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Concordance to links with unknotted components

JAE CHOON CHA

DANIEL RUBERMAN

We show that there are topologically slice links whose individual components are
smoothly concordant to the unknot, but which are not smoothly concordant to any
link with unknotted components. We also give generalizations in the topological
category regarding components of prescribed Alexander polynomials. The main tools
are covering link calculus, algebraic invariants of rational knot concordance theory,
and the correction term of Heegaard Floer homology.

57M25; 57M27, 57N70

1 Introduction

This paper addresses the following question which arises naturally in the study of
link concordance: to what extent can a component of a given link vary under link
concordance? We have an obvious necessary condition—for a given link L, if a knot
K appears as a component of a link which is concordant to L, then K is concordant
to the corresponding component of L. Therefore a natural question is whether the
converse holds: if K is concordant to, say the first component of L, is there a link
concordant to L which has K as the first component?

In general, there is no such link. In the case when K is unknotted, Cochran [10] (using
techniques introduced in [9]) and Cochran–Orr [11; 12] showed:

Theorem 1.1 There are links that have components smoothly concordant to the unknot
but are not topologically concordant to any link with unknotted components.

This shows that the answer is negative in both topological and smooth category. In this
paper, we investigate the difference between the smooth and topological cases, and
generalize Theorem 1.1 to obstruct concordances involving different knot types. In the
smooth case, we refine the result by giving examples which are topologically trivial:

Theorem 1.2 There are topologically slice links that have smoothly slice components
but are not smoothly concordant to any link with unknotted components.

Published: 2 May 2012 DOI: 10.2140/agt.2012.12.963
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In fact, there is no concordance to a link having components with trivial Alexander
polynomial.

We also address the general case about concordance to links with an arbitrarily given
component, in place of an unknotted component. In the topological setting, we consid-
erably extend Theorem 1.1, giving obstructions that detect links not concordant to any
link whose first component belongs to a given collection of Alexander polynomials:

Theorem 1.3 For any finite collection D of classical Alexander polynomials of knots
and for any knot J0 with �J0

.t/ 2 D , there are links L D K1 [K2 satisfying the
following:

(1) The first component K1 of L is smoothly concordant to the given J0 .

(2) L is not topologically concordant to any link L0 DK0
1
[K0

2
with �K 0

1
.t/ 2D .

We give a smooth refinement of Theorem 1.3 by providing examples of links which
are topologically concordant to a link with first component J0 . See Theorem 3.5 for
details.

To prove the above results, we give general obstructions by combining several known
techniques. In particular the main ingredients are the following: covering link cal-
culus as used in Cochran–Orr [12] and formulated in Cha–Kim [4] (see also Cha–
Livingston [8], Van Cott [22] and Levine [19]), invariants of rational knot concordance
(see Cha [3] and also Cochran–Orr [12] and Cha–Ko [6]), and the d –invariant (or
correction term) of Heegaard Floer homology (see Ozsváth–Szabó [21], and also Jabuka–
Naik [18], Grigsby–Ruberman–Strle [16] and Hedden–Livingston–Ruberman [17]).

The obstructions used to prove Theorems 1.2 and 1.3 are described in Section 2. See
(respectively) Theorems 2.7 and 2.4.

In Section 3, we present explicit examples of links. The topological and smooth cases
are dealt with in Theorem 3.1 and Theorem 3.5, respectively.

In Section 4, we investigate the nontriviality of rational homology cobordism groups
modulo the classes of Zq –homology spheres using the 3–manifolds associated to our
link examples.

2 Links with components having given Alexander polynomi-
als

We consider ordered links, namely the components of a link are given a preferred
labeling by integers 1; : : : ;m. We also always assume that links are oriented. We say
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two m–component links L D K1 [ : : :[Km and L0 D K0
1
[ : : :[K0m in S3 are

topologically (resp. smoothly) concordant if there are disjoint locally flat (resp. smooth)
cylinders Ci (i D 1; : : : ;m) embedded in S3 � Œ0; 1� with @Ci DKi � 0[�K0i � 1.

To simplify the notation we consider only the case of two-component links. We remark
that all the arguments and results apply to the case of any number of components (� 2)
as well as the two-component case.

For a link LDK1[K2 , we consider covering links as formulated and used in Cha–
Kim [4] (see also Cochran–Orr [12], Cha–Livingston–Ruberman [8], Van Cott [22] and
Levine [19]). In particular, we make use of the following special case. Suppose d is a
power of a prime p and let YL (or just Y if the link L is understood) be the d –fold
cyclic branched cover of S3 along K1 , the first component of the given link L. It is
known that YL is a Zp –homology sphere. (In this paper Zp denotes Z=pZ.) If L

has linking number zero, the pre-image of K2 in Y consists of p components. Choose
a component KL , which we call a covering knot of L. (For our purpose the choice of
a component gives no ambiguity since the Zd –action permutes these component.)

Proposition 2.1 Suppose L is topologically (resp. smoothly) concordant to a link
L0 DK0

1
[K0

2
with �K 0

1
.t/D 1. Then for any power d of an arbitrary prime p , the

d –fold covering knot .YL;KL/ of L described above is topologically (resp. smoothly)
Zp –concordant to a knot in an integral homology sphere.

Here, as in Cha [3], two knots .Y;J / and .Y 0;J 0/ in R–homology 3–spheres Y and
Y 0 are called topologically (resp. smoothly) R–concordant if there is a pair .W;C /

of a 4–manifold W and an embedded cylinder C satisfying H�.W;Y IR/ D 0 D

H�.W;Y 0IR/ and @.W;C /D .Y;J /[�.Y 0;J 0/.

Proof It is known that if L and L0 are concordant, then the covering knot KL of
L is concordant to the corresponding covering knot KL0 of L0 (for example, see the
argument of Cha–Kim [4, Theorem 2.2]). The covering knot KL0 lies in the d –fold
cyclic branched cover of S3 along K0

1
, say YL0 , which is an integral homology sphere,

since K0
1

has Alexander polynomial one. This argument works in both smooth and
topological cases.

A key fact used in the above proof of Proposition 2.1 is that the order of the homology
of YL0 is determined by the Alexander polynomial of the component K0

1
. Using this

fact more extensively, Proposition 2.1 generalizes as follows.

For convenience of notation, for a polynomial f .t/ we denote

Rd .f /D
ˇ̌̌ d�1Y

kD0

f .e2�k
p
�1/

ˇ̌̌
:
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It is well known that for a knot K with Alexander polynomial �K .t/, the first homology
of the d –fold cyclic branched cover of .S3;K/ has order Rd .�K / (see Fox [13]).
We note that Rd .�K / may be zero in general (in this case the first homology has
nontrivial free part), but if d is a prime power, Rd .�K / is always a positive integer.

Throughout this paper, we will write

D D ff1.t/; : : : ; fr .t/g

for a finite collection of classical Alexander polynomials. By definition, these are
integer coefficient polynomials satisfying fi.1/D˙1 and f .t�1/D t2gf .t/ for some
g 2N ; we will make use of just the first condition. For a prime power d D pa , define
Pd .D/ to be the set of primes that do not divide Rd .fi/ for all i D 1; : : : ; r . One
easily sees the following two properties:

(1) All but finitely many primes are in Pd .D/.

(2) For D D f1g, Pd .D/ is the set of all primes.

Theorem 2.2 Suppose a link L is topologically (resp. smoothly) concordant to a link
L0 DK0

1
[K0

2
for which �K 0

1
.t/ lies in D . Then for any prime power d D pa , the

d –fold covering knot .YL;KL/ of L described above is topologically (resp. smoothly)
Zp –concordant to a knot in a 3–manifold which is a Zq –homology sphere for any
q 2 Pd .D/.

Proof Observe that if �K 0
1
.t/D fi.t/ 2D , then the d –fold covering link KL0 of L0

lies in a 3–manifold YL0 satisfying jH1.YL0/j DRd .fi/, by the above discussion. By
the hypothesis that q does not divide Rd .fi/, YL0 is a Zq –homology sphere. The same
argument as the proof of Proposition 2.1 concludes that .YL;KL/ is Zp –concordant
to .YL0 ;KL0/.

Obstructions from rational concordance theory: complexity of knots

In Cochran–Orr [12], the notion of the complexity of a (codimension two) knot in a
rational homology sphere was first introduced, and subsequently studied in Cha [3] and
Cha–Ko [5] extensively. For the convenience of the reader, we recall the definition from
[3, Definition 2.8]. For a knot K in a rational homology 3–sphere †, an Alexander
duality argument shows that H1.† �KIZ/=torsion Š Z. An essential difference
from the integral homology sphere case is that the class of a meridian of K does not
necessarily generates H1.†�KIZ/=torsion though it is nonzero. The complexity of
K is defined to be the absolute value of the element in ZŠ H1.†�KIZ/=torsion
represented by the meridian.
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Obviously, a knot in an integral homology sphere has complexity one, by Alexander
duality with integral coefficients. Therefore, from Proposition 2.1, we obtain the
following:

Proposition 2.3 (Special case of Theorem 2.4) Suppose L is topologically (resp.
smoothly) concordant to a link L0DK0

1
[K0

2
with �K 0

1
.t/D 1. Then for any power d

of p , the d –fold covering knot .YL;KL/ of L described above is topologically (resp.
smoothly) Zp –concordant to a knot with complexity one.

Using Theorem 2.2 in place of Proposition 2.1, we obtain the following generalization
of Proposition 2.3:

Theorem 2.4 Suppose L is topologically (resp. smoothly) concordant to a link L0 D

K0
1
[K0

2
satisfying �K 0

1
2D . Then for any prime power d Dpr , the d –fold covering

knot .YL;KL/ of L is topologically (resp. smoothly) Zp –concordant to a knot whose
complexity is relatively prime to all q 2 Pd .D/.

Proof Suppose q 2 Pd .D/. By Theorem 2.2, KL is Zp –concordant to a knot in a
Zq –homology sphere. The conclusion follows immediately from the following known
fact, which is for example mentioned in [3, page 66]: the complexity of a knot K in a
Zq –homology sphere † is relatively prime to q . A standard argument for this is to
use the duality with Zq coefficients—by Alexander duality H1.†�KIZq/Š Zq is
generated by a meridian of K , and thus the meridian represents an integer 6� 0 (mod q )
in H1.†�K/=torsionŠ Z.

There are known obstructions to a knot in a rational homology sphere being topologically
Q–concordant to a knot with given complexity. Cochran and Orr first discovered an
obstruction from the period of a signature function [12], which was reformulated
in terms of Seifert matrices in Cha–Ko [5]. Also, the first author obtained further
obstructions to being concordant to complexity one knots from torsion invariants of
rational knot concordance, in his monograph [3, Theorem 4.17].

In the next section we will give examples to which one can apply the topological case
of Theorem 2.4 (and Proposition 2.3) combined with these known obstructions to being
concordant to a knot with given complexity.

Obstructions from Heegaard Floer d –invariants

In case of smooth category, we obtain further obstructions from the d –invariants which
are “correction terms” of Heegaard Floer homology of 3–manifolds (see Oszváth–
Szabó [21]). For this purpose first we make the following observation on the .1=n/–
surgery along a knot. First note that for a knot K in a rational homology sphere, if K
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has vanishing .Q=Z/–valued self-linking, then there is a well-defined zero-framing on
K which is uniquely determined by the condition that K and its parallel copy along the
zero-framing has vanishing Q–valued linking number. (The converse is also true. For
more about this, see Cha [3] and Cha–Ko [5].) This enables us to identify a slope of
surgery along K with an element in Q[f1g when K has vanishing .Q=Z/–valued
self-linking, exactly as in case of knots in S3 . In particular the .a=b/–surgery along
K is well-defined for a=b 2Q.

We remark that if a component, say K , of a link in a Zp –homology sphere has
vanishing .Q=Z/–valued self-linking, then any component of a covering link of L that
projects to K has vanishing .Q=Z/–valued self-linking (see Cha–Kim [4, Section 2],
and also Cha [3]). In particular, for a link L in S3 , our covering knot .YL;KL/ has
vanishing .Q=Z/–valued self-linking. It follows that the .a=b/–surgery along KL is
well-defined.

Proposition 2.5 Let R be a subring of Q or Zp . Suppose K is a knot in an R–
homology sphere with vanishing .Q=Z/–valued self-linking. If K is R–concordant
to a knot in a Zq –homology sphere, then the .a=b/–surgery manifold of K is R–
homology cobordant to a Zq –homology sphere for any a relatively prime to q .

Proof We may assume R is a subring of Q, since we can replace Zp with Z.p/ ,
the ring of integers localized at p . The rational valued linking number is invariant
under rational concordance (for example, see [5] and [3]). Therefore, if .W;C / is
an R–concordance between two knots, then (compare Gordon [15]) by removing a
tubular neighborhood of C from W and filling in it with S1 �D2 � Œ0; 1� along the
.a=b/–framing, we obtain an R–homology cobordism between their .a=b/–surgery
manifolds. The proof is completed by observing that if a knot is in a Zq –homology
sphere and .a; q/D 1, then the .a=b/–surgery along the knot is again a Zq –homology
sphere.

It was observed in Hedden–Livingston–Ruberman [17] that the Ozsváth-Szabó d –
invariant [21] gives an obstruction to being smoothly Q–homology cobordant to an
integral homology sphere. To simplify the discussion of Spinc structures, we restrict
to the case of Z2 –homology spheres and homology cobordisms. For a Z2 –homology
3–sphere Y , the composition

Spinc.Y /
c1
�!H 2.Y /

PD
��!H1.Y /

of the first Chern class and Poincaré duality induces a bijection that takes the unique
Spin structure on Y to 0 2H1.Y /. In the remainder of the paper, we use this bijection
to label Spinc structures by elements of H1.Y /.
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For s 2 H1.Y /, denote by d.Y; s/ the correction term invariant defined from the
Q–valued grading of the Heegaard Floer homology of Y . Let

xd.Y; s/D d.Y; s/� d.Y; 0/:

Recall that a torsion abelian group G decomposes into an inner direct sum GD
L

p Gp

of p–primary summands

Gp D fx 2G j pN x D 0 for some N � 0g

where p runs over all primes. We remark that if G is finitely generated, that jGpj is
equal to the maximal power of p dividing the order of G . Also, if A is a subgroup of
Gp , then obviously Ap DA\Gp .

For our purpose the following generalization of Hedden–Livingston–Ruberman [17,
Theorem 3.2] is useful. For similar applications of d and xd , see, for example, Jabuka–
Naik [18] and Grigsby–Ruberman–Strle [16].

Proposition 2.6 Suppose q is a prime and Y is a Z2 –homology 3–sphere which is
Z2 –homology cobordant to a Zq –homology sphere. Then there is a subgroup H of the
q–primary part H1.Y /q satisfying jH j2 D jH1.Y /qj and xd.Y; s/D 0 for any s 2H .

We note that Proposition 2.6 easily applies to a 3–manifold Y which is a boundary
component of a Z2 –homology punctured 4–ball W with H1.@W �Y IZq/D 0, by
tunneling W to join components of @W �Y .

Proof Suppose Y 0 is a Zq –homology sphere and Y is Z2 –homology cobordant
to Y 0 . Denote GDH1.Y /˚H1.Y

0/DH1.@W /. Let A be the image of the boundary
map H2.W; @W /!G which is identified with Spinc.W /DH 2.W /!H 2.@W /D

Spinc.@W / under Poincare duality. Namely, A consists of the Spinc –structures of
@W that extends to W . By Ozsváth–Szabó [21, Theorem 1.2], d.@W; .s; s0// D

d.Y; s/� d.Y 0; s0/D 0 whenever .s; s0/ 2A�G . Also, by the argument of Casson–
Gordon [2], jAj2 D jGj.

Consider the q–primary parts Gq and Aq . Since jH1.Y
0/j is relatively prime to

q , we have Gq D H1.Y /q and Aq � Gq � H1.Y /. Also, jAj2 D jGj implies
jAqj

2 D jH1.Y /qj, by using the remark before Proposition 2.6.

Now, for s 2Aq �H1.Y /, since .s; 0/�A�G , we have d.Y; s/�d.Y 0; 0/D 0. In
particular d.Y; 0/� d.Y 0; 0/D 0. It follows that xd.Y; s/D d.Y; s/� d.Y; 0/D 0 for
any s 2H1.Y /q .
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As remarked above, if d is a power of 2, then the d –fold branched cover of S3

along a knot is a Z2 –homology sphere. Hence we may combine Theorem 2.2 and
Propositions 2.5 and 2.6, to obtain the following:

Theorem 2.7 Suppose L is smoothly concordant to a link L0 DK0
1
[K0

2
satisfying

�K 0
1
.t/ 2D . Suppose Y is the .a=b/–surgery manifold of the d –fold covering knot

.YL;KL/ of L. If d is a power of two, q 2Pd .D/, and a is relatively prime to q , then
there is a subgroup H of the q–primary part �H1.Y /q such that jH j2 D jH1.Y /qj

and xd.Y; s/D 0 for any s 2H .

We remark that if D D f1g, namely if L is assumed to be concordant to L0 with
�K 0

1
.t/D 1 in Theorem 2.7, then the condition “q 2 Pd .D/” is replaced with “q is

any prime” in the conclusion.

We also remark that our subgroup H in Theorem 2.7 has the property that the .Q=Z/–
valued linking form of Y vanishes on H �H . In this paper we do not use this.

3 Examples

Our main examples are of the following form. Fix a knot J0 . For an integer m and
a knot J , let L.m;J / be the link illustrated in Figure 1. Here J is a knot that will
be specified later, and �m denotes negative m full twists between the obvious two
vertical bands, in such a way that no self-twisting is added on each band. We remark that
in the case of unknotted J0 , the link L.m;J / was first considered in Cochran–Orr [12]
to give examples which are not concordant to boundary links. In [12] it is shown that
L.m;J / is a homology boundary link for unknotted J0 . The same method shows
that L.m;J / is a homology boundary link for any J0 . Consequently L.m;J / has
vanishing x�–invariants.

Figure 2 illustrates a surgery diagram of the 2–fold covering knot .YL.m;J /;KL.m;J //,
which is obtained from Figure 1 by applying the technique of Akbulut and Kirby [1].
The ambient space YL.m;J / is the connected sum of the double branched cover of J0

and the double branched cover of K1 . The latter is the result of surgery on S3 along
the two 0–framed circles in Figure 2.

Note that K1 and J0 are smoothly concordant, as knots. One way to see this is as
follows: if one performs a band surgery on K1 along the dotted arc ˇ in Figure 1 (and
forgets K2 ), then K1 becomes a split union of J0 and an unknotted circle.
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�m J

K1

K2

J0

˛ ˇ

Figure 1. The link L.m;J / .

�2m� 1 J#J r

KL.m;J /

0 0

#

0@ double
branched

cover of J0

1A

Figure 2. The covering knot KL.m;J / in YL.m;J /

3.1 Topological examples

In this subsection we prove the following result:

Theorem 3.1 For any finite collection D of classical Alexander polynomials of knots
and for any knot J0 with �J0

.t/ 2 D , there are links L D K1 [K2 satisfying the
following:

(1) The first component K1 of L is smoothly concordant to the given J0 .

(2) L is not topologically concordant to any link L0 DK0
1
[K0

2
with �K 0

1
.t/ 2D .

Note that our example L.m;J / in Figure 1 satisfies Theorem 3.1 (1) as observed above.
In what follows we will show that for an appropriate choice of J that will be given
later L.m;J / satisfies Theorem 3.1 (2).

We recall that for a knot K in a rational homology sphere Y with vanishing .Q=Z/–
valued self-linking, there is a signature invariant of K (see Cochran–Orr [12], Cha–
Ko [5] and Cha [3]). For readers who are not familiar with this, we give a description
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in terms of Seifert matrices, which was first given in Cha–Ko [5]. (The description
below differs from that in [5] by a reparametrization by a factor of 2� .)

It is known that if K has vanishing .Q=Z/–valued linking, then there is a generalized
Seifert surface for K , which is defined to be a properly embedded surface F in the
exterior of K whose boundary consists of c parallel copies of K taken along the
0–framing. It is known that there exists such F if and only if c is a multiple of the
complexity of K (see [5] and [3, Chapter 2]). A Seifert matrix A for the generalized
Seifert surface F is defined as usual, using the Q–valued linking number in Y in place
of the ordinary linking number. Then for � 2 R, ıK .�/ is defined to be the jump at
t D �=c of the signature function

�A.t/D sign
�
.1� e2� t

p
�1/AC .1� e�2� t

p
�1/AT

�
:

We regard ıK as a function R! Z. It is known that ıK is an invariant under rational
concordance [12; 5; 3]. We note that the reparametrization by the factor of 1=c given
in the definition is essential in proving the invariance.

For our purpose the following property is useful. We say that ıK has period c if
ıK .�/D ıK .� C c/ for all � .

Theorem 3.2 (Cochran–Orr [12], Cha–Ko [5], Cha [3]) If a knot K in a rational
homology sphere is rationally concordant to a knot with complexity c , then ıK .�/ has
period c .

We remark that since the set f� 2R j ıK .�/¤ 0g of non-vanishing points is discrete,
there is a minimal period, say c0 > 0, of ıK .�/ such that any period of ıK .�/ is an
integer multiple of c0 . (For, otherwise the set of periods of ıK is dense in R.)

Proof of Theorem 3.1 As observed in the beginning of this section, the first component
K1 of our L.m;J / is concordant to J0 , regardless of the choice of J . This shows
.1/.

Choose a knot J whose signature jump function ıJ .�/ has minimal period one.
For example, one can take the trefoil knot 31 as J , since ı31

.�/ D ˙2 exactly for
� � ˙1=6 .mod 1/. We note that many more such knots exist, for example, by
appealing to Cha–Livingston [7].

Choose an odd prime q 2 P2.D/ and let m D .q � 1/=2. Consider the link L D

L.m;J / and the 2–fold covering knot .YL;KL/ of L. The realization argument
of Cha [3, Section 4.1.2] (see also Cha–Ko [5, Example, page 1179]) shows that
ıKL

.�/D ıJ #J r .�=q/. Since ıJ #J r .�/D ıJ .�/C ıJ r .�/D 2ıJ .�/, it follows that
ıKL

.�/ has minimal period q .
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Therefore, no period of ıKL
.�/ is relatively prime to q . By Theorem 3.2, KL is

not rationally concordant to any knot whose complexity is relatively prime to q . By
Theorem 2.4 it follows that L is not concordant to any link L0 DK0

1
[K0

2
for which

�K 0
1
.t/ 2D .

Theorem 1.1 stated in the introduction is an immediate consequence of the special case
of Theorem 3.1 for D D f1g and J0 D unknot.

Remark 3.3 Another class of links that may be shown to satisfy Theorem 1.1 by our
method is given in Cha–Ko [6, Figure 2]. In the proof of [6, Theorem 3.3], it was
shown that these links have covering links which are not concordant to a complexity
one knot. Therefore, our method shows that these satisfy Theorem 1.1. An interesting
property of the links given in [6, Figure 2] is that these are mutants of ribbon links.
Therefore these links are not distinguished from smoothly slice links by any invariants
preserved under mutation.

Remark 3.4 After we had announced our main results, Charles Livingston informed
us that he found an alternative approach using Casson–Gordon invariants as in Liv-
ingston [20] to show Theorem 1.1 for the same examples.

3.2 Topologically slice smooth examples

Theorem 3.5 For any finite collection D of classical Alexander polynomials of knots
and for any knot J0 with �J0

.t/ 2 D , there are links L D K1 [K2 satisfying the
following:

(1) L is topologically concordant to the split union of J0 and an unknotted circle.

(2) The first component K1 of L is smoothly concordant to the given J0 .

(3) L is not smoothly concordant to any link L0 DK0
1
[K0

2
with �K 0

1
.t/ 2D .

Proof Again we consider L D L.m;J /, now with the extra condition that J be
topologically slice. As before, L satisfies (2). Also note that L satisfies (1), since one
obtains the split union J0[ .unknot/[K2 from L.m; unknot/ by a band surgery on
K1 along the dotted arc ˛ in Figure 1.

Let Y D Y .m;J / be the 3–manifold obtained by performing 1–surgery on YL along
KL . Recall that we need to be careful with the framing: the surgery coefficient is
determined with respect to the zero-framing on KL in YL , which is defined in terms
of the Q–valued linking number in YL , as in the previous section. In our case the
zero-framing on KL in YL is identical with the usual zero-framing on KL in the
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surgery description of YL given in Figure 2. This can be verified, for example, by
computing the Q–valued linking number of KL and its preferred longitude using a
formula given in Cha–Ko [5, Theorem 3.1]. Alternatively, a surface in YL which is
bounded by .2mC 1/ parallel copies of KL is obtained from a capped-off Seifert
surface for J#J r by attaching .2mC 1/ tubes, and then the framing induced by this
surface, which is the zero-framing on KL in YL , is seen to be equal to the ordinary
zero-framing.

Therefore Figure 2 with surgery coefficient 1 on KL becomes a surgery diagram for the
1–surgery manifold Y . Let M0 be the double branched cover of J0 , and let M be the
.2mC1/2 –surgery manifold of the knot T .2mC1; 2m/#J#J r . Here T .a; b/ denotes
the .a; b/–torus knot. As illustrated in Figure 3, one sees that Y is diffeomorphic to
M0#M .

�2m� 1
1

J#J r

0 0

J#J r

�1

0

J#J r

C1

.2mC 1/2
2mC 1

strands

Figure 3. 1–surgery along KL .

Now we specify m and J . For the given collection D , choose an odd prime q 2P2.D/,
and let m D .q � 1/=2. Let J be the connected sum of .3mC 1/=2 copies of the
positive Whitehead double of the right-hand trefoil knot. The knot J is topologically
slice by Freedman’s theorem [14].

It is easily seen that H1.Y /DH1.M0/˚H1.M / and H1.M /D .Z2mC1/
2D .Zq/

2 .
Since q 2P2.D/ and �J0

.t/2D , jH1.M0/j is relatively prime to q by our definition
of P2.D/ (see the discussion in Section 2). Therefore H1.Y /q D H1.M /, and
the subgroup H D qZq2 generated by q 2 H1.M / D Zq2 is the unique subgroup
satisfying jH j2 D jH1.Y /qj. By Theorem 2.7, for any s 2 H � H1.Y /, we have
d.Y; s/D 0 if L is concordant to a link L0 DK0

1
[K0

2
satisfying �K 0

1
.t/ 2D . Note

that d.Y; s/D d.M; s/ since s lies in H1.M /�H1.M0/˚H1.M /DH1.Y /.

In [17, Theorem 6.4], Hedden, Livingston and the second author proved that for the
above J , d.M; q/� 2. Since q 2H , the conclusion follows from this.

Theorem 1.2 in the introduction is an immediate consequence of the special case of
Theorem 3.5 for D D f1g and J0 D unknot.
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4 Rational homology cobordism groups and Zp –homology
spheres

In [17], a calculation of d –invariants is used to elucidate the structure of smooth
rational homology cobordism group modulo integral homology spheres. In this section,
we investigate the more general case of Zp –homology spheres instead of integral
homology spheres. For this purpose we use Proposition 2.6, which gives obstructions
to being rational homology cobordant to Zp –homology spheres.

For simplicity we first consider the case of Z2 –homology spheres. Let � be the
group of smooth rational homology cobordism classes of Z2 –homology spheres. Let
�T be the kernel of the natural homomorphism of � into its topological analogue,
namely, �T is the subgroup in � that consists of all Z2 –homology spheres which are
topologically rational homology cobordant to S3 . For a commutative ring R, let �R

T

be the subgroup of �T generated by (the classes of) R–homology spheres in �T .

Theorem 4.1 For any odd prime q , �T =�
Zq

T
is nontrivial.

Proof In the proof of Theorem 3.5, we observed that the Z2 –homology sphere M has
the following properties: (i) The subgroup H generated by q 2H1.M /DH1.M /q is
the unique one satisfying jH j2DjH1.M /qj, and (ii) d.M; q/� 2. By Proposition 2.6,
it follows that M is not rational homology cobordant to any Zq –homology sphere.

Remark 4.2 We can also think of, in place of �, the smooth spin rational homology
cobordism group of spin rational homology 3–spheres, and spin analogues of the
subgroups �T and �Zq

T
. Our argument above shows that Theorem 4.1 also holds

for this case as well, since one can canonically identify Spinc.Y / with H 2.Y / for
manifolds Y with a chosen spin structure.

As a corollary we obtain that �T =�
Z
T

is nontrivial, which is a consequence of [17,
Theorem 7.1]. In fact [17, Theorem 7.1] says that �T =�

Z
T

has infinite rank. Regarding
this and our theorem above, one may ask the following question: for an odd prime q ,
does �T =�

Zq

T
have infinite rank?
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