 5 we establish powerful integral relations between motivic (co)homology
and motivic twisted K–theory in the form of spectral sequences

MZ�.†1XC/H) KGL��.X/;

MZ�.†1XC/H) KGL�� .X/:

For closely related papers on spectral sequences computing (nontwisted) K–groups in
terms of motivic cohomology groups, refer to Bloch and Lichtenbaum [7], Friedlander
and Suslin [16], Grayson [18], Levine [28], Suslin [45] and Voevodsky [50]. The
question of strong convergence of these spectral sequences is a tricky problem. Our
approach involves the very effective motivic stable homotopy category SH.S/Veff . We
define it as the smallest full subcategory of the motivic stable homotopy category SH.S/
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that contains suspension spectra of smooth schemes of finite type over S and is closed
under extensions and homotopy colimits. This is not a triangulated category; however,
it is a subcategory of the effective motivic stable homotopy category SH.S/eff . (In fact,
it is the homologically positive part of a t –structure on SH.S/eff .) The very effective
motivic stable homotopy category is of independent interest. We show that the algebraic
cobordism spectrum MGL lies in SH.S/Veff . When S is a field of characteristic zero,
we show that the connective K–theory spectrum kgl lies in SH.S/Veff . This is a key
input for showing strong convergence of the spectral sequences.

The main body of the paper ends in Section 6 with a discussion of open problems. In
particular, we suggest extending the techniques in this paper to the settings of both
equivariant K–theory and hermitian K–theory.

For legibility, bigraded motivic homology theories are written with a single grading.
The precise meaning of the gradings should always be clear from the context.

3 Main definitions and first properties

In this section we first put the definitions of the motivic twisted K–theory spectra on
rigorous grounds. This part deals with model structures and classifying spaces. The
constructions are rigged so that smashing with the sphere spectrum over †1P1C yields
a useful “untwisting” result detailed in Lemma 3.6. For algebro-geometric reasons we
shall explain below, some of the results require mild restrictions on the base scheme.

Let Spc be the category of motivic spaces on Sm, ie simplicial presheaves on the
Nisnevich site of smooth schemes of finite type over S , with the injective motivic
model structure. This model structure satisfies the monoid axiom by Schwede and
Shipley [42]. Hence for any monoid G in Spc, the category Mod.G/ of G –modules
acquires a model structure. (In which the fibrations and weak equivalences of modules
are just maps which are fibrations and weak equivalences in the underlying model
structure.) For a map G ! H of monoids there is an induced left Quillen functor
Mod.G/! Mod.H /. In particular, the pushforward of a G–module X along the
canonical map G!� is the quotient X=G . The homotopy quotient is defined similarly
by first taking a cofibrant replacement of X in Mod.G/.

We denote by ModY.G/ the category of G–modules in the slice category Spc=Y

comprised of motivic spaces over a motivic space Y. It should be noted that ModY.G/

is a model category: To begin with, Spc=Y inherits an evident model structure from
the motivic model structure on Spc which turns the pairing Spc�Spc=Y! Spc=Y

sending .X;X0!Y/ to .X�X0/! X0!Y into a Quillen bifunctor. Moreover, every
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object of Spc is cofibrant. Thus the existence of the model structure on ModY.G/

follows from a relative version of [42, Theorem 3.1.1]. For a G –module X and a map
of motivic spaces Y0! Y, note that X 2ModX=G.G/ and there is a pullback functor
ModY.G/!ModY0.G/.

In what follows we specialize to the commutative monoid BGm' P1 . As a model for
the classifying space BP1 of P1 we may use the standard bar construction. Viewing
� as a P1–module we are entitled to a cofibrant replacement Q!� in Mod.P1/.
The homotopy quotient Q=P1 gives an alternative model for the classifying space
of P1 . In the proof of Lemma 3.6 we find it convenient to use the latter.

If � W X! Q=P1 is a fibration in Spc, then the homotopy pullback

X� � X�Q=P1 Q 2ModX.P1/

is a P1–module over X, in particular a P1–module. Suppose � W X! .Q=P1/f is
a map in Spc with target some fibrant replacement of Q=P1 . The model structure
ensures there exists a functorial fibrant replacement .Q/f of Q in Mod.Q=P1/f .P1/.
Using these fibrant replacements we define X� by the homotopy pullback

X� � X�.Q=P1/f .Q/
f
2ModX.P1/:

Working in motivic symmetric spectra we note that †1X�C is a strict †1P1C –module.
(Recall that †1 is a left Quillen functor for the injective motivic model structure [25].)

The motivic twisted homological K–theory of � W X! .Q=P1/f in Spc is defined as
the derived smash product

KGL� �†1X�C ^†1P1
C

KGL:

in the homotopy category of †1P1C –modules. For the strict module structure on KGL

we use the Bott inverted model discussed in [40]. Likewise, by making the same fibrant
replacements, the motivic twisted cohomological K–theory of � W X! .Q=P1/f is
defined as the derived internal hom

KGL� � Hom†1P1
C
.†1X�C;KGL/:

In the following we let BBGm denote the homotopy quotient .Q=P1/f . Here Q

can be modeled as an E1–monoid over P1 and thus we may assume BBGm is an
E1–monoid.

Proposition 3.1 Suppose S is a regular scheme and � W X! BBGm . If � is null then
KGL� is isomorphic to †1XC ^KGL in the motivic stable homotopy category.
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Proof Corollary 3.4 identifies X�C with the smash product of motivic pointed spaces
XC^P1C . This follows because of the assumption on � the former is obtained by first
taking the homotopy pullback of the diagram

�! BBGm �

and second forming the homotopy pullback along the canonical map X!�. Using
this we obtain the isomorphisms

†1X�C ^†1P1
C

KGLŠ .†1XC ^†
1P1C /^†1P1

C
KGLŠ†1XC ^KGL:

The regularity assumption on the base scheme S enters the proof of Corollary 3.4,
which we discuss next.

Recall from [32, Section 2] the definition of the simplicial Picard functor �Pic on Sm:
For a scheme X in Sm, let Pic.X / denote the associated Picard groupoid. Then the
pseudo-functor X 7! Pic.X / can be strictified to a presheaf on Sm. Applying the
nerve functor to any such strictification defines the simplicial presheaf �Pic on Sm.

Lemma 3.2 Suppose S is a normal scheme. Then the simplicial Picard functor �Pic
is a Nisnevich local A1 –invariant simplicial presheaf.

Proof Nisnevich localness holds because the groupoid valued Picard functor Pic satis-
fies flat descent. And A1 –invariance holds because Pic is A1 –invariant by assumption.
For more details, refer to [32, Section 2].

We remark that �Pic is a commutative monoid in Spc by strictification.

Lemma 3.3 Suppose S is a regular scheme. Applying the classifying space functor
sectionwise to �Pic in simplicial sets determines a Nisnevich local A1 –invariant
simplicial presheaf.

Proof Since S is regular, it is well known that the cohomology group H 2
Nis.X;Gm/

is trivial for every X in Sm. For an outline of a proof, we note that the sheaf M�
X

of
meromorphic functions on X and the sheaf Z1

X
of codimension 1 cycles on X are

flasque in the Nisnevich topology. Thus, using [19, Section 21.6], the vanishing of
H 2

Nis.X;Gm/ follows from the exact sequence

(3) 0!O�X !M�X ! Z1
X ! 0:

Let Bs�Pic be the sectionwise classifying space of �Pic and 'W Bs�Pic!RBs�Pic a
Nisnevich local replacement. Then �i..RBs�Pic/.X //DH 2�i

Nis .X;Gm/ for 0� i � 2.
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It follows that ' is a sectionwise equivalence. Thus the sectionwise classifying space
construction is Nisnevich local (sectionwise equivalent to every Nisnevich local fibrant
replacement) and A1 –invariance is preserved.

Corollary 3.4 If S is a regular scheme then the homotopy pullback of the diagram

�! BBGm �

is isomorphic to P1 in the motivic homotopy category.

Proof Let Hs.S/ denote the homotopy category of simplicial presheaves on Sm with
the objectwise model structure, and let H.S/ denote the motivic homotopy category.
Then the inclusion H.S/!Hs.S/ arises from a right Quillen functor. Therefore, in
order to compute the homotopy pullback of �! BBGm � in the motivic homotopy
category, it is sufficient to compute the homotopy pullback of its image in Hs.S/.

By Lemma 3.3, Bs�Pic is an A1 – and Nisnevich local replacement of BBGm (for
notation see the proof of Lemma 3.3). Thus Bs�Pic is a model for the image of BBGm

in Hs.S/. The homotopy pullback of �!Bs�Pic � in Hs.S/ is clearly BGm .

Remark 3.5 The previous corollary would have been trivially true provided the infinity
category of motivic spaces had been an infinity topos in the sense of Lurie [29]. Alas,
this is not true for motivic spaces: Recall that in any infinity topos the loop functor
provides an equivalence between the connected 1–truncated pointed objects and discrete
group objects. In motivic homotopy theory, the simplicial loop space of a 1–truncated
pointed motivic space is strongly A1 –invariant. Recall also that A1 –invariant and
strongly A1 –invariant sheaves of groups are different notions; see Morel [31]. A
discrete motivic group object is synonymous with an A1 –invariant sheaf of groups.
This shows that the equivalence does not hold in the motivic setting. We thank J Lurie
for this remark. It is unclear if Corollary 3.4 extends to an interesting class of base
schemes. We note that the sequence (3) is exact if and only if X is a locally factorial
scheme. However, a smooth scheme of finite type over a locally factorial scheme need
not be locally factorial in general. Thus we cannot expect that the group H 2

Nis.X;Gm/

is trivial over every locally factorial base scheme. We thank M Levine for clarifying
this remark.

Lemma 3.6 There is an isomorphism of †1P1C –modules †1X�C ^†1P1
C

1 Š
†1XC where †1P1C ! 1 is induced by the canonical map P1!�.

Proof For a fibration Y0!Y in Spc the pullback functor Spc=Y! Spc=Y0 is a left
Quillen functor for the injective motivic model structure on Spc. Indeed, it has a right
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adjoint and it preserves monomorphisms and weak equivalences. (Recall that Spc is
right proper.) Thus we obtain a left Quillen functor

ModY.P1/!ModY0.P1/:

This functor commutes with pushforward along the canonical map P1!� and thus it
preserves homotopy quotients by P1 . We deduce that the natural map QX�=P1! X

is a weak equivalence, where QX� ! X� is a cofibrant replacement in ModX.P1/.
On the other hand, the forgetful functor ModX.P1/!Mod.P1/ is also a left Quillen
functor. Combining the above findings shows there is an isomorphism

X� �L
P1 � Š X:

Applying the motivic symmetric suspension spectrum functor yields the result.

Next we consider some basic functorial properties of motivic twisted K–theory. First
we note there exists a functor

KGL�W Ho.Spc=BBGm/! SH.S/:

Note here that for a map from � W X! BBGm to � 0W X0! BBGm there is an induced
map between pullbacks X�! .X0/�

0

of P1–modules, which induces a map of motivic
symmetric spectra KGL� !KGL�

0

. Clearly this factors through the homotopy category
of motivic spaces over BBGm . In particular, if � and � 0 are A1 –homotopy equivalent
maps, then KGL� and KGL�

0

are isomorphic. We also note that KGL� can be enhanced
to a functor from Ho.Spc=BBGm/ taking values in the homotopy category of highly
structured KGL–modules. Likewise, in the cohomological setup, there exists a functor

KGL�W Ho.Spc=BBGm/
op
! SH.S/:

Some parts of our discussion of motivic twisted K–theory rely on the notion of a
“motivic E1–ring spectrum.” For every operad O in motivic symmetric spectra, the
category of O–algebras acquires a combinatorial model structure. An account of this
model structure has been written up by Hornbostel [21]. Motivic symmetric spectra
are equipped with its stable flat positive model structure. In this setup there exists
model structures for the commutative motivic operad. A motivic E1–ring spectrum
is an algebra over a †–cofibrant replacement of the commutative motivic operad.
Motivic E1–ring spectra and strict commutative motivic ring spectra are related by a
Quillen equivalence [21]. For our purposes we may therefore use these two notions
interchangeably.
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4 A Künneth isomorphism for motivic twisted homological
K –theory

An explicit computation furnishes a natural base change isomorphism expressing the
KGL–homology of P1 in terms of KGL� and unitary topological K–theory

(4) KGL�.P1/Š KGL�˝KU� KU�.CP1/:

The multiplicative structure on KGL�.P1/ induced from the H –space structure on P1

can be read off from this isomorphism by using the ring structure on KU�.CP1/ and
the coefficient ring. We refer to the work of Ravenel and Wilson [37] for a description
of the ring structure on KU�.CP1/ in terms of the multiplicative formal group law.

An application of motivic Landweber exactness [32, Proposition 9.1] shows there is a
natural base change isomorphism

(5) KGL�KGLŠ KGL�˝KU� KU�KU:

The multiplicative structure on KGL�KGL induced from the ring structure on KGL

can be read off from this isomorphism by using the ring structure on KU�KU and the
coefficient ring. For a description of the Hopf algebra KU�KU we refer to the work of
Adams and Harris [1, Part II, Section 13].

Lemma 4.1 Under the naturally induced composite map

KGL�.P1/! KGL�KGL! KGL�;

the generator ˇi maps to 1 if i D 0; 1 and to 0 if i ¤ 0; 1.

Proof We note that KGL�.P1/ is a free KGL�–module generated by elements ˇi for
i � 0 [44]. Thus the claim follows from the analogous result for unitary topological
K–theory of CP1 (see [27] for example) by applying the functor KGL�˝KU�� and
appealing to the base change isomorphisms (4) and (5).

Lemma 4.1 verifies the previous assertion that KGL� is not a flat KGL�.P1/–module.
Next we establish a result which is pivotal for our proof of the vanishing of the Tor-
groups discussed in Section 2.

Lemma 4.2 The naturally induced map KGL�.P1/! KGL�KGL is a flat ring map.

Proof In [17; 44] it is shown that KGL is isomorphic to the Bott inverted motivic
suspension spectrum of P1C . Thus the map in question is a localization. In particular
it is flat. For an alternate proof, combine the base change isomorphisms (4) and (5)
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with flatness of the naturally induced map KU�.CP1/! KU�KU. (This map is a
localization according to the topological analogue of our first argument, which is well
known and follows from the motivic result by taking complex points, or alternatively
by [27].)

In Proposition 7.3 we show that .KGL�.P1/;KGL�KGL˝KGL� KGL�.P1// has the
structure of a flat graded Adams Hopf algebroid. We refer the reader to Section 7 for
background on the notions and results appearing in the formulation and proof of the
following key result.

Theorem 4.3 The naturally induced composite map

KGL�.P1/! KGL�KGL! KGL�

is Landweber exact for the flat graded Adams Hopf algebroid

.KGL�.P1/;KGL�KGL˝KGL� KGL�.P
1//:

Proof By Lemma 7.6 it suffices to show that the left unit map

�KGL�.P1/W KGL�.P
1/! KGL�KGL˝KGL� KGL�.P

1/

Š .KGL�KGL˝KGL� KGL�.P
1//˝KGL�.P1/ KGL�.P

1/

! .KGL�KGL˝KGL� KGL�.P
1//˝KGL�.P1/ KGL�

for the displayed Hopf algebroid is flat (the target is canonically isomorphic to
KGL�KGL). Remark 7.4 provides more details on the Hopf algebroid structure.

The left unit map �KGL�.P1/ and its topological analogue �KU�.CP1/ determines a
commutative diagram where the horizontal maps are the base change isomorphisms
given in (4) and (5):

KGL�.P1/

�KGL�.P1/

��

Š
// KGL�˝KU� KU�.CP1/

KGL�˝�KU�.CP1/
��

KGL�KGL
Š

// KGL�˝KU� KU�KU

Khorami [27] has shown that �KU�.CP1/ coincides with the naturally induced map
from KU�.CP1/ to KU�KU. By motivic Landweber exactness [32] we deduce that
�KGL�.P1/ coincides with the naturally induced flat map in Lemma 4.2. This finishes
the proof.
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By Landweber exactness the functor from comodules over KGL�KGL˝KGL�KGL�.P1/
to KGL�–algebras is exact (where KGL� is viewed with its KGL�.P1/–algebra struc-
ture induced by the projection P1!�). This observation is a crux input in the proof
of the next result.

Corollary 4.4 Suppose E is a comodule over KGL�KGL˝KGL� KGL�.P1/. The
group

Tor
KGL�.P1/
� .E;KGL�/

is trivial in positive degrees.

Proof Proposition 7.3 implies there exists a projective model structure on the category
of nonconnective chain complexes of KGL�KGL˝KGL� KGL�.P1/–comodules for the
set of dualizable comodules [22, Theorem 2.1.3]. The projective model structure is
proper, finitely generated, stable symmetric monoidal and satisfies the monoid axiom.
Moreover, a map is a cofibration if and only if it is a degreewise split monomorphism
with cofibrant cokernel. The cofibrant objects are retracts of certain sequential cell-
complexes described in detail in [22, Theorem 2.1.3]. These results are easily transferred
to the graded setting.

Due to the existence of the projective model structure we are entitled to a cofibrant
replacement QE!E (recall this is a projective weak equivalence and QE is cofibrant).
Proposition 7.3 shows that .KGL�.P1/;KGL�KGL ˝KGL� KGL�.P1// is a graded
Adams Hopf algebroid. This additional structure guarantees that every weak equivalence
in the projective model structure is a quasi-isomorphism [22, Proposition 3.3.1].

We claim that the Tor-groups in question are computed by the homology of the chain
complex

QE˝KGL�.P1/ KGL�:

The proof proceeds by comparing chain complexes of comodules over the tensor product
KGL�KGL˝KGL�KGL�.P1/ with chain complexes of KGL�.P1/–modules. Indeed, by
[22, Proposition 1.3.4] (cf the proof of [22, Theorem 2.1.3]), the generating cofibrations
are of such a form that QE is even cofibrant as a complex of KGL�.P1/–modules for
the usual projective model structure. (Note that the tensor factor KGL� need not be
cofibrantly replaced because the monoid axiom holds in the projective model structure.)

As noted earlier there exists an exact functor from the category of comodules over
KGL�KGL˝KGL� KGL�.P1/ to KGL�–algebras. We note that any such functor pre-
serves quasi-isomorphisms. In particular there is a quasi-isomorphism

QE˝KGL�.P1/ KGL� 'E˝KGL�.P1/ KGL�:

By combining the above we conclude that the Tor-groups vanish in positive degrees.
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By strong convergence of the spectral sequence (2) we are almost ready to conclude
the proof of the Künneth isomorphism in Theorem 2.2. It only remains to observe that
KGL�.X

� / is a comodule over the Hopf algebroid

.KGL�.P1/;KGL�KGL˝KGL� KGL�.P
1//:

To begin with, the naturally induced action of P1 on X� yields a map

KGL�.P1 �X� /! KGL�.X
� /:

Since KGL�.P1/ is free over the coefficient ring KGL� there is an isomorphism

KGL�.P1 �X� /Š KGL�.P1/˝KGL� KGL�.X
� /:

It follows that KGL�.X� / is a module over KGL�.P1/. Using the unit map from the
motivic sphere spectrum 1 to KGL we get a map between motivic spectra

KGL^†1X�C Š KGL^ 1^†1X�C! KGL^KGL^†1X�C:

From this we immediately obtain the desired comodule map

KGL�.X
� /! KGL�KGL˝KGL� KGL�.X

� /

Š .KGL�KGL˝KGL� KGL�.P
1//˝KGL�.P1/ KGL�.X

� /:

This is clearly a coassociative and unital map between KGL�.P1/–modules.

Remark 4.5 As noted earlier the KGL�–module KGL�.P1/ is free on the genera-
tors ˇi for i � 0. Its multiplicative structure can be described in terms of power
series. Modulo the problem of computing the coefficient ring KGL� this leaves us
with investigating the K–theory of the homotopy fiber X� . On the other hand, an
inspection of the module structures in Theorem 2.2, cf Lemma 4.1, reveals there is an
isomorphism

KGL��.X/Š KGL�.X
� /=.ˇ0� 1; ˇ1� 1; ˇi/i�2:

In case � is the identity map on BBGm then KGL�.BBG�m/Š KGL� . We claim that
KGL��.BBGm/ is the trivial group. This follows by comparing the images of ˇ0 or ˇ1

in the respective tensor factors. For example, the class ˇ1 maps to the unit in KGL�
and to zero in KGL�.BBG�m/.

Next we turn to the constructions of the twisted Chern characters. The proof of our main
result Theorem 2.3 relies on results in [10; 33]. Let MQ denote the motivic Eilenberg–
Mac Lane spectrum introduced by Voevodsky [48]. (Refer to Dundas, Röndigs and
Østvær [14] for a definition of MQ viewed as a motivic functor.) It has the structure
of a commutative monoid in the category of motivic symmetric spectra [38; 39]. The
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periodization PMQ of MQ is also highly structured: Form the free commutative
MQ–algebra PMQ�0 on one generator in degree .2; 1/ (perform this in P1 –spectra of
simplicial presheaves of Q–vector spaces and then transfer the spectrum back to obtain
a strictly commutative ring spectrum). Inverting the same generator by following the
method in [40] produces the commutative monoid PMQ whose underlying spectrum
is the infinite wedge sum

W
i2Z†

2i;iMQ.

Lemma 4.6 There is an isomorphism of E1–algebras between PMQ and KGL^MQ.

Proof By the universal property of PMQ�0 there is a commutative diagram of MQ–
algebras:

†1P1C ^MQ

��

PMQ�0

77

// KGL^MQ

Here the MQ–algebra structure on †1P1C ^MQ is obtained from the unit map of
†1P1C and the identity map of MQ. The generator in degree .2; 1/ maps to the
canonical element in †1P1C ^MQ determined by the Bott element of †1P1C [44].
The diagonal map is an isomorphism. Inverting the generator and the Bott element
gives the desired isomorphism.

Lemma 4.6 furnishes an †1P1C –algebra structure on PMQ via the map

†1P1C ! KGL! KGL^MQŠ PMQ:

Combining Lemma 4.6 and the canonical ring map KGL! KGL^MQ we arrive at
the Chern character

(6) ChW KGL! PMQ

from algebraic K–theory to the periodized rational motivic Eilenberg–Mac Lane
spectrum. (This is a map of motivic ring spectra.) For any twist � , smashing (6)
with X� in the homotopy category of †1P1C –modules defines the twisted Chern
character

(7) Ch� W KGL� ! PM�Q:

As asserted in Theorem 2.3, the rationalization of (7) is an isomorphism for ge-
ometrically unibranched excellent base schemes. This follows by combining [10,
Corollary 15.1.6; 33, Theorem 10.1, Corollary 10.3].
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Similarly we define the cohomological Chern character

(8) Ch� W KGL� ! PM�Q

by taking internal hom-objects from †1X�C into the untwisted Chern character Ch. We
note that the rationalization of (8) is an isomorphism over geometrically unibranched
excellent base schemes provided †1X�C is strongly dualizable in Ho.†1P1C �Mod/.
Indeed, this follows immediately by smashing the rational isomorphism in (6) with the
dual of †1X�C .

Remark 4.7 In the topological setup, Atiyah and Segal [5] employed a different
method in order to construct a Chern character for twisted K–theory and a correspond-
ing theory of Chern classes. We leave the comparison of the two constructions as an
open question.

We end this section by outlining computations of nontrivial twisted K–groups for the
motivic .3; 1/–sphere. To begin with we allow the base scheme to be an arbitrary field.
In the interest of explicit computations in all degrees, we specialize to finite fields.

Recall the smash product decomposition S3;1DS2^Gm for the motivic .3; 1/–sphere.
Moreover, there is a homotopy pushout square of motivic spaces:

P1 //

��

�

��

� // S3;1

We shall consider the twist �nW S
3;1! BBGm corresponding to n times the canonical

map S3;1! BBGm . Precomposing with the map �! S3;1 produce null homotopic
twists on P1 and the point. In order to proceed we infer, leaving details to the interested
reader, there is a homotopy pushout diagram:

P1 �P1 //

��

P1 � .P1/n // P1

��

P1 // .S3;1/�n

The left vertical map is the projection on the first factor. The upper composite horizontal
map arise from embedding P1 into .P1/n along the diagonal map P1 � .P1/n and
using the H –space structure on the infinite projective space. With this in hand we get
an induced long exact sequence

(9) � � � !†2;1KGL�˚KGL�! KGL�˚KGL�! KGL�n
� .S

3;1/! � � � :
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Next we infer that the map between the direct sums in (9) is uniformly given by

(10) .a; b/ 7! .anˇC b;�b/:

Again we leave the details to the interested reader. (Note that (10) is compatible with
its evident topological counterpart.) From (9) we deduce the exact sequence

(11) K1˚K1!K1˚K1!K
�n

1
.S3;1/!K0˚K0!K0˚K0!K

�n

0
.S3;1/!0:

Using (11) and the fact that K0 is infinite cyclic for any field we read off the isomor-
phism

K
�n

0
.S3;1/Š Z=n;

where, in general, K�
i .X/ is shorthand for KGL�i;0.X/, i 2 Z. By specializing to a

finite field Fq and an odd integer i � 1, we deduce the exact sequence

(12) 0!K
�n

iC1
.S

3;1
Fq
/!Ki ˚Ki!Ki ˚Ki!K

�n

i .S
3;1
Fq
/! 0:

This follows from (9) since the K–groups for finite fields vanish in positive even
degrees [35]. Combining (10) and (12) yields the isomorphisms

K
�n

2i
.S

3;1
Fq
/Š ker.Z=.qi

� 1/
�n
�! Z=.qi

� 1//Š Z=gcd.n; qi
� 1/;

K
�n

2i�1
.S

3;1
Fq
/Š Z=gcd.n; qi

� 1/:

5 Spectral sequences for motivic twisted K –theory

In this section we shall construct and show strong convergence of the spectral se-
quences relating motivic (co)homology to motivic twisted K–theory. The review of
this material in Section 2 provides motivation and background from K–theory. Our
approach employs the slice tower formalism introduced by Voevodsky [49] and further
developed from the viewpoint of colored operads by Gutiérrez, Röndigs, Spitzweck
and Østvær [20].

Let ri denote the right adjoint of the natural inclusion functor †i
T

SH.S/eff � SH.S/.
Define fi W SH.S/! SH.S/ as the composite functor

SH.S/
ri
!†i

T SH.S/eff
� SH.S/:

In [49] the i –th slice si.X / of X is defined as the cofiber of the canonical map

fiC1.X /! fi.X /:
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In the companion paper [20] we show that f0 and s0 respect motivic E1–structures,
and fq and sq respect module structures over E1–algebras. Recall that f0 is remi-
niscent of the connective cover in topology. As a sample result we state the following
key result [20, Theorem 5.14].

Theorem 5.1 Suppose A is an A1– or an E1–algebra in Spt†T .S/. Then f0.A/ is
naturally equipped with the structure of an A1– resp. E1–algebra. The canonical
map f0A!A can be modelled as a map of A1– resp. E1–algebras.

The corresponding statements dealing with s0 and modules are formulated in [20]. In
the interest of keeping this paper concise we refer to loc. cit. for further details.

We define the connective K–theory spectrum kgl to be f0KGL. With this definition, kgl
is a †1P1C –module (even an †1P1C –algebra) because the E1–map †1P1C !KGL

factors uniquely through the connective K–theory spectrum. Here we use that f0 is
a lax monoidal functor that respects E1–objects; see Theorem 5.1. More generally,
fiKGLD†

2i;ikgl is a †1P1C –module. (The two possible module structures, using
either the shift functor or the fact that fi produces a module over f0 , coincide.)
Moreover, fiC1KGL! fiKGL is a kgl–module map, hence a †1P1C –module map.
By stitching these maps together we obtain a sequential filtration of KGL by shifted
copies of the connective K–theory spectrum

(13) � � � !†2iC2;iC1kgl!†2i;ikgl! � � � ! KGL:

The filtration (13) coincides with the slice filtration of KGL up to isomorphism. The
maps in (13) are †1P1C –module maps. Hence for every twist � W X! BBGm there is
an induced filtration of the motivic twisted K–theory spectrum

(14) � � � !†1X�C ^†1P1
C
†2iC2;iC1kgl!†1X�C ^†1P1

C
†2i;ikgl

! � � � !†1X�C ^†1P1
C

KGLD KGL� :

Likewise, by applying the functor Hom†1P1
C
.†1X�C;�/ to the filtration (13) of KGL

we obtain a filtration of KGL� taking the form

(15) � � � ! Hom†1P1
C
.†1X�C; †

2iC2;iC1kgl/

! Hom†1P1
C
.†1X�C; †

2i;ikgl/

! � � � ! Hom†1P1
C
.†1X�C;KGL/D KGL� :

Our next objective is to identify the filtration quotients Qi.X
� / of the tower (14) and

Qi.X� / of the tower (15). Note that the tower (14) gives rise to an exact couple by
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applying homotopy groups for a fixed weight:

��†
1X�C ^†1P1

C
†2iC2;iC1kgl // ��†

1X�C ^†1P1
C
†2i;ikgl

uu

��Qi.X
� /

ii

Similarly, the tower (15) gives rise to an exact couple featuring the quotients Qi.X� /.
Following a standard process we obtain spectral sequences with target graded groups
KGL�� and KGL�� . In the following we analyze these spectral sequences in detail when
the base scheme is a perfect field.

From now on we assume that the base scheme S is a perfect field. Using the slice
computations of KGL in [28; 50; 51], there is an exact triangle of †1P1C –modules

†2;1kgl! kgl!MZ!†3;1kgl:

Thus the filtration quotient Qi.X
� / is isomorphic to

†1X�C ^†1P1
C
†2i;iMZ;

whereas the filtration quotient Qi.X� / is isomorphic to

Hom†1P1
C
.†1X�C;MZ/:

Lemma 5.2 The unit map 1!†1P1C induces an isomorphism on zero slices.

Proof Induction on the cofiber sequence

†1Pn�1
C !†1Pn

C!†2n;n1

gives the isomorphism
s01Š s0†

1Pn
C:

To conclude we use that s0 commutes with homotopy colimits; cf [43, Lemma 4.4].

Lemma 5.3 The diagram of E1–ring spectra

†1P1C //

##

kgl // MZ

1

==

commutes.
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Proof By Lemma 5.2 and the isomorphism s01ŠMZ, applying the zero slice functor
to the maps †1P1C ! kgl and †1P1C ! 1 produces diagrams of E1–ring spectra:

†1P1C //

��

kgl

��

MZ
D

// MZ

†1P1C //

��

1

��

MZ
D

// MZ

In these diagrams, the vertical maps are induced by the natural transformation f0! s0

[20, Theorem 5.17]. Now, since the construction of E1–structures on zero slices from
[20, Theorem 5.1] is not transparently functorial, a trick involving colored operads
seems to be required in order to verify commutativity of the two diagrams. This follows
by applying the (co)localization machinery of [20] to the two-colored operad whose
algebras comprise maps between E1–algebras; cf [20, Theorem 5.20].

Theorem 5.4 There exists an isomorphism in the motivic stable homotopy category
between the filtration quotient Qi.X

� / of (14) and the .2i; i/–suspension of the motive
MZ^†1XC of X. Likewise, there exists an isomorphism between the filtration quo-
tient Qi.X� / of (15) and the .2i; i/–suspension of the internal hom Hom.†1XC;MZ/.

Proof It suffices to consider the case i D 0. The 0–th filtration quotient Q0.X
� /

identifies with †1X�C ^†1P1
C

MZ. By Lemma 5.3 there is an isomorphism

†1X�C ^†1P1
C

MZŠ .†1X�C ^†1P1
C

1/^1 MZ:

Lemma 3.6 implies there is an isomorphism

.†1X�C ^†1P1
C

1/^1 MZŠ†1XC ^MZ:

The proof of the statement for Qi.X� / proceeds similarly by comparing the module
categories over †1P1C and MZ via the isomorphisms

Q0.X� /Š Hom†1P1
C
.†1X�C;MZ/Š HomMZ.†

1X�C ^†1P1
C

MZ;MZ/

Š HomMZ.†
1XC ^MZ;MZ/Š Hom.†1XC;MZ/:

The isomorphisms in Theorem 5.4 are clearly functorial in X and � . It is important to
note that the filtration quotients Qi.X

� / and Qi.X� / are independent of the twist.

Theorem 5.4 implies there exist spectral sequences

MZ�.†1XC/H) KGL��.X/;(16)

MZ�.†1XC/H) KGL�� .X/(17)
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relating motivic homology and cohomology to motivic twisted K–theory. In what
follows we shall discuss the convergence properties of (16) and (17). Our approach
makes use of the notion of “very effectiveness” which is of independent interest in
motivic homotopy theory over any base scheme S . In order to make this precise we
introduce the following subcategory of SH.S/.

Definition 5.5 The very effective motivic stable homotopy category SH.S/Veff is the
smallest full subcategory of SH.S/ that contains all suspension spectra of smooth
schemes of finite type over S and is closed under extensions and homotopy colimits.

We note that SH.S/Veff is not a triangulated category since it is not closed under
simplicial desuspension. However, it is a subcategory of the effective motivic stable
homotopy category, which we denote by SH.S/eff . We remark that SH.S/Veff forms
the homologically positive part of t –structures on SH.S/ and SH.S/eff .

Lemma 5.6 The subcategory SH.S/Veff of SH.S/ is closed under the smash product.

Proof To begin with, suppose E 2 SH.S/Veff and X 2 Sm. Then †1XC ^E lies in
SH.S/Veff by the following “induction” argument on the form of E. It clearly holds
when E D †1YC for some Y 2 Sm. Suppose E D hocolim Ei and †1XC ^ Ei 2

SH.S/Veff . Then †1XC^E2SH.S/Veff because SH.S/Veff is closed under homotopy
colimits. Furthermore, if in a triangle

A! E! B! AŒ1�;

†1XC ^A 2 SH.S/Veff and likewise for B, then †1XC ^ E 2 SH.S/Veff because
SH.S/Veff is closed under extensions by definition. A similar “induction” argument in
the first variable shows now that for all objects F;E 2 SH.S/Veff the smash product
F^E 2 SH.S/Veff .

For the definition of the algebraic cobordism spectrum MGL, refer to [48]. One of the
reasons why the category SH.S/Veff is of interest is that it contains MGL for general
base schemes.

Theorem 5.7 The algebraic cobordism spectrum MGL is very effective.

In fact our proof of Theorem 5.7 shows the following stronger statement: The cofiber of
the unit map 1!MGL is contained in †T SH.S/��0 , where SH.S/��0 is the smallest
full saturated subcategory of SH.S/ that contains the suspension spectra †2i;i1 for
every i � 0 and is closed under homotopy colimits and extensions. The notation †T

refers to suspension with respect to the Tate object, ie †T D†
2;1 in the usual bigrading.
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Lemma 5.8 Let r be an integer and suppose

†2r;r 1! A! B!†2rC1;r 1;
A! E! F! AŒ1�

are triangles in SH.S/. If B; F 2†rC1
T

SH.S/��0 then the cofiber of †2r;r 1! E lies
in †rC1

T
SH.S/��0 .

Proof This follows since the cofiber of †2r;r 1! E is an extension of F by B and
the category †rC1

T
SH.S/��0 is closed under extensions.

Let G.n; d/ denote the Grassmannian parametrizing locally free quotients of rank d

of the trivial bundle of rank n. Recall there is a universal subsheaf Kn;d of On and a
natural map �W G.n; d/!G.nC1; d/ that classifies the subbundle Kn;d˚O of OnC1 .
Denote by x� the canonical point of G.n; d/ obtained by the composite map

� Š G.d; d/
�
! G.d C 1; d/

�
! � � �

�
! G.n; d/:

We are interested in vector bundles of a particular type over Grassmannians.

Proposition 5.9 Suppose E is a vector bundle of rank r over the Grassmannian G.n;d/

which is a finite sum of copies of Kn;d and its dual K0
n;d

and O . Then x��E is
canonically trivialized. Furthermore the cofiber of the map between the suspension
spectra of Thom spaces †2r;r 1!†1Th.E/ lies in †rC1

T
SH.S/��0 .

Proof We outline an argument which is reminiscent of the one for [43, Proposition 3.6].
The first step of the proof consists of showing there is an exact triangle

†1Th.��E/!†1Th.E/!†1Th.EG.n;d/˚K0n;d /!†1Th.��E/Œ1�

for the canonical map �W G.n; d C 1/! G.nC 1; d C 1/ (that classifies the subbundle
Kn;dC1˚O �OnC1 ). By induction we deduce that the cofiber of the canonical map
†2r;r 1!†1Th.��E/ lies in †rC1

T
SH.S/��0 . Again by applying induction, it follows

that †1Th.EG.n;d/˚K0
n;d
/2†

rCj
T

SH.S/��0 , where j D n�d > 0. The proposition
follows now from Lemma 5.8.

Next we give a proof of Theorem 5.7.

Proof We denote by �nD colimd KnCd;d the universal vector bundle over the infinite
Grassmannian BGLn D colimd G.nC 1; d/, and write

MGLD hocolimn†
�2n;�n†1Th.�n/D hocolimn;d †

�2n;�n†1Th.KnCd;d /:
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The unit map 1!MGL is in turn induced by the maps

†�2n;�n†1Th.x��KnCd;d /!†�2n;�n†1Th.KnCd;d /:

By Proposition 5.9 the cofibers of these maps are contained in †T SH.S/��0 . Since
cofiber sequences are compatible with homotopy colimits, this finishes the proof.

Lemma 5.10 Let E 2 SH.S/Veff and suppose S is the spectrum of a perfect field.
Then the homotopy group �p;q.E/D 0 for p < q .

Proof For suspension spectra of smooth projective schemes of finite type the claimed
vanishing is stated in [31, Section 5.3]. Suppose E D hocolim Ei where every Ei

satisfies the conclusion of the lemma. Minor variations of [29, Corollary 4.4.2.4,
Proposition 4.4.2.6] allows us to assuming the homotopy colimit is either a coproduct
or a homotopy pushout. For coproducts the result is clear, while for homotopy colimits
the corresponding long exact sequence of homotopy sheaves implies the vanishing. For
a general extension A! E! B! AŒ1�, where the vanishing holds for A and B, the
corresponding long exact sequence of homotopy groups implies the result.

We denote by SH.S/proj the full thick subcategory of SH.S/ generated by the objects
†i

T
†1XC for X 2 Sm a projective scheme and i 2 Z.

Proposition 5.11 Suppose the base scheme S is a perfect field. Let

� � � ! EiC1! Ei! Ei�1! � � � ! E

be a tower of motivic spectra such that hocolim Ei D E and denote the corresponding
filtration quotients by Qi . Suppose that Ei 2†

i
T

SH.S/Veff and X 2 SH.S/proj . If for
each fixed n the groups Hom.X;Ei Œn�/ stabilize as i tends to minus infinity, then the
spectral sequence of the tower with E2 –term Hom.X;Q�Œ��/ and target graded group
Hom.X;EŒ��/ converges strongly.

Proof Smashing the tower with the Spanier-Whitehead dual D.X / of X produces a
tower with terms D.X /^Ei 2†

iCn
T

SH.S/Veff for a fixed integer n. Hence we may
assume that X is the sphere spectrum because smooth projective schemes of finite
type over S are dualizable [24]. The spectral sequence obtained from the exact couple
associated to the tower is strongly convergent due to Lemma 5.10.

For the complex cobordism spectrum MU, fix an isomorphism MU� Š ZŒx1; x2; : : : �

where jxi j D i (this is half of the usual topological grading) and consider the canonical
map MU�!MGL� .
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Proposition 5.12 Over fields of characteristic zero there is a natural isomorphism
from the quotient of MGL by the sequence .xi/i�2 to kglD f0KGL.

Proof The orientation map MGL!KGL sends xi 2MGL2i;i to 0 in KGL2i;i for i �2;
see eg [44, Example 2.2]. Hence there is a naturally induced map from the quotient of
MGL by the sequence .xi/i�2 to KGL. Since the quotient MGL=.xi/i�2 is an effective
spectrum we obtain the desired map to kgl. As shown in [43, Proposition 5.4] this
map induces an isomorphism on all slices. (The proof in loc. cit. employs the work of
Hopkins and Morel on quotients of MGL.) For any X of SH.S/proj we may consider
the spectral sequences obtained by taking homs into the respective slice filtrations
of kgl and the quotient. Theorem 5.7 and Proposition 5.11 ensure that the spectral
sequence for the quotient is strongly convergent. For kgl, strong convergence holds by
[50, Proposition 5.5]. (Note that [50, Conjecture 4] is proven in [28]; cf the introduction
in loc. cit. for a discussion.) Our claim follows now by comparing the target graded
groups of these spectral sequences.

Corollary 5.13 Over fields of characteristic zero the connective K–theory spec-
trum kgl is very effective.

Proof Combine Theorem 5.7 and Proposition 5.12 with the fact that very effectiveness
is preserved under homotopy colimits.

Lemma 5.14 The motivic spectrum †1X�C ^†1P1
C

kgl is very effective.

Proof For n�0, Corollary 5.13 shows the smash product †1X�C ^ .†
1P1C /

^n ^ kgl

is very effective since SH.S/Veff is closed under smash products in SH.S/ according
to Lemma 5.6. When n varies,

n 7!†1X�C ^ .†
1P1C /

^n
^ kgl

defines a simplicial object in motivic symmetric spectra. Its homotopy colimit is very
effective and identifies with the smash product †1X�C ^†1P1

C
kgl.

We denote by Ho.†1P1C �Mod/proj the full thick subcategory of the homotopy
category Ho.†1P1C �Mod/ generated by the objects †i

T
†1P1C ^†

1XC for X 2

Sm projective and i 2 Z.

Lemma 5.15 Suppose †1X�C is an object of Ho.†1P1C �Mod/proj . Then there
exists an integer n 2 Z such that Hom†1P1

C
.†1X�C; kgl/ lies in †n

T
SH.S/Veff .
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Proof First, for every X 2 Sm, i; j 2 Z, there is an n1 2 Z such that †i;j†1XC 2

†
n1

T
SH.S/Veff . For X projective we get that D.†1XC/ 2 †

n2

T
SH.S/Veff for some

n2 2 Z by [24, Appendix] and we conclude that

Hom†1P1
C
.†i;j†1P1C ^†

1XC; kgl/Š†
�i;�j D.†1XC/^ kgl

lies in †n3

T
SH.S/Veff for some n3 2 Z by Corollary 5.13. This shows the result for all

of the generators of Ho.†1P1C �Mod/proj . The general case follows routinely by
taking cones and direct summands.

Remark 5.16 In the following we use implicitly the equivalence between the state-
ments †1XC is compact.

Theorem 5.17 Let S be a field of characteristic zero. Suppose †1XC is compact.
Then the motivic twisted K–theory spectral sequence

MZ�.†1XC/H) KGL��.X/

in (16) is strongly convergent.

Proof The proof follows by reference to Proposition 5.11 in the case when X D

S0;q . Two assumptions need to be checked, ie Ei D †2i;i†1XC ^†1P1
C

kgl 2

†i
P1SH.S/Veff and stability. Very effectiveness and Lemma 5.14 verify that the first

assumption holds. Second, the stabilization condition is equivalent to the fact that
for a fixed n, the group �n;qQi.X

� /¤ 0 for only finitely many i . The latter follows
from the corresponding statement in the untwisted case because †1XC is strongly
dualizable. Namely, letting i � 0 vary, the groups Hom.†n;qD.†1XC/; fiKGL/

become isomorphic.

Remark 5.18 In the proof of Theorem 5.17 we used implicitly the equivalence between
†1XC being compact, strongly dualizable, and an object of SH.S/proj . See eg [39]
for more details.

Theorem 5.19 Let S be a field of characteristic zero. Suppose †1X�C is compact
in Ho.†1P1C �Mod/, equivalently strongly dualizable. Then the motivic twisted
K–theory spectral sequence

MZ�.†1XC/H) KGL�� .X/

in (17) is strongly convergent.

Proof We first note that the assumptions imply that †1XC is strongly dualizable by
Lemma 3.6. The proof proceeds now along the lines of the proof of Theorem 5.17 with
a reference to Lemma 5.15 for very effectiveness.
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Remark 5.20 The motivic twisted sphere .S3;1/�n satisfies the condition in Theorems
5.17 and 5.19; cf. Section 4.

We end this section by discussing the closely related approach of the slice spectral
sequence for KGL� . Recall that the slices of any motivic spectrum fit into the slice
tower constructed by Voevodsky [49].

An identification of the zero-slice of KGL� would in turn determine all the slices
snKGL

� by .2; 1/–periodicity, ie there is an isomorphism in the motivic stable homotopy
category

snKGL
�
Š†2n;ns0KGL

� :

This follows from the evident KGL–module structure on KGL� and the Bott periodicity
isomorphism ˇW †2;1KGL! KGL furnishing the composite isomorphism

†2;1KGL� !†2;1KGL� ^KGL! KGL� ^†2;1KGL! KGL� ^KGL! KGL� :

The same comments apply to KGL� . If the base scheme is a perfect field, then all of the
slices snKGL

� and snKGL� are in fact motives, ie modules over the integral motivic
Eilenberg–Mac Lane spectrum MZ; cf [28; 34; 38; 39; 51; 52]. However, except
for example when X is the point and � the trivial twist, the slice spectral sequences
cannot coincide with the spectral sequence constructed earlier in this section. Indeed
the corresponding filtration quotients are different because by weight considerations
the smash product X^MZ is not a zero slice in general.

6 Further problems and questions

We end the main body of the paper by discussing some problems and questions related
to motivic twisted K–theory.

A pressing question left open in the previous section is to identify the d1 –differentials
in the spectral sequences.

Problem 6.1 Express the d1 –differentials in the slice spectral sequence for KGL� in
terms of motivic Steenrod squares and the twist � .

Remark 6.2 The d3 –differentials in the Atiyah–Hirzebruch spectral sequence for
twisted K–theory were identified by Atiyah and Segal [5] as the difference between Sq3

and the twisting. In the same paper the higher differentials are determined in terms
of Massey products. One may ask if also the higher differentials in the slice spectral
sequence can be described in terms of motivic Massey products.

Algebraic & Geometric Topology, Volume 12 (2012)



592 Markus Spitzweck and Paul Arne Østvær

Problem 6.3 For twists � and � 0 construct products

KGL� ^KGL� 0 ! KGL�C� 0

and investigate its properties.

In Remark 4.5 we noted that all the motivic twisted K–groups of the identity map of
BBGm are trivial. More generally, if � is any twisting of BBGm one may ask if the
motivic � –twisted K–groups are trivial. This is the content of the next problem asking
when BBGm is a point for motivic twisted K–theory.

Problem 6.4 For which twists of BBGm is the associated motivic twisted K–theory
trivial?

Remark 6.5 The corresponding problem in topology has an affirmative solution for all
twists by work of Anderson and Hodgkin [2]. By analogy, work on Problem 6.4 is likely
to involve a computation of the KGL–homology of the motivic Eilenberg–Mac Lane
spaces K.Z=n; 2/ for n� 1 any integer.

Twisted equivariant K–theory for compact Lie groups is closely related to loop
groups [15]. It is natural to ask for a generalization of our construction of motivic
twisted K–theory to an equivariant setting involving group schemes.

Problem 6.6 Develop a theory of motivic twisted equivariant K–theory.

The last problem we suggest is a very basic one. The construction of motivic twisted K–
theory should generalize to other examples. We wish to single out hermitian K–theory
as a closely related example of much interest. In this case we expect the twistings arise
from homotopy classes of maps from X to the classifying space BB�2 , ie elements of
the second mod–2 motivic cohomology group MZ2;1.XIZ=2/ of weight one.

Problem 6.7 Develop a theory of motivic twisted hermitian K–theory.

7 Graded Adams Hopf algebroids

Recall that a Hopf algebroid is a cogroupoid object in the category of commutative
rings [36, Appendix A1]. Let .A; �/ be a Hopf algebroid. If the left unit �LW A! �

classifying the domain is flat, or equivalently the right unit �RW A! � classifying
the codomain is flat, then .A; �/ is called a flat Hopf algebroid. If A ! B is a
ring map, we write B ˝A � for the tensor product when � is given an A–module
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structure via �L and � ˝A B when � is given an A–module structure via �R . An
.A; �/–comodule comprises an A–module M together with a coassociative and unital
map of left A–modules M ! � ˝A M (see eg [36, Appendix A1]). The category
of .A; �/–comodules with the evident notion of a morphism is an abelian category
provided � is a flat right A–module via �R .

Likewise, a graded Hopf algebroid is a cogroupoid object in the category of graded
commutative rings [36, Appendix A1]. The notions of flat graded Hopf algebroids and
comodules over a graded Hopf algebroid are defined exactly as in the ungraded setting.

The examples of Hopf algebroids of main interest in stable homotopy theory are so-
called “Adams Hopf algebroids.” In the graded setting we make the following definition:
A graded Hopf algebroid .A; �/ is called a graded Adams Hopf algebroid if � is
the colimit of a filtered system of graded comodules which are finitely generated and
projective as graded A–modules.

Proposition 7.1 The pair .KGL�;KGL�KGL/ is a flat graded Adams Hopf algebroid.

Proof We give two proofs of this result.

Since homology commutes with sequential colimits we get that KGL�.P1/ is a filtered
colimit of comodules which are finitely generated free KGL�–modules. Hence the
same holds for KGL�KGL by using the Bott tower (1) for †1P1C as a model for KGL.

For the second proof, recall the base change isomorphism in (5),

KGL�KGLŠ KGL�˝KU� KU�KU:

By the topological analogue of the first proof we see that .KU�;KU�KU/ is a flat
Adams Hopf algebroid. We conclude by pulling back the filtered colimit to the tensor
product.

Proposition 7.2 Let .A; �/ be a graded Hopf algebroid and A! B a graded ring
map. Suppose B is a graded .A; �/–comodule algebra.

(i) The pair .B;B˝A �/ is a graded Hopf algebroid.

(ii) If .A; �/ is flat, then so is .B;B˝A �/.

(iii) If .A; �/ is a graded Adams Hopf algebroid, then so is .B;B˝A �/.

Proof For C be a graded (commutative) algebra, let X D Hom.A;C /, M D

Hom.�;C / and Y DHom.B;C /. Then .X;M / is a groupoid and Y is a set over X

equipped with an M –action. It is easily seen that the pair .Y;Y �X M / acquires the
structure of a groupoid. This settles the first part.
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The second part follows by a standard base change argument, while the third point
follows by pulling back the graded subcomodules which are finitely generated projective
as graded A–modules.

The graded Hopf algebroid of primary interest in this paper is the following example.

Proposition 7.3 The pair

.KGL�.P1/;KGL�KGL˝KGL� KGL�.P
1//

is a flat graded Adams Hopf algebroid.

Proof Note first that KGL�.P1/ has the structure of graded comodule algebra over
.KU�;KU�KU/. The result follows from Propositions 7.1 and 7.2.

Remark 7.4 The left unit map denoted by �KGL�.P1/ is determined by the composite
map

KGL^†1P1C Š KGL^ 1^†1P1C ! KGL^KGL^†1P1C
and the right unit map by

KGL^†1P1C Š 1^KGL^†1P1C ! KGL^KGL^†1P1C :

(Here we make use of the unit map from the motivic sphere spectrum 1 to KGL.)

We use the isomorphism

KGL�.KGL^†
1P1C /Š KGL�KGL˝KGL� KGL�.P

1/:

Passing to KGL–homology under the left unit map yields a map

KGL�.P1/! KGL�KGL˝KGL� KGL�.P
1/

displaying KGL�.P1/ as a comodule over KGL�KGL.

The augmentation is determined by the multiplication on KGL via the map

KGL^KGL^†1P1C ! KGL^†1P1C :

The following is the graded version of the notion of Landweber exactness introduced
by Hovey and Strickland [23, Definition 2.1].

Definition 7.5 Suppose .A; �/ is a flat graded Hopf algebroid. Then a graded ring
map A! B is Landweber exact over .A; �/ if the functor �˝A B from graded
.A; �/–comodules to graded B –modules is exact.
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By abuse of notation we let �L denote the composite map

A
�L
! � Š �˝A A! �˝A B:

The next lemma is well known. For the convenience of the reader we shall sketch a
proof since the result is employed in the proof of Theorem 4.3.

Lemma 7.6 Suppose .A; �/ is a flat graded Hopf algebroid. Then a graded ring map
A! B is Landweber exact over .A; �/ if and only if the map �LW A! � ˝A B is
flat.

Proof The only if implication holds because � ˝A � preserves monomorphisms
between graded A–modules. Conversely, for every graded A–comodule M , the graded
coaction map M ! � ˝A M is a retraction. Thus for a monomorphism of graded
comodules M !N the map B˝A M ! B˝A N is a retract of B˝A �˝A M !

B˝A �˝A N .

Remark 7.7 In the proof of Theorem 2.2 we could have worked with the Hopf alge-
broid .KU�.CP1/;KU�KU˝KU� KU�.CP1// by restricting the comodule structure
and using (ungraded) Landweber exactness. In this way one can bootstrap a proof
of Theorem 2.2 more directly from [27] by using base change isomorphisms with no
mention of graded Hopf algebroids. In the same spirit, we note there is an isomorphism

KGL��.X/Š KGL�.X
� /˝KU�.CP1/ KU�:
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