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Random groups arising as graph products

RUTH CHARNEY

MICHAEL FARBER

In this paper we study the hyperbolicity properties of a class of random groups
arising as graph products associated to random graphs. Recall, that the construction
of a graph product is a generalization of the constructions of right-angled Artin
and Coxeter groups. We adopt the Erdös and Rényi model of a random graph and
find precise threshold functions for hyperbolicity (or relative hyperbolicity). We
also study automorphism groups of right-angled Artin groups associated to random
graphs. We show that with probability tending to one as n!1 , random right-angled
Artin groups have finite outer automorphism groups, assuming that the probability
parameter p is constant and satisfies 0:2929 < p < 1 .

20P05; 20F36, 57M07

1 Introduction

The needs of mathematical modeling of large systems of various nature raise the
problem of studying random geometric and algebraic objects. For a system of great
complexity it is unrealistic to assume that one is able to have a precise description of
its configuration space; the latter should be viewed as being a partially known or a
random space.

The most developed stochastic–topological object is a random graph. The theory of
random graphs, initiated in 1959 by Erdös and Rényi [17], is nowadays a well-developed
and fast growing branch of discrete mathematics. The theory of random graphs (see
Alon and Spencer [1], Bollobás [4], and Janson, Łuczak and Rucinski [24]) offers
a plethora of spectacular results and predictions playing an essential role in various
engineering and computer science applications.

Configuration spaces of mechanical linkages with bars of random lengths were studied
in Farber [19] and Farber–Kappeler [20]. These are closed smooth manifolds depend-
ing on a large number of independent random parameters. Although the number of
homeomorphism types of these manifolds grows extremely fast with the dimension,
their topological characteristics can be predicted with high probability when the number
of links tends to infinity.

Published: 4 May 2012 DOI: 10.2140/agt.2012.12.979

http://www.ams.org/mathscinet/search/mscdoc.html?code=20P05,(20F36, 57M07)
http://dx.doi.org/10.2140/agt.2012.12.979


980 Ruth Charney and Michael Farber

Random simplicial complexes of higher dimension were recently introduced and studied
by Linial–Meshulam in [28] and Meshulam–Wallach in [30]. The fundamental groups
of random 2–complexes are random groups of a fairly general type. Random groups
arising in this way are the focus of recent work by Babson–Hoffman–Kahle [2].

The theory of random groups introduced by Gromov in [21; 22] depends on a density
parameter 0� d � 1. In this model, a random group is given by a presentation with
randomly chosen relations where each of the relations has a fixed length and the number
of relations depends on the density. Gromov proved that for d < 1=2, a random group
is infinite and hyperbolic, while it is trivial for d > 1=2 (see [21, page 273]). For more
on this model we refer to the work of Zuk [35] and Ollivier [32].

Automorphism groups of 1– and 2–relator random groups were studied by Cham-
petier [5] and Kapovich, Schupp, and Shpilrain [26] (see also Kapovich–Schupp [25]).
In [26], for example, they show that a random 1–relator group is torsion-free word
hyperbolic and has trivial outer automorphism group. Other types of probabilistic
questions in group theory, such as the existence of homomorphisms between groups of
a specific type, have been investigated by Shalev, Liebeck, and others (see for example,
Shalev [34]).

Random right-angled Artin groups, which were first studied in Costa–Farber [12],
represent a different class of random groups. The right-angled Artin group associated
to a graph � is the group generated by the vertex set of � with commutation relations
between adjacent vertices. A random graph in the Erdös-Rényi model gives rise to
a random right-angled Artin group in which each pair of generators commutes with
a fixed probability 0 � p � 1. A random right-angled Coxeter group is obtained by
adding additional relations specifying that each generator has order two.

In this paper we study a class of groups, called graph products, that includes both right-
angled Artin groups and right-angled Coxeter groups. The paper has two main goals.
First, we study hyperbolicity (or relative hyperbolicity) of graph products associated to
random graphs. Second, we study automorphisms of random right-angled Artin groups
and more generally, random graph products of cyclic groups. The interest in these
results lies not in the random graph theory itself, but in the applications to random
group theory. Graph products form a large and interesting class of groups which, as
this paper demonstrates, lend themselves naturally to probabilistic methods.

Both authors would like to thank the Forschungsinstitut für Mathematik in Zurich for
their hospitality during the writing of this paper.
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2 The hyperbolicity of random graph products

The construction of graph products is a generalization of the constructions of right-
angled Artin and Coxeter groups. Let � be a finite simplicial graph with vertex set
V and let fGvg be a collection of nontrivial, finitely generated groups indexed by V .
Then the graph product G� D G.�; fGvg/ is the quotient of the free product

Q
Gv

by commutator relations between the generators of Gv and Gw whenever v; w are
connected by an edge in � . Well known examples of these groups are the right-angled
Coxeter groups (when Gv D Z=2Z for all v ) and the right-angled Artin groups (when
Gv D Z for all v ). We will denote these groups by W� and A� respectively.

We use the Erdös and Rényi model of random graphs in which each edge of the complete
graph on n vertices is included with probability 0 < p < 1 independently of all other
edges, where p is a function of n. In other words, we consider the probability space
G.n; p/ of all 2.n

2/ subgraphs of the complete graph on n vertices f1; 2; : : : ; ng and the
probability that a specific graph � 2G.n; p/ appears as a result of a random process
equals

(1) Prob.�/D pE� .1�p/.
n
2/�E� ;

where E� denotes the number of edges of � , see Janson, Łuczak and Rucinski [24].

We say a statement holds asymptotically almost surely or a.a.s. if the probability that it
holds tends to one as n!1. For f; g functions of n and c a constant, we use the
notation

� f ! c to mean f tends to c as n goes to infinity, and

� f � g to mean f=g! 1.

Our main results concerning hyperbolicity are as follows:

Theorem 2.1 Fix a collection of nontrivial, finite groups indexed by the natural
numbers fGig. For a random graph � 2G.n; p/, let G� DG.�; fGig/ be the associated
graph product. Then

(1) If .1�p/n2! 0 then G� is finite, a.a.s

(2) If pn! 0 then G� is hyperbolic, a.a.s.

(3) If pn!1 and .1�p/n2!1, then � is not hyperbolic, a.a.s.

Applying this to the case where all vertex groups are cyclic of order 2, we obtain the
following.
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Corollary 2.2 The right-angled Coxeter group W� corresponding to a random Erdös
and Rényi graph � 2G.n; p/ is hyperbolic (a.a.s) if either .1�p/n2! 0 or pn! 0.
If, however, pn!1 and .1�p/n2!1 then the random right-angled Coxeter group
W� is not hyperbolic, a.a.s.

If the vertex groups Gv are not necessarily finite, one may speak about hyperbolicity
relative to the family of vertex subgroups fGvg. We establish the following result:

Theorem 2.3 Fix a collection of nontrivial, finitely generated groups indexed by the
natural numbers fGig. For a random graph � 2G.n; p/, let G� D G.�; fGig/ be the
associated graph group. Then

(1) If .1� p/n2 ! 0 then G� is isomorphic to the direct product G1 � � � � �Gn ,
a.a.s.

(2) If pn! 0 then G� is weakly hyperbolic relative to the family of subgroups
fGigi�n , a.a.s.

(3) If pn!1 and .1�p/n2!1 then G� is not weakly hyperbolic relative to
the family of subgroups fGigi�n , a.a.s.

Since the vertex groups in Theorem 2.3 are arbitrary finitely generated groups, one
could add an additional random element by taking them to be some class of random
groups. The same result still holds. Likewise in Theorem 2.1, the vertex groups can be
random finite groups.

The proofs of Theorems 2.1 and 2.3 will be given in Section 4.

3 Graph products and buildings

Let G� be a graph product of groups fGvg where v runs over vertices of a graph � .
We call a complete subgraph of � a clique.1 We can associate a simplicial complex
X�DX.�; fGvg/ with G� as follows. Define two posets, partially ordered by inclusion,

S� D fGT j T � V; T D∅ or T spans a clique in �g

GS� D fgGT j g 2 G� ; GT 2 S�g:

Recall that the geometric realization (or flag complex) associated to a poset P is the
simplicial complex whose vertices are the elements of P and whose k –simplices are
totally ordered subsets .p0 < p1 < � � �< pk/. Let X� be the geometric realization of

1Some authors reserve the word clique for maximal complete subgraphs. We do not require maximality.
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GS� and let K �X� be the geometric realization of S� . Left multiplication induces
an action of G� on X� with fundamental domain K . The stabilizer of the vertex gGT

is conjugate to GT . Thus, the action of G� on X� is always cocompact, and it is
proper if and only if all vertex groups are finite.

In the case that every vertex group is cyclic of order 2, X� is the well-known Davis
complex for the right-angled Coxeter group W� . For a more general graph product G� ,
X� is a right-angled building whose apartments are isomorphic to this Davis complex.
(See Davis [13] or Charney, Ruane, Stambaugh and Vijayan [8] for a discussion of
these buildings.)

The complexes X� have a natural metric. Though X� was defined as a simplicial
complex, it also has a natural cubical structure. To see this, it suffices to describe the
cubical structure on the fundamental domain K . For a pair GT �GT 0 in S� , let

ŒGT ; GT 0 �D fGR 2 S� j T �R� T 0g:

It is easily seen that ŒGT ; GT 0 � spans a cube of dimension jT 0j�jT j in K . The cubical
structure induces a piecewise Euclidean metric on X� which was shown by M Davis
to be CAT(0) [13].

Moussong [31] showed that in some cases, the Davis complex could be given a CAT(-1)
metric and used this to find precise conditions on when an arbitrary Coxeter group is
word hyperbolic (see also Davis [14]). In the case of right-angled Coxeter groups, his
conditions reduce to the requirement that � does not contain an empty square, that is,
a 4–cycle such that neither diagonal spans an edge in � . This theorem was generalized
by J. Meier to graph products of finite groups.

Theorem 3.1 (Meier [29]) Let G� D G.�; fGvg/ be a graph product where each Gv

is a nontrivial, finite group. Then G� is Gromov hyperbolic if and only if � has no
empty squares.

To do this, Meier (following Moussong) proves that if � has no empty squares, then
the cubical metric on X� can be deformed to a CAT(-1) metric. Conversely, if � has
an empty square, it is easy to show that the apartments in X� contain 2–flats, so X�

cannot be hyperbolic. Thus, X� is hyperbolic if and only if � has no empty squares. If
the vertex groups are all finite, then the action of G� on X� is proper and cocompact,
so by the Milnor-Svarc Lemma, G� is quasi-isometric to X� and Meier’s theorem
follows.

If the vertex groups are not required to be finite, one can still draw some conclusions
about G� , albeit weaker ones. While the action is no longer proper, it is discontinuous,
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that is, the orbit of every point is discrete. In [7], the first author and J Crisp prove a
relative version of the Milnor–Svarc Lemma. It states that if a finitely generated group
G acts discontinuously and cocompactly on a geodesic metric space X with stabilizers
conjugate to a collection of subgroups H , then the graph obtained from the Cayley
graph of G by coning off all cosets of the subgroups in H is quasi-isometric to X . A
group G is said to be weakly hyperbolic relative to H if this coned off Cayley graph
is hyperbolic (see Farb [18]). Applying this to G� acting on X� , we see that G� is
weakly hyperbolic relative to fGvg if and only if X� is hyperbolic.

Theorem 3.2 Let G� D G.�; fGvg/ be a graph group where each Gv is a nontrivial,
finitely generated group. Then G� is weakly hyperbolic relative to fGvg if and only if
� has no empty squares.

We remark that for a group to be (strongly) relatively hyperbolic requires an additional
condition on quasi-geodesics in the Cayley graph. In general, one does not expect
this additional condition to hold for G� . Indeed, Behrstock, Drutu, and Mosher [3]
have shown that right-angled Artin groups associated to connected graphs � are not
(strongly) relatively hyperbolic with respect to any collection of proper subgroups.

4 Proofs of Theorems 2.1 and 2.3

The discussion in the previous section shows that the hyperbolicity (or relative hyper-
bolicity) of a graph product depends only on the existence of empty squares in the
graph. In this section, we consider the probability that a random graph contains an
empty square.

The goal of this section is to establish threshold functions for the existence of an empty
square in a random graph � . We will prove

Theorem 4.1 Let � 2G.n; p/ be a random graph.

(1) If .1�p/n2! 0 then � is a complete graph, a.a.s.

(2) If pn! 0 then � has no empty squares, a.a.s.

(3) If pn!1 and .1�p/n2!1 then � has an empty square, a.a.s.

Proof The first statement is easy to prove. Namely, for a random graph � 2G.n; p/,
the probability that a given pair of vertices is not connected by an edge is 1�p , hence
the expected number of missing edges in � is�

n
2

�
.1�p/� 1

2
n2.1�p/:
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By the first moment method (see Janson, Łuczak and Rucinski [24, page 54]), if this
expectation goes to 0, then the probability that there exists a missing edge also goes to
0. Thus n2.1�p/! 0 implies that � is a complete graph with probability tending to
one as n!1.

For the second statement, fix a set of n vertices and consider an ordered 4–tuple of
distinct vertices .v1; v2; w1; w2/. Let I.v1;v2;w1;w2/W G.n; p/! f0; 1g be the random
variable which takes the value 1 on � 2G.n; p/ if and only if .v1; v2; w1; w2/ span
an empty square in � with fv1; v2g and fw1; w2g appearing as diagonal pairs (see
Figure 1). In more detail, one has I.v1;v2;w1;w2/.�/ D 1 if and only if the edges

v1 w1

w2 v2

Figure 1

v1w1; v1w2; v2w1 and v2w2 are included in � and the edges v1v2 and w1w2 are not
included in � . The sum

X D
X

I.v1;v2;w1;w2/W G.n; p/! Z;

over all 4–tuples of vertices counts each empty square in � eight times, corresponding
to the 8 reflections of the square. The expectation E.I.v1;v2;w1;w2// equals p4.1�p/2 ,
hence

E.X /D
X

E.I.v1;v2;w1;w2//

D n.n� 1/.n� 2/.n� 3/p4.1�p/2

� n4p4.1�p/2

If pn! 0 as n!1 , then .1�p/! 1 and E.X /! 0, hence the probability that �

has an empty square goes to 0. This proves statement (2).

For the third statement, we use the second moment method. Namely, the probability
that X ¤ 0 satisfies

Prob.X ¤ 0/�
.EX /2

E.X 2/
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(see [24, page 54]). Thus to prove (3), it suffices to show that .EX /2 � E.X 2/. By
the previous paragraph, we have

.EX /2
� n8p8.1�p/4:

To compute E.X 2/, we divide the sum

X 2
D

X
I.v1;v2;w1;w2/I.x1;x2;y1;y2/

into several cases. Write Iv;w D I.v1;v2;w1;w2/ and Ix;y D I.x1;x2;y1;y2/ .

Case 1 Let X1 denote the sum of all products Iv;wIx;y such that no vertex appears in
both 4–tuples .v1; v2; w1; w2/ and .x1; x2; y1; y2/. Then

E.X1/D
n!

.n� 8/!
p8.1�p/4

� n8p8.1�p/4:

Case 2 Let X2 denote the sum over all Iv;wIx;y such that exactly one vertex appears
in both 4–tuples. Then

E.X2/D 16
n!

.n� 7/!
p8.1�p/4

� 16n7p8.1�p/4

Case 3 Let X3 denote the sum over all Iv;wIx;y such that 2 vertices appear in both 4–
tuples making one of the pairs v or w equal to one of the pairs x or y up to permutation,
i.e., the potential squares share a pair of diagonal vertices. In this case, .Iv;wIx;y/

depends on the existence of 8 sides and the nonexistence of 3 diagonals, so

E.X3/D 8
n!

.n� 6/!
p8.1�p/3

� 8n6p8.1�p/3:

Case 4 Let X4 denote the sum over all Iv;wIx;y such that 2 vertices appear in both
4–tuples but in different diagonal pairs, i.e., the potential squares share an edge. Then
.Iv;wIx;y/ depends on the existence of 7 sides and the nonexistence of 4 diagonals, so

E.X4/D 32
n!

.n� 6/!
p7.1�p/4

� 32n6p7.1�p/4:

Note that there is no need to consider the case in which some pair appears as a diagonal
pair in one 4–tuple and an edge pair in the other since in that case either Iv;w or Ix;y
must be 0.

Case 5 Let X5 denote the sum over all Iv;wIx;y such that the two 4–tuples share 3
vertices. Then

E.X5/D 16
n!

.n� 5/!
p6.1�p/3

� 16n5p6.1�p/3:
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Case 6 Let X5 denote the sum over all Iv;wIx;y such that up to permutation, the two
4–tuples are the same. Then

E.X6/D 8
n!

.n� 4/!
p4.1�p/2

� 8n4p4.1�p/2:

Now compute

E.X 2/

.EX /2
D

6X
iD1

E.Xi/

.EX /2

� 1C
16

n
C

8

n2.1�p/
C

32

n2p
C

16

n3p2.1�p/
C

8

n4p4.1�p/2
:(2)

Note that since either .1�p/� 1
2

or p � 1
2

,

n3p2.1�p/�minf1
2
n3p2; 1

4
n3.1�p/g;

and
n4p2.1�p/2

�minf1
4
n4p4; 1

16
n4.1�p/2

g:

Thus, if pn!1 and .1�p/n2!1, then all denominators in (2) tend to infinity
implying

Prob.X ¤ 0/�
.EX /2

E.X 2/
! 1:

This completes the proof of Theorem 4.1.

Theorems 2.1 and 2.3 now follow by combining Theorems 3.1, 3.2 and 4.1.

5 The automorphism groups of random right-angled Artin
groups

A right-angled Artin group is a graph product in which vertex groups are infinite cyclic.
In this section we review some basic properties of right-angled Artin groups and refer
the reader to Hermiller and Meier [23], Servatius [33] and Laurence [27] for details.
For a general survey on these groups, see Charney [6].

To specify a right-angled Artin group, we need only specify the graph � . If V is the
vertex set of � , then the right-angled Artin group associated to � is the group with
presentation

A� D hV j vw D wv if v and w are connected by an edge in � i:
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At one extreme, we have the case that � is a discrete graph (i.e., no edges) and A� is
the free group on V . At the other, is the case that � is a complete graph (i.e., every
pair of vertices spans an edge) and A� is the free abelian group on V .

In this section, we consider right-angled Artin groups associated to random graphs
� 2G.n; p/. It is clear that basic properties of � are reflected in properties of the group.
For example, A� decomposes as a free product if and only if � is disconnected. For
� 2G.n; p/, Erdös and Rényi [17] showed that this holds asymptotically almost surely
if p.n/ D

log n�!.n/
n

, where !W N ! R is a function such that limn!1 !.n/ D1.
Likewise, A� decomposes as a direct product if and only if the complementary graph
is disconnected, which holds a.a.s. if 1� p.n/ D

log n�!.n/
n

. In [12], Costa and the
second author analyze the cohomological dimension and the topological complexity of
right-angled Artin groups associated to random graphs.

Automorphism groups of right-angled Artin groups have been extensively studied in
recent years. (See, for example, Charney and Vogtmann [9; 10] and Day [16].) Here,
we consider automorphism groups of right-angled Artin groups associated to random
graphs. Our goal is to prove the following theorem:

Theorem 5.1 Let � 2G.n; p/ be a random graph where the probability parameter p

is independent on n and satisfies

(3) 1� 1p
2

< p < 1:

Then the right-angled Artin group A� determined by � has a finite outer automorphism
group Out.A�/, asymptotically almost surely.

Note that 1� 1p
2
� 0:2929.

Our proof shows that a random right-angled Artin group A� admits no transvections
for any fixed p ; however to exclude partial conjugations one needs the assumption (3).
The definitions of transvections and partial conjugations are given below. Theorem 5.1
was further strengthened by M Day [15].

6 Proof of Theorem 5.1

The automorphism groups of right-angled Artin groups were first studied by Ser-
vatius [33] who described a finite generating set for Aut.A�/ under certain restrictions
on � . This was later extended to arbitrary � by Laurence in [27]. The generators
depend on certain structures in the defining graph � . For a vertex v , the link lk.v/ is
defined as the set of all vertices which are connected to v by an edge. The star st.V /
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is the union of all edges containing v .2 The Servatius-Laurence generating set consists
of the following automorphisms.

� Symmetries: These are given by permutations of the generators arising from
symmetries of the graph � .

� Inversions: These send a generator v 2 V to its inverse.

� Transvections: These map v 7! vw where v; w 2 V satisfy lk.v/� st.w/.

� Partial conjugations: These conjugate all of the generators in one component of
�nst.v/ by v and occur only if �nst.v/ is disconnected.

� Inner automorphisms: These conjugate the entire group by some generator v .

Let us take a closer look at transvections. The condition that lk.v/� st.w/ is necessary
to guarantee that the map v 7! vw preserves commutator relations. With this in mind,
we introduce a partial order on V . For two vertices v; w , write

v � w if lk.v/� st.w/.

It is shown in Charney and Vogtmann [9] that this relation is transitive.

Taking the quotient of Aut.A�/ by the inner automorphisms gives the outer auto-
morphism group Out.A�/. The first two types of automorphisms, symmetries and
inversions, induce a finite subgroup of Aut.A�/ (and hence of Out.A�/) while transvec-
tions and partial conjugations have infinite order. Hence Out.A�/ is finite if and only if
A� does not permit any transvections or partial conjugations. To exclude transvections,
we require that no two vertices are related by the partial order �. Consider, for example,
the case where � consists of a single cycle of length n � 5. It is easily seen that
in this case, no two vertices satisfy lk.v/ � st.w/. To exclude partial conjugations,
we require that � � st.v/ is connected for every vertex v . We call such a graph star
2–connected.

To prove Theorem 5.1, we will show that for � 2G.n; p/ with p satisfying (3), the
probability that A� admits a transvection or a partial conjugation tends to zero as n

goes to infinity.

First we show that the probability that there exists a pair of vertices v; w in � with
lk.v/� st.w/ tends to zero as n!1 . This would imply that A� admits no transvec-
tions.

2In some contexts, the link and star are taken to be full subgraphs of � . In our context, only the
vertices in these subgraphs will matter.
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v w

L

Figure 2

For a pair of distinct vertices v; w 2 f1; : : : ; ng and for a subset L � f1; : : : ; ng not
containing v; w , consider the following random variable

Iv;w;LW G.n; p/! f0; 1g;

where for a graph � 2G.n; p/ one has Iv;w;L.�/D 1 if and only if in � the following
conditions hold: (a) the link of v equals either L or L[ fwg and (b) L � lk.w/;
otherwise we set Iv;w;L.�/D 0. In other words, one has Iv;w;L.�/D 1 if and only if
(1) every vertex of L is connected by an edge to the vertices v and w ; (2) no vertex of
f1; : : : ; ng�L�fv; wg is connected by an edge to v . (See Figure 2.)

The sum
X D

X
Iv;w;LW G.n; p/! Z;

where v; w; L run over all possible choices, counts the number of ordered pairs of
vertices .v; w/ with the property that lk.v/� st.w/.

The expectation E.Iv;w;L/ equals

pk.1�p/n�2�kpk
D p2k.1�p/n�2�k

where k D jLj. Thus, we obtain

(4)
E.X /D n.n� 1/

n�2X
kD0

�
n� 2

k

�
p2k.1�p/n�2�k

D n.n� 1/.1�pCp2/n�2:

Now suppose that

p.1�p/n� 2 log n!1; as n!1:(5)
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This can also be expressed by saying that

p.1�p/D
2 log nC!.n/

n

where !.n/!1 as n!1 . Note that any constant 0 < p < 1 satisfies this condition.
Then denoting x D p�p2 one has

log E.X /� 2 log nC .n� 2/ log.1�x/

D 2 log n� .n� 2/
h
xC

x2

2
C

x3

3
C : : :

i
D 2 log n� nxCx

h
2� .n� 2/

hx

2
C

x2

3
C : : :

ii
� 2 log n� nx D�!.n/:

Thus, assuming (5), we have E.X /! 0 as n!1. By the first moment method,
Prob.X > 0/� E.X /, so we conclude that Prob.X > 0/! 0 as n!1.

Now we examine conditions for the absence of partial conjugations, that is, the condi-
tions on � such that the result of removing the star of any vertex is path-connected.

Consider a partition of the set of vertices f1; : : : ; ng into v[L[S [T where v is
a vertex and L; S; T are disjoint subsets not containing v . We denote `D jLj; s D

jS j; t D jT j. Let Jv;L;S;T W G.n; p/!f0; 1g be the random variable which associates
to a random graph � 2 G.n; p/ one if and only if L is the link of v in � and there
are no edges in � connecting a point of S to a point of T . One has

E.Jv;L;S;T /D p`.1�p/n�1�`.1�p/st :

Consider also the sum
Y D

X
Jv;L;S;T

where the sum is taken over all possible choices of v; L; S; T with s � 1 and t � 1.
For a random graph � 2G.n; p/ the number Y .�/ is positive if and only if removing
the star of some vertex disconnects the graph. Thus Prob.Y > 0/ is the probability that
a random graph fails to be star 2–connected.

For the expectation of Y we have

E.Y /D n �
X

s�1;t�1

1C`CsCtDn

�
n� 1

`

�
�

�
n� 1� `

s

�
�p`
� .1�p/n�`�1Cst

D n.1�p/n�1
�

n�3X
`D0

�
n� 1

`

�
�

�
p

1�p

�`

�F`.p/;
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where

(6) F`.p/D
X

sCtDn�1�`

s�1;t�1

�
sC t

s

�
� .1�p/st :

Observe that for s � 2, t � 2 one has st D s.n� 1� `� s/ � 2.n� 3� `/. Thus
separating the terms s D 1; t D 1 gives

F`.p/D 2.n� 1� `/ � .1�p/n�2�`
C

X
sCtDn�1�`

s�2;t�2

�
sC t

s

�
� .1�p/st

� 2.n� 1� `/ � .1�p/n�2�`
C .1�p/2.n�3�`/

� 2n�1�`

� 2n � .1�p/n�2�`
C .1�p/�4

�
2.1�p/2

�n�1�`
:

Substituting this into (6) we find

E.Y /� 2n2.1�p/n�2
�

n�3X
`D0

�
n� 1

`

��
p

1�p

�`

.1�p/n�1�`

C n.1�p/n�5
�

n�3X
`C0

�
n� 1

`

��
p

1�p

�` �
2.1�p/2

�n�1�`

� 2n2
� .1�p/n�2

�

h p

1�p
C 1�p

in�1

C n � .1�p/n�5
h p

1�p
C 2.1�p/2

in�1

D 2n2.1�p/�1
�
pC .1�p/2

�n�1
C n.1�p/�4

� ŒpC 2.1�p/3�n�1

D 2n2.1�p/�1.1�x/n�1
C n.1�p/�4.1�y/n�1;

where x D p � p2 and y D 2.p � 1/
�
p � 1 �

p
2

2

��
p � 1C

p
2

2

�
. Clearly for all

0 < p < 1, one has 0 < x < 1; and it is easy to see that for 1� 1p
2

< p < 1, one also
has 0 < y < 1.

Thus we obtain that as n!1, the expectation E.Y / tends to zero and by the first
moment method, this implies that the probability Prob.Y > 0/ tends to zero. Therefore,
the right-angled Artin group corresponding to a random graph � with parameter p

satisfying (3) admits no partial conjugations, a.a.s.

Since we have already proven that A� admits no transvections, it follows that, for
a random graph � 2 G.n; p/ with p satisfying (3) the group A� has a finite outer
automorphism group.
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This completes the proof of Theorem 5.1.

These results also apply to more general graph products G� D G.�; fGvg/ in which
every vertex group is cyclic, but not necessarily infinite cyclic. Corredor and Gutier-
rez [11] have recently shown that the automorphism groups of such graph products
have a generating set analogous to the Servatius-Laurence generators for a right-angled
Artin group described above. The only difference is that inversions are replaced by
isomorphisms of individual vertex groups (these are always of finite order) and there
are additional restrictions on transvections involving the orders of the vertex groups.
Once again, if there are no vertices with lk.v/� st.w/ and no separating stars, then
the automorphism group is necessarily finite. Thus we obtain,

Theorem 6.1 Fix a collection of nontrivial, cyclic groups indexed by the natural
numbers fGig. For a random graph � 2G.n; p/, let G� DG.�; fGig/ be the associated
graph group. Suppose the probability parameter p is independent of n and satisfies

(7) 1� 1p
2

< p < 1:

Then G� has a finite outer automorphism group Out.A�/, asymptotically almost surely.
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