
Algebraic & Geometric Topology 12 (2012) 951–961 951

Products of Greek letter elements dug up
from the third Morava stabilizer algebra

RYO KATO

KATSUMI SHIMOMURA

In [3], Oka and the second author considered the cohomology of the second Morava
stabilizer algebra to study nontriviality of the products of beta elements of the stable
homotopy groups of spheres. In this paper, we use the cohomology of the third
Morava stabilizer algebra to find nontrivial products of Greek letters of the stable
homotopy groups of spheres: ˛1t , ˇ2t , h˛1; ˛1; ˇ

p
p=pitˇ1 and hˇ1;p; t i for t

with p−t.t2� 1/ for a prime number p > 5 .

55Q45; 55Q51

1 Introduction

Greek letter elements are well known generators of the stable homotopy groups of
spheres localized at a prime p . Studying products among these elements is an interesting
subject, and studied by several authors. For example, at an odd prime p , all products of
alpha elements are trivial. In [3], we used H�S.2/ to study nontriviality of the product
of beta elements. In this paper, we use H�S.3/ to find relations of Greek letters. The
multiplicative structure of H�S.3/ was given by Yamaguchi [7], but unfortunately, it
has some typos. So here, our computation is based on Ravenel’s [4].

Let ˇp=p be the generator of the E2 –term E2;p2q
2

.S/ of the Adams–Novikov spec-
tral sequence converging to the homotopy groups ��.S/ of the sphere spectrum S .
Hereafter, q D 2p� 2 as usual. A relation given by Toda (see [4]) implies that ˇp=p

dies in the Adams–Novikov spectral sequence at a prime p > 2. At the prime two,
ˇ2

2=2 D 0 by Miller, Ravenel and Wilson [2, Proposition 8.22], while at the primes
three and five, Ravenel showed that ˇp

p=p survives to a homotopy element of ��.S/
and ˛1ˇ

p
p=p D 0 for the generator ˛1 of �q�1.S/. Here, we show the following:

1.1 Theorem At a prime p > 3, ˇp
p=p survives to �.p3�1/q�2.S/ and ˛1ˇ

p
p=p D 0.

1.2 Corollary At a prime p > 3, the Toda bracket h˛1; ˛1; ˇ
p
p=pi.D ˛1 p̌2=p2/ is

defined.
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1.3 Remark It is already known that ˛1 p̌2=p2 survives in the Adams–Novikov
spectral sequence by the work of R Cohen [1]. Corollary 1.2 states that Cohen’s
element is a Toda bracket h˛1; ˛1; ˇ

p
p=pi.

At the prime 3, Ravenel showed these results in [4].

Let ˇ1 , ˇ2 and t .t > 0/ be the generators of Coker J of dimensions pq � 2,
.2pC 1/q� 2 and .tp2C .t � 1/pC t � 2/q� 3, respectively.

1.4 Theorem Let p > 5, and t be a positive integer with p−t.t2 � 1/. Then, the
elements ˛1t , ˇ2t , h˛1; ˛1; ˇ

p
p=piˇ1t and hˇ1;p; t i generate subgroups of the

stable homotopy groups of spheres isomorphic to Z=p . Besides, even in the case
pj.t C 1/, the elements ˇ1t and hˇ1;p; t i are generators of order p .

Note that hˇ1;p; t i D ht ;p; ˇ1i. Also, if t D 1, then h1;p; ˇ1i D 0, while ˇ21

is nontrivial (see Section 5).

From here on, we assume that the prime number p is greater than three.

2 H �S.3/ revisited

We begin with recalling some notation from Ravenel’s green book [4]. Let BP denote
the Brown–Peterson spectrum. Then, the pair

.BP�;BP�.BP//D .Z.p/Œv1; v2; : : : �;BP�Œt1; t2; : : : �/

is a Hopf algebroid. Here, the degrees of vi and ti are 2pi � 2. The structure maps
act as follows:

.2:1/

�R.v1/D v1Cpt1

�R.v2/� v2C v1t
p
1
Cpt2 mod .p2; v

p
1
/

�R.v3/� v3C v2t
p2

1
C v1t

p
2
Cpt3

�pv1v
p�1
2

.t2C t
pC1
1

/ mod .p2; v2
1 ; v

p
2
/

�.t1/D t1˝ 1C 1˝ t1

�.t2/D t2˝ 1C t1˝ t
p
1
C 1˝ t2� v1b10

�.t3/� t3˝ 1C t2˝ t
p2

1
C t1˝ t

p
2
C 1˝ t3 mod .v1; v2/

�.t4/� t4˝ 1C t3˝ t
p3

1
C t2˝ t

p2

2
C t1˝ t

p
3
C 1˝ t4
� v3b12 mod .v1; v2/

�.t5/D t5˝ 1C t4˝ t
p4

1
C t3˝ t

p3

2
C t2˝ t

p2

3
C t1˝ t

p
4
C 1˝ t5

� v3b22� v4b13 mod .p; v1; v2/
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for

.2:2/

b1k D
1

p

�
�.t1/

pkC1

�t
pkC1

1
˝1�1˝t

pkC1

1

�
D

1

p

pkC1�1X
iD1

�pkC1

i

�
t i
1˝t

pkC1�i
1

;

b2k D
1

p

�
�.t2/

pkC1

�t
pkC1

2
˝1�t

pkC1

1
˝t

pkC2

1
�1˝t

pkC1

2
�v

pkC1

1
b1kC1

�
:

Let K.3/�DFp Œv3; v
�1
3
� have the BP�–module structure given by viv

s
3
Dvs

3
viDv

sC1
3

if i D 3, and D 0 otherwise, and

†.3/DK.3/�˝BP� BP�.BP/˝BP� K.3/�

DK.3/�Œt1; t2; : : : �=.v3t
p3

i � v
pi

3
ti W i > 0/ (by [4, 6.1.16])

is the Hopf algebra with structure inherited from BP�.BP/. Define the Hopf algebra
S.3/ by S.3/D†.3/˝K.3/�Fp , where K.3/� acts on Fp by v3 � 1D 1. Then,

S.3/D Fp Œt1; t2; : : : �=.t
p3

i � ti W i > 0/:

Now we abbreviate ExtS.3/.Fp;Fp/ to H�S.3/.

Consider integers di (D d3;i in [4, 6.3.1])

di D

�
0 i � 0;

max.i;pdi�3/ i > 0:

Then, there is a unique increasing filtration of the Hopf algebroid S.3/ with deg t
pj

i Ddi

for 0� j < 3.

2.3 Theorem (Ravenel [4, 6.3.2]) The associated Hopf algebra E0S.3/ is isomor-
phic to the truncated polynomial algebra of height p on the elements t

pj

i for i > 0 and
j 2 Z=3, with coproduct defined by

�.t
pj

i /D

8<:
Pi

kD0 t
pj

k
˝ t

pkCj

i�k
i � 3;

t
pj

i ˝ 1C 1˝ t
pj

i C bi�3;jC2 i > 3:

Let L.3/ be the Lie algebra without restriction with basis xi;j for i > 0 and j 2 Z=3
and bracket given by

Œxi;j ;xk;l �D

�
ıl

iCj xiCk;j � ı
j

kCl
xiCk;l for i C k � 3,

0 otherwise,
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where ıi
j D 1 if i � j mod 3 and 0 otherwise, and L.3; k/ the quotient of L.3/

obtained by setting xi;j D 0 for i > k . Then, Ravenel noticed in [4, 6.3.8]:

2.4 Theorem H�.L.3; k// for k � 3 is the cohomology of the exterior com-
plex E.hi;j /on one-dimensional generators hi;j with i � k and j 2 Z=3, with
coboundary

d.hi;j /D

i�1X
sD1

hs;j hi�s;sCj :

From now on, we abbreviate hi;j to hij , and h1j to hj .

Under the above filtration, Ravenel constructed the May spectral sequences:

2.5 Theorem (Ravenel [4, 6.3.4, 6.3.5]) There are spectral sequences

(a) E2 DH�.L.3; 3//H)H�.E0S.3//,

(b) E2 DH�.E0S.3//H)H�.S.3//.

Since these spectral sequences collapse, H�S.3/ is additively isomorphic to H�L.3; 3/.
Therefore, we have a projection

.2:6/ � W H�S.3/!E0H�S.3/DH�.E0S.3//DH�L.3; 3/:

Note that the Massey product hhi ; hiC1; hiC2; hii is homologous to v.2�p/pi

3
biC2

represented by v.2�p/pi

3
b1;iC2 of (2.2), and � assigns the Massey product to biC2 2

H�L.3; 3/. Ravenel determined in [4, 6.3.34] the additive structure of H�L.3; 3/. In
particular, we have the following:

2.7 Theorem H�L.3; 3/ contains submodules generated by the linear independent
elements

h1k1�3; b0k1�3; h0l; k0l; h0b0b2l and h1l:

Here, l D h2h21h30 , ki D h2ihiC1 .i D 0; 1/, b0 D h1h32 C h21h20 C h31h1 ,
b2 D h0h31C h20h22C h30h0 and �3 D h30C h31C h32 .

Proof In the table of the proof of [4, 6.3.34], we find the elements

h0; h1; k0; b0; b2; l l 0 D h0h22h31; and �3;

along with the first element h1k1�3 of the theorem. We also have the element
�h1k1h30 D h1h2h21h30 in the table, which is the last element h1l of the theorem.
Also in the table are h1k1h31 and h1k1h32 . We see that b0k1D�h1k1h31Ch1k1h32

and so the second element is given by b0k1�3 D�h1k1h31�3C h1k1h32�3 .
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The element h0b0b2l�3 is computed as

h0h2h21h30.h1h32C h21h20C h31h1/.h0h31C h20h22C h30h0/.h30C h31C h32/

� 2h0h1h2h20h21h22h30h31h32:

Therefore, h0b0b2l is the dual of the generator �1
2
�3 , and the elements h0b0b2l and

h0l are generators. Similarly, a computation

k0l l 0�3 D h20h1h2h21h30h0h22h31.h30C h31C h32/

D h0h1h2h20h21h22h30h31h32

shows that k0l is the dual of the generator l 0�3 .

2.8 Lemma In H�L.3; 3/, h0k1 D 0 and k0k1 D 0.

Proof From the proof of [4, 6.3.34], we read off the relations h0k1 D e30h2 and
k0k1 D e30g1 in H�L.3; 2/. Since e30 cobounds h30 in H�L.3; 3/, the lemma
follows.

3 Greek letter elements

Let Es;t
r .X / denote the Er –term of the Adams–Novikov spectral sequence con-

verging to the homotopy group �t�s.X / of a spectrum X . Then the E2 –term is
ExtBP�.BP/.BP�;BP�.X //. We here consider the Ext-group ExtBP�.BP/.BP�;M / for a
BP�.BP/–comodule M as the cohomology of the cobar complex ��BP�.BP/M (cf [2]).
Consider a sequence AD .a0; a1; : : : ; an/ of nonnegative integers so that the sequence
pa0 ; v

a1

1
; : : : ; v

an
n is invariant and regular. For such a sequence A, Miller, Ravenel

and Wilson introduced in [2] n–th Greek letter elements �.n/
s.A/

in the Adams–Novikov
E2 –term En;t.A/

2
.S/ by

.3:1/ �.n/s.A/ D ıA;1 � � � ıA;n.v
an
n / 2En;t.A/

2 .S/

for
van

n 2 Ext0;2an.p
n�1/

BP�.BP/ .BP�;BP�=I.A; n//:

Here, s.A/D an=an�1; an�2; : : : ; a0 and t.A/D 2an.p
n� 1/� 2

Pn�1
iD0 ai.p

i � 1/,
I.A; k/ denotes the ideal of BP� generated by pa0 ; v

a1

1
; : : : ; v

ak�1

k�1
, and ıA;kC1 is the

connecting homomorphism associated to the short exact sequence

0! BP�=I.A; k/
v

ak
k
��! BP�=I.A; k/! BP�=I.A; kC 1/! 0:
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In particular, we write ˛ D �.1/ , ˇ D �.2/ and  D �.3/ . So far, only when n � 3,
many conditions for that Greek letter elements survives to homotopy elements are
known. We abbreviate �.n/

s.A/
to �.n/an

if AD .1; : : : ; 1; an/ as usual. For example, we
consider ˇ–elements defined by

.3:2/

ˇs D ı.1;1/;1.ˇ
0
s/ 2E2;t.1;1;s/

2 .S/
for ˇ0s D ı.1;1/;2.v

s
2
/ 2E1;t.1;1;s/

2
.V .0//,

p̌i=pi D p̌i=pi ;1 D ı.1;pi /;1ı.1;pi /;2.v
pi

2
/ 2E2;t.1;pi ;pi /

2 .S/:

Hereafter we assume that the prime p is greater than three. We have the Smith–Toda
spectrum V .k/ for k D 0; 1; 2 defined by the cofiber sequences

.3:3/

S
p
�! S

i
�! V .0/

j
�!†S;

†qV .0/
˛
�! V .0/

i1
�! V .1/

j1
�!†qC1V .0/;

†.pC1/qV .1/
ˇ
�! V .1/

i2
�! V .2/

j2
�!†.pC1/qC1V .1/:

Here, ˛ 2 ŒV .0/;V .0/�q is the Adams map and ˇ 2 ŒV .1/;V .1/�.pC1/q is the v2 –
periodic element due to L Smith. Note that the BP�–homology of these spectra are
BP�.V .k//D BP�=IkC1 for the ideal Ik of BP� generated by vi for 0� i < k with
v0 D p . We consider the Bousfield–Ravenel localization functor L3 with respect
to v�1

3
BP. The E2 –term E�

2
.L3V .2// of L3V .2/ is isomorphic to K.3/�˝H�S.3/,

whose structure is given in [4] (see also [7]), and we consider the composite

r W E�2 .S/
��
�!E�2 .V .2//

�
�!E�2 .L3V .2//

�
�!H�.S.3//

�
�!H�L.3; 3/:

Here the first map is induced from the inclusion �W S ! V .2/ to the bottom cell, the
second is from the localization map, the third is obtained by setting v3 D 1 and the
last is the projection (2.6).

3.4 Lemma The map r assigns the Greek letter elements as follows:

r.˛1/D h0; r.ˇ1/D�b0; r.ˇ2/D 2k0;

r.t /D�t.t2
� 1/l � t.t � 1/k1�3 and r.ˇp=p/D�b1:

We also have ˇ0
1
D h1�v

p�1
1

h0 2E1;pq
2

.V .0// for the generators hi of E1;pi q
2

.V .0//

represented by t
pi

1
.
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Proof First we consider the images of the Greek letter elements under the map
��W E

�
2
.S/!E�

2
.V .2//. In the cobar complex ��BP�.BP/BP� , by (2.1),

d.v1/D pt1; d.v
pi

2
/� v

pi

1
t
piC1

1
� v

piC1

1
t
pi

1
mod .p/ for i � 0;

d.v2
2/� 2v1v2t

p
1
C v2

1
t
2p
1

mod .p; vp
1
/,

d.vt
3/� tv2v

t�1
3

t
p2

1
C

� t

2

�
v2

2
vt�2

3
t
2p2

1
C

� t

3

�
v3

2
vt�3

3
t
3p2

1
mod .p; v1; v

4
2
/,

which imply

ı.1/;1.v1/D Œt1�; ı.1;1/;2.v2/D Œt
p
1
� v

p�1
1

t1�;

ı.1;1/;2.v
2
2/D Œ2v2t

p
1
C v1t

2p
1
C v

p�1
1

y�; ı.1;p/;2.v
p
2
/D Œt

p2

1
� v

p2�p
1

t
p
1
�;

ı.1;1;1/;3.v
t
3/D

h
tvt�1

3
t
p2

1
C

� t

2

�
v2v

t�2
3

t
2p2

1
C

� t

3

�
v2

2
vt�3

3
t
3p2

1
C v3

2
z
i
D xt ,

for cochains y 2�1
BP�.BP/BP�=.p/ and z 2�1

BP�.BP/BP�=.p; v1/. Here, Œx� denotes
a cohomology class represented by a cocycle x . The first one shows ˛1 D h0 , and the
second gives the last statement of the lemma. We further see that d.t

pk

1
/D�pb1k�1

for k�1 and d.vk/�ptk mod I..2; 1; 1/; k/ for kD2; 3 by (2.1) in 2�1
BP�.BP/BP� .

Moreover, Œb1k �’s are assigned to bk in H�L.3; 3/ under the projection � , and we
obtain

rı.1;pk�1/;1.hk�v
pk�pk�1

1
hk�1/D�bk�1 for k D 1; 2,

rı.1;1/;1.Œ2v2t
p
1
Cv1t

2p
1
�/D 2k0;

ı.1;1;1/;2.xt /D
h
t.t�1/vt�2

3 t
p
2
˝ t

p2

1
C

� t

2

�
vt�2

3 t
p
1
˝ t

2p2

1
Cw

i
D  0t ;

rı.1;1;1/;1.
0
t /D t.t�1/.t�2/h30k1C t.t�1/rı.1;1;1/;1

�h
t
p
2
˝ t

p2

1
C

1

2
t
p
1
˝ t

2p2

1

i�
:

Here, w is a linear combination of terms in the ideal .v1; v2/
2 . Thus the relations

other than r.t / follows.

We note that b20 in (2.2) corresponds to h21h30Ch31h21 by �.t5/p in (2.1). Since
d.t

p
2
/D�t

p
1
˝ t

p2

1
C v

p
1

b11�pb20 by (2.1), we obtain

rı.1;1;1/;1.Œt
p
2
˝ t

p2

1
C

1
2
t
p
1
˝ t

2p2

1
�/D�.h21h30Ch31h21/h2Ch21b1D�3l�k1�3;

which shows the relation on r.t /.

Recall the cofiber sequences (3.3) and the v3 –periodic element  2 ŒV .2/;V .2/�q3

(q3D .p
2CpC1/q ) due to H Toda. Then, the Greek letter elements in homotopy are

Algebraic & Geometric Topology, Volume 12 (2012)



958 Ryo Kato and Katsumi Shimomura

defined by

.3:5/ ˛t D j˛t i; ˇt D jˇ0t for ˇ0t D j1ˇ
t i1i and t D jj1j2

t i2i1i

for t > 0, and the Greek elements in the E2 –term survives to the same named one in
homotopy by the Geometric Boundary Theorem (cf [4]).

Proof of Theorem 1.4 We begin with noticing that the element bi in H�L.3; 3/ is
the image of the Massey product hhi ; hiC1; hiC2; hii under � , which is homologous
to bi represented by b1i in (2.2). We further note that the Toda brackets h˛1; ˛1; ˇ

p
p=pi

and hˇ1;p; t i are detected by ˛1b2 and h1t of E�
2
.S/, respectively. Indeed, in the

first bracket, d2p�1.b2/D ˛1ˇ
p
p=p by Corollary 4.4 below, and in the second bracket,

hˇ1;p; t i D j hˇ0
1
;p; t i. Under the condition on t , Lemmas 3.4, 2.7 and 2.8 imply

that each element of ˛1t , ˇ2t , ˛1b2tˇ1 and h1t , as well as ˇ1t , generates
a submodule isomorphic to Z=p of the E2 –term E�

2
.S/. These are, of course,

permanent cycles, and nothing kills them in the Adams–Novikov spectral sequence
since each element has a filtration degree less than 2p� 1.

4 ˇ
p
p=p in the homotopy of spheres

Let X and xX be the .p�1/q– and .p�2/q–skeletons of the Brown–Peterson spec-
trum BP. Then, we have the cofiber sequences

.4:1/ S
�
�!X

�
�!†q xX

�
�! S1 and xX

�0

�!X
�0

�! S .p�1/q �0

�!† xX :

Then,
BP�.X /D BP�Œx�=.xp/ and BP�. xX /D BP�Œx�=.xp�1/

as subcomodules of BP�.BP/, where x corresponds to t1 . From [4, Chapter 7], we
read off the following:

.4:2/ b
p
1
D 0 2E2p;p3q

2 .X /, which implies

E2sCe;tq
2 .X /D 0 if s � p and t < .s� 1/p2C .sC 1C e/p.

4.3 Lemma b0W E
2sCe;tq
2

.S/!E2sC2Ce;.tCp/q
2

.S/ is monomorphic if s � p and
t � .s� 1/p2C .sC e/p .

Proof Note that b0 D ��
0 , and the lemma follows from (4.2) and the exact sequences

E2sCe;.tCp�1/q
2 .X /

�0

�!E2sCe;tq
2 .S/

�0

�!E2sC1Ce;.tCp�1/q
2 . xX /;

E2sCeC1;.tCp/q
2 .X /!E2sCeC1;.tCp�1/q

2 . xX /
�
�!E2sC2Ce;.tCp/q

2 .S/

induced from the cofiber sequences in (4.1).
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Ravenel showed that d2p�1.ˇp2=p2/� ˛1ˇ
p
p=p mod Kerˇp

1
in the Adams–Novikov

spectral sequence for ��.S/ [4, 6.4.1]. Here, the mapping ˇp
1

on E2pC1;.p3C1/q
2

.S/

is a monomorphism by Lemma 4.3:

4.4 Corollary In the Adams–Novikov spectral sequence for ��.S/,

d2p�1.ˇp2=p2/D ˛1ˇ
p
p=p 2E2pC1;.p3C1/q

2p�1 .S/DE2pC1;.p3C1/q
2 .S/:

Proof of Theorem 1.1 Consider the first cofiber sequence in (4.1). The Adams–
Novikov E2 –term EsqC3;.p3Cs/q

2
.X / vanishes for s > 0 by (4.2), so the element

��.ˇp2=p2/ 2 E2;p3q
2

.X / survives to a homotopy element Xˇp2=p2 2 ��.X /. In
general, we see that:

.4:5/ Let x�W S ! xX denote the inclusion to the bottom cell. Then, ��x�.x/D ˛1x

for x 2E�
2
.S/.

Put x̌p=p Dx��.ˇp=p/ 2E2;p2q
2

. xX /, and we see that ��. x̌
p
p=p/D ˛1ˇ

p
p=p , and so

we see that x̌pp=p detects an essential homotopy element ��.Xˇp2=p2/ 2 ��. xX / by
Corollary 4.4 and Shimomura [5], which we also denote by x̌pp=p .

Now turn to the second cofiber sequence in (4.1). The relation b
p
1
D 0 of (4.2)

yields a cochain y D
Pp�1

iD0
xiyi 2 �

2p�1BP�.X / such that d.y/ D b
p
1

, where
yi 2�

2p�1BP� . It follows that d.xy/D b
p
1
� d.xp�1/yp�1 2�

2pBP�. xX / for xy DPp�2
iD0

xiyi 2�
2p�1BP�. xX /. In particular d.yp�1/D02�2p�1BP� and d.yp�2/D

.1� p/t1 ˝ yp�1 . By definition, these imply �0�.yp�1/ D b
p
1

. Consider the exact
sequence obtained by applying the homotopy groups to the second cofiber sequence.
Then, �0�. x̌

p
p=p/ D 0 by (4.2), and so x̌pp=p must be pulled back to an element � 2

��.S/ detected by yp�1 . Since b0 D ��
0 , b0yp�1 D h0b

p
1

, and hh0; : : : ; h0iyp�1 D

h0hh0; : : : ; h0;yp�1i, we see that

b
p
1
� hh0; : : : ; h0;yp�1i 6� 0 2E2p;p3q

2 .S/ mod ker h0:

Put b
p
1
D hh0; : : : ; h0;yp�1iCc for c 2 ker h0 �E

2p;p3q
2

.S/. Then, b
p
1
�c survives

to ˇp
p=p 2 ��.S/.

The element ˛1ˇ
p
p=p is detected by h0.b

p
1
� c/D h0b

p
1

in the Adams–Novikov E2 –
term, which is killed by b2 by Corollary 4.4.

5 Remarks

5.1 A relation on Toda bracket

The relation hˇs;p; t i D ht ;p; ˇsi follows immediately from results of Toda: By
definition, hˇs;p; t i D jˇ.s/.t/i and ht ;p; ˇsi D j.t/ˇ.s/i for ˇ.s/ D j1ˇ

si1
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and .t/ D j1j2
t i2i1 . Since V .2/ and V .3/ are V .0/–module spectra, �.ˇ/ D 0

and �. / D 0 by Toda [6, Lemma 2.3]. Similarly, �.ik/ D 0 and �.jk/ D 0 for
k D 1; 2. Therefore, [6, Lemma 2.2] implies �.ˇ.s//D 0 and �..t//D 0. Therefore,
ˇ.s/.t/ D .t/ˇ.s/ by [6, Corollary 2.7] as desired.

5.2 On the action of 1

Note that 1 D ˛1 p̌�1 . Then, ˛11 D ˛2
1 p̌�1 D 0 and h˛1; ˛1; ˇ

p
p=piˇ11 D

�˛1h˛1; ˛1; ˇ
p
p=piˇ1 p̌�1 D�h˛1; ˛1; ˛1iˇ

p
p=pˇ1 p̌�1 D 0 since h˛1; ˛1; ˛1i D 0,

and h1;p; ˇ1i D p̌�1h˛1;p; ˇ1i D p̌�1j˛j1ˇi1i D 0.

For t � 2,

ˇt D ı.1;1/;1ı.1;1/;2.v
t
2/D ı.1;1/;1

�h
tvt�1

2 t
p
1
C

� t

2

�
v1v

t�2
2 t

2p
1
C v2

1x
i�

�

h
t.t � 1/vt�2

2 t2˝ t
p
1
� tvt�1

2 b0C

� t

2

�
vt�2

2 t1˝ t
2p
1

i
mod .p; v1/

� t.t � 1/vt�2
2 k0� tvt�1

2 b0 mod .p; v1/

and ˛1ˇ2 p̌�1 2 E5
2
.S0/ is projected to h0.2k0 � 2v2b0/.2v

p�3
2

k0 C v
p�2
2

b0/ D

�2v
p�2
2

h0k0b0 � 2h0v
p�1
2

b2
0

in E5
2
.V .2// under the induced map i� from the in-

clusion i W S0 ! V .2/ to the bottom cell. Here, k0 D Œt2˝ t
p
1
C

1
2
t1˝ t

2p
1
�. Then,

this element is detected by �2v
p�2
2

k0 2E3
1
DE2;.p2Cp�1/q

2
.X ^V .2// in the small

descent spectral sequence. The killer of this element, if any, stays in the E1 –terms

E2
1 DE2;.p2Cp/q

2 .X ^V .2//; E1
1 DE3;.p2C2p�1/q

2 .X ^V .2//;

E0
1 DE4;.p2C2p/q

2 .X ^V .2//:

These are zero, and we see that the product is not zero.
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